Sample records for shrinkage

  1. Kinetics of corneal thermal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Lee, William E.; Parel, Jean-Marie

    2004-07-01

    Purpose: The purpose of this study was to determine the effects of temperature and heating duration on the kinetics of thermal shrinkage in corneal strips using a custom-made shrinkage device. Methods: Thermal shrinkage was induced and measured in corneal strips under a constant load placed while bathed in 25% Dextran irrigation solution. A study was performed on 57 Florida Lions Eye Bank donated human cadaver eyes to determine the effect of temperature on the amount and rate of thermal shrinkage. Further experiments were performed on 20 human cadaver eyes to determine the effects of heating duration on permanent shrinkage. Data analysis was performed to determine the effects of temperature, heating duration, and age on the amount and kinetics of shrinkage. Results: Shrinkage consisted of two phases: a shrinkage phase during heating and a regression phase after heating. Permanent shrinkage increased with temperature and duration. The shrinkage and regression time constants followed Arrhenius type temperature dependence. The shrinkage time constants where calculated to be 67, 84, 121, 560 and 1112 (s) at 80, 75, 70, 65, and 60°C respectively. At 65°C the permanent shrinkage time constant was calculated to be 945s. Conclusion: These results show that shrinkage treatments need to raise the temperature of the tissue above 75°C for several seconds in order to prevent regression of the shrinkage effect immediately after treatment and to induce the maximum amount of permanent irreversible shrinkage.

  2. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    PubMed

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  3. [Comparative study of polymerization shrinkage and related properties of flowable composites and an unfilled resin].

    PubMed

    Bukovinszky, Katalin; Molnár, Lilla; Bakó, József; Szalóki, Melinda; Hegedus, Csaba

    2014-03-01

    The polymerization shrinkage and shrinkage stress of dental composites are in the center of the interest of researchers and manufacturers. It is a great challenge to minimize this important property as low as possible. Many factors are related and are in complicated correlation with each other affecting the polymerization shrinkage. Polymerization shrinkage stress degree of conversion and elasticity has high importance from this aspect. Our aim was to study the polymerization shrinkage and related properties (modulus of elasticity, degree of conversion, shrinkage stress) of three flowable composite (Charisma Opal Flow, SDR, Filtek Ultimate) and an unfilled composite resin. Modulus of elasticity was measured using three point flexure tests on universal testing machine. The polymerization shrinkage stress was determined using bonded-disc technique. The degree of conversion measurements were performed by FT-IR spectroscopy. And the volumetric shrinkage was investigated using Archimedes principle and was measured on analytical balance with special additional equipment. The unfilled resin generally showed higher shrinkage (8,26%), shrinkage stress (0,8 MPa) and degree of conversion (38%), and presented the lowest modulus of elasticity (3047,02MPa). Highest values of unfilled resin correspond to the literature. The lack of fillers enlarges the shrinkage, and the shrinkage stress, but gives the higher flexibility and higher degree of conversion. Further investigations needs to be done to understand and reveal the differences between the composites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asamoto, Shingo, E-mail: asamoto@mail.saitama-u.ac.j; Ohtsuka, Ayumu; Kuwahara, Yuta

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated frommore » viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.« less

  5. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry.

  6. Do low-shrink composites reduce polymerization shrinkage effects?

    PubMed

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.

  7. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    NASA Astrophysics Data System (ADS)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  8. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.

    PubMed

    Al Sunbul, Hanan; Silikas, Nick; Watts, David C

    2016-08-01

    To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Development of concrete shrinkage performance specifications.

    DOT National Transportation Integrated Search

    2003-01-01

    During its service life, concrete undergoes volume changes. One of the types of deformation is shrinkage. The four main types of shrinkage associated with concrete are plastic, autogenous, carbonation, and drying shrinkage. The volume changes in conc...

  10. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  11. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    PubMed

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  12. Health, Height, Height Shrinkage, and SES at Older Ages: Evidence from China†

    PubMed Central

    Huang, Wei; Lei, Xiaoyan; Ridder, Geert; Strauss, John

    2015-01-01

    In this paper, we build on the literature that examines associations between height and health outcomes of the elderly. We investigate the associations of height shrinkage at older ages with socioeconomic status, finding that height shrinkage for both men and women is negatively associated with better schooling, current urban residence, and household per capita expenditures. We then investigate the relationships between pre-shrinkage height, height shrinkage, and a rich set of health outcomes of older respondents, finding that height shrinkage is positively associated with poor health outcomes across a variety of outcomes, being especially strong for cognition outcomes. PMID:26594311

  13. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    NASA Astrophysics Data System (ADS)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  14. Cure shrinkage in casting resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  15. Photo-crosslinkable cyanoacrylate bioadhesive: shrinkage kinetics, dynamic mechanical properties, and biocompatibility of adhesives containing TMPTMA and POSS nanostructures as crosslinking agents.

    PubMed

    Ghasaban, S; Atai, M; Imani, M; Zandi, M; Shokrgozar, M-A

    2011-11-01

    The study investigates the photo-polymerization shrinkage behavior, dynamic mechanical properties, and biocompatibility of cyanoacrylate bioadhesives containing POSS nanostructures and TMPTMA as crosslinking agents. Adhesives containing 2-octyl cyanoacrylate (2-OCA) and different percentages of POSS nanostructures and TMPTMA as crosslinking agents were prepared. The 1-phenyl-1, 2-propanedione (PPD) was incorporated as photo-initiator into the adhesive in 1.5, 3, and 4 wt %. The shrinkage strain of the specimens was measured using bonded-disk technique. Shrinkage strain, shrinkage strain rate, maximum and time at maximum shrinkage strain rate were measured and compared. Mechanical properties of the adhesives were also studied using dynamic mechanical thermal analysis (DMTA). Biocompatibility of the adhesives was examined by MTT method. The results showed that shrinkage strain increased with increasing the initiator concentration up to 3 wt % in POSS-containing and 1.5 wt % in TMPTMA-containing specimens and plateaued out at higher concentrations. By increasing the crosslinking agent, shrinkage strain, and shrinkage strain rate increased and the time at maximum shrinkage strain rate decreased. The study indicates that the incorporation of crosslinking agents into the cyanoacrylate adhesives resulted in improved mechanical properties. Preliminary MTT studies also revealed better biocompatibility profile for the adhesives containing crosslinking agents comparing to the neat specimens. Copyright © 2011 Wiley Periodicals, Inc.

  16. An Experimental Study on Shrinkage Strains of Normal-and High-Strength Concrete-Filled Frp Tubes

    NASA Astrophysics Data System (ADS)

    Vincent, Thomas; Ozbakkaloglu, Togay

    2017-09-01

    It is now well established that concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) are an attractive construction technique for new columns, however studies examining concrete shrinkage in CFFTs remain limited. Concrete shrinkage may pose a concern for CFFTs, as in these members the curing of concrete takes place inside the FRP tube. This paper reports the findings from an experimental study on concrete shrinkage strain measurements for CFFTs manufactured with normal- and high-strength concrete (NSC and HSC). A total of 6 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured, with 3 specimens each manufactured using NSC and HSC. The specimens were instrumented with surface and embedded strain gauges to monitor shrinkage development of exposed concrete and concrete sealed inside the CFFTs, respectively. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths were 44.8 or 83.2 MPa. Analysis of the shrinkage measurements from concrete sealed inside the CFFTs revealed that embedment depth and concrete compressive strength only had minor influences on recorded shrinkage strains. However, an analysis of shrinkage measurements from the exposed concrete surface revealed that higher amounts of shrinkage can occur in HSC. Finally, it was observed that shrinkage strains are significantly higher for concrete exposed at the surface compared to concrete sealed inside the CFFTs.

  17. Development of shrinkage resistant microfibre-reinforced cement-based composites

    NASA Astrophysics Data System (ADS)

    Hamedanimojarrad, P.; Adam, G.; Ray, A. S.; Thomas, P. S.; Vessalas, K.

    2012-06-01

    Different shrinkage types may cause serious durability dilemma on restrained concrete parts due to crack formation and propagation. Several classes of fibres are used by concrete industry in order to reduce crack size and crack number. In previous studies, most of these fibre types were found to be effective in reducing the number and sizes of the cracks, but not in shrinkage strain reduction. This study deals with the influence of a newly introduced type of polyethylene fibre on drying shrinkage reduction. The novel fibre is a polyethylene microfibre in a new geometry, which is proved to reduce the amount of total shrinkage in mortars. This special hydrophobic polyethylene microfibre also reduces moisture loss of mortar samples. The experimental results on short and long-term drying shrinkage as well as on several other properties are reported. The hydrophobic polyethylene microfibre showed promising improvement in shrinkage reduction even at very low concentrations (0.1% of cement weight).

  18. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    1979-01-01

    A Monte Carlo simulation was employed to determine the accuracy with which the shrinkage in R squared can be estimated by five different shrinkage formulas. The study dealt with the use of shrinkage formulas for various sample sizes, different R squared values, and different degrees of multicollinearity. (Author/JKS)

  19. Post-veraison irreversible stem shrinkage in grapevine (Vitis vinifera) is caused by periderm formation.

    PubMed

    Van de Wal, Bart A E; Leroux, Olivier; Steppe, Kathy

    2018-05-01

    Grapevines are characterized by a period of irreversible stem shrinkage around the onset of ripening of the grape berries. Since this shrinkage is unrelated to meteorological conditions or drought, it is often suggested that it is caused by the increased sink strength of the grape berries during this period. However, no studies so far have experimentally investigated the mechanisms underlying this irreversible stem shrinkage. We therefore combined continuous measurements of stem diameter variations and histology of potted 2-year-old grapevines (Vitis vinifera L. 'Boskoop Glory'). Sink strength was altered by pruning all grape clusters (treatment P), while non-pruned grapevines served as control (treatment C). Unexpectedly, our results showed irreversible post-veraison stem shrinkage in both treatments, suggesting that the shrinkage is not linked to grape berry sink strength. Anatomical analysis indicated that the shrinkage is the result of the formation of successive concentric periderm layers, and the subsequent dehydration and compression of the older bark tissues, an anatomical feature that is characteristic of Vitis stems. Stem shrinkage is hence unrelated to grape berry development, in contrast to what has been previously suggested.

  20. Post-resection mucosal margin shrinkage in oral cancer: quantification and significance.

    PubMed

    Mistry, Rajesh C; Qureshi, Sajid S; Kumaran, C

    2005-08-01

    The importance of tumor free margins in outcome of cancer surgery is well known. Often the pathological margins are reported to be significantly smaller than the in situ margins. This discrepancy is due to margin shrinkage the quantum of which has not been studied in patients with oral cancers. To quantify the shrinkage of mucosal margin following excision for carcinoma of the oral tongue and buccal mucosa. Mucosal margins were measured prior to resection and half an hour after excision in 27 patients with carcinoma of the tongue and buccal mucosa. The mean margin shrinkage was assessed and the variables affecting the quantum of shrinkage analyzed. The mean shrinkage from the in situ to the post resection margin status was 22.7% (P < 0.0001). The mean shrinkage of the tongue margins was 23.5%, compared to 21.2% for buccal mucosa margins. The mean shrinkage in T1/T2 tumors (25.6%) was significantly more than in T3/T4 (9.2%, P < 0.011). There is significant shrinkage of mucosal margins after surgery. Hence this should be considered and appropriate margins should be taken at initial resection to prevent the agony of post-operative positive surgical margins. Copyright 2005 Wiley-Liss, Inc.

  1. Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying.

    PubMed

    Katsen-Globa, Alisa; Puetz, Norbert; Gepp, Michael M; Neubauer, Julia C; Zimmermann, Heiko

    2016-11-01

    One of the often reported artefacts during cell preparation to scanning electron microscopy (SEM) is the shrinkage of cellular objects, that mostly occurs at a certain time-dependent stage of cell drying. Various methods of drying for SEM, such as critical point drying, freeze-drying, as well as hexamethyldisilazane (HMDS)-drying, were usually used. The latter becomes popular since it is a low cost and fast method. However, the correlation of drying duration and real shrinkage of objects was not investigated yet. In this paper, cell shrinkage at each stage of preparation for SEM was studied. We introduce a shrinkage coefficient using correlative light microscopy (LM) and SEM of the same human mesenchymal stem cells (hMSCs). The influence of HMDS-drying duration on the cell shrinkage is shown: the longer drying duration, the more shrinkage is observed. Furthermore, it was demonstrated that cell shrinkage is inversely proportional to cultivation time: the longer cultivation time, the more cell spreading area and the less cell shrinkage. Our results can be applicable for an exact SEM quantification of cell size and determination of cell spreading area in engineering of artificial cellular environments using biomaterials. SCANNING 38:625-633, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin

    PubMed Central

    He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K.; Lassila, Lippo

    2018-01-01

    Abstract This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix (bis-GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis-GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes’ principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion (p < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness (p > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased. PMID:29536025

  3. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin.

    PubMed

    He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo

    2018-01-01

    This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix ( bis -GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis -GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes' principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion ( p  < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness ( p  > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased.

  4. Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Hussein, Rafid M.; Chandrashekhara, K.

    2017-11-01

    A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

  5. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…

  6. Shrinkage Degree in $L_{2}$ -Rescale Boosting for Regression.

    PubMed

    Xu, Lin; Lin, Shaobo; Wang, Yao; Xu, Zongben

    2017-08-01

    L 2 -rescale boosting ( L 2 -RBoosting) is a variant of L 2 -Boosting, which can essentially improve the generalization performance of L 2 -Boosting. The key feature of L 2 -RBoosting lies in introducing a shrinkage degree to rescale the ensemble estimate in each iteration. Thus, the shrinkage degree determines the performance of L 2 -RBoosting. The aim of this paper is to develop a concrete analysis concerning how to determine the shrinkage degree in L 2 -RBoosting. We propose two feasible ways to select the shrinkage degree. The first one is to parameterize the shrinkage degree and the other one is to develop a data-driven approach. After rigorously analyzing the importance of the shrinkage degree in L 2 -RBoosting, we compare the pros and cons of the proposed methods. We find that although these approaches can reach the same learning rates, the structure of the final estimator of the parameterized approach is better, which sometimes yields a better generalization capability when the number of sample is finite. With this, we recommend to parameterize the shrinkage degree of L 2 -RBoosting. We also present an adaptive parameter-selection strategy for shrinkage degree and verify its feasibility through both theoretical analysis and numerical verification. The obtained results enhance the understanding of L 2 -RBoosting and give guidance on how to use it for regression tasks.

  7. Shrinkage and footage loss from drying 4/4-inch hard maple lumber.

    Treesearch

    Daniel E. Dunmire

    1968-01-01

    Equations are presented for estimating shrinkage and resulting footage losses due to drying hard maple lumber. The equations, based on board shrinkage data taken from a representative lumber sample, are chiefly intended for use with lots of hard maple lumber, such as carloads, truckloads, or kiln loads, but also can be used for estimating the average shrinkage of...

  8. Strategies to overcome polymerization shrinkage--materials and techniques. A review.

    PubMed

    Malhotra, Neeraj; Kundabala, M; Shashirashmi, Acharya

    2010-03-01

    Stress generation at tissue/resin composite interfaces is one of the important reasons for failure of resin-based composite (RBC) restorations owing to the inherent property of polymerization shrinkage. Unrelieved stresses can weaken the bond between the tooth structure and the restoration, eventually producing a gap at the restoration margins. This can lead to postoperative sensitivity, secondary caries, fracture of the restorations, marginal deterioration and discoloration. As polymerization shrinkage cannot be eliminated completely, various techniques and protocols have been suggested in the manipulation of, and restorative procedures for, RBCs to minimize the shrinkage and associated stresses. Introduction of various newer monomer systems (siloranes) may also overcome this problem of shrinkage stress. This review emphasizes the various material science advances and techniques advocated that are currently available or under trial/testing phase to deal with polymerization shrinkage in a clinical environment. Minimizing the shrinkage stresses in RBC restorations may lead to improvement in the success rate and survival of restorations. Thus, it is important for dental practitioners to be aware of various techniques and materials available to reduce these shrinkage stresses and be updated with the current knowledge available to deal with this issue.

  9. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  10. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  11. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    NASA Astrophysics Data System (ADS)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  12. Variation of Shrinkage Strain within the Depth of Concrete Beams.

    PubMed

    Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak

    2015-11-16

    The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs' equation, which accounts for the change of aggregate volume concentration.

  13. Variation of Shrinkage Strain within the Depth of Concrete Beams

    PubMed Central

    Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak

    2015-01-01

    The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677

  14. Low-shrink composite resins: a review of their history, strategies for managing shrinkage, and clinical significance.

    PubMed

    Pitel, Mark L

    2013-09-01

    Despite numerous advances in composite resin technology over the course of many decades, shrinkage behavior and the resultant stresses inherent to direct placed composite restorations continue to challenge clinicians. This overview of composite resins includes a review of their history and development along with a discussion of strategies for reducing polymerization shrinkage. An assessment of the clinical significance of these materials is also provided, including a discussion of the differences between polymerization shrinkage and stress, incremental layering versus bulk placement, and the emergence of lower shrinkage stress monomer chemistry.

  15. Devitrification and shrinkage behavior of silica fibers

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1972-01-01

    Devitrification and shrinkage of three batches of silica fibers were investigated in the temperature range of 1200 to 1350 C. Fibers with high water and impurity content devitrified rapidly to cristobalite and quartz and exhibited rapid, but the least amount of, shrinkage. A batch with low water and impurity content devitrified more slowly to cristobalite only and underwent severe shrinkage by the mechanism of viscous flow. A third batch of intermediate purity level and low water content devitrified at a moderate rate mainly to cristobalite but shrunk very rapidly. Completely devitrified silica fibers did not exhibit any further shrinkage.

  16. Aerosol particle shrinkage event phenomenology in a South European suburban area during 2009-2015

    NASA Astrophysics Data System (ADS)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Núñez, L.; Pujadas, M.; Cusack, M.; Artíñano, B.

    2017-07-01

    A high number of aerosol particle shrinkage cases (70) have been identified and analyzed from an extensive and representative database of aerosol size distributions obtained between 2009 and 2015 at an urban background site in Madrid (Spain). A descriptive classification based on the process from which the shrinkage began is proposed according which shrinkage events were divided into three groups: (1) NPF + shrinkage (NPF + S) events, (2) aerosol particle growth process + shrinkage (G + S) events, and (3) pure shrinkage (S) events. The largest number of shrinkages corresponded to the S-type followed by NPF + S, while the G + S events were the least frequent group recorded. Duration of shrinkages varied widely from 0.75 to 8.5 h and SR from -1.0 to -11.1 nm h-1. These processes typically occurred in the afternoon, around 18:00 UTC, caused by two situations: i) a wind speed increase usually associated with a change in the wind direction (over 60% of the observations) and ii) the reduction of photochemical activity at the end of the day. All shrinkages were detected during the warm period, mainly between May and August, when local meteorological conditions (high solar irradiance and temperature and low relative humidity), atmospheric processes (high photochemical activity) and availability of aerosol-forming precursors were favorable for their development. As a consequence of these processes, the particles concentration corresponding to the Aitken mode decreased into the nucleation mode. The accumulation mode did not undergo significant changes during these processes. In some cases, a dilution of the particulate content in the ambient air was observed. This work, goes further than others works dealing with aerosol particles shrinkages, as it incorporates as a main novelty a classification methodology for studying these processes. Moreover, compared to other studies, it is supported by a high and representative number of observations. Thus, this study contributes to get a better understanding of this type of atmospheric aerosol transformations and its features.

  17. A study of polymerization shrinkage kinetics using digital image correlation.

    PubMed

    Lau, Andrew; Li, Jianying; Heo, Young Cheul; Fok, Alex

    2015-04-01

    To investigate the polymerization shrinkage kinetics of dental resin composites by measuring in real time the full-field shrinkage strain using a novel technique based on digital image correlation (DIC). Polymerization shrinkage in resin composite specimens (Filtek LS and Z100) was measured as a function of time and position. The main experimental setup included a CCD camera and an external shutter inversely synchronized to that of the camera. The specimens (2 mm × 4 mm × 5 mm) were irradiated for 40s at 1200 mW/cm(2), while alternating image acquisition and obstruction of the curing light occurred at 15 fps. The acquired images were processed using proprietary software to obtain the full-field strain maps as a function of time. Z100 showed a higher final shrinkage value and rate of development than LS. The final volumetric shrinkage for Z100 and LS were 1.99% and 1.19%, respectively. The shrinkage behavior followed an established shrinkage strain kinetics model. The corresponding characteristic time and reaction order exponent for LS and Z100 were calculated to be approximately 23s and 0.84, and 14s and 0.7, respectively, at a distance of 1.0mm from the irradiated surface, the position where maximum shrinkage strain occurred. Thermal expansion from the exothermic reaction could have affected the accuracy of these parameters. The new DIC method using an inversely synchronized shutter provided realtime, full-field results that could aid in assessing the shrinkage strain kinetics of dental resin composites as a function of specimen depth. It could also help determine the optimal curing modes for dental resin composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Alternative methods for determining shrinkage in restorative resin composites.

    PubMed

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Thermoelectrically controlled device for studies of temperature-induced corneal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Fernandez, Viviana; Lamar, Peggy; Soederberg, Per G.; Parel, Jean-Marie A.

    2002-06-01

    The purpose of this study was to design and calibrate a device to measure the dynamics of thermal shrinkage in corneal and scleral strips. The apparatus consists of a thermoelectric cell controlled by a temperature controller designed to generate temperatures up to 90 degree(s)C in rectangular corneal strips; a copper cuvette filled with Dextran solution that holds the corneal strip and a displacement sensor that measures the change in length of the tissue during heat-induced shrinkage. The device was tested on corneal tissue from Florida Eye-Bank eyes that were cut into 2x4mm rectangular strips. Preliminary results indicate that our system can reproducibly create and accurately measure thermally induced corneal shrinkage. Shrinkage experiments will be used to optimize laser parameters for corneal shrinkage during laser thermokeratoplasty and laser scleral buckling.

  20. EFFECT OF LIGHT-CURING UNITS AND ACTIVATION MODE ON POLYMERIZATION SHRINKAGE AND SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Pereira, José Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p≤0.05), and the stress data were analyzed by one-way ANOVA and Tukey's test (p≤0.05). Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value. PMID:19089287

  1. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  2. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  3. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites.

    PubMed

    Kim, L U; Kim, J W; Kim, C K

    2006-09-01

    To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.

  4. Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Jamil, N.; Rasmani, KA.

    2016-08-01

    A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.

  5. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  6. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  7. Drying shrinkage problems in high PI subgrade soils.

    DOT National Transportation Integrated Search

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  8. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.

    2015-09-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  9. Review and specification for shrinkage cracks of bridge decks : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    An existing standard method ASTM C157 is used to determine the length change or free shrinkage of an unrestrained concrete specimen. However, in bridge decks, the concrete is actually under restrained conditions, and thus free shrinkage test methods ...

  10. The two sides of the C-factor.

    PubMed

    Fok, Alex S L; Aregawi, Wondwosen A

    2018-04-01

    The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement. Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses. The resulting differential equation is solved for the shrinkage stress under different boundary conditions. The accuracy of the model is assessed by comparing the numerical solutions with a wide range of experimental data, which include those from both shrinkage strain and shrinkage stress measurements. There is good agreement between theory and experiments. The model correctly predicts the different instrument-dependent effects that a specimen's configuration factor (C-factor) has on shrinkage stress. That is, for noncompliant stress-measuring instruments, shrinkage stress increases with the C-factor of the cylindrical specimen; while the opposite is true for compliant instruments. The model also provides a correction factor, which is a function of the C-factor, Poisson's ratio and boundary layer thickness of the specimen, for shrinkage strain measured using the bonded-disc method. For the resin composite examined, the boundary layers have a combined thickness that is ∼11.5% of the specimen's diameter. The theory provides a physical and mechanical basis for the C-factor using principles of engineering mechanics. The correction factor it provides allows the linear shrinkage strain of a resin composite to be obtained more accurately from the bonded-disc method. Published by Elsevier Ltd.

  11. Comparison of shrinkage related properties of various patch repair materials

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  12. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  13. Shrinkage-stress kinetics of photopolymerised resin-composites

    NASA Astrophysics Data System (ADS)

    Satterthwaite, Julian D.

    The use of directly-placed substances as restorative materials in teeth remains the technique of choice for preserving function and form in teeth that have cavities. The current aesthetic restorative materials of choice are resin-composite materials, although these undergo molecular densification during polymerisation, which has deleterious effects. Although shrinkage-strain is the cause, it is the shrinkage-stress effects that may be seen as being responsible for the problems with adhesive resin-based restorations that are encountered clinically, the bond may fail with separation of the material from the cavity wall, leading to marginal discolouration, pulpal irritation and subsequent necrosis, post operative sensitivity, recurrent caries and eventual failure of restorations. Other outcomes include cohesive fracture of enamel or cusps, cuspal movement (strain) and persistent pain. The aims of this research were to characterise the effects of variations in resin-composite formulation on shrinkage-strain and shrinkage-stress kinetics. In particular, the influence of the size and morphology of the dispersed phase was investigated through the study of experimental formulations. Polymerisation shrinkage-strain kinetics were assessed with the bonded-disk method. It was found that resin-composites with spherical filler particles had significantly lower shrinkage-strain compared to those with irregular filler particles. Additionally, shrinkage-strain was found to be dependent on the size of filler particle, and this trend was related, in part, to differences in the degree of conversion. The data were also used to calculate the activation energy for each material, and a relationship between this and filler particle size for the irregular fillers was demonstrated. A fixed-compliance cantilever beam instrument (Bioman) was used for characterisation of shrinkage-stress kinetics. Significant differences were identified between materials in relation to filler particle size and morphology. A hypothesis for these interactions, relating to surface area effects, was presented. The complex interactions leading to the development of shrinkage-stress were investigated further. Shrinkage-stress over a 24 hour period was assessed, and modelled through application of the Kohlrausch-Williams-Watts equation. The effect of variation in specimen dimensions were assessed, and it was shown that the relationship of the specimen height and diameter to shrinkage-stress is a function not only of the C-factor (the ratio of bonded to unbonded surfaces), but also how the C-factor is created. These relationships were characterised and descriptive equations fitted to the data to describe the phenomena. Shrinkage-stress measurements against a variety of test surfaces were also assessed, and the use of stainless steel as a test surface was validated. Finally, exploratory research was undertaken to develop a moire interferometer for the measurement of in-plane displacements and strain arising in teeth due to polymerisation of resin-composite restorations.

  14. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  16. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Teramoto, A.

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflectionmore » point and with increase in temperature inside concrete members with large cross sections.« less

  17. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups.

    PubMed

    Ge, Junhao; Trujillo, Marianela; Stansbury, Jeffrey

    2005-12-01

    This study was conducted to determine whether novel photopolymerizable formulations based on dimethacrylate monomers with bulky substituent groups could provide low polymerization shrinkage without sacrifice to degree of conversion, and mechanical properties of the polymers. Relatively high molecular weight dimethacrylate monomers were prepared from rigid bisphenol A core groups. Photopolymerization kinetics and shrinkage as well as flexural strength and glass transition temperatures were evaluated for various comonomer compositions. Copolymerization of the bulky monomers with TEGDMA show higher conversion but similar shrinkage compared with Bis-GMA/TEGDMA controls. The resulting polymers have suitable mechanical strength properties for potential dental restorative materials applications. When copolymerized with PEGDMA, the bulky monomers show lower shrinkage, comparable conversion, and more homogeneous polymeric network structures compared with Bis-EMA/PEGDMA systems. The novel dimethacrylate monomers with reduced reactive group densities can decrease the polymerization shrinkage as anticipated, but there is no significant evidence that the bulky substituent groups have any additional effect on reducing shrinkage based on the physical interactions as polymer side chains. The bulky groups improve the double bond conversion and help maintain the mechanical properties of the resulting polymer, which would otherwise decrease rapidly due to the reduced crosslinking density. Further, it was found that bulky monomers help produce more homogeneous copolymer networks.

  18. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation.

    PubMed

    Li, Jianying; Fok, Alex S L; Satterthwaite, Julian; Watts, David C

    2009-05-01

    The aim of this study was to measure the full-field polymerization shrinkage of dental composites using optical image correlation method. Bar specimens of cross-section 4mm x 2mm and length 10mm approximately were light cured with two irradiances, 450 mW/cm(2) and 180 mW/cm(2), respectively. The curing light was generated with Optilux 501 (Kerr) and the two different irradiances were achieved by adjusting the distance between the light tip and the specimen. A single-camera 2D measuring system was used to record the deformation of the composite specimen for 30 min at a frequency of 0.1 Hz. The specimen surface under observation was sprayed with paint to produce sufficient contrast to allow tracking of individual points on the surface. The curing light was applied to one end of the specimen for 40s during which the painted surface was fully covered. After curing, the cover was removed immediately so that deformation of the painted surface could be recorded by the camera. The images were then analyzed with specialist software and the volumetric shrinkage determined along the beam length. A typical shrinkage strain field obtained on a specimen surface was highly non-uniform, even at positions of constant distance from the irradiation surface, indicating possible heterogeneity in material composition and shrinkage behavior in the composite. The maximum volumetric shrinkage strain of approximately 1.5% occurred at a subsurface distance of about 1mm, instead of at the irradiation surface. After reaching its peak value, the shrinkage strain then gradually decreased with increasing distance along the beam length, before leveling off to a value of approximately 0.2% at a distance of 4-5mm. The maximum volumetric shrinkage obtained agreed well with the value of 1.6% reported by the manufacturer for the composite examined in this work. Using irradiance of 180 mW/cm(2) resulted in only slightly less polymerization shrinkage than using irradiance of 450 mW/cm(2). Compared to the other measurement methods, the image correlation method is capable of producing full-field information about the polymerization shrinkage behavior of dental composites.

  19. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  20. Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study

    NASA Astrophysics Data System (ADS)

    Jiang, Dongbin; Wang, Weiling; Luo, Sen; Ji, Cheng; Zhu, Miaoyong

    2017-12-01

    Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.

  1. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  2. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    PubMed Central

    Ha, Jung-Yun; Chun, Ju-Na; Son, Jun Sik; Kim, Kyo-Han

    2014-01-01

    Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA) resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control). The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes) were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P > 0.05) or significantly larger (P < 0.05) than that of the control resin and were related to the polymerization kinetics (P < 0.05) rather than the PMMA bead size (P = 0.335). Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins. PMID:24779020

  3. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    PubMed

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  4. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    NASA Astrophysics Data System (ADS)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  5. Advanced shrink material for NTD process with lower Y/X shrinkage bias of elongated patterns

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshihiro; Sekito, Takashi; Sagan, John; Horiba, Yuko; Kinuta, Takafumi; Nagahara, Tatsuro; Tarutani, Shinji

    2015-03-01

    Negative tone shrink materials (NSM) suitable for resolution enhancement of negative tone development (NTD) 193nm immersion resists have been developed. While this technology is being expanded to integrated circuits (IC) manufacturing, there still have two major problems to apply various processes. One of them is shrink ID bias which means shrink differences between isolated (I) and dense (D) CDs, and the other one is Y/X shrinkage bias which means shrinkage differences between major axis (Y) and minor axis (X) of the elongated or oval shape pattern. While we have presented the improvement of shrink ID bias at SPIE2014 [1], the reduction of Y/X shrinkage bias was the examination theme for quite some time. In this paper, we present Y/X shrinkage bias of current NTD shrink material, new concept material for Y/X bias reduction and the result of new shrink material. Current NTD shrink model has Y/X bias of 1.6 (Y shrink=16nm) at a mixing bake (MB) of 150°C on AZ AX2110P NTD elongated pattern of X=70nm and Y=210nm ADI. This means shrinkage of Y has larger shrinkage than X and that makes difficult to apply shrink material. We expected that the characteristic shape of elongated pattern was one of the root-cause for Y/X bias, and then simulated how to achieve equivalent shrinkage at Y and X. We concluded that available resist volume per each Y and X unit was not equivalent and need new shrink concept to solve Y/X bias. Based on our new concept, we prepared new shrink material which has lower Y/X bias and larger shrink amount compared with current NTD shrink material. Finally we have achieved lower Y/X bias from 1.6 to 1.1 at MB150°C and moreover got higher shrinkage than current NTD shrink material from 10.1nm to 16.7nm.

  6. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  7. Hardness, density, and shrinkage characteristics of silk-oak from Hawaii

    Treesearch

    R. L. Youngs

    1964-01-01

    Shrinkage, specific gravity, and hardness of two shipments of silk-oak (Grevillea robusta) from Hawaii were evaluated to provide basic information pertinent to the use of the wood for cabinet and furniture purposes. The wood resembles Hawaii-grown shamel ash (Fraxinus uhdei ) in the properties evaluated. Shrinkage compares well with that of black cherry, silver maple,...

  8. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste.

    DOT National Transportation Integrated Search

    2011-04-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  9. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste

    DOT National Transportation Integrated Search

    2011-03-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  10. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications.

    PubMed

    Atai, Mohammad; Ahmadi, Mehdi; Babanzadeh, Samal; Watts, David C

    2007-08-01

    The aim of the study was to synthesize and characterize an isophorone-based urethane dimethacrylate (IP-UDMA) resin-monomer and to investigate its shrinkage and curing kinetics. The IP-UDMA monomer was synthesized through the reaction of polyethylene glycol 400 and isophorone diisocyanate followed by reacting with HEMA to terminate it with methacrylate end groups. The reaction was followed using a standard back titration method and FTIR spectroscopy. The final product was purified and characterized using FTIR, (1)H NMR, elemental analysis and refractive index measurement. The shrinkage-strain of the specimens photopolymerized at circa 700mW/cm(2) was measured using the bonded-disk technique at 23, 35, and 45 degrees C. Initial shrinkage-strain-rates were obtained by numerical differentiation of shrinkage-strain data with respect to time. Degree-of-conversion of the specimens was measured using FTIR spectroscopy. The thermal curing kinetics of the monomer were also studied by differential scanning calorimetry (DSC). The characterization methods confirmed the suggested reaction route and the synthesized monomer. A low shrinkage-strain of about 4% was obtained for the new monomer. The results showed that the shrinkage-strain-rate of the monomer followed the autocatalytic model of Kamal and Sourour [Kamal MR, Sourour S. Kinetic and thermal characterization of thermoset cure. Polym Eng Sci 1973;13(1):59-64], which is used to describe the reaction kinetics of thermoset resins. The model parameters were calculated by linearization of the equation. The model prediction was in a good agreement with the experimental data. The properties of the new monomer compare favorably with properties of the commercially available resins.

  11. Time dependence of composite shrinkage using halogen and LED light curing.

    PubMed

    Uhl, Alexander; Mills, Robin W; Rzanny, Angelika E; Jandt, Klaus D

    2005-03-01

    The polymerization shrinkage of light cured dental composites presents the major drawback for these aesthetically adaptable restorative materials. LED based light curing technology has recently become commercially available. Therefore, the aim of the present study was to investigate if there was a statistically significant difference in linear and volumetric composite shrinkage strain if a LED LCU is used for the light curing process rather than a conventional halogen LCU. The volumetric shrinkage strain was determined using the Archimedes buoyancy principle after 5, 10, 20, 40 s of light curing and after 120 s following the 40 s light curing time period. The linear shrinkage strain was determined with a dynamic mechanical analyzer for the composites Z100, Spectrum, Solitaire2 and Definite polymerized with the LCUs Trilight (halogen), Freelight I (LED) and LED63 (LED LCU prototype). The changes in irradiance and spectra of the LCUs were measured after 0, 312 and 360 min of duty time. In general there was no considerable difference in shrinkage of the composites Z100, Spectrum or Solitaire2 when the LED63 was used instead of the Trilight. There was, however, a statistically significant difference in shrinkage strain when the composite Definite was polymerized with the LED63 instead of the Trilight. The spectrum of the Trilight changed during the experiment considerably whereas the LED63 showed an almost constant light output. The Freelight I dropped considerably in irradiance and had to be withdrawn from the study because of technical problems. The composites containing only the photoinitiator camphorquinone showed similar shrinkage strain behaviour when a LED or halogen LCU is used for the polymerization. The irradiance of some LED LCUs can also decrease over time and should therefore be checked on a regular basis.

  12. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    NASA Astrophysics Data System (ADS)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  13. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  14. 3D full field strain analysis of polymerization shrinkage in a dental composite.

    PubMed

    Martinsen, Michael; El-Hajjar, Rani F; Berzins, David W

    2013-08-01

    The objective of this research was to study the polymerization shrinkage in a dental composite using 3D digital image correlation (DIC). Using 2 coupled cameras, digital images were taken of bar-shaped composite (Premise Universal Composite; Kerr) specimens before light curing and after for 10 min. Three-dimensional DIC was used to assess in-plane and out-of-plane deformations associated with polymerization shrinkage. The results show the polymerization shrinkage to be highly variable with the peak values occurring 0.6-0.8mm away from the surface. Volumetric shrinkage began to significantly decrease at 3.2mm from the specimen surface and reached a minimum at 4mm within the composite. Approximately 25-30% of the strain registered at 5 min occurred after light-activation. Application of 3D DIC dental applications can be performed without the need for assumptions on the deformation field. Understanding the local deformations and strain fields from the initial polymerization shrinkage can lead to a better understanding of the composite material and interaction with surrounding tooth structure, aiding in their further development and clinical prognosis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.

    PubMed

    Stein, Ivar S; Gray, John A; Zito, Karen

    2015-09-02

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca(2+) transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca(2+) influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca(2+) influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long-term depression (LTD) of synaptic strength. Here, we use two-photon glutamate uncaging and time-lapse imaging to show that non-ionotropic NMDAR signaling can drive shrinkage of dendritic spines, independent of NMDAR-mediated Ca(2+) influx. Signaling through p38 MAPK was required for this activity-dependent spine shrinkage. Our results provide fundamental new insights into the signaling mechanisms that support experience-dependent changes in brain structure. Copyright © 2015 the authors 0270-6474/15/3512303-06$15.00/0.

  16. Shrinkage strain-rates of dental resin-monomer and composite systems.

    PubMed

    Atai, Mohammad; Watts, David C; Atai, Zahra

    2005-08-01

    The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.

  17. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming.

    PubMed

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil; Park, Sang-Won

    2010-09-01

    The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

  18. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  19. The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.

    PubMed

    Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G

    2015-10-01

    Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit. © 2015 John Wiley & Sons Ltd.

  20. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  1. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-03-31

    The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.

  2. Modeling and Analysis of Process Parameters for Evaluating Shrinkage Problems During Plastic Injection Molding of a DVD-ROM Cover

    NASA Astrophysics Data System (ADS)

    Öktem, H.

    2012-01-01

    Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.

  3. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  4. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  5. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    PubMed

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    NASA Astrophysics Data System (ADS)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  7. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems

    PubMed Central

    Bílek, Vlastimil; Kalina, Lukáš; Novotný, Radoslav; Tkacz, Jakub; Pařízek, Ladislav

    2016-01-01

    Significant drying shrinkage is one of the main limitations for the wider utilization of alkali-activated slag (AAS). Few previous works revealed that it is possible to reduce AAS drying shrinkage by the use of shrinkage-reducing admixtures (SRAs). However, these studies were mainly focused on SRA based on polypropylene glycol, while as it is shown in this paper, the behavior of SRA based on 2-methyl-2,4-pentanediol can be significantly different. While 0.25% and 0.50% had only a minor effect on the AAS properties, 1.0% of this SRA reduced the drying shrinkage of waterglass-activated slag mortar by more than 80%, but it greatly reduced early strengths simultaneously. This feature was further studied by isothermal calorimetry, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Calorimetric experiments showed that 1% of SRA modified the second peak of the pre-induction period and delayed the maximum of the main hydration peak by several days, which corresponds well with observed strength development as well as with the MIP and SEM results. These observations proved the certain incompatibility of SRA with the studied AAS system, because the drying shrinkage reduction was induced by the strong retardation of hydration, resulting in a coarsening of the pore structure rather than the proper function of the SRA. PMID:28773584

  8. Robust adhesive precision bonding in automated assembly cells

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-03-01

    Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.

  9. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    PubMed

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Shrinkage Stresses Generated during Resin-Composite Applications: A Review

    PubMed Central

    Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573

  11. Muscle activity patterns and spinal shrinkage in office workers using a sit-stand workstation versus a sit workstation.

    PubMed

    Gao, Ying; Cronin, Neil J; Pesola, Arto J; Finni, Taija

    2016-10-01

    Reducing sitting time by means of sit-stand workstations is an emerging trend, but further evidence is needed regarding their health benefits. This cross-sectional study compared work time muscle activity patterns and spinal shrinkage between office workers (aged 24-62, 58.3% female) who used either a sit-stand workstation (Sit-Stand group, n = 10) or a traditional sit workstation (Sit group, n = 14) for at least the past three months. During one typical workday, muscle inactivity and activity from quadriceps and hamstrings were monitored using electromyography shorts, and spinal shrinkage was measured using stadiometry before and after the workday. Compared with the Sit group, the Sit-Stand group had less muscle inactivity time (66.2 ± 17.1% vs. 80.9 ± 6.4%, p = 0.014) and more light muscle activity time (26.1 ± 12.3% vs. 14.9 ± 6.3%, p = 0.019) with no significant difference in spinal shrinkage (5.62 ± 2.75 mm vs. 6.11 ± 2.44 mm). This study provides evidence that working with sit-stand workstations can promote more light muscle activity time and less inactivity without negative effects on spinal shrinkage. Practitioner Summary: This cross-sectional study compared the effects of using a sit-stand workstation to a sit workstation on muscle activity patterns and spinal shrinkage in office workers. It provides evidence that working with a sit-stand workstation can promote more light muscle activity time and less inactivity without negative effects on spinal shrinkage.

  12. Impact of dose escalation and adaptive radiotherapy for cervical cancers on tumour shrinkage—a modelling study

    NASA Astrophysics Data System (ADS)

    Røthe Arnesen, Marius; Paulsen Hellebust, Taran; Malinen, Eirik

    2017-03-01

    Tumour shrinkage occurs during fractionated radiotherapy and is regulated by radiation induced cellular damage, repopulation of viable cells and clearance of dead cells. In some cases additional tumour shrinkage during external beam therapy may be beneficial, particularly for locally advanced cervical cancer where a small tumour volume may simplify and improve brachytherapy. In the current work, a mathematical tumour model is utilized to investigate how local dose escalation affects tumour shrinkage, focusing on implications for brachytherapy. The iterative two-compartment model is based upon linear-quadratic radiation response, a doubling time for viable cells and a half-time for clearance of dead cells. The model was individually fitted to clinical tumour volume data from fractionated radiotherapy of 25 cervical cancer patients. Three different fractionation patterns for dose escalation, all with an additional dose of 12.2 Gy, were simulated and compared to standard fractionation in terms of tumour shrinkage. An adaptive strategy where dose escalation was initiated after one week of treatment was also considered. For 22 out of 25 patients, a good model fit was achieved to the observed tumour shrinkage. A large degree of inter-patient variation was seen in predicted volume reduction following dose escalation. For the 10 best responding patients, a mean tumour volume reduction of 34  ±  3% (relative to standard treatment) was estimated at the time of brachytherapy. Timing of initiating dose escalation had a larger impact than the number of fractions applied. In conclusion, the model was found useful in evaluating the impact from dose escalation on tumour shrinkage. The results indicate that dose escalation could be conducted from the start of external beam radiotherapy in order to obtain additional tumour shrinkage before brachytherapy.

  13. Development and Validation of a Constitutive Model for Dental Composites during the Curing Process

    NASA Astrophysics Data System (ADS)

    Wickham Kolstad, Lauren

    Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.

  14. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  15. Does expanded polytetrafluoroethylene mesh really shrink after laparoscopic ventral hernia repair?

    PubMed

    Carter, P R; LeBlanc, K A; Hausmann, M G; Whitaker, J M; Rhynes, V K; Kleinpeter, K P; Allain, B W

    2012-06-01

    The shrinkage of mesh has been cited as a possible explanation for hernia recurrence. Expanded polytetrafluoroethylene (ePTFE) is unique in that it can be visualized on computed tomography (CT). Some animal studies have shown a greater than 40% rate of contraction of ePTFE; however, very few human studies have been performed. A total of 815 laparoscopic incisional/ventral hernia (LIVH) repairs were performed by a single surgical group. DualMesh Plus (ePTFE) (WL Gore & Associates, Newark, DE) was placed in the majority of these patients using both transfascial sutures and tack fixation. Fifty-eight patients had postoperative CTs of the abdomen and pelvis with ePTFE and known transverse diameter of the implanted mesh. The prosthesis was measured on the CT using the AquariusNet software program (TeraRecon, San Mateo, CA), which outlines the mesh and calculates the total length. Data were collected regarding the original mesh size, known linear dimension of mesh, seroma formation, and time interval since mesh implantation in months. The mean shrinkage rate was 6.7%. The duration of implantation ranged from 6 weeks to 78 months, with a median of 15 months. Seroma was seen in 8.6% (5) of patients. No relationship was identified between the percentage of shrinkage and the original mesh size (P = 0.78), duration of time implanted (P = 0.57), or seroma formation (P = 0.074). In 27.5% (16) of patients, no shrinkage of mesh was identified. Of the patients who did experience mesh shrinkage, the range of shrinkage was 2.6-25%. Our results are markedly different from animal studies and show that ePTFE has minimal shrinkage after LIVH repair. The use of transfascial sutures in addition to tack fixation may have an implication on the mesh contraction rates.

  16. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer.

    PubMed

    Hankins, Amanda D; Hatch, Robert H; Benson, Jarred H; Blen, Bernard J; Tantbirojn, Daranee; Versluis, Antheunis

    2014-04-01

    A nanofilled, resin-based light-cured coating (G-Coat Plus, GC America, Alsip, Ill.) may reduce water absorption by glass ionomers. The authors investigated this possibility by measuring cuspal flexure caused by swelling of glass ionomer-restored teeth. The authors cut large mesio-occlusodistal slots (4-millimeter wide, 4-mm deep) in 12 extracted premolars and restored them with a glass ionomer cement (Fuji IX GP Extra, GC America). Six teeth were coated, and the other six were uncoated controls. The authors digitized the teeth in three dimensions by using an optical scanner after preparation and restoration and during an eight-week storage in water. They calculated cuspal flexure and analyzed the results by using an analysis of variance and Student-Newman-Keuls post hoc tests (significance level .05). They used dye penetration along the interface to verify bonding. Inward cuspal flexure indicated restoration shrinkage. Coated restorations had significantly higher flexure (mean [standard deviation], -11.9 [3.5] micrometers) than did restorations without coating (-7.3 [1.5] μm). Flexure in both groups decreased significantly (P < .05) during water storage and, after eight weeks, it changed to expansion for uncoated control restorations. Dye penetration along the interfaces was not significant, which ruled out debonding as the cause of cuspal relaxation. Teeth restored with glass ionomer cement exhibited shrinkage, as seen by inward cuspal flexure. The effect of the protective coating on water absorption was evident in the slower shrinkage compensation. The study results show that teeth restored with glass ionomers exhibited setting shrinkage that deformed tooth cusps. Water absorption compensated for the shrinkage. Although the coating may be beneficial for reducing water absorption, it also slows the shrinkage compensation rate (that is, the rate that hygroscopic expansion compensates for cuspal flexure from shrinkage).

  17. Comparison of stereotactic radiosurgery and fractionated stereotactic radiotherapy of acoustic neurinomas according to 3-D tumor volume shrinkage and quality of life.

    PubMed

    Henzel, Martin; Hamm, Klaus; Sitter, Helmut; Gross, Markus W; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2009-09-01

    Stereotactic radiosurgery (SRS) and also fractionated stereotactic radiotherapy (SRT) offer high local control (LC) rates (> 90%). This study aimed to evaluate three-dimensional (3-D) tumor volume (TV) shrinkage and to assess quality of life (QoL) after SRS/SRT. From 1999 to 2005, 35/74 patients were treated with SRS, and 39/74 with SRT. Median age was 60 years. Treatment was delivered by a linear accelerator. Median single dose was 13 Gy (SRS) or 54 Gy (SRT). Patients were followed up > or = 12 months after SRS/SRT. LC and toxicity were evaluated by clinical examinations and magnetic resonance imaging. 3-D TV shrinkage was evaluated with the planning system. QoL was assessed using the questionnaire Short Form-36. Median follow-up was 50/36 months (SRS/SRT). Actuarial 5-year freedom from progression/overall survival was 88.1%/100% (SRS), and 87.5%/87.2% (SRT). TV shrinkage was 15.1%/40.7% (SRS/SRT; p = 0.01). Single dose (< 13 Gy) was the only determinant factor for TV shrinkage after SRS (p = 0.001). Age, gender, initial TV, and previous operations did not affect TV shrinkage. Acute or late toxicity (> or = grade 3) was never seen. Concerning QoL, no significant differences were observed after SRS/SRT. Previous operations and gender did not affect QoL (p > 0.05). Compared with the German normal population, patients had worse values for all domains except for mental health. TV shrinkage was significantly higher after SRT than after SRS. Main symptoms were not affected by SRS/SRT. Retrospectively, QoL was neither affected by SRS nor by SRT.

  18. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    USGS Publications Warehouse

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  19. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    PubMed Central

    Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom

    2017-01-01

    Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776

  20. An investigation of CO2 laser scleral buckling using moiré interferometry.

    PubMed

    Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh

    2002-01-01

    To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.

  1. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage.

    PubMed

    Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong

    2017-06-14

    Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.

  2. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  3. A model for shrinkage strain in photo polymerization of dental composites.

    PubMed

    Petrovic, Ljubomir M; Atanackovic, Teodor M

    2008-04-01

    We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly. As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process. The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as polymerization proceeds, it follows that the periods of light treatments should be shorter at the beginning of the treatment and longer at the end of the treatment, with dark interval between the initial low intensity and following high intensity curing. This is because at the end of polymerization the stress relaxation cannot take place.

  4. Shrinkage and durability study of bridge deck concrete.

    DOT National Transportation Integrated Search

    2010-12-01

    The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...

  5. Resizing metal-coated nanopores using a scanning electron microscope.

    PubMed

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Treatment of lymphangiomas of the head and neck in children by intralesional injection of OK-432 (Picibanil).

    PubMed

    Brewis, C; Pracy, J P; Albert, D M

    2000-04-01

    The treatments previously used for lymphangiomas of the head and neck in children-surgery and intralesional injection of sclerosants-are associated with significant morbidity. A new treatment-intralesional injection of OK-432-was used for lymphangiomas of the head and neck in 11 children. The results were total shrinkage in two, marked shrinkage in two, slight shrinkage in five and no response in two. The results were not affected by previous surgery nor by whether aspiration prior to injection was possible. There were no recurrences in those children in whom shrinkage occurred and no child had subsequent surgery following injection. The results of this series support those of previous series showing that OK-432 injection is an effective and safe treatment for lymphangiomas of the head and neck in children.

  7. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage.

    PubMed

    Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng

    2009-03-01

    The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.

  8. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation.

    PubMed

    Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery

    2014-01-01

    Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Escherichia coli α-Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with Subsequent Phosphatidylserine Exposure*

    PubMed Central

    Skals, Marianne; Jensen, Uffe B.; Ousingsawat, Jiraporn; Kunzelmann, Karl; Leipziger, Jens; Praetorius, Helle A.

    2010-01-01

    α-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca2+]i. The Ca2+-activated K+ channel KCa3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca2+-activated Cl− channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A−/− mice showed significantly attenuated crenation and increased lysis compared with controls. Additionally, we found that HlyA leads to acute exposure of phosphatidylserine in the outer leaflet of the plasma membrane. This exposure was considerably reduced by KCa3.1 antagonists. In conclusion, this study shows that HlyA triggers acute erythrocyte shrinkage, which depends on Ca2+-activated efflux of K+ via KCa3.1 and Cl− via TMEM16A, with subsequent phosphatidylserine exposure. This mechanism might potentially allow HlyA-damaged erythrocytes to be removed from the bloodstream by macrophages and thereby reduce the risk of intravascular hemolysis. PMID:20231275

  10. Escherichia coli alpha-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure.

    PubMed

    Skals, Marianne; Jensen, Uffe B; Ousingsawat, Jiraporn; Kunzelmann, Karl; Leipziger, Jens; Praetorius, Helle A

    2010-05-14

    alpha-Hemolysin from Escherichia coli (HlyA) readily lyse erythrocytes from various species. We have recently demonstrated that this pore-forming toxin provokes distinct shrinkage and crenation before it finally leads to swelling and lysis of erythrocytes. The present study documents the underlying mechanism for this severe volume reduction. We show that HlyA-induced shrinkage and crenation of human erythrocytes occur subsequent to a significant rise in [Ca(2+)](i). The Ca(2+)-activated K(+) channel K(Ca)3.1 (or Gardos channel) is essential for the initial shrinkage, because both clotrimazole and TRAM-34 prevent the shrinkage and potentiate hemolysis produced by HlyA. Notably, the recently described Ca(2+)-activated Cl(-) channel TMEM16A contributes substantially to HlyA-induced cell volume reduction. Erythrocytes isolated from TMEM16A(-/-) mice showed significantly attenuated crenation and increased lysis compared with controls. Additionally, we found that HlyA leads to acute exposure of phosphatidylserine in the outer leaflet of the plasma membrane. This exposure was considerably reduced by K(Ca)3.1 antagonists. In conclusion, this study shows that HlyA triggers acute erythrocyte shrinkage, which depends on Ca(2+)-activated efflux of K(+) via K(Ca)3.1 and Cl(-) via TMEM16A, with subsequent phosphatidylserine exposure. This mechanism might potentially allow HlyA-damaged erythrocytes to be removed from the bloodstream by macrophages and thereby reduce the risk of intravascular hemolysis.

  11. Urban shrinkage in Germany and the USA: a comparison of transformation patterns and local strategies.

    PubMed

    Wiechmann, Thorsten; Pallagst, Karina M

    2012-01-01

    Many American and European cities have to deal with demographic and economic trajectories leading to urban shrinkage. According to official data, 13% of urban regions in the US and 54% of those in the EU have lost population in recent years. However, the extent and spatial distribution of declining populations differ significantly between Europe and the US. In Germany, the situation is driven by falling birth rates and the effects of German reunification. In the US, shrinkage is basically related to long-term industrial transformation. But the challenges of shrinking cities seldom appeared on the agendas of politicians and urban planners until recently. This article provides a critical overview of the development paths and local strategies of four shrinking cities: Schwedt and Dresden in eastern Germany; Youngstown and Pittsburgh in the US. A typology of urban growth and shrinkage, from economic and demographic perspectives, enables four types of city to be differentiated and the differences between the US and eastern Germany to be discussed. The article suggests that a new transatlantic debate on policy and planning strategies for restructuring shrinking cities is needed to overcome the dominant growth orientation that in most cases intensifies the negative consequences of shrinkage.

  12. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    NASA Astrophysics Data System (ADS)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  13. Evaluation of the polymerization shrinkage of experimental flowable composite resins through optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; Cajazeira, Marlus R. R.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    This study evaluated the polymerization shrinkage of two experimental flowable composite resins (CR) with different proportions of Urethane dimethacrylate (UDMA)/triethylene glycol dimethacrylate (TEGDMA) monomers in the organic matrix (50:50 and 60:40, respectively). A commercially available flowable CR, Tetric N-Flow (Ivoclair Vivadent, Liechtenstein, Germany), was employed as the control group. The resins were inserted in a cylindrical teflon mold (7 mm diameter, 0.6 mm height) and scanned with OCT before photoactivation, immediately after and 15 minutes after light-curing (Radii-Cal, SDI, Australia, 1,200 mW/cm2 ) exposure. A Callisto SD-OCT system (Thorlabs Inc, USA), operating at 930 nm central wavelength was employed for imaging acquisition. Cross-sectional OCT images were captured with 8 mm transverse scanning (2000x512 matrix), and processed by the ImageJ software, for comparison between the scanning times and between groups. Pearson correlation showed significant shrinkage for all groups in each time analyzed. Kruskal-Wallis test showed greater polymerization shrinkage for the 50:50 UDMA/TEGDMA group (p=0.001), followed by the control group (p=0.018). TEGDMA concentration was proportionally related to the polymerization shrinkage of the flowable composite resins.

  14. Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria

    2017-10-01

    The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.

  15. Concrete pavement mixture design and analysis (MDA) : factors influencing drying shrinkage.

    DOT National Transportation Integrated Search

    2014-10-01

    This literature review focuses on factors influencing drying shrinkage of concrete. Although the factors are normally interrelated, they : can be categorized into three groups: paste quantity, paste quality, and other factors.

  16. Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS).

    PubMed

    Wu, Xiaorong; Sun, Yi; Xie, Weili; Liu, Yanju; Song, Xueyu

    2010-05-01

    It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is that their deficiency in mechanical properties cannot satisfy the clinical purpose. The aim of this study is to develop novel dental nanocomposites incorporated with polyhedral oligomeric silsesquioxane (POSS). It is especially interesting to evaluate the volumetric shrinkage and mechanical properties, improve the shrinkage, working performances and service life of dental composite resins. The effect of added POSS on the composites' mechanical properties has been evaluated. The weight percentages of added POSS are 0, 2, 5, 10 and 15wt% respectively. Fourier-transform infra-red spectroscopy and X-ray diffraction were used to characterize their microstructures. Physico-mechanical properties that were investigated included volumetric shrinkage, flexural strength, flexural modulus, compressive strength, compressive modulus, Viker's hardness and fracture energy. Furthermore, the possible reinforced mechanism has been discussed. The shrinkage of novel nanocomposites decreased from 3.53% to 2.18%. The nanocomposites incorporated with POSS showed greatly improved mechanical properties, for example, with only 2wt% POSS added, the nanocompsite's flexural strength increased 15%, compressive strength increased 12%, hardness increased 15% and uncommonly, even the toughness of resins was obviously increased. With 5wt% POSS polymerized, compressive strength increased from 192MPa to 251MPa and compressive modulus increased from 3.93GPa to 6.62GPa, but flexure strength began to decline from 87MPa to 75MPa. This finding indicated that the reinforcing mechanism of flexure state maybe different from that of compressive state. The mechanical properties and volumetric shrinkage of dental composite resins polymerized with POSS can be improved significantly. In current study, the nanocomposite with 2wt% POSS incorporated is observed to achieve the best improved effects. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    PubMed

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.

  18. Bridge decks : mitigation of cracking and increased durability.

    DOT National Transportation Integrated Search

    2013-07-01

    This report discusses the application of expansive cements (Type K and Type G) and shrinkage-reducing admixtures (SRAs) in : reducing the cracking due to drying shrinkage. The Type K expansive cement contained portland cement and calcium : sulfoalumi...

  19. Sealing of Cracks on Florida Bridge Decks with Steel Girders

    DOT National Transportation Integrated Search

    2012-08-01

    One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying...

  20. Measurement of early age shrinkage of Virginia concrete mixtures.

    DOT National Transportation Integrated Search

    2008-01-01

    Concrete volume changes throughout its service life. The total in-service volume change is the resultant of applied loads and shrinkage. When loaded, concrete undergoes an instantaneous elastic deformation and a slow inelastic deformation called cree...

  1. Limitation of Shrinkage Porosity in Aluminum Rotor Die Casting

    NASA Astrophysics Data System (ADS)

    Kim, Young-Chan; Choi, Se-Weon; Kim, Cheol-Woo; Cho, Jae-Ik; Lee, Sung-Ho; Kang, Chang-Seog

    Aluminum rotor prone to have many casting defects especially large amount of air and shrinkage porosity, which caused eccentricity, loss and noise during motor operation. Many attempts have been made to develop methods of shrinkage porosity control, but still there are some problems to solve. In this research, the process of vacuum squeeze die casting is proposed for limitation of defects. The 6 pin point gated dies which were in capable of local squeeze at the end ring were used. Influences of filling patterns on HPDC were evaluated and the important process control parameters were high injection speed, squeeze length, venting and process conditions. By using local squeeze and vacuum during filling and solidification, air and shrinkage porosity were significantly reduced and the feeding efficiency at the upper end ring was improved 10%. As a result of controlling the defects, the dynamometer test showed improved motor efficiency by more than 4%.

  2. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  3. Influence of irradiance on Knoop hardness, degree of conversion, and polymerization shrinkage of nanofilled and microhybrid composite resins.

    PubMed

    Fugolin, Ana Paula Piovezan; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Guiraldo, Ricardo Danil; Consani, Simonides

    2016-01-01

    The purpose of this study was to investigate the influence of the irradiance emitted by a light-curing unit on microhardness, degree of conversion (DC), and gaps resulting from shrinkage of 2 dental composite resins. Cylinders of nanofilled and microhybrid composites were fabricated and light cured. After 24 hours, the tops and bottoms of the specimens were evaluated via indentation testing and Fourier transform infrared spectroscopy to determine Knoop hardness number (KHN) and DC, respectively. Gap width (representing polymerization shrinkage) was measured under a scanning electron microscope. The nanofilled composite specimens presented significantly greater KHNs than did the microhybrid specimens (P < 0.05). The microhybrid composite resin exhibited significantly greater DC and gap width than the nanofilled material (P < 0.05). Irradiance had a mostly material-dependent influence on the hardness and DC, but not the polymerization shrinkage, of composite resins.

  4. Improvement of formability of high strength steel sheets in shrink flanging

    NASA Astrophysics Data System (ADS)

    Hamedon, Z.; Abe, Y.; Mori, K.

    2016-02-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.

  5. Possibilities of using aluminate cements in high-rise construction

    NASA Astrophysics Data System (ADS)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  6. Development of early age shrinkage stresses in reinforced concrete bridge decks

    NASA Astrophysics Data System (ADS)

    William, Gergis W.; Shoukry, Samir N.; Riad, Mourad Y.

    2008-12-01

    This paper describes the instrumentation and data analysis of a reinforced concrete bridge deck constructed on 3-span continuous steel girders in Evansville, West Virginia. An instrumentation system consisting of 232 sensors is developed and implemented specifically to measure strains and temperature in concrete deck, strains in longitudinal and transverse rebars, the overall contraction and expansion of concrete deck, and crack openings. Data from all sensors are automatically collected every 30 minutes starting at the time of placing the concrete deck. Measured strain and temperature time-histories were used to calculate the stresses, which were processed to attenuate the thermal effects due to daily temperature changes and isolate the drying shrinkage component. The results indicated that most of concrete shrinkage occurs during the first three days. Under the constraining effects from stay-in-place forms and reinforcement, early age shrinkage leads to elevated longitudinal stress, which is the main factor responsible for crack initiation.

  7. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials

    PubMed Central

    Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.

    2011-01-01

    Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669

  8. Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis.

    PubMed

    Yamamoto, Takatsugu; Kubota, Yu; Momoi, Yasuko; Ferracane, Jack L

    2012-09-01

    The objective of this study was to compare several dental restoratives currently advertised as low-shrinkage composites (Clearfil Majesty Posterior, Kalore, Reflexions XLS Dentin and Venus Diamond) with a microfill composite (Heliomolar) in terms of polymerization stress, polymerization shrinkage and elastic modulus. Cracks were made at several distances from the edge of a precision cavity in a soda-lime glass disk. The composites were placed into the cavity and lengths of the cracks were measured before and after light curing. Polymerization stresses generated in the glass at 2 and 10 min after the irradiation were calculated from the crack lengths and K(c) of the glass. Polymerization shrinkage and elastic modulus of the composites also were measured at 2 and 10 min after irradiation using a video-imaging device and a nanoindenter, respectively. The data were statistically analyzed by ANOVAs and Tukey's test (p<0.05). The stress was significantly affected by composite brand, distance and time. The stress was directly proportional to time and inversely proportional to distance from the edge of the cavity. Clearfil Majesty Posterior demonstrated the highest stress and it resulted in the fracture of the glass at 2 min. Venus Diamond and Heliomolar exhibited the greatest shrinkage at both times. The elastic moduli of Clearfil Majesty Posterior and Reflexions XLS Dentin were greatest at 2 and 10 min, respectively. Among the four low-shrinkage composites, two demonstrated significantly reduced polymerization stress compared to Heliomolar, which has previously been shown in in vitro tests to generate low curing stress. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Thermal shrinkage for shoulder instability.

    PubMed

    Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J

    2011-07-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.

  10. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials.

    PubMed

    Moraes, Rafael R; Garcia, Jeffrey W; Barros, Matthew D; Lewis, Steven H; Pfeifer, Carmem S; Liu, JianCheng; Stansbury, Jeffrey W

    2011-06-01

    This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Property evolution during vitrification of dimethacrylate photopolymer networks

    PubMed Central

    Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.

    2013-01-01

    Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378

  12. Report D : self-consolidating concrete (SCC) for infrastructure elements - creep, shrinkage and abrasion resistance.

    DOT National Transportation Integrated Search

    2012-08-01

    Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...

  13. Dimensional stability of concrete slabs on grade.

    DOT National Transportation Integrated Search

    2012-10-01

    Drying shrinkage is one of the major causes of cracking in concrete slabs on grade. The moisture : difference between the top and bottom surface of the slabs causes a dimensional or shrinkage gradient : to develop through the depth of the slabs...

  14. Influence of gelatinous fibers on the shrinkage of silver maple

    Treesearch

    Donals G. Arganbright; Dwight W. Bensend; Floyd G. Manwiller

    1970-01-01

    The degree of lean was found to have a significant influence on the logitudinal and transverse shrinkage of three soft maple trees. This may be accounted for by differences in the cell wall layer thickness and fibril angle.

  15. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    DOT National Transportation Integrated Search

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  16. Mitigation strategies for early-age shrinkage cracking in bridge decks.

    DOT National Transportation Integrated Search

    2010-04-01

    Early-age shrinkage cracking has been observed in many concrete bridge decks in Washington State and elsewhere around the U.S. The cracking increases the effects of freeze-thaw damage, spalling, and corrosion of steel reinforcement, thus resulting in...

  17. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  18. Shrinkage Prediction for the Investment Casting of Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  19. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    PubMed

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  20. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    PubMed Central

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  1. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study.

    PubMed

    Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf

    2007-10-01

    To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.

  2. SURE Estimates for a Heteroscedastic Hierarchical Model

    PubMed Central

    Xie, Xianchao; Kou, S. C.; Brown, Lawrence D.

    2014-01-01

    Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic normal model, it is well known that shrinkage estimators, especially the James-Stein estimator, have good risk properties. The heteroscedastic model, though more appropriate for practical applications, is less well studied, and it is unclear what types of shrinkage estimators are superior in terms of the risk. We propose in this paper a class of shrinkage estimators based on Stein’s unbiased estimate of risk (SURE). We study asymptotic properties of various common estimators as the number of means to be estimated grows (p → ∞). We establish the asymptotic optimality property for the SURE estimators. We then extend our construction to create a class of semi-parametric shrinkage estimators and establish corresponding asymptotic optimality results. We emphasize that though the form of our SURE estimators is partially obtained through a normal model at the sampling level, their optimality properties do not heavily depend on such distributional assumptions. We apply the methods to two real data sets and obtain encouraging results. PMID:25301976

  3. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.

    PubMed

    Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina

    2018-01-01

    In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fundamental investigations related to the mitigation of volume changes in cement-based materials at early ages

    NASA Astrophysics Data System (ADS)

    Sant, Gaurav Niteen

    The increased use of high-performance, low water-to-cement (w/c) ratio concretes has led to increased occurrences of early-age shrinkage cracking in civil engineering structures. To reduce the magnitude of early-age shrinkage and the potential for cracking, mitigation strategies using shrinkage reducing admixtures (SRAs), saturated lightweight aggregates, expansive cements and extended moist curing durations in construction have been recommended. However, to appropriately utilize these strategies, it is important to have a complete understanding of the driving forces of early-age volume change and how these methods work from a materials perspective to reduce shrinkage. This dissertation uses a first-principles approach to understand the mechanism of shrinkage reducing admixtures (SRAs) to generate an expansion and mitigate shrinkage at early-ages, quantify the influence of a CaO-based expansive additive in reducing unrestrained shrinkage, residual stress development and the cracking potential at early-ages and quantify the influence of shrinkage reducing admixtures (SRAs) and cement hydration (pore structure refinement) on the reduction induced in the fluid transport properties of the material. The effects of shrinkage reducing admixtures (SRAs) are described in terms of inducing autogenous expansions in cement pastes at early ages. An evaluation comprising measurements of autogenous deformation, x-ray diffraction (Rietveld analysis), pore solution and thermogravimetric analysis and electron microscopy is performed to understand the chemical nature and physical effects of the expansion. Thermodynamic calculations performed on the measured liquid-phase compositions indicate the SRA produces elevated Portlandite super-saturations in the pore solution which results in crystallization stress driven expansions. The thermodynamic calculations are supported by deformation measurements performed on cement pastes mixed in solutions saturated with Portlandite or containing additional Sodium Hydroxide. Further, to quantify the influence of temperature on volume changes in SRA containing materials, deformation measurements are performed at different temperatures. The results indicate maturity transformations are incapable of simulating volume changes over any temperature regime due to the influence of temperature on salt solubility and pore solution composition, crystallization stresses and self-desiccation. The performance of a CaO-based expansive additive is evaluated over a range of additive concentrations and curing conditions to quantify the reduction in restrained and unrestrained volume changes effected in low w/c cement pastes. The results suggest, under unrestrained sealed conditions the additive generates an expansion and reduces the magnitude of total shrinkage experienced by the material. However, the extent of drying shrinkage developed is noted to be similar in all systems and independent of the additive dosage. Under restrained sealed conditions, the additive induces a significant compressive stress which delays tensile stress development in the system. However, a critical additive concentration (around four percent) needs to be exceeded to appreciably reduce the risk of cracking at early-ages. The influence of shrinkage reducing admixtures (SRAs) is quantified in terms of the effects of SRA addition on fluid transport in cement-based materials. The change in the cement paste's pore solution properties, i.e., the surface tension and fluid-viscosity, induced by the addition of a SRA is observed to depress the fluid-sorption and wetting moisture diffusion coefficients, with the depression being a function of the SRA concentration. The experimental results are compared to analytical descriptions of water sorption and a good correlation is observed. These results allow for the change in pore-solution and fluid-transport properties to be incorporated from a fundamental perspective in models which aim to describe the service-life of structures. Several experimental techniques such as chemical shrinkage, low temperature calorimetry and electrical impedance spectroscopy are evaluated in terms of their suitability to identify capillary porosity depercolation in cement pastes. The evidence provided by the experiments is: (1) that there exists a capillary porosity depercolation threshold around 20% capillary porosity in cement pastes and (2) low temperature calorimetry is not suitable to detect porosity depercolation in cement pastes containing SRAs. Finally, the influence of porosity depercolation is demonstrated in terms of the reduction effected in the transport properties (i.e., the fluid-sorption coefficient) of the material as quantified using x-ray attenuation measurements. The study relates the connectivity of the pore structure to the fluid transport response providing insights related to the development of curing technologies and the specification of wet curing regimes during construction.

  5. Detailed Aggregate Resources Study, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-05-29

    LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE I COLLECTED WITHIN A FEW MILES OF CORRESPONDING LEDGE-ROCK SOURCES) SUPPLIED FINE MENS...COMPRESSIVE AND TENSILE STh LEDGE-ROCK SOURCES SUPPLIED COARSE AGGREGATES; LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE COLLECTED WITHIN A FEW

  6. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    DOT National Transportation Integrated Search

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  7. Using a centrifuge for quality control of pre-wetted lightweight aggregate in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Miller, Albert E.

    Early age shrinkage of cementitious systems can result in an increased potential for cracking which can lead to a reduction in service life. Early age shrinkage cracking can be particularly problematic for high strength concretes, which are often specified due to their high strength and low permeability. However, these high strength concretes frequently exhibit a reduction in the internal relative humidity (RH) due to the hydration reaction (chemical shrinkage) and self-desiccation which results in a bulk shrinkage, termed autogenous shrinkage, which is substantial at early ages. Due to the low permeability of these concretes, standard external curing is not always efficient in addressing this reduction in internal RH since the penetration of water can be limited. Internal curing has been developed to reduce autogenous shrinkage. Internally cured mixtures use internal reservoirs filled with fluid (generally water) that release this fluid at appropriate times to counteract the effects of self-desiccation thereby maintaining a high internal RH. Internally cured concrete is frequently produced in North America using pre-wetted lightweight aggregate. One important aspect associated with preparing quality internally cured concrete is being able to determine the absorbed moisture and surface moisture associated with the lightweight aggregate which enables aggregate moisture corrections to be made for the concrete mixture. This thesis represents work performed to develop a test method using a centrifuge to determine the moisture state of pre-wetted fine lightweight aggregate. The results of the test method are then used in a series of worksheets that were developed to assist field technicians when performing the tests and applying the results to a mixture design. Additionally, research was performed on superabsorbent polymers to assess their ability to be used as an internal curing reservoir.

  8. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    NASA Astrophysics Data System (ADS)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  9. Property evolution during vitrification of dimethacrylate photopolymer networks.

    PubMed

    Abu-elenain, Dalia A; Lewis, Steven H; Stansbury, Jeffrey W

    2013-11-01

    This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7-600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. The varied irradiation conditions produced final conversion ranging from 6% to more than 60%. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40% conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45-50% conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Effect of intrinsic and extrinsic factors on the simulated D-band length of type I collagen.

    PubMed

    Varma, Sameer; Botlani, Mohsen; Hammond, Jeff R; Scott, H Larry; Orgel, Joseph P R O; Schieber, Jay D

    2015-10-01

    A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple-helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers. This organization is visible distinctly in the microfibrillar model of collagen obtained from fiber diffraction. However, to date, no atomistic simulations of this diffraction model under zero-stress conditions have reported a preservation of this structural feature. Such a demonstration is important as it provides the baseline to infer response functions of physiological stimuli. In contrast, simulations predict a considerable shrinkage of the D-band (11-19%). Here we evaluate systemically the effect of several factors on D-band shrinkage. Using force fields employed in previous studies we find that irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration level, and whether or not the monomers are cross-linked, the D-band shrinks considerably. This shrinkage is associated with the bending and widening of individual monomers, but employing a force field whose backbone dihedral energy landscape matches more closely with our computed CCSD(T) values produces a small D-band shrinkage of < 3%. Since this force field also performs better against other experimental data, it appears that the large shrinkage observed in earlier simulations is a force-field artifact. The residual shrinkage could be due to the absence of certain atomic-level details, such as glycosylation sites, for which we do not yet have suitable data. © 2015 Wiley Periodicals, Inc.

  11. Application of porous titanium in prosthesis production using a moldless process: Evaluation of physical and mechanical properties with various particle sizes, shapes, and mixing ratios.

    PubMed

    Prananingrum, Widyasri; Tomotake, Yoritoki; Naito, Yoshihito; Bae, Jiyoung; Sekine, Kazumitsu; Hamada, Kenichi; Ichikawa, Tetsuo

    2016-08-01

    The prosthetic applications of titanium have been challenging because titanium does not possess suitable properties for the conventional casting method using the lost wax technique. We have developed a production method for biomedical application of porous titanium using a moldless process. This study aimed to evaluate the physical and mechanical properties of porous titanium using various particle sizes, shapes, and mixing ratio of titanium powder to wax binder for use in prosthesis production. CP Ti powders with different particle sizes, shapes, and mixing ratios were divided into five groups. A 90:10wt% mixture of titanium powder and wax binder was prepared manually at 70°C. After debinding at 380°C, the specimen was sintered in Ar at 1100°C without a mold for 1h. The linear shrinkage ratio of sintered specimens ranged from 2.5% to 14.2%. The linear shrinkage ratio increased with decreasing particle size. While the linear shrinkage ratio of Groups 3, 4, and 5 were approximately 2%, Group 1 showed the highest shrinkage of all. The bending strength ranged from 106 to 428MPa under the influence of porosity. Groups 1 and 2 presented low porosity followed by higher strength. The shear bond strength ranged from 32 to 100MPa. The shear bond strength was also particle-size dependent. The decrease in the porosity increased the linear shrinkage ratio and bending strength. Shrinkage and mechanical strength required for prostheses were dependent on the particle size and shape of titanium powders. These findings suggested that this production method can be applied to the prosthetic framework by selecting the material design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation

    PubMed Central

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S. L.

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the “tooth-restoration” interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  13. Investigation into shrinkage of high-performance concrete used for Iowa bridge decks and overlays.

    DOT National Transportation Integrated Search

    2013-09-01

    High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking p...

  14. Phase 1 report on the development of predictive model for bridge deck cracking and strength development.

    DOT National Transportation Integrated Search

    2009-01-01

    Early-age cracking, typically caused by drying shrinkage (and often coupled with autogenous and thermal : shrinkage), can have several detrimental effects on long-term behavior and durability. Cracking can also provide : ingress of water that can dri...

  15. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  16. Three-dimensional aspects of the shrinking phenomenon of ArF resist

    NASA Astrophysics Data System (ADS)

    Laufer, Ido; Eytan, Giora E.; Dror, Ophir

    2002-07-01

    Previous studies of the interaction of electron beams with different types of ArF resists have shown the undesired phenomenon of the resist shrinkage. The lateral component of this shrinkage has been detected and quantified easily by SEM CD measurements. However, the vertical extent of this phenomenon has to date remained unknown. In this work we present measurements of the changes in height and sidewall angles of an ArF line by using a new e-beam tilting ability of the Vera SEM 3D. The 3D measurement results show that the height of the line shrinks in similar proportions to the top and bottom CDs, with a difference in the magnitude. Due to higher penetration depth of the e-beam on the top of the line than on the sidewall, the vertical shrinkage reaches steady state more rapidly than the lateral shrinkage. We also found a slight reduction in sidewall angle, which is less than one degree even under high e-beam exposure.

  17. Nonparametric estimation of median survival times with applications to multi-site or multi-center studies.

    PubMed

    Rahbar, Mohammad H; Choi, Sangbum; Hong, Chuan; Zhu, Liang; Jeon, Sangchoon; Gardiner, Joseph C

    2018-01-01

    We propose a nonparametric shrinkage estimator for the median survival times from several independent samples of right-censored data, which combines the samples and hypothesis information to improve the efficiency. We compare efficiency of the proposed shrinkage estimation procedure to unrestricted estimator and combined estimator through extensive simulation studies. Our results indicate that performance of these estimators depends on the strength of homogeneity of the medians. When homogeneity holds, the combined estimator is the most efficient estimator. However, it becomes inconsistent when homogeneity fails. On the other hand, the proposed shrinkage estimator remains efficient. Its efficiency decreases as the equality of the survival medians is deviated, but is expected to be as good as or equal to the unrestricted estimator. Our simulation studies also indicate that the proposed shrinkage estimator is robust to moderate levels of censoring. We demonstrate application of these methods to estimating median time for trauma patients to receive red blood cells in the Prospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study.

  18. Compact reflection holographic recording system with high angle multiplexing

    NASA Astrophysics Data System (ADS)

    Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu

    2011-02-01

    Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.

  19. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  20. Nonparametric estimation of median survival times with applications to multi-site or multi-center studies

    PubMed Central

    Choi, Sangbum; Hong, Chuan; Zhu, Liang; Jeon, Sangchoon; Gardiner, Joseph C.

    2018-01-01

    We propose a nonparametric shrinkage estimator for the median survival times from several independent samples of right-censored data, which combines the samples and hypothesis information to improve the efficiency. We compare efficiency of the proposed shrinkage estimation procedure to unrestricted estimator and combined estimator through extensive simulation studies. Our results indicate that performance of these estimators depends on the strength of homogeneity of the medians. When homogeneity holds, the combined estimator is the most efficient estimator. However, it becomes inconsistent when homogeneity fails. On the other hand, the proposed shrinkage estimator remains efficient. Its efficiency decreases as the equality of the survival medians is deviated, but is expected to be as good as or equal to the unrestricted estimator. Our simulation studies also indicate that the proposed shrinkage estimator is robust to moderate levels of censoring. We demonstrate application of these methods to estimating median time for trauma patients to receive red blood cells in the Prospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study. PMID:29772007

  1. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    PubMed

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  2. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less

  3. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    PubMed

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  4. An optical microscopy study of the swelling of wet-spun films of CsDNA as a function of hydration and CsCl concentration

    NASA Astrophysics Data System (ADS)

    Schwenker, Megan; Marlowe, Robert; Lee, Scott; Rupprecht, Allan

    2005-03-01

    Highly oriented, wet-spun films of DNA expand in the direction perpendicular to the helical axis as the hydration of the film is increased. CsDNA films with a high CsCl content show an unexpected shrinkage at a relative humidity of 92%. Our most recent experiments have been to measure the perpendicular dimension of CsDNA as a function of both hydration and concentration of CsCl. Our preliminary results show that no shrinkage is observed at low contents of CsCl, showing that the CsCl plays an integral role in the shrinkage phenomenon.

  5. Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.

    ERIC Educational Resources Information Center

    Kromrey, Jeffrey D.; Hines, Constance V.

    1995-01-01

    The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…

  6. In-place cement stabilized base reconstruction techniques interim report, "construction and two year evaluation" : technical summary.

    DOT National Transportation Integrated Search

    2002-08-01

    The purpose of this research is to evaluate the effectiveness of soil cement shrinkage crack mitigation techniques. Ten test sections, 1000 feet long, were constructed on LA 89 in Vermilion Parish. The shrinkage crack mitigation methods being evaluat...

  7. Analysis of the shrinkage at the thick plate part using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hatta, N. M.; Azlan, M. Z.; Shayfull, Z.; Roselina, S.; Nasir, S. M.

    2017-09-01

    Injection moulding is well known for its manufacturing process especially in producing plastic products. To measure the final product quality, there are lots of precautions to be taken into such as parameters setting at the initial stage of the process. Sometimes, if these parameters were set up wrongly, defects may be occurred and one of the well-known defects in the injection moulding process is a shrinkage. To overcome this problem, a maximisation at the precaution stage by making an optimal adjustment on the parameter setting need to be done and this paper focuses on analysing the shrinkage by optimising the parameter at thick plate part with the help of Response Surface Methodology (RSM) and ANOVA analysis. From the previous study, the outstanding parameter gained from the optimisation method in minimising the shrinkage at the moulded part was packing pressure. Therefore, with the reference from the previous literature, packing pressure was selected as the parameter setting for this study with other three parameters which are melt temperature, cooling time and mould temperature. The analysis of the process was obtained from the simulation by Autodesk Moldflow Insight (AMI) software and the material used for moulded part was Acrylonitrile Butadiene Styrene (ABS). The analysis and result were obtained and it found that the shrinkage can be minimised and the significant parameters were found as packing pressure, mould temperature and melt temperature.

  8. Automatic measurement for dimensional changes of woven fabrics based on texture

    NASA Astrophysics Data System (ADS)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  9. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    PubMed

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  10. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  11. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism

    PubMed Central

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène

    2015-01-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez’s circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and 18F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez’s circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez’s circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. PMID:26661206

  12. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  13. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  14. Development of Laboratory Testing Criteria for Evaluating Cementitious, Rapid-Setting Pavement Repair Materials

    DTIC Science & Technology

    2011-04-01

    thus they should only be used when experienced operators have been trained on using the material with the mixer. ABC Cement was suited for various... autogenous shrinkage, all of which occur during hydration. Shrinkage potential is important because repair materials that shrink excessively are more

  15. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.

    PubMed

    An, Lihua; Fung, Karen Y; Krewski, Daniel

    2010-09-01

    Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.

  16. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors.

    PubMed

    Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco

    2017-12-22

    This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

  17. Suspended, Shrinkage-Free, Electrospun PLGA Nanofibrous Scaffold for Skin Tissue Engineering.

    PubMed

    Ru, Changhai; Wang, Feilong; Pang, Ming; Sun, Lining; Chen, Ruihua; Sun, Yu

    2015-05-27

    Electrospinning is a technique for creating continuous nanofibrous networks that can architecturally be similar to the structure of extracellular matrix (ECM). However, the shrinkage of electrospun mats is unfavorable for the triggering of cell adhesion and further growth. In this work, electrospun PLGA nanofiber assemblies are utilized to create a scaffold. Aided by a polypropylene auxiliary supporter, the scaffold is able to maintain long-term integrity without dimensional shrinkage. This scaffold is also able to suspend in cell culture medium; hence, keratinocyte cells seeded on the scaffold are exposed to air as required in skin tissue engineering. Experiments also show that human skin keratinocytes can proliferate on the scaffold and infiltrate into the scaffold.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorut, F.; Imbert, G.; Roggero, A.

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, withmore » a densification of the layer and a loss of carbon and hydrogen elements being observed.« less

  19. A Commercial IOTV Cleaning Study

    DTIC Science & Technology

    2010-04-12

    manufacturer’s list price without taking into consideration of possible volume discount.  Equipment depreciation cost was calculated based on...Laundering with Prewash Spot Cleaning) 32 Table 12 Shrinkage Statistical Data (Traditional Wet Laundering without Prewash Spot Cleaning...Statistical Data (Computer-controlled Wet Cleaning without Prewash Spot Cleaning) 35 Table 15 Shrinkage Statistical Data (Liquid CO2 Cleaning

  20. Characterizing and quantifying the shrinkage resistance of alkali-activated (cement-free) concrete and evaluating potential methods for reducing early-age cracking in pavements and bridges.

    DOT National Transportation Integrated Search

    2015-12-01

    This report summarizes the findings of an experimental investigation into shrinkage, and the mitigation thereof, in alkali-activated : fly ash and slag binders and concrete. The early-age (chemical and autogenous) and later-age (drying and : carbonat...

  1. Materials Related Forensic Analysis and Special Testing : Drying Shrinkage Evaluation of Bridge Decks with Class AAA and Class W/WD Type K Cement

    DOT National Transportation Integrated Search

    2001-07-01

    This work pertains to preparation of concrete drying shrinkage data for proposed concrete mixtures during normal concrete : trial batch verification. Selected concrete mixtures will include PennDOT Classes AAA and AA and will also include the use of ...

  2. Evaluating shrinkage of wood propellers in a high-temperature environment

    Treesearch

    Richard Bergman; Robert J. Ross

    2008-01-01

    Minimizing wood shrinkage is a priority for many wood products in use, particularly engineered products manufactured to close tolerances, such as wood propellers for unmanned surveillance aircraft used in military operations. Those currently in service in the Middle East are experiencing performance problems as a consequence of wood shrinking during long-term storage...

  3. Creep Shrinkage and CTE Evaluation: MoDOT's New Bridge Deck Mix Companion Testing to HPC Bridge Deck.

    DOT National Transportation Integrated Search

    2005-02-01

    MoDOT RDT Research Project R-I00-002 HPC for Bridge A6130 Route 412 Pemiscot County was recently completed in June of 2004 [Myers and Yang, 2004]. Among other research tasks, part of this research study investigated the creep, shrinkage and...

  4. Reducing Shrinkage in Convenience Stores by the Use of the PSI.

    ERIC Educational Resources Information Center

    Terris, William; Jones, John W.

    This bibliography contains over 1,200 behavioral and property is a rapidly growing problem. Successful strategies are needed to reduce employee theft; new loss prevention techniques need to be developed and evaluated. Two loss prevention programs aimed at reducing employees' theft were compared by the measures of shrinkage rates. Initially, a…

  5. Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data.

    PubMed

    Burgette, Lane F; Reiter, Jerome P

    2013-06-01

    Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.

  6. Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics

    NASA Astrophysics Data System (ADS)

    Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Beleke, Andreas; Zontar, Daniel; Baum, Christoph; Brecher, Christian

    2017-02-01

    High Power Diode Laser (HPDL) systems with short focal length fast-axis collimators (FAC) require submicron assembly precision. Conventional FAC-Lens assembly processes require adhesive gaps of 50 microns or more in order to compensate for component tolerances (e.g. deviation of back focal length) and previous assembly steps. In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored. Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT's mounting station with a precision of +/-1 micron. Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation. Fraunhofer IPT's department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.

  7. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities.

    PubMed

    Karaman, E; Ozgunaltay, G

    2014-01-01

    To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p>0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p<0.05). The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.

  8. Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites.

    PubMed

    Manojlovic, Dragica; Dramićanin, Miroslav D; Milosevic, Milos; Zeković, Ivana; Cvijović-Alagić, Ivana; Mitrovic, Nenad; Miletic, Vesna

    2016-01-01

    This study investigated the degree of conversion, depth of cure, Vickers hardness, flexural strength, flexural modulus and volumetric shrinkage of experimental composite containing a low shrinkage monomer FIT-852 (FIT; Esstech Inc.) and photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO; Sigma Aldrich) compared to conventional composite containing Bisphenol A-glycidyl methacrylate (BisGMA) and camphorquinone-amine photoinitiator system. The degree of conversion was generally higher in FIT-based composites (45-64% range) than in BisGMA-based composites (34-58% range). Vickers hardness, flexural strength and modulus were higher in BisGMA-based composites. A polywave light-curing unit was generally more efficient in terms of conversion and hardness of experimental composites than a monowave unit. FIT-based composite containing TPO showed the depth of cure below 2mm irrespective of the curing light. The depth of cure of FIT-based composite containing CQ and BisGMA-based composites with either photoinitiator was in the range of 2.8-3.0mm. Volumetric shrinkage of FIT-based composite (0.9-5.7% range) was lower than that of BisGMA-based composite (2.2-12% range). FIT may be used as a shrinkage reducing monomer compatible with the conventional CQ-amine system as well as the alternative TPO photoinitiator. However, the depth of cure of FIT_TPO composite requires boosting to achieve clinically recommended thickness of 2mm. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Satisfactory clinical outcome following delayed repositioning of a traumatic post-LASIK flap with dislocation and shrinkage managed by irrigation, stretching, and debridement.

    PubMed

    Xu, Ye-Sheng; Xie, Wen-Jia; Yao, Yu-Feng

    2017-06-01

    To report surgical management and favorable outcome in a case with delayed repair of traumatic laser in situ keratomileusis (LASIK) flap dislocation with shrinkage and folds. A 30-year-old man with a five-year history of bilateral LASIK experienced blunt trauma to his right eye followed by decreased vision for 5 weeks. The surgical management included initially softening the flap by irrigation with balanced salt solution (BSS). The shrinkage folds were carefully and gently stretched by scraping with a 26-gauge cannula accompanied by BSS irrigation. All of the epithelial ingrowth on the flap inner surface and on the bed was thoroughly debrided by scraping and irrigation. After the flap was repositioned to match its original margin, a soft bandage contact lens was placed. At his initial visit, slit-lamp microscopy and optical coherence tomography (OCT) showed shrinkage of the LASIK flap with an elevated margin approximately 3 mm above the original position. The flap covered half of the pupil and had multiple horizontal folds. Two months after surgery, the flap remained well positioned with only faint streaks in the anterior stroma. The uncorrected visual acuity of the right eye was 20/20 with a manifest refraction of Plano. For delayed repair of traumatically dislocated LASIK flaps, sufficient softening by BSS, stretching the shrinkage folds, and thorough debridement of ingrowth epithelium enable resetting the flap and provide satisfactory results.

  10. Satisfactory clinical outcome following delayed repositioning of a traumatic post-LASIK flap with dislocation and shrinkage managed by irrigation, stretching, and debridement*

    PubMed Central

    Xu, Ye-sheng; Xie, Wen-jia; Yao, Yu-feng

    2017-01-01

    Objective: To report surgical management and favorable outcome in a case with delayed repair of traumatic laser in situ keratomileusis (LASIK) flap dislocation with shrinkage and folds. Methods: A 30-year-old man with a five-year history of bilateral LASIK experienced blunt trauma to his right eye followed by decreased vision for 5 weeks. The surgical management included initially softening the flap by irrigation with balanced salt solution (BSS). The shrinkage folds were carefully and gently stretched by scraping with a 26-gauge cannula accompanied by BSS irrigation. All of the epithelial ingrowth on the flap inner surface and on the bed was thoroughly debrided by scraping and irrigation. After the flap was repositioned to match its original margin, a soft bandage contact lens was placed. Results: At his initial visit, slit-lamp microscopy and optical coherence tomography (OCT) showed shrinkage of the LASIK flap with an elevated margin approximately 3 mm above the original position. The flap covered half of the pupil and had multiple horizontal folds. Two months after surgery, the flap remained well positioned with only faint streaks in the anterior stroma. The uncorrected visual acuity of the right eye was 20/20 with a manifest refraction of Plano. Conclusions: For delayed repair of traumatically dislocated LASIK flaps, sufficient softening by BSS, stretching the shrinkage folds, and thorough debridement of ingrowth epithelium enable resetting the flap and provide satisfactory results. PMID:28585430

  11. Optimal tumor shrinkage predicts long-term outcome in advanced nonsmall cell lung cancer (NSCLC) treated with target therapy: Result from 3 clinical trials of advanced NSCLC by 1 institution.

    PubMed

    He, Xiaobo; Zhang, Yang; Ma, Yuxiang; Zhou, Ting; Zhang, Jianwei; Hong, Shaodong; Sheng, Jin; Zhang, Zhonghan; Yang, Yunpeng; Huang, Yan; Zhang, Li; Zhao, Hongyun

    2016-08-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are used as standard therapies for advanced nonsmall cell lung cancer (NSCLC) patients with EGFR mutation positive. Because these targeted therapies could cause tumor necrosis and shrinkage, the purpose of the study is to search for a value of optimal tumor shrinkage as an appropriate indicator of outcome for advanced NSCLC.A total of 88 NSCLC enrollees of 3 clinical trials (IRESSA registration clinical trial, TRUST study and ZD6474 study), who received Gefitinib (250 mg, QD), Erlotinib (150 mg, QD), and ZD6474 (100 mg, QD), respectively, during December 2003 and October 2007, were retrospectively analyzed. The response evaluation criteria in solid tumors (RECIST) were used to identify responders, who had complete response (CR) or partial responses (PR) and nonresponders who had stable disease (SD) or progressive disease (PD). Receiver operating characteristics (ROC) analysis was used to find the optimal tumor shrinkage as an indicator for tumor therapeutic outcome. Univariate and multivariate Cox regression analyses were performed to compare the progression-free survival (PFS) and overall survival (OS) between responders and nonresponders stratified based on radiologic criteria.Among the 88 NSCLC patients, 26 were responders and 62 were nonresponders based on RECIST 1.0. ROC indicated that 8.32% tumor diameter shrinkage in the sum of the longest tumor diameter (SLD) was the cutoff point of tumor shrinkage outcomes, resulting in 46 responders (≤8.32%) and 42 nonresponders (≥8.32%). Univariate and multivariate Cox regression analyses indicated that (1) the responders (≤8.32%) and nonresponders (≥ -8.32%) were significantly different in median PFS (13.40 vs 1.17 months, P < 0.001) and OS (19.80 vs 7.90 months, P < 0.001) and (2) -8.32% in SLD could be used as the optimal threshold for PFS (hazard ratio [HR], 8.11, 95% CI, 3.75 to 17.51, P < 0.001) and OS (HR, 2.36, 95% CI, 1.41 to 3.96, P = 0.001).However, 8.32% tumor diameter shrinkage is validated as a reliable outcome predictor of advanced NSCLC patients receiving EGFR-TKIs therapies and may provide a practical measure to guide therapeutic decisions.

  12. Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

    PubMed

    Novaes, João Batista; Talma, Elissa; Las Casas, Estevam Barbosa; Aregawi, Wondwosen; Kolstad, Lauren Wickham; Mantell, Sue; Wang, Yan; Fok, Alex

    2018-01-01

    Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements. A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison. Group I showed a maximum occlusal displacement of 34.7±6.7μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4±3.8μm. The difference between the two groups was statistically significant (p-value=0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer. The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement could be detected by using the most accurate intraoral scanners currently available. Thus, subject to clinical validation, the occlusal displacement of a resin composite restoration may be used to assess its interfacial integrity. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. The Educational Strategies of Rural School Students

    ERIC Educational Resources Information Center

    Abankina, T. V.; Krasilova, A. N.; Iastrebov, G. A.

    2012-01-01

    Over the past two decades, Russia has been characterized by a demographic slump, a drastic decline in the number of school students, and, accordingly, a shrinkage of the system of education. The magnitude of shrinkage in rural areas is not 5-10 percent, something education could adapt to, but is about 30 percent, which requires systemic changes.…

  14. Stiffness and shrinkage of green and dry joists

    Treesearch

    Lyman W. Wood; Lawrence A. Soltis

    1964-01-01

    This report gives information on the edgewise modulus of elasticity, stiffness, and shrinkage of 360 joists in three species, three grades, and two sizes, each species obtained from two sources. Each joist was evaluated nondestructively at four moisture content values ranging from the green condition to about 11 percent. Information is also given on specific gravity,...

  15. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors

    PubMed Central

    Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco

    2017-01-01

    This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed. PMID:29271912

  16. Shrinkage Behavior of Polystyrene-based Foam Molded Parts Depending on Volatile Matter Content and Other Factors

    NASA Astrophysics Data System (ADS)

    Ghafafian, Carineh

    Polymer foam materials play a large role in the modern world. Expanded polystyrene (EPS) bead foam is a lightweight, low density, and good thermal and acoustic insulating material whose properties make it attractive for a number of applications, especially as building insulation. However, EPS also experiences post-molding shrinkage; it shrinks dimensionally from its molded size after processing. This means parts must be stored in warehouses until they are considered stable by the industry standard, DIN EN 1603. This often takes 11--18 weeks and is thus very timely and expensive. This study aims to decrease the post-molding shrinkage time of EPS foam by understanding the mechanisms of shrinkage behavior. Samples were split into two groups based on their amount of initial volatile matter content and storage conditions, then compared to a control group. Based on thermogravimetric analysis and gas chromatography with mass spectrometry, the volatile matter content and composition was found to not be the sole contributor to EPS foam dimensional stability. Residual stress testing was done with the hole drilling method and Raman spectroscopy. As this type of testing has not been done with polymer foams before, the aim was to see if either method could reliably produce residual stress values. Both methods measured residual stress values with unknown accuracy. All samples stored at a higher temperature (60°C) reached dimensional stability by the end of this study. Thus, air diffusion into EPS foam, encouraged by the high temperature storage, was found to play a significant role in post-molding shrinkage.

  17. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.

    PubMed

    Weisberg, N K; Kuo, T; Torkian, B; Reinisch, L; Ellis, D L

    1998-10-01

    To develop methods to compare carbon dioxide (CO2) resurfacing lasers, fluence, and debridement effects on tissue shrinkage and histological thermal denaturation. In vitro human or in vivo porcine skin samples received up to 5 passes with scanner or short-pulsed CO2 resurfacing lasers. Fluences ranging from 2.19 to 17.58 J/cm2 (scanner) and 1.11 to 5.56 J/cm2 (short pulsed) were used to determine each laser's threshold energy for clinical effect. Variable amounts of debridement were also studied. Tissue shrinkage was evaluated by using digital photography to measure linear distance change of the treated tissue. Tissue histological studies were evaluated using quantitative computer image analysis. Fluence-independent in vitro tissue shrinkage was seen with the scanned and short-pulsed lasers above threshold fluence levels of 5.9 and 2.5 J/cm2, respectively. Histologically, fluence-independent thermal depths of damage of 77 microns (scanner) and 25 microns (pulsed) were observed. Aggressive debridement of the tissue increased the shrinkage per pass of the laser, and decreased the fluence required for the threshold effect. In vivo experiments confirmed the in vitro results, although the in vivo threshold fluence level was slightly higher and the shrinkage obtained was slightly lower per pass. Our methods allow comparison of different resurfacing lasers' acute effects. We found equivalent laser tissue effects using lower fluences than those currently accepted clinically. This suggests that the morbidity associated with CO2 laser resurfacing may be minimized by lowering levels of tissue input energy and controlling for tissue debridement.

  18. Further Evaluation of Covariate Analysis using Empirical Bayes Estimates in Population Pharmacokinetics: the Perception of Shrinkage and Likelihood Ratio Test.

    PubMed

    Xu, Xu Steven; Yuan, Min; Yang, Haitao; Feng, Yan; Xu, Jinfeng; Pinheiro, Jose

    2017-01-01

    Covariate analysis based on population pharmacokinetics (PPK) is used to identify clinically relevant factors. The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research were to investigate the type I error for LRT and EBE approaches, to confirm the similarity of power between the LRT and EBE approaches from a previous report and to explore the influence of shrinkage on LRT and EBE inferences. Using an oral one-compartment PK model with a single covariate impacting on clearance, we conducted a wide range of simulations according to a two-way factorial design. The results revealed that the EBE-based regression not only provided almost identical power for detecting a covariate effect, but also controlled the false positive rate better than the LRT approach. Shrinkage of EBEs is likely not the root cause for decrease in power or inflated false positive rate although the size of the covariate effect tends to be underestimated at high shrinkage. In summary, contrary to the current recommendations, EBEs may be a better choice for statistical tests in PPK covariate analysis compared to LRT. We proposed a three-step covariate modeling approach for population PK analysis to utilize the advantages of EBEs while overcoming their shortcomings, which allows not only markedly reducing the run time for population PK analysis, but also providing more accurate covariate tests.

  19. Dimensional Changes of Tracheids during Drying of Radiata Pine (Pinus radiata D. Don) Compression Woods: A Study Using Variable-Pressure Scanning Electron Microscopy (VP-SEM)

    PubMed Central

    Zhang, Miao; Smith, Bronwen G.; McArdle, Brian H.; Chavan, Ramesh R.; James, Bryony J.

    2018-01-01

    Variable-pressure scanning electron microscopy was used to investigate the dimensional changes in longitudinal, tangential and radial directions, on wetting and drying, of tracheids of opposite wood (OW) and three grades of compression woods (CWs), including severe CW (SCW) and two grades of mild compression wood (MCW) (MCW1 and MCW2) in corewood of radiata pine (Pinus radiata) saplings. The CW was formed on the underside and OW on the upper side of slightly tilted stems. In the longitudinal direction, the shrinkage of SCW tracheids was ~300% greater than that of OW tracheids, with the shrinkage of the MCW1 and MCW2 tracheids being intermediate. Longitudinal swelling was also investigated and hysteresis was demonstrated for the tracheids of all corewood types, with the extent of hysteresis increasing with CW severity. A statistical association was found between longitudinal shrinkage and the content of lignin and galactosyl residues in the cell-wall matrix. The galactosyl residues are present mostly as (1→4)-β-galactans, which are known to have a high capacity for binding water and swell on hydration. The small proportions of (1→3)-β-glucans in the CWs have similar properties. These polysaccharides may play a functional role in the longitudinal shrinking and swelling of CW tracheids. Tangential shrinkage of tracheids was greater than radial shrinkage but both were greatest for OW and least for SCW, with the MCW1 and MCW2 being intermediate. PMID:29495536

  20. Prediction of transverse shrinkages of young-growth Sitka spruce (Picea sitchensis) and western hemlock (Tsuga heterophylla) with ultrasonic measurements

    Treesearch

    Turker Dundar; Xiping Wang; Robert J. Ross

    2013-01-01

    The objective of this study was to examine the potential of acoustic measurement as a rapid and nondestructive method to predict the dimensional stability of young-growth Sitka spruce and western hemlock. Ultrasonic velocity, peak energy, specific gravity, and radial and tangential shrinkages were measured on twenty-four 25- x

  1. Fast generation of computer-generated holograms using wavelet shrinkage.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  2. DH and ESPI laser interferometry applied to the restoration shrinkage assessment

    NASA Astrophysics Data System (ADS)

    Campos, L. M. P.; Parra, D. F.; Vasconcelos, M. R.; Vaz, M.; Monteiro, J.

    2014-01-01

    In dental restoration postoperative marginal leakage is commonly associated to polymerization shrinkage effects. In consequence the longevity and quality of restorative treatment depends on the shrinkage mechanisms of the composite filling during the polymerization. In this work the development of new techniques for evaluation of those effects under light-induced polymerization of dental nano composite fillings is reported. The composite resins activated by visible light, initiate the polymerization process by absorbing light in wavelengths at about 470 nm. The techniques employed in the contraction assessment were digital holography (DH) and Electronic Speckle Pattern Interferometry (ESPI) based on laser interferometry. A satisfactory resolution was achieved in the non-contact displacement field measurements on small objects concerning the experimental dental samples. According to a specific clinical protocol, natural teeth were used (human mandibular premolars). A class I cavity was drilled and restored with nano composite material, according to Black principles. The polymerization was monitored by DH and ESPI in real time during the cure reaction of the restoration. The total displacement reported for the material in relation of the tooth wall was 3.7 μm (natural tooth). The technique showed the entire tooth surface (wall) deforming during polymerization shrinkage.

  3. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE PAGES

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...

    2017-11-04

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  4. Corneal collagen denaturation in laser thermokeratoplasty

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Kampmeier, Juergen; Grotehusmann, Ulf; Vogel, Alfred; Koop, Norbert; Asiyo-Vogel, Mary; Birngruber, Reginald

    1996-05-01

    In laserthermokeratoplasty (LTK) thermal denaturation and shrinkage of corneal collagen is used to correct hyperopia and astigmatism. In order to optimize dosimetry, the temperature at which maximal shrinkage of collagen fibrils occurs is of major interest. Since the exposure time in clinical LTK-treatment is limited to a few seconds, the kinetics of collagen denaturation as a rate process has to be considered, thus the time of exposure is of critical importance for threshold and shrinkage temperatures. We investigated the time-temperature correlation for corneal collagen denaturation within different time domains by turbidimetry of scattered HeNe laser probe light using a temperature controlled water bath and pulsed IR laser irradiation. In the temperature range of 60 degree(s)C to 95 degree(s)C we found an exponential relation between the denaturation time and temperature. For the typical LTK-treatment time of 2 s, a temperature of 95 degree(s)C is needed to induce thermal damage. Use of pulsed Holmium laser radiation gave significant scattering of HeNe laser probe light at calculated temperatures of around 100 degree(s)DC. Rate parameters according to the formalism of Arrhenius were fitted to these results. Force measurements showed the simultaneous onset of light scattering and collagen shrinkage.

  5. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  6. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  7. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.

    PubMed

    Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter

    2018-06-12

    The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.

  8. Transient Interaction Between Reduction and Slagging Reactions of Wustite in Simulated Cohesive Zone of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Ma, Kaihui; Xu, Jian; Deng, Junyi; Wang, Dongdong; Xu, Yang; Liao, Zhehan; Sun, Chengfeng; Zhang, Shengfu; Wen, Liangying

    2018-06-01

    The blast furnace cohesive zone plays an important role in the gas flow distribution and heat-transfer efficiency. Previous work mainly employed temperature-based indices to evaluate and predict the shape and thickness of the cohesive zone, whereas the internal reactions and related effects on the softening and melting properties of a complex burden are ignored. In this study, an innovative index, namely, shrinkage rate (SR), is first proposed to directly estimate the shrinkage behavior of wustite (FeO)-packed bed inside a simulated cohesive zone. The index is applied as the temperature increases to elucidate the transient interaction between reduction and slagging reactions. Results show that the thermally induced slagging reaction causes the packed bed to shrink at lower temperature, and the SR doubles when compounds with low melting temperature are generated by adding a reasonable concentration of CaO or SiO2. The reduction reaction becomes the driving force during the shrinkage of the packed bed between 1173 K and 1273 K when CO is introduced in the mixture gas. Then, the dominating factors for further shrinkage include slagging, reduction, or both factors. These factors vary with respect to the added compounds or temperature.

  9. Combined microwave heating and surface cooling of the cornea.

    PubMed

    Trembly, B S; Keates, R H

    1991-01-01

    We investigated a nonsurgical means of reshaping the cornea to correct hyperopia, keratoconus, or myopia. The object was to heat the central stroma of the cornea to the shrinkage temperature of collagen, 55-58 degrees C. The heating device was an open-ended, coaxial, near-field applicator driven at 2450 MHz; it incorporates cooling of the cornea surface by flow of saline. We investigated the system theoretically by computing the 2-D, axisymmetric temperature distribution with the finite element method. We investigated the system experimentally by heating excised steer corneas. Histology showed the system could shrink the stroma to a depth of 0.6 mm while sparing the epithelium in 75% of cases; the diameter of shrinkage was 1.3 mm. Theory predicted a significantly deeper and narrower region of shrinkage than was observed.

  10. Shrink-wrap Vesicles

    PubMed Central

    Fujikawa, Shelly M.; Chen, Irene A.; Szostak, Jack W.

    2008-01-01

    We describe a simple approach to the controlled removal of molecules from the membrane of large unilamellar vesicles made of fatty acids. Such vesicles shrink dramatically upon mixing with micelles composed of a mixture of fatty acid and phospholipid (POPC), as fatty acid molecules leave the vesicle membrane and accumulate within the mixed micelles. Vesicle shrinkage was confirmed by dynamic light scattering, fluorescence recovery after photobleaching of labeled vesicles, and fluorescence resonance energy transfer between lipid dyes incorporated into the vesicle membrane. Most of the encapsulated impermeable solute is retained during shrinkage, becoming concentrated by a factor of at least 50-fold in the final small vesicles. This unprecedented combination of vesicle shrinkage with retention of contents allows for the preparation of small vesicles containing high solute concentrations, and may find applications in liposomal drug delivery. PMID:16342983

  11. Hybrid processing and anisotropic sintering shrinkage in textured ZnO ceramics

    PubMed Central

    Keskinbora, Kahraman; Suzuki, Tohru S; Ozgur Ozer, I; Sakka, Yoshio; Suvaci, Ender

    2010-01-01

    We have studied the combined effects of the templated grain growth and magnetic alignment processes on sintering, anisotropic sintering shrinkage, microstructure development and texture in ZnO ceramics. Suspensions of 0–10 vol % ZnO template particles were slip cast in a 12 T rotating magnetic field. Sintering and texture characteristics were investigated via thermomechanical analysis and electron backscatter diffraction, respectively. Sintering as well as texture characteristics depend on template concentration. For the studied ZnO system, there is a critical template concentration (2 vol % in this study) above which densification is limited by the templates owing to constrained sintering. Below this limit, the densification is enhanced and the anisotropic shrinkage is reduced, which is attributed to densifying characteristics of the templates. PMID:27877373

  12. Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations.

    PubMed

    Yang, Bo; Guo, Jiawen; Huang, Qin; Heo, Young; Fok, Alex; Wang, Yan

    2016-06-01

    (1) To investigate the properties, and their correlations, of the acoustic emission (AE) from interfacial debonding of Class-I composite restorations during curing. (2) To establish the relationship between the theoretical shrinkage stress and the level of interfacial debonding in such restorations as determined by AE measurement. An AE sensor was attached onto the surface of human molars with a Class-I composite restoration of 4mm (length)×3mm (width)×2mm (depth) to monitor their debonding from the tooth tissues during curing. Background signals were analyzed before curing to determine the threshold amplitude for noise filtering. Three groups (n=3) of composites with different levels of shrinkage were tested: (1) Z100™, (2) Filtek™ Z250, and (3) Filtek™ LS. All restorations were cured with an LED blue light operated at 1200mW/cm(2) for 40s. AE signals were recorded continuously from the start of curing for 10min, and their frequency, amplitude and duration were analyzed. Finally, the cumulative number of AE events was compared with the theoretical maximum shrinkage stress that could be generated by the composites. The amplitude of the background signals was below 30dB, which was chosen as the threshold for noise filtering. The amplitude of all debonding events ranged from 30 to 50dB, and their duration was below 100μs. The peak frequency had two main bands: 100-200kHz and 700-800kHz. The duration time increased with increasing amplitude, but no correlation was found between the peak frequency and the other two parameters. The cumulative number of AE events was 30.67±2.31, 14.00±7.81 and 5.67±3.06 for Z100, Z250 and LS, respectively, which corresponded well with the theoretical maximum shrinkage stress they could produce, i.e. 42.5, 97.5 and 182.5MPa. R(2)=0.9955 for the linear regression. The theoretical shrinkage stress below which no AE events were detected was about 14.3MPa. For the materials considered, the amount of interfacial debonding produced in a Class-I restoration during curing increased linearly with the theoretical maximum shrinkage stress of the composite. The theoretical stress below which no AE events were detected was similar to composite-dentin bond strength reported in the literature. Copyright © 2016 Academy of Dental Materials. All rights reserved.

  13. Effects of powder characteristics on injection molding and burnout cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, G.; French, K.W.

    Silicon nitride particle size and size distributions were varied widely to determine their effects on burnout cracking of injection-molded test parts containing thick and thin sections. Elimination of internal cracking required significant burnout shrinkage, which did not occur by changes of particle size and size distribution. However, isopressing of test parts after burnout provided the dimensional shrinkage necessary for producing crack-free components.

  14. Limited evaluation of physical and mechanical properties of Nepal alder grown in Hawaii

    Treesearch

    C. C. Gerhards

    1964-01-01

    Nepal alder (Alnus nepalensis ) grown in Hawaii was evaluated for shrinkage, strength in bending, and hardness. This Hawaii-grown wood was comparable in bending strength to wood of the same species grown in Bengal, India, but was lower in modulus of elasticity and exhibited greater hardness and shrinkage. It was also harder than such Mainland species as aspen (Populus...

  15. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites

    PubMed Central

    Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.

    2011-01-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538

  16. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    PubMed

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.

  17. Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar

    NASA Astrophysics Data System (ADS)

    Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.

    2018-05-01

    In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep and shrinkage as the load is relaxed and dehydration proceeds. This study underlines the potential of the Tomo-PSInSAR solution for the monitoring deformation performance of high-rise buildings, which offers a quantitative indicator to local authorities and planners for assessing potential damages.

  18. Shrinkage estimation of effect sizes as an alternative to hypothesis testing followed by estimation in high-dimensional biology: applications to differential gene expression.

    PubMed

    Montazeri, Zahra; Yanofsky, Corey M; Bickel, David R

    2010-01-01

    Research on analyzing microarray data has focused on the problem of identifying differentially expressed genes to the neglect of the problem of how to integrate evidence that a gene is differentially expressed with information on the extent of its differential expression. Consequently, researchers currently prioritize genes for further study either on the basis of volcano plots or, more commonly, according to simple estimates of the fold change after filtering the genes with an arbitrary statistical significance threshold. While the subjective and informal nature of the former practice precludes quantification of its reliability, the latter practice is equivalent to using a hard-threshold estimator of the expression ratio that is not known to perform well in terms of mean-squared error, the sum of estimator variance and squared estimator bias. On the basis of two distinct simulation studies and data from different microarray studies, we systematically compared the performance of several estimators representing both current practice and shrinkage. We find that the threshold-based estimators usually perform worse than the maximum-likelihood estimator (MLE) and they often perform far worse as quantified by estimated mean-squared risk. By contrast, the shrinkage estimators tend to perform as well as or better than the MLE and never much worse than the MLE, as expected from what is known about shrinkage. However, a Bayesian measure of performance based on the prior information that few genes are differentially expressed indicates that hard-threshold estimators perform about as well as the local false discovery rate (FDR), the best of the shrinkage estimators studied. Based on the ability of the latter to leverage information across genes, we conclude that the use of the local-FDR estimator of the fold change instead of informal or threshold-based combinations of statistical tests and non-shrinkage estimators can be expected to substantially improve the reliability of gene prioritization at very little risk of doing so less reliably. Since the proposed replacement of post-selection estimates with shrunken estimates applies as well to other types of high-dimensional data, it could also improve the analysis of SNP data from genome-wide association studies.

  19. The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization.

    PubMed

    Wydra, James W; Cramer, Neil B; Stansbury, Jeffrey W; Bowman, Christopher N

    2014-06-01

    A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca

    2014-02-15

    Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxelsmore » on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.« less

  1. The effect of filler content and processing variables on dimensional accuracy of experimental composite inlay material.

    PubMed

    Razak, A A; Harrison, A

    1997-04-01

    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses. A method was developed to measure dimensional accuracy and stability of a composite inlay. A standard Class II (MOD) inlay cavity stainless steel mold was made with six circular indentations placed on the occlusal floor of the cavity and four indentations on each gingival floor to act as datum points in the measurement of linear polymerization shrinkage. The inlay restorations were prepared from an inlay-onlay composite material of different filler contents (50%, 65%, and 79% by weight). For each filler content group, three curing methods were used: light curing only, light curing and heat curing at 100 degrees C for 5 minutes, and light curing and heat curing at 100 degrees C for 5 minutes and then storage in distilled water for 7 days. The accuracy of the MOD inlays was determined by measuring the shrinkage of the restoration on the occlusal floor areas and the gingival seats. The results demonstrated an inverse linear relationship between filler content and polymerization shrinkage. There was a tendency for the light-curing and heat-curing method to show an increase in polymerization shrinkage. An expansion was recorded between the mesial and distal boxes when the specimens were soaked in water for 7 days. This study suggested that the inlay mold limits the physical shrinkage that can occur between the mesial and distal axial walls of the inlay restoration because the inlay cannot shrink to a smaller dimension than the mold. Water sorption then causes hygroscopic expansion, which enlarges the distance between the mesial and distal walls.

  2. COMPARATIVE ANALYSIS OF THE SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Pereira, Rosana Aparecida; de Araujo, Paulo Amarante; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (α=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 μm; Filtek Supreme = 10.66 ± 1.211μm; Admira = 11.16 ± 2.041 μm and Grandio = 10.50 ± 1.224 μm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation. PMID:19089286

  3. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    PubMed

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.

  4. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing.

    PubMed

    Walters, Nick J; Xia, Wendy; Salih, Vehid; Ashley, Paul F; Young, Anne M

    2016-02-01

    To determine the effects of various monomers on conversion and cytocompatibility of dental composites and to improve these properties without detrimentally affecting mechanical properties, depth of cure and shrinkage. Composites containing urethane dimethacrylate (UDMA) or bisphenol A glycidyl methacrylate (Bis-GMA) with poly(propylene glycol) dimethacrylate (PPGDMA) or triethylene glycol dimethacrylate (TEGDMA) were characterized using the following techniques: conversion (FTIR at 1 and 4mm depths), depth of cure (BS EN ISO 4049:2009 and FTIR), shrinkage (BS EN ISO 17304:2013 and FTIR), strength and modulus (biaxial flexural test) and water sorption. Cytocompatibility of composites and their liquid phase components was assessed using three assays (resazurin, WST-8 and MTS). UDMA significantly improved conversion, BFS and depth of cure compared to Bis-GMA, without increasing shrinkage. UDMA was cytotoxic at lower concentrations than Bis-GMA, but extracts of Bis-GMA-containing composites were less cytocompatible than of those containing UDMA. PPGDMA improved conversion and depth of cure compared to TEGDMA, without detrimentally affecting shrinkage. TEGDMA was shown by all assays to be highly toxic. Resazurin, but not WST-8 and MTS, suggested that PPGDMA exhibited improved cytocompatibility compared to TEGDMA. The use of UDMA and PPGDMA results in composites with excellent conversion, depth of cure and mechanical properties, without increasing shrinkage. Composites containing UDMA appear to be slightly more cytocompatible than those containing Bis-GMA. These monomers may therefore improve the material properties of dental restorations, particularly bulk fill materials. The effect of diluent monomer on cytocompatibility requires further investigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Tumor Shrinkage Assessed by Volumetric MRI in Long-Term Follow-Up After Fractionated Stereotactic Radiotherapy of Nonfunctioning Pituitary Adenoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Christine, E-mail: Christine.Kopp@lrz.tu-muenchen.de; Theodorou, Marilena; Poullos, Nektarios

    2012-03-01

    Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment wasmore » 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spellman, G.P.

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLAmore » RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.« less

  7. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  8. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China.

    PubMed

    Song, Kaishan; Wang, Zongming; Li, Lin; Tedesco, Lenore; Li, Fang; Jin, Cui; Du, Jia

    2012-11-30

    In the past five decades, the wetlands in the Muleng-Xingkai Plain, Northeast China, have experienced rapid shrinkage and fragmentation. In this study, wetlands cover change and agricultural cultivation were investigated through a time series of thematic maps from 1954, and Landsat satellite images representing the last five decades (1976, 1986, 1995, 2000, and 2005). Wetlands shrinkage and fragmentation were studied based on landscape metrics and the land use changes transition matrix. Furthermore, the driving forces were explored according to socioeconomic development and major natural environmental factors. The results indicate a significant decrease in the wetlands area in the past five decades, with an average annual decrease rate of 9004 ha/yr. Of the 625,268 ha of native wetlands in 1954, approximately 64% has been converted to other land use types by 2005, of which conversion to cropland accounts for the largest share (83%). The number of patches decreased from 1272 (1954) to 197 (1986) and subsequently increased to 326 (2005). The mean patch size changed from 480 ha (1954) to 1521 ha (1976), and then steadily decreased to 574 ha (2005). The largest patch index (total core area index) indicates wetlands shrinkage with decreased values from 31.73 (177,935 ha) to 3.45 (39,421 ha) respectively. Climatic changes occurred over the study period, providing a potentially favorable environment for agricultural development. At the same time population, groundwater harvesting, and fertilizer application increased significantly, resulting in wetlands degradation. According to the results, the shrinkage and fragmentation of wetlands could be explained by socioeconomic development and secondarily aided by changing climatic conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A moment projection method for population balance dynamics with a shrinkage term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shaohua; Yapp, Edward K.Y.; Akroyd, Jethro

    A new method of moments for solving the population balance equation is developed and presented. The moment projection method (MPM) is numerically simple and easy to implement and attempts to address the challenge of particle shrinkage due to processes such as oxidation, evaporation or dissolution. It directly solves the moment transport equation for the moments and tracks the number of the smallest particles using the algorithm by Blumstein and Wheeler (1973) . The performance of the new method is measured against the method of moments (MOM) and the hybrid method of moments (HMOM). The results suggest that MPM performs muchmore » better than MOM and HMOM where shrinkage is dominant. The new method predicts mean quantities which are almost as accurate as a high-precision stochastic method calculated using the established direct simulation algorithm (DSA).« less

  10. New System of Shrinkage Measurement through Cement Mortars Drying

    PubMed Central

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  11. Enhancement of IVR images by combining an ICA shrinkage filter with a multi-scale filter

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Wei; Matsuo, Kiyotaka; Han, Xianhua; Shimizu, Atsumoto; Shibata, Koichi; Mishina, Yukio; Mukuta, Yoshihiro

    2007-11-01

    Interventional Radiology (IVR) is an important technique to visualize and diagnosis the vascular disease. In real medical application, a weak x-ray radiation source is used for imaging in order to reduce the radiation dose, resulting in a low contrast noisy image. It is important to develop a method to smooth out the noise while enhance the vascular structure. In this paper, we propose to combine an ICA Shrinkage filter with a multiscale filter for enhancement of IVR images. The ICA shrinkage filter is used for noise reduction and the multiscale filter is used for enhancement of vascular structure. Experimental results show that the quality of the image can be dramatically improved without any blurring in edge by the proposed method. Simultaneous noise reduction and vessel enhancement have been achieved.

  12. Dimensional and relative hygroscopic properties of hardwoods from southern pine sites

    Treesearch

    E.T. Choong; F.G. Manwiller

    1979-01-01

    Ten 6-inch trees from each of 22 species-were sampled. Differences in EMC occurred at 85 and 71 percent RH but not at 50 or 25 percent; there was essentially no difference between sapwood and corewood. Radial shrinkage varied from 4.1 percent in water oak to 8.0 percent in hickory, while tangential shrinkage varied from 7.9 percent in sweetbay to 12.2 percent in...

  13. Dimensional and relative hygroscopic properties of hardwoods from southern pine sites

    Treesearch

    Elvin T. Choong; Floyd G. Manwiller

    1975-01-01

    Ten 6-inch trees from each of 22 species were sampled. Differences in EMC occurred at 85 and 71 percent RH but not at 50 or 25 percent; there was essentially no difference between sapwood and corewood. Radial shrinkage varied from 4.1 percent in water oak to 8.0 percent in hickory, while tangential shrinkage varied from 7.9 percent in sweetbay to 12.2 percent in...

  14. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    PubMed

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  15. Thoracoscopic CO laser coagulation shrinkage of blebs in treatment of spontaneous pneumothorax

    NASA Astrophysics Data System (ADS)

    Sensaki, Koji; Arai, Tsunenori; Kikuchi, Keiichi; Takagi, Keigo; Tanaka, Susumu; Kikuchi, Makoto

    1992-06-01

    Spontaneous pneumothorax is a common disease in young people. Operative intervention has been done in most of the recurrent cases. Recently thoracoscopic treatment has been tested as a less invasive treatment modarity. We adopted carbon monoxide (CO) laser for thoracoscopic treatment of recurrent spontaneous pneumothorax. CO laser (wavelength; 5.4 micrometers ) could be delivered by chalcogenide glass (As - S) covered with a teflon sheath and ZnSe fiber tip. The sterilized flexible bronchoscope was inserted through the thoracoscopic outer sheath under local anesthesia. Shrinkage of blebs was obtained by non-contact method of CO laser irradiation. Laser power at the tip was 2.5 - 5 W and irradiation duration was 0.5 s each. Excellent shrinkage of bleb and bulla could be obtained by CO laser without perforation complication. Advantages of CO laser as a thoracoscopic treatment were: (1) capability of fiber delivery (flexible thoracoscopy was easy to operate and clear to visualize the blebs which were frequently found at the apical portion of the lung, and (2) shallow extinction length (good shrinkage of blebs, low risk of perforation, and thin layer of carbonization). In conclusion, our new technique of thoracoscopic CO laser irradiation was found to be a safe and effective treatment of spontaneous pneumothorax.

  16. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

    NASA Astrophysics Data System (ADS)

    Monroe, Charles; Beckermann, Christoph

    2014-08-01

    The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear "lambda"-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

  17. Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage

    PubMed Central

    Jain, Ishutesh; Inamdar, Mandar M.; Padinhateeri, Ranjith

    2015-01-01

    Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs). We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (Ems) has to be comparable to the strength of the curvature energy (Emb) such that Ems−Emb≈1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length. PMID:25692909

  18. The paradigm of tumor shrinkage and rapid liver remnant hypertrophy for conversion of initially unresectable colorectal liver metastasis: a case report and literature review.

    PubMed

    Xiao, Nan; Yu, Kailin; Yu, Shaojun; Wu, Jianjun; Wang, Jian; Shan, Siyang; Zheng, Shuchun; Wang, Liuhong; Wang, Jianwei; Peng, Shuyou

    2017-08-03

    For colorectal liver metastasis (CRLM) patients, hepatic resection is currently the sole cure offering the chance of long-term survival. Tumor shrinkage and planned liver remnant hypertrophy are the two key strategies for conversion of initially unresectable CRLM. First conducted in 2012, associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) allows rapid liver growth. As a means to induce hypertrophy, portal vein embolization (PVE) has been widely applied before extending hepatectomy. Recently, Peng et al. present a new approach of terminal branches portal vein embolization (TBPVE), offering an efficient way to amplify FLR and making chances for surgery in 2 weeks. We reported a 61-year-old woman with synchronous hepatic metastasized carcinoma of the colon sigmoideum underwent TBPVE after 6 cycles of neoadjuvant therapy in order to perform a planned right trisectionectomy. Rapid liver remnant hypertrophy and remarkable tumor shrinkage were achieved, and laparoscopic sigmoidectomy and right trisectionectomy were successfully performed. The postsurgical course was uneventful and 7 months of recurrence-free survival have been witnessed. The dual tactics of tumor shrinkage and planned rapid liver remnant hypertrophy will make concerted efforts to further increase the clinical candidacy for curative resection, which are valuable for further investigation.

  19. Durability of conventional concretes containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Graft shrinkage and survival rate of implants after sinus floor elevation using a nanocrystalline hydroxyapatite embedded in silica gel matrix: a 1-year prospective study.

    PubMed

    El Hage, Marc; Abi Najm, Semaan; Bischof, Mvark; Nedir, Rabah; Carrel, Jean-Pierre; Bernard, Jean-Pierre

    2012-06-01

    The aims of this study were (1) to evaluate the vertical shrinkage percentage of nanocrystalline hydroxyapatite embedded in silica gel used for maxillary sinus floor elevation (SFE) and (2) to determine the survival rate of the implants 1 year after placement in the healed grafted sinuses. Eleven maxillary sinuses were augmented in eight patients with NanoBone. After a healing period averaging 14.42 months, 19 implants were placed and followed up with clinical and radiographic evaluation. Panoramic radiographs were taken immediately after SFE and at 12 months after grafting. Measurements of changes in height were made by a computerized measuring technique using an image editing software. The mean graft height shrinkage percentage at 12 months after surgery was 8.84% (±5.32). One implant was lost before loading. All the 18 remaining osseointegrated implants received the prosthetic rehabilitation and were controlled after 3 months of functional loading. The implant survival rate at the 1-year interval was 94.74%. A 100% NanoBone alloplastic graft used in lateral SFE procedures presented limited height shrinkage. Implants placed in these grafted sinuses showed survival rates similar to those found in published data. These results should be interpreted cautiously considering the study's reduced sample size.

  1. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  2. Water transfer properties and shrinkage in lime-based rendering mortars

    NASA Astrophysics Data System (ADS)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.

  3. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    NASA Astrophysics Data System (ADS)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  4. Optimisation of warpage on thin shell plastic part using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Asyirah, B. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.

  5. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates

    NASA Astrophysics Data System (ADS)

    Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng

    2017-06-01

    Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.

  6. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study.

    PubMed

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-12-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  7. A Circumbinary Disk Model for the Rapid Orbital Shrinkage in Black Hole Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Tian; Li, Xiang-Dong

    2018-05-01

    Several black hole low-mass X-ray binaries (BHLMXBs) show very fast orbital shrinkage, which is difficult to understand in the standard picture of the LMXB evolution. Based on the possible detection of a circumbinary (CB) disk in A0620-00 and XTE J1118+480, we investigate the influence of the interaction between a CB disk and the inner binary and calculate the evolution of the binary using the Modules for Experiments in Stellar Astrophysics. We consider two cases for the CB disk formation in which it is fed by mass loss during single outburst or successive outbursts in the LMXB. We show that when taking reasonable values of the initial mass and the dissipating time of the disk, it is possible to explain the fast orbital shrinkage in the BHLMXBs without invoking a high-mass transfer rate.

  8. Glacier shrinkage driving global changes in downstream systems.

    PubMed

    Milner, Alexander M; Khamis, Kieran; Battin, Tom J; Brittain, John E; Barrand, Nicholas E; Füreder, Leopold; Cauvy-Fraunié, Sophie; Gíslason, Gísli Már; Jacobsen, Dean; Hannah, David M; Hodson, Andrew J; Hood, Eran; Lencioni, Valeria; Ólafsson, Jón S; Robinson, Christopher T; Tranter, Martyn; Brown, Lee E

    2017-09-12

    Glaciers cover ∼10% of the Earth's land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage.

  9. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood.

    PubMed

    Clair, Bruno; Gril, Joseph; Di Renzo, Francesco; Yamamoto, Hiroyuki; Quignard, Françoise

    2008-02-01

    Wood behavior is characterized by high sensibility to humidity and strongly anisotropic properties. The drying shrinkage along the fibers, usually small due to the reinforcing action of cellulosic microfibrils, is surprisingly high in the so-called tension wood, produced by trees to respond to strong reorientation requirements. In this study, nitrogen adsorption-desorption isotherms of supercritically dried tension wood and normal wood show that the tension wood cell wall has a gel-like structure characterized by a pore surface more than 30 times higher than that in normal wood. Syneresis of the tension wood gel explains its paradoxical drying shrinkage. This result could help to reduce technological problems during drying. Potential applications in biomechanics and biomimetics are worth investigating, considering that, in living trees, tension wood produces tensile growth stresses 10 times higher than that of normal wood.

  10. Mechanisms and Simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 Eastern Tianshan, Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhongqin; Ren, Jiawen; Li, Huilin; Wang, Puyu; Wang, Feiteng

    2016-04-01

    Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced.

  11. Glacier shrinkage driving global changes in downstream systems

    PubMed Central

    Khamis, Kieran; Battin, Tom J.; Brittain, John E.; Barrand, Nicholas E.; Füreder, Leopold; Cauvy-Fraunié, Sophie; Gíslason, Gísli Már; Jacobsen, Dean; Hannah, David M.; Hodson, Andrew J.; Hood, Eran; Lencioni, Valeria; Ólafsson, Jón S.; Robinson, Christopher T.; Tranter, Martyn; Brown, Lee E.

    2017-01-01

    Glaciers cover ∼10% of the Earth’s land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage. PMID:28874558

  12. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  13. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  14. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication.

    PubMed

    Dejak, Beata; Młotkowski, Andrzej

    2015-03-01

    Polymerization shrinkage of composites is one of the main causes of leakage around dental restorations. Despite the large numbers of studies there is no consensus, what kind of teeth reconstruction--direct or indirect composite restorations are the most beneficial and the most durable. The aim was to compare equivalent stresses and contact adhesive stresses in molar teeth with class II MOD cavities, which were restored with inlays and direct restorations (taking into account polymerization shrinkage of composite resin) during simulated mastication. The study was conducted using the finite elements method with the application of contact elements. Three 3D models of first molars were created: model A was an intact tooth; model B--a tooth with a composite inlay, and model C--a tooth with a direct composite restoration. Polymerization linear shrinkage 0.7% of a direct composite restoration and resin luting cement was simulated (load 1). A computer simulation of mastication was performed (load 2). In these 2 situations, equivalent stresses according to the modified von Mises criterion (mvM) in the materials of mandibular first molar models with different restorations were calculated and compared. Contact stresses in the luting cement-tooth tissue adhesive interface around the restorations were also assessed and analyzed. Equivalent stresses in a tooth with a direct composite restoration (the entire volume of which was affected by polymerization shrinkage) were many times higher than in the tooth restored with a composite inlay (where shrinkage was present only in a thin layer of the luting cement). In dentin and enamel the stress values were 8-14 times higher, and were 13 times higher in the direct restoration than in the inlay. Likewise, contact stresses in the adhesive bond around the direct restoration were 6.5-7.7 times higher compared to an extraorally cured restoration. In the masticatory simulation, shear contact stresses in the adhesive bond around the direct composite restoration reached the highest values 32.8 MPa and significantly exceeded the shear strength of the connection between the resin luting cement and the tooth structure. Equivalent stresses in the tooth structures restored with inlays and in the restoration material itself and contact stresses at the tooth-luting cement adhesive interface are many times lower compared to teeth with direct composite restorations. Teeth with indirect restorations are potentially less susceptible to damage compared to those with direct restorations. Composite inlays also ensure a better seal compared to direct restorations. Polymerization shrinkage determines stress levels in teeth with direct restorations, while its impact on adhesion in indirectly restored teeth is insignificant. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Compatibilite deformationnelle des betons autoplacants pour des utilisations dans les reparations des infrastructures routieres

    NASA Astrophysics Data System (ADS)

    Ghezal, Aicha Fadela

    Concrete structures repairs in Civil Engineering by using a thin bonded overlay is common practice. However the repaired structures are often victim of premature deterioration of the new repair material due to the appearance of restrained shrinkage cracks. In this context, the main objective of this thesis is to identify, through the experimental program called Phase I the principal parameters that significantly influence the creep potential of the evaluated mixtures. Once these parameters identified, the experimental entitled Phase II is conducted under conditions simulating repairs, and emphasis was placed on restrained shrinkage using instrumented ring test. Article 1 summarized the laboratory investigation undertaken to evaluate the potential of flexural creep behavior of several SCC. The results show clearly that the flexural creep potential of SCC varies widely depending on the nature of HRWR in use. In general, the use of naphthalene sulfonate leads to higher creep by comparison to polycarboxylate. It has been shown also that even when belonging to the same A.S.T.M. classification (polycarboxylic family) the magnitude of flexural creep varies also widely depending on the properties of polycarboxylic chemicals admixture. Based on the identified parameters in phase I, namely PNS superplasticizers type and PC2, with two ternary blended cements with fly ash (BTCFA) and slag (BTCS), the second experimental program was undertaken and summarized in articles 2 and 3. As presented in article 2, the results indicate that optimized SCCs produced with blended ternary cement with fly ash (BTCFA) developed at earlier age lower compressive and splitting-tensile strengths than the corresponding SCCs with blended cement with slag (BTCS). Test results also indicated that the drying shrinkage of SCCs based on BTCFA is higher than the corresponding SCCs proportioned with BTCS and attributed in part to higher total pores volume measured at 120 days on SCC BTCFA. The restrained shrinkage of SCC summarized in article 3 show that the resistance of SCC to shrinkage cracks was quite different depending on the nature of HRWR and the binder type in use. The cracking age increases in mixtures proportioned with PC-HRWR comparatively to PNS-HRWR. The SCC mixtures based on blended ternary cement containing Class F fly ash show shorter cracking age than the corresponding SCCs proportioned with ternary blended cement containing slag. Moreover, a data analysis of current research shows that the ratio of tensile strength to free shrinkage and modulus of elasticity, referred as index of dimensional compatibility, is a promising assessment of cracking resistant performance. In this way, only the free shrinkage test (ASTM C157) and basic mechanical properties are required to assess cracking of candidate concrete mixture designs.

  16. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial.

    PubMed

    Lotfi, L; Javadpour, J; Naimi-Jamal, M R

    2018-01-01

    The biological and mechanical properties of substances are relevant to their application as biomaterials and there are many efforts to enhance biocompatibility and mechanical properties of bio-medical materials. In this study, to achieve a low rate of shrinkage during polymerization, good mechanical properties, and excellent biocompatibility, benzoxazine based composites were synthesized. Benzoxazine monomer was synthesized using a solventless method. FTIR and DSC analysis were carried out to determine the appropriate polymerization temperature. The low viscosity of the benzoxazine monomer at 70°C attract us to use in situ polymerization after high speed ball milling of the benzoxazine and it mixture with different weight fractions of zirconia particles. Dispersion and adhesion between the ceramic and polymer components were evaluate by SEM. To evaluate the biological properties and toxicity of the polybenzoxazine-based composite samples reinforced with zirconia particles, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was conducted. The micromechanical properties of each composite were evaluated by more than 20 nanoindentation tests and 3 nanoscratching tests. Surface topography of scratched regions was investigated using Atomic Force Microscopy. Shrinkage was simulated by Materials Studio software. SEM images showed good dispersion and adhesion between the ceramic and polymer components. Biocompatibility assay showed excellent in vitro biocompatibility. Nano-indentation force-displacement curves showed matrix, reinforcement and interphase regions in specimens and excellent homogeneity in mechanical properties. The nanoindentation results showed that the addition of zirconia particles to the polybenzoxazine matrix increased the modulus and hardness of the neat polybenzoxazine; however, by adding more than an optimum level of reinforcement particles, the mechanical properties decreased due to the agglomeration of reinforcement particles and weak interphase that cause inappropriate load transferring between matrix and reinforcement particles. Results of nano-scratching tests showed effects of zirconia particles as reinforcement on the coeffiecient of friction of the synthesized composites. Shrinkage simulation showed a low rate of shrinkage for polybenzoxazine in comparison with other low shrinkage polymers, such as Bis-GMA. Polybenzoxazine based composites that reinforced with an optimum amount of zirconia particles (60% wt micro and 10% wt nano-particles) could be used as a novel biomaterial duo to its excellent biocompatibility, good mechanical properties, appropriate viscosity and low rate of polymeization shrinkage.

  17. Determination of residual stresses in objects at their additive manufacturing by layer-by-layer photopolymerization method

    NASA Astrophysics Data System (ADS)

    Bychkov, P. S.; Chentsov, A. V.; Kozintsev, V. M.; Popov, A. L.

    2018-04-01

    A calculation-experimental technique is developed for identification of the shrinkage stresses generated in objects after their additive manufacturing by layer-by-layer photopolymerization. The technique is based on the analysis of shrinkage deformations at bending occurring in a series of samples in the form of plates-stripes with identical sizes, but with different time of polymerization which is predetermined during their production on the 3D printer.

  18. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  19. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  20. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  1. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  2. The therapeutic effect of OK-432 (picibanil) sclerotherapy for benign neck cysts.

    PubMed

    Kim, Myung Gu; Kim, Sun Gon; Lee, Jun Ho; Eun, Young Gyu; Yeo, Seung Geun

    2008-12-01

    In general, benign neck cysts are treated by surgical excision. This can present technical difficulties and frequent recurrences, because of insufficient surgery. Sclerosing agents such as OK-432 have been tested for the nonsurgical treatment of these cysts. We have assessed the efficacy of OK-432 sclerotherapy for benign neck cysts. The study group consisted of 75 patients (42 men, 33 women) diagnosed with and treated for benign neck cysts between March 2001 and December 2007 by intralesional injection of OK-432. The liquid content of each cyst was aspirated as much as possible, and the same volume of OK-432 solution was injected. Patients were assessed by ultrasonography or computerized tomography, and therapeutic outcomes and adverse effects were evaluated by patient age, sex, cyst type, and number of injections. Of the 75 treated patients, 31 (41.3%) showed total shrinkage, seven (9.3%) showed near-total shrinkage (>90% of cyst volume), five (6.6%) showed marked shrinkage (>70% of cyst volume), and 17 (22.7%) showed partial shrinkage (<70% of cyst volume). No response was seen in 15 patients (20%). Despite repeated sclerotherapy, eight patients (10.7%) showed recurrences. Minor adverse effects of therapy included fever, localized pain, and odynophagia but these complications spontaneously disappeared within several days. OK-432 sclerotherapy is a safe and effective primary alternative to surgery in patients with benign neck cysts.

  3. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    NASA Astrophysics Data System (ADS)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  4. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  5. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2013-01-01

    Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.

  6. A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems

    PubMed Central

    Liu, JianCheng; Howard, Gregory D.; Lewis, Steven H.; Barros, Matthew D.; Stansbury, Jeffrey W.

    2012-01-01

    A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers. PMID:23109731

  7. The Shrinkage Model And Expert System Of Plastic Lens Formation

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng

    1988-06-01

    Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.

  8. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  9. Design and investigation of de Vries liquid crystals based on 5-phenyl-pyrimidine and (R,R)-2,3-epoxyhexoxy backbone

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Rodriguez-Lojo, D.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Gorecka, E.; Panov, A.; Stevenson, P. J.

    2017-10-01

    Calamitic liquid crystals based on 5-phenyl-pyrimidine derivatives have been designed, synthesized, and characterized. The 5-phenyl pyrimidine core was functionalized with a chiral (R,R)-2,3-epoxyhexoxy chain on one side and either siloxane or perfluoro terminated chains on the opposite side. The one involving a perfluorinated chain shows Sm A* phase over a wide temperature range of 82 °C, whereas the siloxane analog exhibits both Sm A* and Sm C* phases over a broad range of temperatures, and a weak first-order Sm A*-Sm C* transition is observed. For the siloxane analog, the reduction factor for the layer shrinkage R (relative to its thickness at the Sm A*-Sm C* transition temperature, TAC) is ˜0.373 , and layer shrinkage is 1.7% at a temperature of 13 °C below the TAC. This compound is considered to have "de Vries smectic" characteristics with the de Vries coefficient CdeVries of ˜0.86 on the scale of zero (maximum-layer shrinkage) to 1 (zero-layer shrinkage). A three-parameter mean-field model is introduced for the orientational distribution function (ODF) to reproduce the electro-optic properties. This model explains the experimental results and leads to the ODF, which exhibits a crossover from the sugar-loaf to diffuse-cone ODF some 3 °C above TAC.

  10. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    PubMed Central

    Choi, Hyo-Jick; Song, Jae-Min; Bondy, Brian J.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2015-01-01

    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (E a = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination. PMID:26230936

  11. Local deformation fields and marginal integrity of sculptable bulk-fill, low-shrinkage and conventional composites.

    PubMed

    Miletic, Vesna; Peric, Dejan; Milosevic, Milos; Manojlovic, Dragica; Mitrovic, Nenad

    2016-11-01

    To compare strain and displacement of sculptable bulk-fill, low-shrinkage and conventional composites as well as dye penetration along the dentin-restoration interface. Modified Class II cavities (N=5/group) were filled with sculptable bulk-fill (Filtek Bulk Fill Posterior, 3M ESPE; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; fiber-reinforced EverX Posterior, GC; giomer Beautifil Bulk, Schofu), low-shrinkage (Kalore, GC), nanohybrid (Tetric EvoCeram, Ivoclar Vivadent) or microhybrid (Filtek Z250, 3M ESPE) composites. Strain and displacement were determined using the 3D digital image correlation method based on two cameras with 1μm displacement sensitivity and 1600×1200 pixel resolution (Aramis, GOM). Microleakage along dentin axial and gingival cavity walls was measured under a stereomicroscope using a different set of teeth (N=8/group). Data were analyzed using analyses of variance with Tukey's post-test, Pearson correlation and paired t-test (α=0.05). Strain of TEC Bulk, Filtek Bulk, Beautifil Bulk and Kalore was in the range of 1-1.5%. EverX and control composites showed 1.5-2% strain. Axial displacements were between 5μm and 30μm. The least strain was identified at 2mm below the occlusal surface in 4-mm but not in 2-mm layered composites. Greater microleakage occurred along the gingival than axial wall (p<0.05). No correlation was found between strain/displacements and microleakage axially (r 2 =0.082, p=0.821; r 2 =-0.2, p=0.605, respectively) or gingivally (r 2 =-0.126, p=0.729, r 2 =-0.278, p=0.469, respectively). Strain i.e. volumetric shrinkage of sculptable bulk-fill and low-shrinkage composites was comparable to control composites but strain distribution across restoration depth differed. Marginal integrity was more compromised along the gingival than axial dentin wall. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Porcine Intestinal Mast Cells. Evaluation of Different Fixatives for Histochemical Staining Techniques Considering Tissue Shrinkage

    PubMed Central

    Rieger, J.; Twardziok, S.; Huenigen, H.; Hirschberg, R.M.; Plendl, J.

    2013-01-01

    Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly. PMID:24085270

  13. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.

    2016-12-01

    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  14. Bumetanide-sensitive ion fluxes in vascular smooth muscle cells: lack of functional Na+, K+, 2 Cl- cotransport.

    PubMed

    Orlov, S N; Tremblay, J; Hamet, P

    1996-09-01

    To examine the involvement of Na+,K+,2Cl- cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70-75% with a Ki of approximately 0.2-0.3 microM. At concentrations ranging up to 1 microM, bumetanide did not affect 36Cl influx and reduced it by 20-30% in the range from 3 to 100 microM. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na(+)- or Cl(-)-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Nao+ and Ko+. Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a Ki or approximately 0.3 microM. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl-)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 microM) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl- cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Nao+ + Clo-)-dependent K+/K+ exchange and Nao(+)-dependent K+,Cl- cotransport, respectively.

  15. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Landsberg, P. T.; San, C. T.

    1984-01-01

    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K.

  16. Assessment of the Effectiveness of Clay Soil Covers as Engineered Barriers in Waste Disposal Facilities with Emphasis on Modeling Cracking Behavior

    DTIC Science & Technology

    2008-06-01

    escaping the clay and keeping its compacted conditions constant. Other stabilizing additives such as surfactants or cement and applications such as foamed ...not a local phenomenon. Once a crack is formed, increasing the width of the crack at the surface by additional shrinkage will also extend the depth...at the surface, increasing the width of the crack by additional shrinkage will drive the crack deeper into the soil mass, expos- ing new surfaces to

  17. Influence of vertical holes on creep and shrinkage of railway prestressed concrete sleepers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) must successfully perform two critical duties: first, to carry wheel loads from the rails to the ground; and second, to secure rail gauge for dynamic safe movements of trains. The second duty is often fouled by inappropriate design of the time-dependent behaviors due to their creep, shrinkage and elastic shortening responses of the materials. In addition, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. Accordingly, this study is the world first to investigate creep and shrinkage effects on the railway prestressed concrete sleepers with vertical holes. This paper will highlight constitutive models of concrete materials within the railway sleepers under different environmental conditions over time. It will present a comparative investigation using a variety of methods to evaluate shortening effects in railway prestressed concrete sleepers. The outcome of this study will improve material design, which is very critical to the durability of railway track components.

  18. Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi

    2018-03-01

    Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.

  19. Influence of nano-material on the expansive and shrinkage soil behavior

    NASA Astrophysics Data System (ADS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-10-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content ( w opt) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  20. Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes.

    PubMed

    Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz

    2014-01-01

    The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    PubMed

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rigid High Temperature Heat-Shrinkable Polyimide Tubes with Functionality as Reducer Couplings

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2017-01-01

    Flexible and semi-rigid heat-shrinkable tubes (HSTs) have been used in thousands of applications, and here rigid high temperature HSTs are reported for the first time. These rigid HSTs are prepared with shape memory polyimides possessing glass transition temperatures (Tgs) from 182 to 295 °C, and the relationships between Tg and their molecular structures are studied. The polyimide HSTs (PIHSTs) can fix expanded diameters and shrink back to original diameters very well, and the mechanisms of their heat-shrinkage performance are discussed. Their differences from commercially available HSTs in heat-shrinkage are also analyzed. They can withstand low temperature of −196 °C, much lower than those of other HSTs. The PIHSTs can also connect subjects of different sizes by heat-shrinkage and then fix them upon cooling like reducer couplings, and the possible mechanisms of their reducer coupling effect are analyzed. With their unique characteristics, PIHSTs will expand the application areas of HSTs enormously. PMID:28317905

  3. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  4. Macrosegregation and Grain Formation Caused by Convection Associated with Directional Solidification Through Cross-Section Increase

    NASA Technical Reports Server (NTRS)

    Ghods, Masoud; Lauer, Mark; Tewari, Surendra; Poirier, David; Grugel, Richard

    2016-01-01

    Cylindrical Al-7 wt% Silicon, Al-19 wt% Copper and Lead-6 wt% Antimony alloy samples were directionally solidified (DS) with liquid above, solid below, and gravity pointing down, in graphite crucibles having an abrupt cross-sectional increase. These alloys have similar solidification shrinkage but are expected to have different degrees of thermosolutal convection during solidification. Microstructures in the DS samples in the vicinity of the section change have been studied in order to examine the effect of convection associated with the combined influence of thermosolutal effects and solidification shrinkage. Extensive radial and axial macrosegregation associated with cross-section change is observed. It also appears that steepling and local primary alpha-phase remelting resulting from convection are responsible for stray grain formation at the reentrant corners. Preliminary results from a numerical model, which includes solidification shrinkage and thermosolutal convection in the mushy zone, indicate that these regions are prone to solutal remelting of dendrites.

  5. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  6. Shrinking cities: urban challenges of globalization.

    PubMed

    Martinez-Fernandez, Cristina; Audirac, Ivonne; Fol, Sylvie; Cunningham-Sabot, Emmanuèle

    2012-01-01

    Urban shrinkage is not a new phenomenon. It has been documented in a large literature analyzing the social and economic issues that have led to population flight, resulting, in the worse cases, in the eventual abandonment of blocks of housing and neighbourhoods. Analysis of urban shrinkage should take into account the new realization that this phenomenon is now global and multidimensional — but also little understood in all its manifestations. Thus, as the world's population increasingly becomes urban, orthodox views of urban decline need redefinition. The symposium includes articles from 10 urban analysts working on 30 cities around the globe. These analysts belong to the Shrinking Cities International Research Network (SCIRN), whose collaborative work aims to understand different types of city shrinkage and the role that different approaches, policies and strategies have played in the regeneration of these cities. In this way the symposium will inform both a rich diversity of analytical perspectives and country-based studies of the challenges faced by shrinking cities. It will also disseminate SCIRN's research results from the last 3 years.

  7. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda

    2017-08-01

    This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.

  8. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    PubMed Central

    Yu, Yong; Zhu, Han

    2016-01-01

    Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs. PMID:28773649

  9. Low shrinkage light curable nanocomposite for dental restorative material.

    PubMed

    Chen, Min-Huey; Chen, Ci-Rong; Hsu, Seng-Haw; Sun, Shih-Po; Su, Wei-Fang

    2006-02-01

    The aim of this study was to develop a low shrinkage visible light curable nanocomposite dental restorative material without sacrificing the other properties of conventional materials. This nanocomposite was developed by using an epoxy resin 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate (ERL4221) matrix with 55% wt of 70-100 nm nanosilica fillers through ring-opening polymerization. GPS (gamma-glycidoxypropyl trimethoxysilane) was used to modify the surfaces of silica nanoparticles. The nanocomposite was shown to exhibit low polymerization shrinkage strain, which is only a quarter of currently used methacrylate-based composites. It also exhibited a low thermal expansion coefficient of 49.8 microm/m degrees C which is comparable to that of the methacrylate based composites (51.2 microm/m degrees C). The strong interfacial interactions between the resin and fillers at nanoscales were demonstrated by an observed high strength and high thermal stability of the nanocomposite. A microhardness of 62 KHN and a tensile strength of 47 MPa were reached. A high degree of conversion ( approximately 70%) can be obtained after less than 60 s of irradiation upon the nanocomposite. A transmission electron microscope (TEM) study of the nanocomposite showed no aggregation of fillers. Comparable results to the methacrylate based composites were obtained from the one day MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) cytotoxicity test. The developed epoxy resin based nanocomposite demonstrated low shrinkage and high strength and is suitable for dental restorative material applications.

  10. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation.

    PubMed

    Kostova, Elena B; Beuger, Boukje M; Klei, Thomas R L; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K; van Bruggen, Robin

    2015-04-16

    Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca(2+) ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)-Akt (protein kinase B) pathway, the Jak-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the Raf-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation.

  11. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation

    PubMed Central

    Kostova, Elena B.; Beuger, Boukje M.; Klei, Thomas R.L.; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K.; van Bruggen, Robin

    2015-01-01

    Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. PMID:25757360

  12. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  13. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  14. Design and characterization of an adhesive matrix based on a poly(ethyl acrylate, methyl methacrylate).

    PubMed

    Cilurzo, Francesco; Minghetti, Paola; Pagani, Stefania; Casiraghi, Antonella; Montanari, Luisa

    2008-01-01

    The main issue in the development of transdermal patches made of poly(ethyl acrylate, methyl methacrylate) (Eudragit NE 40D, PMM) is the shrinkage phenomenon during the spreading of the latex onto the release liner. To solve this problem, the latex is usually freeze-dried and then re-dissolved in an organic solvent (method 1). To simplify the production process, we prepared an adhesive matrix by adding to the commercial PMM latex a plasticizer and an additive (anti-shrinkage agent) that avoids the shrinkage of the water dispersion spread onto the release liner (method 2). In some cases the active ingredient itself, such as potassium diclofenac (DK) and nicotine (NT), works as anti-shrinkage agent. In this work, the effects of the preparation method, types and concentrations of the plasticizer (triacetin and tributyl citrate) on the adhesive properties of the transdermal patches were investigated. The adhesive properties of the prepared patch were determined by texture analysis, peel adhesion test and shear adhesion. The PMM/plasticizer interactions were evaluated by ATR-FTIR spectroscopy. Furthermore, the in vitro skin permeation profiles of DK and NT released from the patch were determined by Franz cell method. Generally speaking, the variables that mainly modify the adhesive properties are the concentration and type of the plasticizer. The skin permeation profiles of DK and NT from the patch prepared by method 2 overlapped with those obtained with the commercial products. The results underline that the PMM latex can be used conveniently in the development of transdermal patches.

  15. Effect of a weightlifting belt on spinal shrinkage.

    PubMed

    Bourne, N D; Reilly, T

    1991-12-01

    Spinal loading during weightlifting results in a loss of stature which has been attributed to a decrease in height of the intervertebral discs--so-called 'spinal shrinkage'. Belts are often used during the lifting of heavy weights, purportedly to support, stabilize and thereby attenuate the load on the spine. The purpose of this study was to examine the effects of a standard weightlifting belt in attenuating spinal shrinkage. Eight male subjects with a mean age of 24.8 years performed two sequences of circuit weight-training, one without a belt and on a separate occasion with a belt. The circuit training regimen consisted of six common weight-training exercises. These were performed in three sets of ten with a change of exercise after each set of ten repetitions. A stadiometer sensitive to within 0.01 mm was used to record alterations in stature. Measurements of stature were taken before and after completion of the circuit. The absolute visual analogue scale (AVAS) was used to measure the discomfort and pain intensity resulting from each of the two conditions. The circuit weight-training caused stature losses of 3.59mm without the belt and 2.87 mm with the belt (P greater than 0.05). The subjects complained of significantly less discomfort when the belt was worn (P less than 0.05). The degree of shrinkage was significantly correlated (r = 0.752, P less than 0.05) with perceived discomfort but only when the belt was not worn. These results suggest the potential benefits of wearing a weightlifting belt and support the hypothesis that the belt can help in stabilizing the trunk.

  16. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    PubMed

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  17. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data

    PubMed Central

    Dazard, Jean-Eudes; Rao, J. Sunil

    2012-01-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput “omics” data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel “similarity statistic”-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called ‘MVR’ (‘Mean-Variance Regularization’), downloadable from the CRAN website. PMID:22711950

  18. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    PubMed

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p<0.05). However, there was no statistical difference between values by 473 and LED LCU. Before immersion in distilled water, flexural strength (FS) and compressive modulus (CM) of the specimens were inconsistently influenced by LCUs. On the other hand, flexural modulus (FM) and compressive strength (CS) were not significantly different for the three LCUs (p>0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  19. Five-year evaluation of a low-shrinkage Silorane resin composite material: a randomized clinical trial.

    PubMed

    Schmidt, Malene; Dige, Irene; Kirkevang, Lise-Lotte; Vaeth, Michael; Hørsted-Bindslev, Preben

    2015-03-01

    The aim of the present study was to investigate the clinical performance of a low-shrinkage silorane-based composite material (Filtek™ Silorane, 3 M-Espe) by comparing it with a methacrylate-based composite material (Ceram•X™, Dentsply DeTrey). A number of 72 patients (158 restorations) participated in the study. After 5 years, a total of 107 restorations (52 Filtek™ Silorane, 55 Ceram•X™) in 48 patients were evaluated. Only class II restorations were included. All the restorations were placed by the same dentist, and the restorations were scored by one experienced dentist/evaluator. Materials were applied following the manufacturer's instructions. The primary outcome was marginal adaptation. Secondary outcomes were: marginal discoloration, approximal contact, anatomic form, fracture, secondary caries, and hypersensitivity. After 5 years, no statistically significant differences between the two materials were found in marginal adaptation either occlusally (p = 0.96) or approximally (p = 0.62). No statistically significant differences were found between the two materials in terms of approximal contact, anatomic form, fractures, or discoloration. Secondary caries was found in two teeth (Filtek™ Silorane). One tooth showed hypersensitivity (Ceram•X™). Restorations of both materials were clinically acceptable after 5 years. This study did not find any advantage of the silorane-based composite over the methacrylate-based composite, which indicates that the low-shrinkage of Filtek™ Silorane may not be a determinant factor for clinical success in class II cavities. This paper is the first to evaluate the 5-year clinical performance of a low-shrinkage composite material.

  20. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  1. Study on the shrinkage behavior and conductivity of silver microwires during electrostatic field assisted sintering

    NASA Astrophysics Data System (ADS)

    Shangguan, Lei; Ma, Liuhong; Li, Mengke; Peng, Wei; Zhong, Yinghui; Su, Yufeng; Duan, Zhiyong

    2018-05-01

    An electrostatic field was applied to sintering Ag microwires to achieve a more compact structure and better conductivity. The shrinkage behavior of Ag microwires shows anisotropy, since bigger particle sizes, less micropores and smoother surfaces were observed in the direction of the electrostatic field in comparsion with the direction perpendicular to the electrostatic field, and the shrinkage rate of Ag microwires in the direction of electrostatic field improves about 2.4% with the electrostatic field intensity of 800 V cm‑1. The electrostatic field assisted sintering model of Ag microwires is proposed according to thermal diffuse dynamics analysis and experimental research. Moreover, the grain size of Ag microwres sintered with electrostatic field increases with the electrostatic field intensity and reaches 113 nm when the electrostatic field intensity is 800 V cm‑1, and the resistivity decreases to 2.07  ×  10‑8 Ω m as well. This method may overcome the restriction of metal wires which fabricated by the pseudoplastic metal nanoparticle fluid and be used as interconnects in nanoimprint lithography.

  2. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.

    PubMed

    Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae

    2017-06-01

    Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments

    NASA Astrophysics Data System (ADS)

    Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.

    2014-08-01

    The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.

  4. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    PubMed

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    PubMed Central

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined. PMID:28773696

  6. Recycling of rubble from building demolition for low-shrinkage concretes.

    PubMed

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems.

    PubMed

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-07-14

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  8. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    NASA Astrophysics Data System (ADS)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  9. Projecting adverse event incidence rates using empirical Bayes methodology.

    PubMed

    Ma, Guoguang Julie; Ganju, Jitendra; Huang, Jing

    2016-08-01

    Although there is considerable interest in adverse events observed in clinical trials, projecting adverse event incidence rates in an extended period can be of interest when the trial duration is limited compared to clinical practice. A naïve method for making projections might involve modeling the observed rates into the future for each adverse event. However, such an approach overlooks the information that can be borrowed across all the adverse event data. We propose a method that weights each projection using a shrinkage factor; the adverse event-specific shrinkage is a probability, based on empirical Bayes methodology, estimated from all the adverse event data, reflecting evidence in support of the null or non-null hypotheses. Also proposed is a technique to estimate the proportion of true nulls, called the common area under the density curves, which is a critical step in arriving at the shrinkage factor. The performance of the method is evaluated by projecting from interim data and then comparing the projected results with observed results. The method is illustrated on two data sets. © The Author(s) 2013.

  10. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.

    PubMed

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-03-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.

  11. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  12. Influence of lithium slag from lepidolite on the durability of concrete

    NASA Astrophysics Data System (ADS)

    Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen

    2017-04-01

    This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.

  13. Shrinkage simplex-centroid designs for a quadratic mixture model

    NASA Astrophysics Data System (ADS)

    Hasan, Taha; Ali, Sajid; Ahmed, Munir

    2018-03-01

    A simplex-centroid design for q mixture components comprises of all possible subsets of the q components, present in equal proportions. The design does not contain full mixture blends except the overall centroid. In real-life situations, all mixture blends comprise of at least a minimum proportion of each component. Here, we introduce simplex-centroid designs which contain complete blends but with some loss in D-efficiency and stability in G-efficiency. We call such designs as shrinkage simplex-centroid designs. Furthermore, we use the proposed designs to generate component-amount designs by their projection.

  14. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    PubMed

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates.

  15. Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage.

    PubMed

    Aggarwal, Priya; Shrivastava, Parth; Kabra, Tanay; Gupta, Anubha

    2017-03-01

    This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l 1 minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.

  16. New methods to quantify the cracking performance of cementitious systems made with internal curing

    NASA Astrophysics Data System (ADS)

    Schlitter, John L.

    The use of high performance concretes that utilize low water-cement ratios have been promoted for use in infrastructure based on their potential to increase durability and service life because they are stronger and less porous. Unfortunately, these benefits are not always realized due to the susceptibility of high performance concrete to undergo early age cracking caused by shrinkage. This problem is widespread and effects federal, state, and local budgets that must maintain or replace deterioration caused by cracking. As a result, methods to reduce or eliminate early age shrinkage cracking have been investigated. Internal curing is one such method in which a prewetted lightweight sand is incorporated into the concrete mixture to provide internal water as the concrete cures. This action can significantly reduce or eliminate shrinkage and in some cases causes a beneficial early age expansion. Standard laboratory tests have been developed to quantify the shrinkage cracking potential of concrete. Unfortunately, many of these tests may not be appropriate for use with internally cured mixtures and only provide limited amounts of information. Most standard tests are not designed to capture the expansive behavior of internally cured mixtures. This thesis describes the design and implementation of two new testing devices that overcome the limitations of current standards. The first device discussed in this thesis is called the dual ring. The dual ring is a testing device that quantifies the early age restrained shrinkage performance of cementitious mixtures. The design of the dual ring is based on the current ASTM C 1581-04 standard test which utilizes one steel ring to restrain a cementitious specimen. The dual ring overcomes two important limitations of the standard test. First, the standard single ring test cannot restrain the expansion that takes place at early ages which is not representative of field conditions. The dual ring incorporates a second restraining ring which is located outside of the sample to provide restraint against expansion. Second, the standard ring test is a passive test that only relies on the autogenous and drying shrinkage of the mixture to induce cracking. The dual ring test can be an active test because it has the ability to vary the temperature of the specimen in order to induce thermal stress and produce cracking. This ability enables the study of the restrained cracking capacity as the mixture ages in order to quantify crack sensitive periods of time. Measurements made with the dual ring quantify the benefits from using larger amounts of internal curing. Mixtures that resupplied internal curing water to match that of chemical shrinkage could sustain three times the magnitude of thermal change before cracking. The second device discussed in this thesis is a large scale slab testing device. This device tests the cracking potential of 15' long by 4" thick by 24" wide slab specimens in an environmentally controlled chamber. The current standard testing devices can be considered small scale and encounter problems when linking their results to the field due to size effects. Therefore, the large scale slab testing device was developed in order to calibrate the results of smaller scale tests to real world field conditions such as a pavement or bridge deck. Measurements made with the large scale testing device showed that the cracking propensity of the internally cured mixtures was reduced and that a significant benefit could be realized.

  17. 2D and 3D characterization of pore defects in die cast AM60

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhuofei; CanmetMATERIALS, 183 Longwood Road South, Hamilton L8P 0A5, Ontario Canada; Maurey, Alexandre

    2016-04-15

    The widespread application of die castings can be hampered due to the potential of large scale porosity to act as nucleation sites for fracture and fatigue. It is therefore important to develop robust approaches to the characterization of porosity providing parameters that can be linked to the material's mechanical properties. We have tackled this problem in a study of the AM60 die cast Mg alloy, using samples extracted from a prototype shock tower. A quantitative characterization of porosity has been undertaken, analyzing porosity in both 2D (using classical metallographic methods) and in 3D (using X-ray computed tomography (XCT)). Metallographic characterizationmore » results show that shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. Shrinkage pores are irregular with multiple arms, resulting in a form factor less than 0.4. In contrast, gas pores are generally more circular in shape yielding form factors larger than 0.6. XCT provides deeper insight into the shape of pores, although this understanding is limited by the resolution obtainable by laboratory based XCT. It also shows how 2D sectioning can produce artefacts as single complex pores are sectioned into multiple small pores. - Highlights: • Mg (e.g. AM60) die castings may contain large scale porosity that act as nucleation sites for fracture and fatigue • Quantitative characterization of porosity metallography (2D) and X-ray tomography (3D) is used • Shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. • Shrinkage pores are irregular giving a form factor < 0.4; gas pores are rounder with form factors > 0.6 • XCT enables pore visualization, although limited by the resolution obtainable by laboratory based XCT.« less

  18. An investigation of voids formation mechanisms and their effects on freeze and thaw processes of lithium and lithium fluoride

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Yang, Jae-Young

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  19. Solvent-induced dimensional changes in EDTA-demineralized dentin matrix.

    PubMed

    Pashley, D H; Agee, K A; Nakajima, M; Tay, F R; Carvalho, R M; Terada, R S; Harmon, F J; Lee, W K; Rueggeberg, F A

    2001-08-01

    The purpose of this study was to test the null hypothesis that the re-expansion of dried matrix and the shrinkage of moist, demineralized dentin is not influenced by polar solvents. Dentin disks were prepared from midcoronal dentin of extracted human third molars. After complete demineralization in 0.5M of EDTA (pH 7), the specimens were placed in the well of a device that measures changes in matrix height in real time. Dry, collapsed matrices were created by blowing dry N(2) on the specimens until they shrank to a stable plateau. Polar solvents [water, methanol, ethanol, n-propanol, n-butanol, formamide, ethylene glycol, hydroxyethyl methacrylate (HEMA), or mixtures of water-HEMA] as model primers then were added and the degree of re-expansion measured. These same solvents also were applied to moist, expanded matrices and the solvent-induced shrinkages measured. Regression analysis was used to test the correlations between matrix height and Hansen's dispersive, polar, hydrogen bonding, and total solubility parameters (delta(d), delta(p), delta(h), delta(t)). The results indicate that water-free polar solvents of low hydrogen bonding (H-bond) ability (e.g., neat HEMA) do not re-expand dried matrices and that they shrink moist matrices. When HEMA was mixed with progressively higher water concentrations, the model water-HEMA primers expanded the dried matrix in proportion to their water concentrations and they produced less shrinkage of moist matrices. Solvents with higher H-bonding capacities (methanol, ethanol, ethylene glycol, formamide, and water) re-expanded the dried matrix in proportion to their solubility parameters for H-bonding (delta(h)). They also induced small transient shrinkages of moist matrices, which slowly re-expanded. The results require rejection of the null hypothesis. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 56: 273-281, 2001

  20. Effect of a weightlifting belt on spinal shrinkage.

    PubMed Central

    Bourne, N D; Reilly, T

    1991-01-01

    Spinal loading during weightlifting results in a loss of stature which has been attributed to a decrease in height of the intervertebral discs--so-called 'spinal shrinkage'. Belts are often used during the lifting of heavy weights, purportedly to support, stabilize and thereby attenuate the load on the spine. The purpose of this study was to examine the effects of a standard weightlifting belt in attenuating spinal shrinkage. Eight male subjects with a mean age of 24.8 years performed two sequences of circuit weight-training, one without a belt and on a separate occasion with a belt. The circuit training regimen consisted of six common weight-training exercises. These were performed in three sets of ten with a change of exercise after each set of ten repetitions. A stadiometer sensitive to within 0.01 mm was used to record alterations in stature. Measurements of stature were taken before and after completion of the circuit. The absolute visual analogue scale (AVAS) was used to measure the discomfort and pain intensity resulting from each of the two conditions. The circuit weight-training caused stature losses of 3.59mm without the belt and 2.87 mm with the belt (P greater than 0.05). The subjects complained of significantly less discomfort when the belt was worn (P less than 0.05). The degree of shrinkage was significantly correlated (r = 0.752, P less than 0.05) with perceived discomfort but only when the belt was not worn. These results suggest the potential benefits of wearing a weightlifting belt and support the hypothesis that the belt can help in stabilizing the trunk. Images Figure 1 PMID:1810615

  1. Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects.

    PubMed

    Magne, Pascal; Silva, Silvana; Andrada, Mauro de; Maia, Hamilton

    2016-01-01

    To assess the influence of conventional glass ionomer cement (GIC) vs resin-modified GIC (RMGIC) as a base material for novel, super-closed sandwich restorations (SCSR) and its effect on shrinkage-induced crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slottype tooth preparation was applied to 30 extracted maxillary molars (5 mm depth/5 mm buccolingual width). A modified sandwich restoration was used, in which the enamel/dentin bonding agent was applied first (Optibond FL, Kerr), followed by a Ketac Molar (3M ESPE)(group KM, n = 15) or Fuji II LC (GC) (group FJ, n = 15) base, leaving 2 mm for composite resin material (Miris 2, Coltène-Whaledent). Shrinkageinduced enamel cracks were tracked with photography and transillumination. Samples were loaded until fracture or to a maximum of 185,000 cycles under isometric chewing (5 H z), starting with a load of 200 N (5,000 X), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 X each. Groups were compared using the life table survival analysis (α = .008, Bonferroni method). Group FJ showed the highest survival rate (40% intact specimens) but did not differ from group KM (20%) or traditional direct restorations (13%, previous data). SCSR generated less shrinkage-induced cracks. Most failures were re-restorable (above the cementoenamel junction [CEJ]). Inclusion of GIC/RMGIC bases under large direct SCSRs does not affect their fatigue strength but tends to decrease the shrinkage-induced crack propensity. The use of GIC/ RMGIC bases and the SCSR is an easy way to minimize polymerization shrinkage stress in large MOD defects without weakening the restoration.

  2. Shrinkage stress compensation in composite-restored teeth: relaxation or hygroscopic expansion?

    PubMed

    Meriwether, Laurel A; Blen, Bernard J; Benson, Jarred H; Hatch, Robert H; Tantbirojn, Daranee; Versluis, Antheunis

    2013-05-01

    Polymerization of composite restorations causes shrinkage, which deforms and thus stresses restored teeth. This shrinkage deformation, however, has been shown to decrease over time. The objective was to investigate whether this reduction was caused by hygroscopic expansion or stress relaxation of the composite/tooth complex. Extracted molars were mounted in rigid stainless steel rings with four spherical reference areas. Twelve molars were prepared with large mesioocclusodistal slots, etched, bonded, and restored with a composite material (Filtek Supreme, 3M ESPE) in two horizontal layers. Ten intact molars were the controls. The teeth were stored either in deionized water or silicone oil. They were scanned after preparation (baseline), restoration (0-week), and after 1, 2, and 4 weeks storage. Scanned tooth surfaces were aligned with the baseline using the unchanged reference areas. Cuspal flexure was calculated from lingual and buccal surface deformation. To verify that the restorations had remained bonded, dye penetration at the interfaces was assessed using basic fuchsin dye. Statistical assessment was done by ANOVA followed by Student-Newman-Keuls post hoc test (p=0.05). Substantial cuspal contraction was found for restored teeth after the composite was cured (13-14 μm cuspal flexure). After 4 weeks cuspal contraction decreased significantly for restored teeth stored in water (7.3 ± 3.2) but not for those stored in silicone oil (11.4 ± 5.0). Dye penetration of the occlusal interface was minimal in both groups (106 ± 87 and 21 ± 28 μm in water and silicone oil, respectively). The results suggest that hygroscopic expansion was the main mechanism for shrinkage stress compensation. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Embolization of renal angiomyolipomas: short-term and long-term outcomes, complications, and tumor shrinkage.

    PubMed

    Lee, Shen-Yang; Hsu, Hsiang-Hao; Chen, Yung-Chang; Huang, Chen-Chih; Wong, Yon-Cheong; Wang, Li-Jen; Chuang, Cheng-Keng; Yang, Chih-Wei

    2009-11-01

    This study retrospectively evaluated outcomes, complications, and tumor shrinkage in renal angiomyolipomas after transcatheter arterial embolization (TAE). All renal angiomyolipoma patients who underwent TAE between August 2000 and December 2008 and had short-term (6 months) follow-up images were evaluated. Complications and tumor relapse after TAE were reviewed. The sizes of embolized tumors were measured to calculate size reductions and reduction rates after TAE. Differences in tumor size, size reduction, and reduction rate between different time points (pre-TAE, short-term follow-up, and long-term follow-up) and groups (completely and incompletely embolized) were determined. Eleven renal angiomyolipoma patients who had undergone TAE were included. Seven (63.6%) patients had postembolization syndrome and one had abscess formation following TAE. Two patients had a tumor relapse (18.2%). The mean tumor size was 8.57+/-2.66 cm on pre-TAE images. The mean size reduction was 3.1 cm (33.3%) and 3.8 cm (43.0%) at short-term and long-term follow-up. Tumor sizes differed significantly between pre-TAE and short-term (p=0.004) or long-term images (p=0.022) but not between short-term and long-term images (p=0.059). Results stratified by the completeness of embolization indicate that only the short-term size reduction rate differed significantly (p=0.025), while the long-term reduction rate and short- and long-term follow-up tumor size and size reduction were comparable between the two groups. In conclusion, selective TAE is effective for tumor shrinkage in most renal angiomyolipomas, with acceptable complication and relapse rates. Tumor shrinkage occurring within 6 months after TAE may reflect the long-term effect of TAE.

  4. Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior.

    PubMed

    Heidari, Behzad Shiroud; Davachi, Seyed Mohammad; Moghaddam, Amin Hedayati; Seyfi, Javad; Hejazi, Iman; Sahraeian, Razi; Rashedi, Hamid

    2018-05-01

    In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage of UHMWPE/nHA composite liners. The Analysis of variance (ANOVA) was applied to find the importance of operative parameters and their effects. In this experiment, seven input parameters were surveyed, including mold temperature (A), melt temperature (B), injection time (C), packing time (D), packing pressure (E), coolant temperature (F), and type of liner (G). Two models were capable of predicting warpage and volumetric shrinkage (%) in different conditions with R 2 of 0.9949 and 0.9989, respectively. According to the models, the optimized values of warpage and volumetric shrinkage are 0.287222 mm and 13.6613%, respectively. Meanwhile, a finite element analysis (FE analysis) was also carried out to examine the stress distribution in liners under the force values of demanding and daily activities. The Von-Mises stress distribution showed that both of the liners can be applied to all activities with no failure. However, UHMWPE/nHA liner is more resistant to the highest loads than UHMWPE liner due to the effect of nHA in the nanocomposite. Finally, according to the results of injection molding simulations, optimization, structural analysis as well as the tensile strength and wear resistance, UHMWPE/nHA liner is recommended for the production of a hip prosthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.

    PubMed

    El-Fiqi, Ahmed; Lee, Jae Ho; Lee, Eun-Jung; Kim, Hae-Won

    2013-12-01

    Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col-mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col-mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ∼20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries

    PubMed Central

    Wang, Liang; Zhu, Jian; Samady, Habib; Monoly, David; Zheng, Jie; Guo, Xiaoya; Maehara, Akiko; Yang, Chun; Ma, Genshan; Mintz, Gary S.; Tang, Dalin

    2017-01-01

    Accurate stress and strain calculations are important for plaque progression and vulnerability assessment. Models based on in vivo data often need to form geometries with zero-stress/strain conditions. The goal of this paper is to use IVUS-based near-idealized geometries and introduce a three-step model construction process to include residual stress, axial shrinkage, and circumferential shrinkage and investigate their impacts on stress and strain calculations. In Vivo intravascular ultrasound (IVUS) data of human coronary were acquired for model construction. In Vivo IVUS movie data were acquired and used to determine patient-specific material parameter values. A three-step modeling procedure was used to make our model: (a) wrap the zero-stress vessel sector to obtain the residual stress; (b) stretch the vessel axially to its length in vivo; and (c) pressurize the vessel to recover its in vivo geometry. Eight models were constructed for our investigation. Wrapping led to reduced lumen and cap stress and increased out boundary stress. The model with axial stretch, circumferential shrink, but no wrapping overestimated lumen and cap stress by 182% and 448%, respectively. The model with wrapping, circumferential shrink, but no axial stretch predicted average lumen stress and cap stress as 0.76 kPa and −15 kPa. The same model with 10% axial stretch had 42.53 kPa lumen stress and 29.0 kPa cap stress, respectively. Skipping circumferential shrinkage leads to overexpansion of the vessel and incorrect stress/strain calculations. Vessel stiffness increase (100%) leads to 75% lumen stress increase and 102% cap stress increase. PMID:27814429

  7. Tailoring of physical properties in highly filled experimental nanohybrid resin composites.

    PubMed

    Pick, Bárbara; Pelka, Matthias; Belli, Renan; Braga, Roberto R; Lohbauer, Ulrich

    2011-07-01

    To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer®-based). The experimental composites varied in filler size and density. EM values were obtained from the "three-point bending" load-displacement curve. VS was calculated with Archimedes' buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly)methyl methacrylate rods (Ø=6mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey's test (α=0.05), and linear regression analyses. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Synergistic actions of pemphigus vulgaris IgG, Fas-ligand and tumor necrosis factor-alpha during induction of basal cell shrinkage and acantholysis.

    PubMed

    Orlov, Maxim D; Chernyavsky, Alex I; Arredondo, Juan; Grando, Sergei A

    2006-11-01

    This study tested a recently proposed "Basal Cell Shrinkage" hypothesis of pemphigus acantholysis through a quantitative analysis of individual and cooperative effects of pemphigus vulgaris (PV) IgG, Fas-ligand (Fas-L) and tumor necrosis factor-alpha (TNFalpha) on keratinocyte (KC) volume (i.e. cell size) and adhesive properties. Exposure of KC monolayers and MatTek EpiDermFT tissues cultures to the physiologic concentrations of Fas-L, TNFalpha or IgGs from two PV patients resulted in various degrees of reversible changes, which were not observed in control cultures either exposed to normal IgG or left intact. Within 12-24 h of exposure, basal cells in experimental cultures lost their ability to form stress fibers, retracted cytoplasmic aprons and formed keratin aggregates, indicating that their cytoskeleton collapsed. The cell volume decreased significantly (p < 0.05) as the polygonal cell shape changed to a round one. The shrunk cells detached from their neighbors and the substrate, resulting in a reciprocal increase of both the areas of acantholysis and the number of detached KCs, respectively. Since in the skin of PV patients, KCs are targeted by autoantibodies concomitantly with being exposed to autocrine and paracrine pro-apoptotic and pro-inflammatory cytokines, we combined PV IgG with Fas-L and/or TNFalpha in the cell culture experiments. This amplified several fold an ability of PV IgG to cause basal cell shrinkage and detachment. The obtained results demonstrated for the first time that PV IgG works together with Fas-L and TNFalpha to induce acantholysis via basal cell shrinkage, which provides a novel mechanism explaining successful treatment of PV patients with TNFalpha inhibitors.

  9. The effects of drying on physical properties of bilimbi slices (Averrhoa bilimbi l.)

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Nursabrina, M.; Suhairah, A. Zai

    2015-05-01

    Physical appearance analyses of fruits are used to maintain food quality throughout and at the end of processing. However, control variables have to be designed to obtained the desired food quality. In the present study, the effects of pretreatment and drying air temperatures of 50°C, 60°C and 70°C on the drying kinetics of belimbi slices were investigated using a hot-air dryer. In order to investigate and select the appropriate drying model, seven experiment based mathematical drying models were fitted to the experimental data. According to the statistical criteria (R2, SSE and RMSE), a Logarithmic model was found to be the best model to describe the drying behaviour of belimbi slices at 40°C for control; The Page/modified Page model was the best model to describe drying behaviour at 40°C, 60°C pre-treatment and 50°C for the control and the Wang and Singh model fitted well for 50°C pre-treatment and 60°C for the control. Comparison between experiment based mathematical modelling with a single phase mathematical model shows that close agreement was produced. The qualities of belimbi slices in terms of colour, texture and shrinkage with different air temperature and pre-treatment were also investigated. Higher drying temperatures gives less drying time, a lighter colour but greater product shrinkage, whilst pre-treatment can reduce product shrinkage and drying time and can also give good texture properties. The results show that pre-treatment and the drying temperature are important to improve mass and heat transfer as well as the product characteristics such as colour, shrinkage and texture.

  10. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  11. Osmotic shrinkage of giant egg-lecithin vesicles.

    PubMed Central

    Boroske, E; Elwenspoek, M; Helfrich, W

    1981-01-01

    Osmotic shrinkage of giant egg-lecithin vesicles was observed by phase-contrast microscopy. The vesicles remained or became spherical when shrinking. Small and thick-walled vesicles formed visible fingers attached to the sphere. The water permeability of the single bilayer was found to be 41 micrometers/s. A variety of observations indicate that osmosis induces a parallel lipid flow between the monolayers of the bilayer, leading to a strong positive spontaneous curvature. They also suggest the formation of mostly submicroscopic daughter vesicles. The estimated coupling constant, 2 . 10(-6) mol/mol, is large enough to be biologically significant. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:7213933

  12. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images

    PubMed Central

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-01-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality. PMID:28663860

  13. XRD and SEM study of alumina silicate porcelain insulator

    NASA Astrophysics Data System (ADS)

    Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.

    2018-05-01

    Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.

  14. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  15. On the controlled isotropic shrinkage induced fine-tuning of photo-luminescence in terbium ions embedded silica inverse opal films

    NASA Astrophysics Data System (ADS)

    Shrivastava, Vishnu Prasad; Kumar, Jitendra; Sivakumar, Sri

    2017-12-01

    Tb3+ embedded silica inverse opal structures with different photonic stop bands have been fabricated by annealing the SiO2-polystyrene spheres (diameter 390 nm) opal template at 320-650 oC. The PSB tuning realized in the wavelength range 498 - 600 nm is shown to depend on annealing temperature and impending isotropic shrinkage of silica matrix. The impact of wide PSB shift on four Tb3+ ion emission bands (blue, green, yellow, and red at 486, 545, 580, and 620 nm, respectively) corresponding to 5D4→7Fj (j = 6,5,4,3) transitions have been investigated. The effect amounts to significant suppression of emission bands at 586, 545 and 486 nm in inverse opals, obtained by annealing opal template at 350, 400, and 650 oC, respectively. Further, luminescence lifetime of Tb3+ ion 5D4 state increases with shrinkage induced in inverse opal progressively and get enhanced up to 2.3 times vis-à-vis reference silica. The changes in refractive index caused by thermal annealing of opal template is found to be responsible for the observed improvement in 5D4 state lifetime.

  16. Injection-salting and cold-smoking of farmed atlantic cod (Gadus morhua L.) and Atlantic salmon (Salmo salar L.) at different stages of Rigor Mortis: effect on physical properties.

    PubMed

    Akse, L; Birkeland, S; Tobiassen, T; Joensen, S; Larsen, R

    2008-10-01

    Processing of fish is generally conducted postrigor, but prerigor processing is associated with some potential advantages. The aim of this study was to study how 5 processing regimes of cold-smoked cod and salmon conducted at different stages of rigor influenced yield, fillet shrinkage, and gaping. Farmed cod and salmon was filleted, salted by brine injection of 25% NaCl, and smoked for 2 h at different stages of rigor. Filleting and salting prerigor resulted in increased fillet shrinkage and less increase in weight during brine injection, which in turn was correlated to the salt content of the fillet. These effects were more pronounced in cod fillets when compared to salmon. Early processing reduced fillet gaping and fillets were evaluated as having a firmer texture. In a follow-up trial with cod, shrinkage and weight gain during injection was studied as an effect of processing time postmortem. No changes in weight gain were observed for fillets salted the first 24 h postmortem; however, by delaying the processing 12 h postmortem, the high and rapid shrinking of cod fillets during brine injection was halved.

  17. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.

    PubMed

    Peterson, Christine; Vannucci, Marina; Karakas, Cemal; Choi, William; Ma, Lihua; Maletić-Savatić, Mirjana

    2013-10-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation.

  18. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors

    PubMed Central

    PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA

    2014-01-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172

  19. The characterization of ceramic alumina prepared by using additive glass beads

    NASA Astrophysics Data System (ADS)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  20. Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach

    PubMed Central

    Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge

    2015-01-01

    Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102

  1. Preparation of low shrinkage methacrylate-based resin system without Bisphenol A structure by using a synthesized dendritic macromer (G-IEMA).

    PubMed

    Yu, Biao; Liu, Fang; He, Jingwei

    2014-07-01

    With the growing attention on estrogenic effect of Bisphenol A (BPA), the application of BPA derivatives like Bis-GMA in dental materials has also been doubted. In this research, new BPA free dental resin systems were prepared with synthesized dendritic macromer G-IEMA, UDMA, and TEGDMA. Physicochemical properties, such as double bond conversion, polymerization shrinkage, flexural strength and modulus, fracture energy, water sorption and solubility of BPA free resin formulations were investigated. Bis-GMA/TEGDMA resin system was used as a control. Results showed that the prepared BPA free resins could have higher double bond conversion, comparable or lower polymerization shrinkage and water sorption, and lower water solubility, when compared with Bis-GMA/TEGDMA resin. Though flexural strength and modulus of prepared BPA free polymers were lower than those of Bis-GMA/TEGDMA polymer, BPA free polymers had higher fracture energies and showed plastic deformation prior to fracture, all of these two phenomena showed that BPA free polymers in this research might have higher fracture toughness which would be good for the service life of dental materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Response of carnation (Dianthus caryophyllus) cultivars to different postharvest preservatives.

    PubMed

    Adugna, Biniam; Belew, Derbew; Kassa, Negussie

    2013-10-01

    Experiments were conducted to assess the effect of selected pulsing solutions on the days to flower bud shrinkage, leaf wilting and petal edge drying occurrence of carnation cultivars (Green-Go and Galy). The pulsing solutions used for this investigation were Silver Thiosulfate (STS) (0.2, 0.6, 1 mM) and also ethanol (6, 8, 10%), both received equal amount of sucrose (10%). Besides, to simulate the actual practice of the farm (0.4 mM Silver Thiosulfate (STS) plus 0.3 mM T.O.G) was used as a standard control. Senescence symptoms such as flower bud shrinkage, petal edge drying and leaf wilting were monitored. The results obtained showed that 1 mM STS plus 25 g sucrose achieved rapid petal edge drying for Green-Go cultivar. On the other hand, positive effects were also observed in days to flower bud shrinkage extended by 6 mM Silver Thiosulfate (STS) plus 25 g sucrose and being in par with 8% ethanol plus 25 g sucrose for Green-Go cultivar. Subsequently, the standard control, 0.6 mM Silver Thiosulfate (STS) plus 25 g sucrose and 8% ethanol plus 25 g sucrose attended comparable increment on the days to leaf wilting occurrences.

  3. Precuring implant photoresists for shrink and patterning control

    NASA Astrophysics Data System (ADS)

    Winroth, Gustaf; Rosseel, Erik; Delvaux, Christie; Sanchez, Efrain Altamirano; Ercken, Monique

    2013-10-01

    193-nm compatible photoresists are turning out to be the new platform for implant lithography, due to the increasing requirements in both resolution and overlay. Shrinkage of such resists is becoming progressively the most topical issue for aggressive nodes, where conventional pretreatments from older resist platforms, such as ultraviolet flood exposures, are not directly transferable to (meth-)acrylate-type resists. The precuring options available for state-of-the-art implant photoresists for 193-nm lithography is explored, in which we target to reduce the shrinkage during implantation for trenching critical dimensions (CDs) that are relevant for nodes <20 nm. An extensive study comprising different approaches, including laser-, ion-, and electron-based treatments, is presented. Each treatment is individually investigated with the aim to find not only a valid pretreatment for shrinkage control during implantation, but also to understand what effect alternative pretreatments have on the morphology and the CDs of thick photoresists used as implant stopping layers. Viable options for further process optimization in order to integrate them into device process flows are found. To this extent, the shrink behavior after pretreatment is shown, and the additional shrink dynamics after implantation are compared.

  4. Prescription-drug-related risk in driving: comparing conventional and lasso shrinkage logistic regressions.

    PubMed

    Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine

    2012-09-01

    Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.

  5. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  6. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins

    PubMed Central

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507

  7. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    PubMed

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  8. Sol-gel chemistry by ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-02-07

    Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solventmore » is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.« less

  9. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  10. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less

  11. Shrinkage Estimators for a Composite Measure of Quality Conceptualized as a Formative Construct

    PubMed Central

    Shwartz, Michael; Peköz, Erol A; Christiansen, Cindy L; Burgess, James F; Berlowitz, Dan

    2013-01-01

    Objective To demonstrate the value of shrinkage estimators when calculating a composite quality measure as the weighted average of a set of individual quality indicators. Data Sources Rates of 28 quality indicators (QIs) calculated from the minimum dataset from residents of 112 Veterans Health Administration nursing homes in fiscal years 2005–2008. Study Design We compared composite scores calculated from the 28 QIs using both observed rates and shrunken rates derived from a Bayesian multivariate normal-binomial model. Principal Findings Shrunken-rate composite scores, because they take into account unreliability of estimates from small samples and the correlation among QIs, have more intuitive appeal than observed-rate composite scores. Facilities can be profiled based on more policy-relevant measures than point estimates of composite scores, and interval estimates can be calculated without assuming the QIs are independent. Usually, shrunken-rate composite scores in 1 year are better able to predict the observed total number of QI events or the observed-rate composite scores in the following year than the initial year observed-rate composite scores. Conclusion Shrinkage estimators can be useful when a composite measure is conceptualized as a formative construct. PMID:22716650

  12. Image denoising via fundamental anisotropic diffusion and wavelet shrinkage: a comparative study

    NASA Astrophysics Data System (ADS)

    Bayraktar, Bulent; Analoui, Mostafa

    2004-05-01

    Noise removal faces a challenge: Keeping the image details. Resolving the dilemma of two purposes (smoothing and keeping image features in tact) working inadvertently of each other was an almost impossible task until anisotropic dif-fusion (AD) was formally introduced by Perona and Malik (PM). AD favors intra-region smoothing over inter-region in piecewise smooth images. Many authors regularized the original PM algorithm to overcome its drawbacks. We compared the performance of denoising using such 'fundamental' AD algorithms and one of the most powerful multiresolution tools available today, namely, wavelet shrinkage. The AD algorithms here are called 'fundamental' in the sense that the regularized versions center around the original PM algorithm with minor changes to the logic. The algorithms are tested with different noise types and levels. On top of the visual inspection, two mathematical metrics are used for performance comparison: Signal-to-noise ratio (SNR) and universal image quality index (UIQI). We conclude that some of the regu-larized versions of PM algorithm (AD) perform comparably with wavelet shrinkage denoising. This saves a lot of compu-tational power. With this conclusion, we applied the better-performing fundamental AD algorithms to a new imaging modality: Optical Coherence Tomography (OCT).

  13. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions

    PubMed Central

    Stansbury, Jeffrey W.

    2011-01-01

    Objectives This overview is intended to highlight connections between monomer structure and the development of highly crosslinked photopolymer networks including the conversion dependent properties of shrinkage, modulus and stress. Methods A review is provided that combines the polymer science and dental materials literature along with examples of relevant experimental results, which include measurements of reaction kinetics, photorheology as well as polymerization shrinkage and stress. Results While new monomers are continually under development for dental materials applications, mixtures of dimethacrylate monomers persist as the most common form of dental resins used on composite restorative materials. Monomer viscosity and reaction potential is derived from molecular structure and by employing real-time near-infrared spectroscopic techniques, the development of macromolecular networks is linked to the evolution of polymerization shrinkage (measured by linometer), modulus (measured by photorheometer), and stress (measured by tensometer). Relationships between the respective polymer properties are examined. Significance Through a better understanding of the polymer network formation and property development processes using conventional dimethacrylate monomer formulations, the rational design of improved materials is facilitated with the ultimate goal of achieving dental polymers that deliver enhanced clinical outcomes. PMID:22192248

  14. Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression

    PubMed Central

    Peng, Limin; Xu, Jinfeng; Kutner, Nancy

    2013-01-01

    Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals. PMID:25332515

  15. High solid loading aqueous base metal/ceramic feedstock for injection molding

    NASA Astrophysics Data System (ADS)

    Behi, Mohammad

    2001-07-01

    Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.

  16. Estimating the Accuracy of the Chedoke-McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation.

    PubMed

    Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A

    2011-01-01

    To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.

  17. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less

  18. Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Nadiah

    One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.

  19. Aerogel/Particle Composites for Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2006-01-01

    Optimizing solution chemistry and the addition of titania and fumed silica powder reduces shrinkage. These materials would serve to increase thermal efficiency by providing thermal insulation to suppress lateral heat leaks. They would also serve to prolong operational lifetime by suppressing sublimation of certain constituents of thermoelectric materials (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. [The use of pure silica aerogels as cast-in-place thermal-insulation and sublimation-suppression materials was described in "Aerogels for Thermal Insulation of Thermoelectric Devices" (NPO-40630), NASA Tech Briefs, Vol. 30, No. 7 (July 2006), page 50.] A silica aerogel is synthesized in a solgel process that includes preparation of a silica sol, gelation of the sol, and drying of the gel in a solvent at a supercritical temperature and pressure. The utility of pure silica aerogel is diminished by a tendency to shrink (and, therefore, also to crack) during the gelation and supercritical-drying stages. Moreover, to increase suppression of sublimation, it is advantageous to make an aerogel having greater density, but shrinkage and cracking tend to increase with density. A composite material of the type under investigation consists mostly of titania oxide powder particles and a small addition of fumed silica powder, which are mixed into the sol along with other ingredients prior to the gelation stage of processing. The silica aerogel and fumed silica act as a binder, gluing the titania particles together. It is believed that the addition of fumed silica stiffens the aerogel network and reduces shrinkage during the supercritical-drying stage. Minimization of shrinkage enables establishment of intimate contact between thermoelectric legs and the composite material, thereby maximizing the effectiveness of the material for thermal insulation and suppression of sublimation. To some extent, the properties of the composite can be tailored via the proportions of titania and other ingredients. In particular (see figure), the addition of a suitably large proportion of titania (e.g., 0.6 g/cu cm) along with a 10-percent increase in the amount of tetraethylorthosilicate [TEOS (an ingredient of the sol)] to an aerogel component having a density 40 mg/cm3makes it possible to cast a high-average-density (>0.1 g/cm3) aerogel/particle composite having low shrinkage (2.3 percent).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Demkowicz; Lance Cole; Scott Ploger

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement systemmore » (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated diametrical shrinkage of 0.9 to 1. 4%, and length shrinkage of 0.2 to 1.1%. The shrinkage was somewhat dependent on compact location within each capsule and within the test train. Compacts exhibited a maximum diametrical shrinkage at a fast neutron fluence of approximately 3×1021 n/cm2. A multivariate statistical analysis indicates that fast neutron fluence as well as compact position in the test train influence compact shrinkage.« less

  1. Finite element calculation of residual stress in dental restorative material

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  2. Optimization of temperature field of tobacco heat shrink machine

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  3. Recent advances and developments in composite dental restorative materials.

    PubMed

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  4. ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2017-01-01

    This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242

  5. Mechanical and physical properties of cement blended with sewage sludge ash.

    PubMed

    Garcés, P; Pérez Carrión, M; García-Alcocel, E; Payá, J; Monzó, J; Borrachero, M V

    2008-12-01

    The aim of this paper is to evaluate the compatibility of sewage sludge ash (SSA) with various types of commercially available cements (CEM I and CEM II types, cements with several proportions of clinker). The behaviour of mortars fabricated with various percentages (10-30% by weight) of the cement replaced by SSA has been analyzed in terms of workability, mechanical strength, porosity and shrinkage/expansion. SSA exhibits moderate pozzolanic activity; the highest compressive strengths were obtained with 10% of the cement replaced by SSA. The CEM II/B-M (V-LL) 42.5R cement is considered ideal for preparing mortars containing SSA. Shrinkage data demonstrate that sulphates present in SSA are not reactive towards cement.

  6. Experimental and numerical investigation of slabs on ground subjected to concentrated loads

    NASA Astrophysics Data System (ADS)

    Øverli, Jan

    2014-09-01

    An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.

  7. Recent Advances and Developments in Composite Dental Restorative Materials

    PubMed Central

    Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

    2011-01-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  8. Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload

    NASA Astrophysics Data System (ADS)

    Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok

    2016-09-01

    SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.

  9. Effect of water-to-cement ratio and curing method on the strength, shrinkage and slump of the biosand filter concrete body.

    PubMed

    Chan, Nicole; Young-Rojanschi, Candice; Li, Simon

    2018-03-01

    The biosand filter is a household-level water treatment technology used globally in low-resource settings. As of December 2016, over 900,000 biosand filters had been implemented in 60 countries around the world. Local, decentralized production is one of the main advantages of this technology, but it also creates challenges, especially in regards to quality control. Using the current recommended proportions for the biosand filter concrete mix, slump was measured at water-to-cement ratios of 0.51, 0.64 and 0.76, with two replicates for each level. Twenty-eight-day strength was tested on four replicate cylinders, each at water-to-cement ratios of 0.51, 0.59, 0.67 and 0.76. Wet curing and dry curing were compared for 28-day strength and for their effect on shrinkage. Maximum strength occurred at water-to-cement ratios of 0.51-0.59, equivalent to 8-9.3 L water for a full-scale filter assuming saturated media, corresponding to a slump class of S1 (10-40 mm). Wet curing significantly improved strength of the concrete mix and reduced shrinkage. Quality control measures such as the slump test can significantly improve the quality within decentralized production of biosand filters, despite localized differences in production conditions.

  10. Volume reduction of benign thyroid nodules 3 months after a single treatment with high-intensity focused ultrasound (HIFU).

    PubMed

    Korkusuz, Huedayi; Fehre, Niklas; Sennert, Michael; Happel, Christian; Grünwald, Frank

    2015-01-01

    High-intensity focused ultrasound (HIFU) is a promising, non-invasive technique in treating benign thyroid nodules (TNs). The aim of this study was to evaluate the efficacy of HIFU to induce clinically meaningful shrinkage in benign predominantly solid TNs and to identify variables that influence or predict the magnitude of TN volume reduction. For each of ten subjects, HIFU treatment was conducted on a single nodule. Nodular volume was measured sonographically at baseline and at 3 months post-procedure. Nodular function and early treatment assessment was done scintigraphically. Median nodular volume reduction was 0.7 ml absolute and 48.8% relative to pre-interventional size (p < 0.05). Absolute shrinkage was negatively correlated with the average treatment depth (τ = -0.61, p < 0.05). Absolute nodular volume was positively correlated with the scintigraphic nodular uptake reduction (τ = 0.66, p < 0.05). HIFU treatment of benign predominantly solid TNs appears to be safe and effective for inducing nodular shrinkage. Despite potential for improvement, a single treatment session with HIFU is already a viable alternative to more standard methods. The feasibility of multiple HIFU treatments requires further investigation. Due to the small sample size, the findings of this analysis need conformation by larger studies.

  11. Impaired decision-making and brain shrinkage in alcoholism.

    PubMed

    Le Berre, A-P; Rauchs, G; La Joie, R; Mézenge, F; Boudehent, C; Vabret, F; Segobin, S; Viader, F; Allain, P; Eustache, F; Pitel, A-L; Beaunieux, H

    2014-03-01

    Alcohol-dependent individuals usually favor instant gratification of alcohol use and ignore its long-term negative consequences, reflecting impaired decision-making. According to the somatic marker hypothesis, decision-making abilities are subtended by an extended brain network. As chronic alcohol consumption is known to be associated with brain shrinkage in this network, the present study investigated relationships between brain shrinkage and decision-making impairments in alcohol-dependent individuals early in abstinence using voxel-based morphometry. Thirty patients performed the Iowa Gambling Task and underwent a magnetic resonance imaging investigation (1.5T). Decision-making performances and brain data were compared with those of age-matched healthy controls. In the alcoholic group, a multiple regression analysis was conducted with two predictors (gray matter [GM] volume and decision-making measure) and two covariates (number of withdrawals and duration of alcoholism). Compared with controls, alcoholics had impaired decision-making and widespread reduced gray matter volume, especially in regions involved in decision-making. The regression analysis revealed links between high GM volume in the ventromedial prefrontal cortex, dorsal anterior cingulate cortex and right hippocampal formation, and high decision-making scores (P<0.001, uncorrected). Decision-making deficits in alcoholism may result from impairment of both emotional and cognitive networks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Estimating the Accuracy of the Chedoke–McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation

    PubMed Central

    Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.

    2011-01-01

    ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239

  13. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    PubMed

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  14. Characterizations of additive manufactured porous titanium implants.

    PubMed

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  15. Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Liu, Kai; Zhang, Qian; Xue, Zhenwen; Li, Yongbao; Ning, Nannan; Yang, Xin; Li, Xingde; Tian, Jie

    2012-12-01

    Liver cancer is one of the most common malignant tumors worldwide. In order to enable the noninvasive detection of small liver tumors in mice, we present a parallel iterative shrinkage (PIS) algorithm for dual-modality tomography. It takes advantage of microcomputed tomography and multiview bioluminescence imaging, providing anatomical structure and bioluminescence intensity information to reconstruct the size and location of tumors. By incorporating prior knowledge of signal sparsity, we associate some mathematical strategies including specific smooth convex approximation, an iterative shrinkage operator, and affine subspace with the PIS method, which guarantees the accuracy, efficiency, and reliability for three-dimensional reconstruction. Then an in vivo experiment on the bead-implanted mouse has been performed to validate the feasibility of this method. The findings indicate that a tiny lesion less than 3 mm in diameter can be localized with a position bias no more than 1 mm the computational efficiency is one to three orders of magnitude faster than the existing algorithms; this approach is robust to the different regularization parameters and the lp norms. Finally, we have applied this algorithm to another in vivo experiment on an HCCLM3 orthotopic xenograft mouse model, which suggests the PIS method holds the promise for practical applications of whole-body cancer detection.

  16. Analyzation of photopolymer materials shrunken influence for thick hologram gratings

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhen; Xiao, Xue; Chen, Wei; Kang, Guoguo; Huang, Yong; Tan, Xiaodi

    2016-09-01

    The photopolymer materials are good media to record thick hologram gratings, because photopolymer materials have high resolution, low cost, simple process technology and so on. According to coupled wave theory for thick hologram gratings, we know that the same object beam can be reconstructed if the same reference beam is used to retrieve a thick hologram grating. However, the shrinkage always occurs in the photopolymer materials because of environment temperature, humidity, vibration etc. For instance, the same object beam cannot be reconstructed even the same reference beam to be used. In this paper, we will analysis the shrinkage influence of photopolymer materials for thick hologram gratings. We divide the photopolymer materials into several geometry layers, and analysis the reconstructed characteristics separately basing on coupled wave theory of Kogelnik. Through gradually continuous changing the angle between gratings and the border (we call it slant angle), we can build the geometry model of gratings bending caused by shrinkage of materials. We calculate wave complex amplitude diffracted from every layer, and superpose them to compute the total diffraction efficiency. We simulate above methods to obtain the curve of diffraction efficiency with reconstruction wavelength by using Matlab software. Comparing the simulated results with the experiments results, we can deduce the probable situation of thick hologram gratings bending after photopolymer materials shrink.

  17. Dilatometric shrinkage study on magnesium titanate-based ceramic systems

    NASA Astrophysics Data System (ADS)

    Ermawati, F. U.; Suasmoro, S.

    2018-03-01

    The development of dielectric materials for applications in the microwave frequencies has been increasing with rapid progress in mobile and satellite communication systems. Magnesium titanate (MgTiO3)-based ceramics have been the favourite candidates for such applications due to their excellent dielectric characteristics, i.e. a moderate level of dielectric constant together with a high-quality factor and high-temperature stability. These outstanding performance, however, can only be achieved when the ceramics are highly dense. The work reported in this paper discussed the study on the dilatometric shrinkage behaviour of pure and zinc-doped magnesium titanate (Mg1–xZn x TiO3 for x = 0–0.5) ceramic systems after the systems following the heating passage up to 1300 °C. The results were discussed based on the phase formation data recorded from powder X-ray diffraction (XRD). An additional 2 wt. % V2O5 to the MZT0.2 system has increased the shrinkage of the system, and hence the relative density. The V2O5 addition also prevented the grain growth and did not alter the structure. From 100 Hz to 20 MHz, the dielectric permittivity is constant; which varies from (15.4 – 17.0) ± 0.1 % throughout the samples, these values are therefore frequency independent.

  18. Investigating the enhancement of template-free activation detection of event-related fMRI data using wavelet shrinkage and figures of merit.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan

    2011-03-01

    We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. An acoustic emission study on interfacial debonding in composite restorations.

    PubMed

    Liu, Xiaozhou; Li, Haiyan; Li, Jianying; Lu, Peijun; Fok, Alex Siu-Lun

    2011-09-01

    This paper studied in vitro the effect of the C-factor on interfacial debonding during curing of composite restorations using the acoustic emission (AE) technique. Finite element (FE) analyzes were also carried out to evaluate the interfacial stresses caused by shrinkage of the composite resin in restorations with different C-factors. Twenty extracted third molars were divided into 4 groups of 5. They were cut to form Class-I (Groups 1 and 2) and Class-II (Groups 3 and 4) cavities with different C-factors. The average C-factors of the four groups were 3.37, 2.88, 2.00, and 1.79, respectively. The cavities were then applied with an adhesive and restored with a composite, which was cured by a halogen light for 40 s. A 2-channel AE system was used to monitor the interfacial debonding, caused by shrinkage stress, between the tooth and restoration through an AE sensor attached to the surface of the specimen. Recording of the AE started at the same time as curing of the composite and lasted 10 min. Simplified FE models were used to evaluate the interfacial stresses in restorations with different C-factors, with a thermal load (temperature decrease) being applied to the composite resin to simulate its shrinkage. The mean and standard deviation of the total number of AE events for the four groups were 29.6±15.7, 10.0±5.8, 2.6±1.5, and 2.2±1.3, i.e. the number of AE events increased with an increase in the C-factor. The FE results also showed that, the higher the C-factor of the restoration, the higher the interfacial tensile stress between the tooth and restoration. From the results of the AE tests and FE simulations, it can be concluded that, the higher the C-factor, the higher the shrinkage stress and the more likely is interfacial debonding. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Molar cusp deformation evaluated by micro-CT and enamel crack formation to compare incremental and bulk-filling techniques.

    PubMed

    Oliveira, Laís Rani Sales; Braga, Stella Sueli Lourenço; Bicalho, Aline Arêdes; Ribeiro, Maria Tereza Hordones; Price, Richard Bengt; Soares, Carlos José

    2018-07-01

    To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. The post-gel shrinkage of Z100 was higher than XTRA (P < 0.001). The amount of cusp deformation produced using Z100 was higher compared to XTRA, irrespective of the measurement method used (P < 0.001). The thinner lingual cusp always had a higher CD than the buccal cusp, irrespective of the measurement method (P < 0.001). A positive correlation (r = 0.78) was found between cusp deformation measured by micro-CT or by the strain-gauge method. After hygroscopic expansion of the resin composite, the cusp displacement recovered around 85% (P < 0.001). After restoration, Z100 produced more cracks than XTRA (P = 0.012). Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu

    2011-12-01

    Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.

  2. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A

    2018-05-15

    Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Copyright © 2018. Published by Elsevier Inc.

  3. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    PubMed

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a specific case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. TH-E-BRF-01: Exploiting Tumor Shrinkage in Split-Course Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J; Craft, D; Hong, T

    2014-06-15

    Purpose: In split-course radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated by radiobiological considerations. However, using modern image-guidance, it also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. In this work, we consider the optimal design of split-course treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. Methods: We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cellmore » repopulation. The design of splitcourse radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. Results: We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one third of the dose should be delivered in the first stage. The projected benefit of split-course treatments in terms of liver sparing depends on model assumptions. However, the model predicts large liver dose reductions by more than a factor of two for plausible model parameters. Conclusion: The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at split-course radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.« less

  5. Pattern of Tumor Shrinkage during Neoadjuvant Chemotherapy Is Associated with Prognosis in Low-Grade Luminal Early Breast Cancer.

    PubMed

    Fukada, Ippei; Araki, Kazuhiro; Kobayashi, Kokoro; Shibayama, Tomoko; Takahashi, Shunji; Gomi, Naoya; Kokubu, Yumi; Oikado, Katsunori; Horii, Rie; Akiyama, Futoshi; Iwase, Takuji; Ohno, Shinji; Hatake, Kiyohiko; Sata, Naohiro; Ito, Yoshinori

    2018-01-01

    Purpose To evaluate the association between tumor shrinkage patterns shown with magnetic resonance (MR) imaging during neoadjuvant chemotherapy (NAC) and prognosis in patients with low-grade luminal breast cancer. Materials and Methods This retrospective study was approved by the institutional review board and informed consent was obtained from all subjects. The low-grade luminal breast cancer was defined as hormone receptor-positive and human epidermal growth factor receptor 2-negative with nuclear grades 1 or 2. The patterns of tumor shrinkage as revealed at MR imaging were categorized into two types: concentric shrinkage (CS) and non-CS. Among 854 patients who had received NAC in a single institution from January 2000 to December 2009, 183 patients with low-grade luminal breast cancer were retrospectively evaluated for the development set. Another data set from 292 patients who had received NAC in the same institution between January 2010 and December 2012 was used for the validation set. Among these 292 patients, 121 patients with low-grade luminal breast cancer were retrospectively evaluated. Results In the development set, the median observation period was 67.9 months. Recurrence was observed in 31 patients, and 16 deaths were related to breast cancer. There were statistically significant differences in both the disease-free survival (DFS) and overall survival (OS) rates between patterns of tumor shrinkage (P < .001 and P < .001, respectively). Multivariate analysis demonstrated that the CS pattern had the only significant independent association with DFS (P = .001) and OS (P = .009) rate. In the validation set, the median follow-up period was 56.9 months. Recurrence was observed in 20 patients (16.5%) and eight (6.6%) deaths were related to breast cancer. DFS rate was significantly longer in patients with the CS pattern (72.8 months; 95% confidence interval [CI]: 69.9, 75.6 months) than in those with the non-CS pattern (56.0 months; 95% CI: 49.1, 62.9 months; P ≤ .001). The CS pattern was associated with an excellent prognosis (median OS, 80.6 months; 95% CI: 79.3, 81.8 months vs 65.0 months; 95% CI: 60.1, 69.8 months; P = .004). Multivariate analysis demonstrated that the CS pattern had the only significant independent association with DFS (P = .007) and OS (P = .037) rates. Conclusion The CS pattern as revealed at MR imaging during NAC had the only significant independent association with prognosis in patients with low-grade luminal breast cancer. © RSNA, 2017.

  6. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploger, Scott; Demkowciz, Paul; Harp, Jason

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1more » test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts—possibly as a consequence of lower packing fraction or larger particle size. Differences in fast neutron fluence among compacts from these four capsules had no obvious effect on radial and axial shrinkage. (The AGR 2 experiment included Capsule 1 containing French compacts and Capsule 4 with compacts made at Oak Ridge National Laboratory using South African fuel particles. Information on these two batches of AGR 2 fuel compacts is confined to restricted Appendices A and B because of proprietary information limitations.)« less

  7. Evaluating differences in forest fragmentation and restoration between western natural forests and southeastern plantation forests in the United States.

    PubMed

    Ren, Xinyu; Lv, Yingying; Li, Mingshi

    2017-03-01

    Changes in forest ecosystem structure and functions are considered some of the research issues in landscape ecology. In this study, advancing Forman's theory, we considered five spatially explicit processes associated with fragmentation, including perforation, dissection, subdivision, shrinkage, and attrition, and two processes associated with restoration, i.e., increment and expansion processes. Following this theory, a forest fragmentation and restoration process model that can detect the spatially explicit processes and ecological consequences of forest landscape change was developed and tested in the current analysis. Using the National Land Cover Databases (2001, 2006 and 2011), the forest fragmentation and restoration process model was applied to US western natural forests and southeastern plantation forests to quantify and classify forest patch losses into one of the four fragmentation processes (the dissection process was merged into the subdivision process) and to classify the newly gained forest patches based on the two restoration processes. At the same time, the spatio-temporal differences in fragmentation and restoration patterns and trends between natural forests and plantations were further compared. Then, through overlaying the forest fragmentation/restoration processes maps with targeting year land cover data and land ownership vectors, the results from forest fragmentation and the contributors to forest restoration in federal and nonfederal lands were identified. Results showed that, in natural forests, the forest change patches concentrated around the urban/forest, cultivated/forest, and shrubland/forest interfaces, while the patterns of plantation change patches were scattered sparsely and irregularly. The shrinkage process was the most common type in forest fragmentation, and the average size was the smallest. Expansion, the most common restoration process, was observed in both natural forests and plantations and often occurred around the previous expansion or covered the previous subdivision or shrinkage processes. The overall temporal fragmentation pattern of natural forests had a "perforation-subdivision/shrinkage-attrition" pathway, which corresponded to Forman's landscape fragmentation rule, while the plantation forests did not follow the rule strictly. The main land cover types resulted from forest fragmentation in natural forests and plantation forests were shrubland and herbaceous, mainly through subdivision and shrinkages process. The processes and effects of restoration of plantation forests were more diverse and efficient, compared to the natural forest, which were simpler with a lower regrowth rate. The fragmentation mostly occurred in nonfederal lands. In natural forests, forest fragmentation pattern differed in different land tenures, yet plantations remained the same in federal and nonfederal lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling.

    PubMed

    Ausiello, Pietro; Ciaramella, Stefano; Fabianelli, Andrea; Gloria, Antonio; Martorelli, Massimo; Lanzotti, Antonio; Watts, David C

    2017-06-01

    To study the influence of resin based and lithium disilicate materials on the stress and strain distributions in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). To investigate the materials combinations in the restored teeth during mastication and their ability to relieve stresses. One 3D model of a sound lower molar and three 3D class II MOD cavity models with 95° cavity-margin-angle shapes were modelled. Different material combinations were simulated: model A, with a 10μm thick resin bonding layer and a resin composite bulk filling material; model B, with a 70μm resin cement with an indirect CAD-CAM resin composite inlay; model C, with a 70μm thick resin cement with an indirect lithium disilicate machinable inlay. To simulate polymerization shrinkage effects in the adhesive layers and bulk fill composite, the thermal expansion approach was used. Shell elements were employed for representing the adhesive layers. 3D solid CTETRA elements with four grid points were employed for modelling the food bolus and tooth. Slide-type contact elements were used between the tooth surface and food. A vertical occlusal load of 600 N was applied, and nodal displacements on the bottom cutting surfaces were constrained in all directions. All the materials were assumed to be isotropic and elastic and a static linear analysis was performed. Displacements were different in models A, B and C. Polymerization shrinkage hardly affected model A and mastication only partially affected mechanical behavior. Shrinkage stress peaks were mainly located marginally along the enamel-restoration interface at occlusal and mesio-distal sites. However, at the internal dentinal walls, stress distributions were critical with the highest maximum stresses concentrated in the proximal boxes. In models B and C, shrinkage stress was only produced by the 70μm thick resin layer, but the magnitudes depended on the Young's modulus (E) of the inlay materials. Model B mastication behavior (with E=20GPa) was similar to the sound tooth stress relief pattern. Model B internally showed differences from the sound tooth model but reduced maximum stresses than model A and partially than model C. Model C (with E=70GPa) behaved similarly to model B with well redistributed stresses at the occlusal margins and the lateral sides with higher stress concentrations in the proximal boxes. Models B and C showed a more favorable performance than model A with elastic biomechanics similar to the sound tooth model. Bulk filling resin composite with 1% linear polymerization shrinkage negatively affected the mechanical behavior of class II MOD restored teeth. Class II MOD direct resin composite showed greater potential for damage because of higher internal and marginal stress evolution during resin polymerization shrinkage. With a large class II MOD cavity an indirect composite or a lithium disilicate inlay restoration may provide a mechanical response close to that of a sound tooth. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Influence plots for LASSO

    DOE PAGES

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    2016-11-22

    With many predictors in regression, fitting the full model can induce multicollinearity problems. Least Absolute Shrinkage and Selection Operation (LASSO) is useful when the effects of many explanatory variables are sparse in a high-dimensional dataset. Influential points can have a disproportionate impact on the estimated values of model parameters. Here, this paper describes a new influence plot that can be used to increase understanding of the contributions of individual observations and the robustness of results. This can serve as a complement to other regression diagnostics techniques in the LASSO regression setting. Using this influence plot, we can find influential pointsmore » and their impact on shrinkage of model parameters and model selection. Lastly, we provide two examples to illustrate the methods.« less

  10. Emerging Applications of Polymersomes in Delivery: from Molecular Dynamics to Shrinkage of Tumors

    PubMed Central

    Discher, Dennis E.; Ortiz, Vanessa; Srinivas, Goundla; Klein, Michael L.; Kim, Younghoon; Christian, David; Cai, Shenshen; Photos, Peter; Ahmed, Fariyal

    2014-01-01

    Polymersomes are self-assembled shells of amphiphilic block copolymers that are currently being developed by many groups for fundamental insights into the nature of self-assembled states as well as for a variety of potential applications. While recent reviews have highlighted distinctive properties – particularly stability – that are strongly influenced by both copolymer type and polymer molecular weight, here we first review some of the more recent developments in computational molecular dynamics (MD) schemes that lend insight into assembly. We then review polymersome loading, in vivo stealthiness, degradation-based disassembly for controlled release, and even tumor-shrinkage in vivo. Comparisons of polymersomes with viral capsids are shown to encompass and inspire many aspects of current designs. PMID:24692840

  11. Ag Nanotwin-Assisted Grain Growth-Induced by Stress in SiO₂/Ag/SiO₂ Nanocap Arrays.

    PubMed

    Zhang, Fan; Wang, Yaxin; Zhang, Yongjun; Chen, Lei; Liu, Yang; Yang, Jinghai

    2018-06-14

    A trilayer SiO₂/Ag/SiO₂ nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO₂/Ag/SiO₂ nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO₂ layer induced the formation of Ag nanotwins. Ag nanotwins assisted the growth of nanoparticles when the neighboring nanotwins changed the local misorientations. Nanocap shrinkage reduced the surface plasmon resonance (SPR) coupling between neighboring nanocaps; concurrently, grain growth decreased the SPR coupling between the particles in each nanocap, which led to a red shift of the localized surface plasmon resonance (LSPR) bands and decreased the surface-enhanced Raman scattering (SERS) signals.

  12. Raman study of CaDNA films as a function of water content and excess CaCl2 concentration: Stability of the B conformation.

    NASA Astrophysics Data System (ADS)

    Schwenker, Megan; Marlowe, Robert; Lee, Scott; Rupprecht, Allan

    2006-03-01

    Highly oriented, wet-spun films of CaDNA expand in the direction perpendicular to the helical axis as the hydration of the film is increased. CaDNA films with a high CaCl2 content show an unexpected shrinkage at a relative humidity of about 93%. We have performed Raman experiments on CaDNA films as a function of both water content and excess CaCl2 concentration in order to determine if this unexpected shrinkage might be related to a conformational transition of the DNA molecules. We find that the DNA molecules remain in the B conformation for all salt contents down to a relative humidity of 59%.

  13. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed Central

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-01-01

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials. PMID:28772599

  14. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-02-28

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials.

  15. Influence plots for LASSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    With many predictors in regression, fitting the full model can induce multicollinearity problems. Least Absolute Shrinkage and Selection Operation (LASSO) is useful when the effects of many explanatory variables are sparse in a high-dimensional dataset. Influential points can have a disproportionate impact on the estimated values of model parameters. Here, this paper describes a new influence plot that can be used to increase understanding of the contributions of individual observations and the robustness of results. This can serve as a complement to other regression diagnostics techniques in the LASSO regression setting. Using this influence plot, we can find influential pointsmore » and their impact on shrinkage of model parameters and model selection. Lastly, we provide two examples to illustrate the methods.« less

  16. Effect of phase inversion on microporous structure development of Al 2O 3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young

    To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.

  17. Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels

    NASA Astrophysics Data System (ADS)

    Ciurzyńska, Agnieszka; Lenart, Andrzej

    2016-01-01

    The ability to create diverse structures and studies on the effect of the aerated structure on selected properties with the use of freeze-dried gels may provide knowledge about the properties of dried foods. Such gels can be a basis for obtaining innovative food products. For the gel preparation, 3 types of hydrocolloids were used: low-methoxyl pectin, a mixture of xanthan gum and locust-bean gum, and a mixture of xanthan gum and guar gum. Gels were aerated for 3 and 7 min, frozen at a temperature of -45°C 2 h-1, and freeze-dried at a temperature of 30°C. For the samples obtained, structure, porosity, shrinkage, rehydration, and colour were investigated. It was shown that the type of the hydrocolloid and aeration time influence the structure of freeze-dried gels, which determines such properties of samples as porosity, shrinkage, density, rehydration, and colour. The bigger pores of low-methoxyl pectin gels undergo rehydration in the highest degree. The delicate and aerated structure of gels with the mixture of xanthan gum and locust-bean gum was damaged during freeze-drying and shrinkage exhibited the highest value. Small pores of samples with the mixture of xanthan gum and guar gum were responsible for the lower rehydration properties, but the highest porosity value contributed to the highest lightness value.

  18. Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions.

    PubMed

    Alnaggar, Mohammed; Di Luzio, Giovanni; Cusatis, Gianluca

    2017-04-28

    Alkali Silica Reaction (ASR) is known to be a serious problem for concrete worldwide, especially in high humidity and high temperature regions. ASR is a slow process that develops over years to decades and it is influenced by changes in environmental and loading conditions of the structure. The problem becomes even more complicated if one recognizes that other phenomena like creep and shrinkage are coupled with ASR. This results in synergistic mechanisms that can not be easily understood without a comprehensive computational model. In this paper, coupling between creep, shrinkage and ASR is modeled within the Lattice Discrete Particle Model (LDPM) framework. In order to achieve this, a multi-physics formulation is used to compute the evolution of temperature, humidity, cement hydration, and ASR in both space and time, which is then used within physics-based formulations of cracking, creep and shrinkage. The overall model is calibrated and validated on the basis of experimental data available in the literature. Results show that even during free expansions (zero macroscopic stress), a significant degree of coupling exists because ASR induced expansions are relaxed by meso-scale creep driven by self-equilibriated stresses at the meso-scale. This explains and highlights the importance of considering ASR and other time dependent aging and deterioration phenomena at an appropriate length scale in coupled modeling approaches.

  19. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  20. The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability.

    PubMed

    Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A

    2015-10-01

    Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Early tumor shrinkage is independently associated with improved overall survival among patients with metastatic renal cell carcinoma: a validation study using the COMPARZ cohort.

    PubMed

    Grünwald, Viktor; Dietrich, Marion; Pond, Gregory R

    2018-04-13

    Early tumor shrinkage (eTS) has prognostic value in metastatic renal cell carcinoma (mRCC). We aimed to validate the role of eTS in first line treatment from the COMPARZ study (NCT00720941). 1100 patients treated with sunitinib or pazopanib were analyzed for tumor response according to RECIST 1.0. eTS was defined as tumor shrinkage by ≥ 10%. A landmark analysis was performed on day (d) 42 and 90 and Cox proportional hazards regression was computed for the prognostic effect of eTS. In patients with eTS median OS was 34.1 [CI 95% 28.4; not reached (NR)] and 33.6 (CI 95% 30.1; NR) months (mo) at d 42 and 90, respectively, compared to 19.6 (CI 95% 14.0; 28.9) and 15.1 (CI 95% 12.4; 18.7) mo for patients without eTS. There was no interaction between type of treatment and eTS (d 42 p = 0.79; d 90 p = 0.37). eTS ≥ 10% remained an independent prognostic marker in multivariable analyses at both d 42 and 90. Similar results were found for eTS at the 42 and 90 days landmarks. eTS ≥ 10% has prognostic relevance in mRCC and reflects a putative tool to guide future clinical treatment.

  2. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    PubMed

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  3. A Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data

    PubMed Central

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181

  4. Short-term preoperative octreotide treatment for TSH-secreting pituitary adenoma.

    PubMed

    Fukuhara, Noriaki; Horiguchi, Kentaro; Nishioka, Hiroshi; Suzuki, Hisanori; Takeshita, Akira; Takeuchi, Yasuhiro; Inoshita, Naoko; Yamada, Shozo

    2015-01-01

    Preoperative control of hyperthyroidism in patients with TSH-secreting pituitary adenomas (TSHoma) may avoid perioperative thyroid storm. Perioperative administration of octreotide may control hyperthyroidism, as well as shrink tumor size. The effects of preoperative octreotide treatment were assessed in a large number of patients with TSHomas. Of 81 patients who underwent surgery for TSHoma at Toranomon Hospital between January 2001 and May 2013, 44 received preoperative short-term octreotide. After excluding one patient because of side effects, 19 received octreotide as a subcutaneous injection, and 24 as a long-acting release (LAR) injection. Median duration between initiation of octreotide treatment and surgery was 33.5 days. Octreotide normalized free T4 in 36 of 43 patients (84%) and shrank tumors in 23 of 38 (61%). Length of octreotide treatment did not differ significantly in patients with and without hormonal normalization (p=0.09) and with and without tumor shrinkage (p=0.84). Serum TSH and free T4 concentrations, duration of treatment, incidence of growth hormone (GH) co-secretion, results of octreotide loading tests, form of administration (subcutaneous injection or LAR), tumor volume, and tumor consistency did not differ significantly in patients with and without hormonal normalization and with and without tumor shrinkage. Short-term preoperative octreotide administration was highly effective for TSHoma shrinkage and normalization of excess hormone concentrations, with tolerable side effects.

  5. Radiation dose response simulation for biomechanical-based deformable image registration of head and neck cancer treatment

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy

    2015-11-01

    Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).

  6. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    NASA Astrophysics Data System (ADS)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  7. Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte 'apoptosis'.

    PubMed

    Myssina, Svetlana; Lang, Philipp A; Kempe, Daniela S; Kaiser, Stefanie; Huber, Stephan M; Wieder, Thomas; Lang, Florian

    2004-01-01

    Exposure to Ca2+ ionophore ionomycin, osmotic shock, oxidative stress and glucose depletion trigger cell shrinkage and scramblase-mediated phosphatidylserine exposure at the outer leaflet of the erythrocyte cell membrane. The effects are partially due to activation of GARDOS channels and subsequent cellular K+ loss leading not only to cell shrinkage but also participating in the triggering of erythrocyte scramblase. As conductive loss of K+ would depend on the parallel loss of anions we hypothesised that activation of scramblase is similarly dependent on the activity of Cl- channels. To test this hypothesis, we used Cl- channel blockers NPPB and niflumic acid. It is shown here that treatment of erythrocytes with 1 microM ionomycin leads to cellular K+ loss, decrease of hematocrit and decrease of forward scatter in FACS analysis reflecting cell shrinkage as well as increase of annexin positive cells reflecting phosphatidylserine exposure. Those events were significantly blunted in the presence of 100 microM NPPB by 34% (K+ loss), 45% (hematocrit), 32% (forward scatter) and 69% (annexin binding), or in the presence of 100 microM niflumic acid by 15% (forward scatter) and 45% (annexin binding), respectively. Moreover, oxidative stress triggered annexin binding which was again significantly inhibited (by 51%) in the presence of 100 microM NPPB. In conclusion, Cl- channels presumably participate in the regulation of erythrocyte 'apoptosis'. Copyright 2004 S. Karger AG, Basel

  8. Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions

    PubMed Central

    Alnaggar, Mohammed; Di Luzio, Giovanni; Cusatis, Gianluca

    2017-01-01

    Alkali Silica Reaction (ASR) is known to be a serious problem for concrete worldwide, especially in high humidity and high temperature regions. ASR is a slow process that develops over years to decades and it is influenced by changes in environmental and loading conditions of the structure. The problem becomes even more complicated if one recognizes that other phenomena like creep and shrinkage are coupled with ASR. This results in synergistic mechanisms that can not be easily understood without a comprehensive computational model. In this paper, coupling between creep, shrinkage and ASR is modeled within the Lattice Discrete Particle Model (LDPM) framework. In order to achieve this, a multi-physics formulation is used to compute the evolution of temperature, humidity, cement hydration, and ASR in both space and time, which is then used within physics-based formulations of cracking, creep and shrinkage. The overall model is calibrated and validated on the basis of experimental data available in the literature. Results show that even during free expansions (zero macroscopic stress), a significant degree of coupling exists because ASR induced expansions are relaxed by meso-scale creep driven by self-equilibriated stresses at the meso-scale. This explains and highlights the importance of considering ASR and other time dependent aging and deterioration phenomena at an appropriate length scale in coupled modeling approaches. PMID:28772829

  9. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less

  10. Alloy Shrinkage Factors for the Investment Casting of 17-4PH Stainless Steel Parts

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Porter, Wallace D.

    2008-04-01

    In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted.

  11. Evaluation of the shrinkage and creep of medium strength self compacting concrete

    NASA Astrophysics Data System (ADS)

    De La Cruz, C. J.; Ramos, G.; Hurtado, W. A.

    2017-02-01

    The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

  12. Numerical simulation and optimization of casting process for complex pump

    NASA Astrophysics Data System (ADS)

    Liu, Xueqin; Dong, Anping; Wang, Donghong; Lu, Yanling; Zhu, Guoliang

    2017-09-01

    The complex shape of the casting pump body has large complicated structure and uniform wall thickness, which easy give rise to casting defects. The numerical simulation software ProCAST is used to simulate the initial top gating process, after analysis of the material and structure characteristics of the high-pressure pump. The filling process was overall smooth, not there the water shortage phenomenon. But the circular shrinkage defects appear at the bottom of casting during solidification process. Then, the casting parameters were optimized and adding cold iron in the bottom. The shrinkage weight was reduced from 0.00167g to 0.0005g. The porosity volume was reduced from 1.39cm3 to 0.41cm3. The optimization scheme is simulated and actual experimented. The defect has been significantly improved.

  13. Location, location & size: defects close to surfaces dominate fatigue crack initiation

    NASA Astrophysics Data System (ADS)

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-03-01

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards

  14. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Astrophysics Data System (ADS)

    Yang, Jae-Young; El-Genk, M. S.

    1991-07-01

    The effects of shrinkage void forming during freezing of lithium and lithium-fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  15. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  16. The efficacy and safety of high-intensity focused ultrasound ablation of benign thyroid nodules.

    PubMed

    Lang, Brian H; Wu, Arnold L H

    2018-04-01

    High-intensity focused ultrasound (HIFU) is a promising form of thermal ablation of benign thyroid nodules, but evidence supporting its use is scarce. The present review evaluated the efficacy and safety of single-session HIFU treatment of benign thyroid nodules. As reported in the literature, the extent of nodule shrinkage following treatment ranged from 48.8% to 68.8%. Like other forms of ablation, the shrinkage rate was greatest in the first 3-6 months, and the best responders were patients with small (≤10 mL) nodules. Complications were uncommon, but temporary vocal cord palsy occurred in 3%-4% of patients, and was related to the distance between the HIFU beam and the recurrent laryngeal nerve. Despite being safe and efficacious, a larger-scale prospective trial is required.

  17. Ecofriendly antiglare film derived from biomass using ultraviolet curing nanoimprint lithography for high-definition display

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Murakami, Gaku; Mori, Yuto; Ichikawa, Takumi; Sekiguchi, Atsushi; Obata, Tsutomu; Yokoyama, Yoshiyuki; Mizuno, Wataru; Sumioka, Junji; Horita, Yuji

    2013-07-01

    Nanopatterning of an ecofriendly antiglare film derived from biomass using an ultraviolet curing nanoimprint lithography is reported. Developed sugar-related organic compounds with liquid glucose and trehalose derivatives derived from biomass produced high-quality imprint images of pillar patterns with a 230-nm diameter. Ecofriendly antiglare film with liquid glucose and trehalose derivatives derived from biomass was indicated to achieve the real refraction index of 1.45 to 1.53 at 350 to 800 nm, low imaginary refractive index of <0.005 and low volumetric shrinkage of 4.8% during ultraviolet irradiation. A distinctive bulky glucose structure in glucose and trehalose derivatives was considered to be effective for minimizing the volumetric shrinkage of resist film during ultraviolet irradiation, in addition to suitable optical properties for high-definition display.

  18. Turbine airfoil to shroud attachment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) ofmore » the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.« less

  19. Location, location &size: defects close to surfaces dominate fatigue crack initiation.

    PubMed

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-03-27

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.

  20. Location, location & size: defects close to surfaces dominate fatigue crack initiation

    PubMed Central

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-01-01

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599

  1. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    NASA Astrophysics Data System (ADS)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  2. Design and Production of the Injection Mould with a Cax Assistance

    NASA Astrophysics Data System (ADS)

    Likavčan, Lukáš; Frnčík, Martin; Zaujec, Rudolf; Satin, Lukáš; Martinkovič, Maroš

    2016-09-01

    This paper is focused on the process of designing the desired plastic component and injection mould by using the 3D CAD systems. The subsequent FEM analysis of the injection mould process was carried out in order to define shrinkage and deformation of the plastic material by CAE system. The dimensions of the mould were then modified to compensate the shrinkage effect. Machining process (milling and the laser texturing) of the mould was performed by using CAM systems. Finally, after the production of the plastic components by the injection mould technology, the inspection of the plastic component dimensions was carried out by CAQ in order to define the accuracy of the whole CAx chain. It was also demonstrated that CAx systems are an integral part of pre-production and production process.

  3. JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System. [for specific fuel consumption improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.

  4. Photovoltaic measurement of bandgap narrowing in moderately doped silicon

    NASA Astrophysics Data System (ADS)

    del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto

    1983-05-01

    Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.

  5. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Sorg, A. F.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M.

    2012-12-01

    Climate-driven changes in glacier-fed streamflow regimes have direct implications on freshwater supply, irrigation and hydropower potential. Reliable information about current and future glaciation and runoff is crucial for water allocation and, hence, for social and ecological stability. Although the impacts of climate change on glaciation and runoff have been addressed in previous work undertaken in the Tien Shan (known as the 'water tower of Central Asia'), a coherent, regional perspective of these findings has not been presented until now. In our study, we explore the range of changes in glaciation in different climatic regions of the Tien Shan based on existing data. We show that the majority of Tien Shan glaciers experienced accelerated glacier wasting since the mid-1970s and that glacier shrinkage is most pronounced in peripheral, lower-elevation ranges near the densely populated forelands, where summers are dry and where snow and glacial meltwater is essential for water availability. The annual glacier area shrinkage rates since the middle of the twentieth century are 0.38-0.76% per year in the outer ranges, 0.15-0.40% per year in the inner ranges and 0.05-0.31% per year in the eastern ranges. This regionally non-uniform response to climate change implies that glacier shrinkage is less severe in the continental inner ranges than in the more humid outer ranges. Glaciers in the inner ranges react with larger time lags to climate change, because accumulation and thus mass turnover of the mainly cold glaciers are relatively small. Moreover, shrinkage is especially pronounced on small or fragmented glaciers, which are widely represented in the outer regions. The relative insensitivity of glaciers in the inner ranges is further accentuated by the higher average altitude, as the equilibrium line altitude ranges from 3'500 to 3'600 masl in the outer ranges to 4'400 masl in the inner ranges. For our study, we used glacier change assessments based both on direct data (mass balance measurements) and on indirect data (aerial and satellite imagery, topographic maps). Latter can be plagued with high uncertainties and considerable errors. For instance, glaciated area has been partly overestimated in the Soviet Glacier catalogue (published in 1973, with data from the 1940s and 1950s), probably as a result of misinterpreted seasonal snowcover on aerial photographs. Studies using the Soviet Glacier catalogue as a reference are thus prone to over-emphasize glacier shrinkage. A valuable alternative is the use of continued in situ mass balance and ice thickness measurements, but they are currently conducted for only a few glaciers in the Tien Shan mountains. Efforts should therefore be encouraged to ensure the continuation and re-establishment of mass balance measurements on reference glaciers, as is currently the case at Karabatkak, Abramov and Golubin glaciers. Only on the basis of sound data, past glacier changes can be assessed with high precision and future glacier shrinkage can be estimated according to different climate scenarios. Moreover, the impact of snowcover changes, black carbon and debris cover on glacier degradation needs to be studied in more detail. Only with such model approaches, reflecting transient changes in climate, snowcover, glaciation and runoff, can appropriate adaptation and mitigation strategies be developed within a realistic time horizon.

  6. [Changes and significance of peripheral blood platelet count in tumor shrinkage induced by a low dose of CTX in T739 mice].

    PubMed

    Li, Mo-lin; Jia, Yu-jie; Jiang, Miao-na; Shu, Xiao-hong; Li, Chuan-gang

    2008-06-01

    To establish a mouse model for BTT739 tumor-bearing mice cured by a low dose of cyclophosphamide (CTX). And then to observe the dynamic changes and significance of peripheral blood counts especially blood platelet count during tumor shrinkage induced by a low dose of CTX in T739 mice. Mouse bladder carcinoma tissues were inoculated subcutaneously into T739 mice. Seven days later, different doses of CTX or the same volume of NS were administered intraperitoneally to treat these tumor-bearing T739 mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of CTX that could cure most of these tumor-bearing mice. Then another 12 tumor-bearing mice were randomly divided into 15 mg/kg CTX treatment group and control group. Blood samples were obtained from orbital venous sinus on different times after CTX treatment. Complete blood counts were performed and the relationship between peripheral blood platelet counts and tumor shrinkage was analyzed. Within 2 weeks after CTX treatment, the speed of tumor shrinkage had a positive relationship with the dose of CTX used; but the survival rate of the tumor-bearing mice had a negative relationship with the dose of CTX used in 2 months after CTX treatment. 15 mg/kg CTX could cure most of the tumor bearing mice, while it had no remarkably inhibitive effects on peripheral blood cells. The perpherial platelet count increased to (1483.4+/-184.4)x10(9)/L in mice 6 h after CTX treatment. There was significant difference compared with that in mice of control group (1086.6+/-81.0)x10(9)/L (P<0.01). During the 2nd to 14th day after CTX treatment, there was no obvious difference in the platelet count between treatment group and control group (P>0.05). CTX 15 mg/kg could cure most of bladder tumor-bearing T739 mice. The transient increase of the peripheral platelet count in 6 h after CTX treatment may relate to the antitumor effects of CTX.

  7. Final Analysis of Outcomes and RAS/BRAF Status in a Randomized Phase 3 Study of Panitumumab and Best Supportive Care in Chemorefractory Wild Type KRAS Metastatic Colorectal Cancer.

    PubMed

    Kim, Tae Won; Elme, Anneli; Park, Joon Oh; Udrea, Anghel Adrian; Kim, Sun Young; Ahn, Joong Bae; Valencia, Ricardo Villalobos; Krishnan, Srinivasan; Manojlovic, Nebojsa; Guan, Xuesong; Lofton-Day, Catherine; Jung, A Scott; Vrdoljak, Eduard

    2018-03-21

    Tumor rat sarcoma gene (RAS) status is a negative predictive biomarker for anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). We analyzed outcomes according to RAS and v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutational status, and evaluated early tumor shrinkage (ETS) and depth of response (DpR) for patients with wild type RAS. Patients with confirmed metastatic colon or rectum adenocarcinoma, wild type Kristen rat sarcoma gene tumor exon 2 status, clinical/radiologic disease progression or toxicity during irinotecan or oxaliplatin treatment, and no previous anti-EGFR therapy were randomized 1:1 to receive best supportive care (BSC) with or without panitumumab (6.0 mg/kg, intravenously, on day 1 of each 14-day cycle) in this open-label, multicenter, phase III study (20100007). RAS and BRAF mutation status were determined using Sanger sequencing. ETS was evaluated as maximum percentage change from baseline to week 8; DpR was calculated as the percentage change for tumor shrinkage at nadir versus baseline. Overall, 270 patients had RAS wild type mCRC (panitumumab with BSC, n = 142; BSC, n = 128). For patients with wild type RAS tumors, median overall survival (OS; hazard ratio [HR], 0.72; P = .015) and progression-free survival (PFS; HR, 0.45; P < .0001) were improved with panitumumab with BSC versus BSC. Similar improvements were seen for patients with wild type RAS, and wild type BRAF tumors (OS: HR, 0.75; P = .04; PFS: HR, 0.45; P < .0001). Median DpR was 16.9% for the evaluable panitumumab with BSC wild type RAS population. Overall, 69.5% experienced any type of tumor shrinkage at week 8; 38.2% experienced ≥ 20% shrinkage. Similar improvements in OS and PFS were seen with stratification according to ETS. This analysis showed that panitumumab improved outcomes in wild type RAS mCRC and indicated that ETS and DpR could be used as additional efficacy markers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. SU-F-J-86: Method to Include Tissue Dose Response Effect in Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, J; Liang, J; Chen, S

    Purpose: Organ changes shape and size during radiation treatment due to both mechanical stress and radiation dose response. However, the dose response induced deformation has not been considered in conventional deformable image registration (DIR). A novel DIR approach is proposed to include both tissue elasticity and radiation dose induced organ deformation. Methods: Assuming that organ sub-volume shrinkage was proportional to the radiation dose induced cell killing/absorption, the dose induced organ volume change was simulated applying virtual temperature on each sub-volume. Hence, both stress and heterogeneity temperature induced organ deformation. Thermal stress finite element method with organ surface boundary condition wasmore » used to solve deformation. Initial boundary correspondence on organ surface was created from conventional DIR. Boundary condition was updated by an iterative optimization scheme to minimize elastic deformation energy. The registration was validated on a numerical phantom. Treatment dose was constructed applying both the conventional DIR and the proposed method using daily CBCT image obtained from HN treatment. Results: Phantom study showed 2.7% maximal discrepancy with respect to the actual displacement. Compared with conventional DIR, subvolume displacement difference in a right parotid had the mean±SD (Min, Max) to be 1.1±0.9(−0.4∼4.8), −0.1±0.9(−2.9∼2.4) and −0.1±0.9(−3.4∼1.9)mm in RL/PA/SI directions respectively. Mean parotid dose and V30 constructed including the dose response induced shrinkage were 6.3% and 12.0% higher than those from the conventional DIR. Conclusion: Heterogeneous dose distribution in normal organ causes non-uniform sub-volume shrinkage. Sub-volume in high dose region has a larger shrinkage than the one in low dose region, therefore causing more sub-volumes to move into the high dose area during the treatment course. This leads to an unfavorable dose-volume relationship for the normal organ. Without including this effect in DIR, treatment dose in normal organ could be underestimated affecting treatment evaluation and planning modification. Acknowledgement: Partially Supported by Elekta Research Grant.« less

  9. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area.

    PubMed

    Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R

    2017-11-01

    Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.

  10. Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E. PMID:25909053

  11. Long-term outcomes and sac volume shrinkage after endovascular popliteal artery aneurysm repair.

    PubMed

    Piazza, M; Menegolo, M; Ferrari, A; Bonvini, S; Ricotta, J J; Frigatti, P; Grego, F; Antonello, M

    2014-08-01

    The aim was to evaluate long-term outcomes and sac volume shrinkage after endovascular popliteal artery aneurysm repair (EVPAR). This study was a retrospective review of all EVPAR cases between 1999 and 2012. Sac volume shrinkage, long-term patency, limb salvage, and survival were evaluated using Kaplan-Meier estimates. The association of anatomical and clinical characteristics with patency was evaluated using multivariate analysis. Forty-six EVPAR were carried out in 42 patients (mean age 78 years, 86% male; mean sac volume 45.5 ± 3.5 mL). In 93% of cases (n = 43) the procedure was elective, while in 7% of cases it was for rupture (n = 2) or acute thrombosis (n = 1). Of the 43 patients who underwent elective repair, 58% were asymptomatic and 42% symptomatic (14 claudication, 3 rest pain, and 1 compression symptoms). Technical success was 98%. Mean duration of follow-up was 56 ± 21 months. Primary patency at 1, 3, and 5 years was 82% (SE 2), 79% (SE 4), and 76% (SE 4), while secondary patency was 90% (SE 5), 85% (SE 4), and 82% (SE 1) respectively; at 5 years there was 98% limb salvage and an 84% survival rate. During follow-up 11 limbs had stent graft failure: six required conversion, one underwent amputation, and four continued with mild claudication. Of those with graft failure, 63% (7/11) occurred within the first year of follow-up. The mean aneurysm sac volume shrinkage between preoperative and 5-year post-procedure measurement was significant (45.5 ± 3.5 mL vs. 23.0 ± 5.0 mL; p < .001). Segment coverage >20 cm was a negative predictor for patency (HR 2.76; 95% CI 0.23; p = .032). EVPAR provides successful aneurysm exclusion with good long-term patency, excellent limb salvage, and survival rates. Close surveillance is nevertheless required, particularly during the first postoperative year. Patients requiring long segment coverage (>20 cm) may be at increased risk for failure. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Stereological comparison of oocyte recruitment and batch fecundity estimates from paraffin and resin sections using spawning albacore (Thunnus alalunga) ovaries as a case study

    NASA Astrophysics Data System (ADS)

    Saber, Sámar; Macías, David; Ortiz de Urbina, Josetxu; Kjesbu, Olav Sigurd

    2015-01-01

    Traditional histological protocols in marine fish reproductive laboratories using paraffin as the embedding medium are now increasingly being replaced with protocols using resin instead. These procedures entail different degrees of tissue shrinkage complicating direct comparisons of measurement results across laboratories or articles. In this work we selected ovaries of spawning Mediterranean albacore (Thunnus alalunga) as the subject of our study to address the issue of structural changes, by contrasting values on oocyte recruitment and final batch fecundity given from the same tissue samples in both paraffin and resin. A modern stereological method, the oocyte packing density (OPD) theory, was used supported by initial studies on ovarian tissue sampling and measurement design. Examples of differences in the volume fraction of oocyte stages, free space and connective tissue were found between the embedding media. Mean oocyte diameters were smaller in paraffin than in resin with differences ranging between 0.5% in primary growth and 24.3% in hydration (HYD) stage oocytes. Fresh oocyte measurements showed that oocytes shrank as a consequence of the embedding process, reaching the maximal degree of shrinkage for oocytes in the HYD stage (45.8% in paraffin and 26.5% in resin). In order to assess the effect of oocyte shrinkage on the OPD result, and thereby on relative batch fecundity (Fr), oocyte diameters corrected and uncorrected for shrinkage, were used for estimations. Statistical significant differences were found (P < 0.05) between these two approaches in both embedding media. The average Fr was numerically smaller in paraffin compared to resin (86 ± 61 vs. 106 ± 54 oocytes per gram of body mass (mean ± SD)). For both embedding media statistical significant differences (P < 0.05) were seen between Fr results based on either oocytes in the germinal vesicle migration stage or HYD stage. As a valuable adjunct, the present use of the OPD theory made it possible to document that the oocyte recruitment of spawning ovaries of Mediterranean albacore followed the typical pattern of an asynchronous oocyte development and indeterminate fecundity.

  13. Improved bridge joint materials and design details.

    DOT National Transportation Integrated Search

    2017-06-01

    Expansion joints accommodate bridge movements that result from factors such as thermal expansion and contraction, concrete shrinkage, creep effects, live loading, settlement of the foundation and substructure, and environmental stressors. Expansion j...

  14. Cork is used to make tooling patterns and molds

    NASA Technical Reports Server (NTRS)

    Hoffman, F. J.

    1965-01-01

    Sheet and waste cork are cemented together to provide a tooling pattern or mold. The cork form withstands moderately high temperatures under vacuum or pressure with minimum expansion, shrinkage, or distortion.

  15. 49 CFR 178.338-4 - Joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and the welding sequence must minimize stresses due to shrinkage of welds. (e) Filler material... Management and Budget under control number 2137-0017) [Amdt. 178-77, 48 FR 27704 and 27713, June 16, 1983, as...

  16. 49 CFR 178.338-4 - Joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and the welding sequence must minimize stresses due to shrinkage of welds. (e) Filler material... Management and Budget under control number 2137-0017) [Amdt. 178-77, 48 FR 27704 and 27713, June 16, 1983, as...

  17. 49 CFR 178.338-4 - Joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and the welding sequence must minimize stresses due to shrinkage of welds. (e) Filler material... Management and Budget under control number 2137-0017) [Amdt. 178-77, 48 FR 27704 and 27713, June 16, 1983, as...

  18. 49 CFR 178.338-4 - Joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and the welding sequence must minimize stresses due to shrinkage of welds. (e) Filler material... Management and Budget under control number 2137-0017) [Amdt. 178-77, 48 FR 27704 and 27713, June 16, 1983, as...

  19. 49 CFR 178.338-4 - Joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and the welding sequence must minimize stresses due to shrinkage of welds. (e) Filler material... Management and Budget under control number 2137-0017) [Amdt. 178-77, 48 FR 27704 and 27713, June 16, 1983, as...

  20. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  1. Investigating gas-phase defect formation in late-stage solidification using a novel phase-field crystal alloy model

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Smith, Nathan; Provatas, Nikolas

    2017-09-01

    We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.

  2. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-09-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.

  3. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  4. Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography

    NASA Astrophysics Data System (ADS)

    Moraes, Christopher; Sun, Yu; Simmons, Craig A.

    2009-06-01

    Shrinkage of polydimethylsiloxane (PDMS) complicates alignment registration between layers during multilayer soft lithography fabrication. This often hinders the development of large-scale microfabricated arrayed devices. Here we report a rapid method to construct large-area, multilayered devices with stringent alignment requirements. This technique, which exploits a previously unrecognized aspect of sandwich mold fabrication, improves device yield, enables highly accurate alignment over large areas of multilayered devices and does not require strict regulation of fabrication conditions or extensive calibration processes. To demonstrate this technique, a microfabricated Braille display was developed and characterized. High device yield and accurate alignment within 15 µm were achieved over three layers for an array of 108 Braille units spread over a 6.5 cm2 area, demonstrating the fabrication of well-aligned devices with greater ease and efficiency than previously possible.

  5. Packings of a charged line on a sphere.

    PubMed

    Alben, Silas

    2008-12-01

    We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.

  6. Multiscale Analysis of the Residual Stresses Occurring During Curing and Cooling of Thick-Wall Cross-Ply Filament-Wound Cylinders

    NASA Astrophysics Data System (ADS)

    Memarianfard, H.; Turusov, R. A.

    2017-11-01

    A nonlinear numerical multiscale analysis to predict the residual shrinkage and thermal stresses arising during curing and cooling of thickwall cross-ply filament-wound cylinders of a reinforced polymer is performed at macro- and microscales using the representative volume element (RVE) of the composite. The mechanical behavior of the polymeric matrix is described by a nonlinear viscoelastic model with account of chemical shrinkage. The fiber material is considered elastic, isotropic, and temperature-independent. The maximum residual macrostresses arising during manufacture of the cylinders were calculated. The fields of residual microstresses in the RVE in three different zones across the thickness of the cylinders were found. Results of the microscale analysis showed that microstresses in some zones of RVE were several times higher than macrostresses in these areas.

  7. The use of by-products from metallurgical and mineral industries as filler in cement-based materials.

    PubMed

    Moosberg, Helena; Lagerblad, Björn; Forssberg, Eric

    2003-02-01

    This investigation has been made in order to make it possible to increase the use of by-products in cement-based materials. Use of by-products requires a screening procedure that will reliably determine their impact on concrete. A test procedure was developed. The most important properties were considered to be strength development, shrinkage, expansion and workability. The methods used were calorimetry, flow table tests, F-shape measurements, measurements of compressive and flexural strength and shrinkage/expansion measurements. Scanning electron microscopy was used to verify some results. Twelve by-products were collected from Swedish metallurgical and mineral industries and classified according to the test procedure. The investigation showed that the test procedure clearly screened out the materials that can be used in the production of concrete from the unsuitable ones.

  8. Improved resolution of 3D printed scaffolds by shrinking.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. © 2014 Wiley Periodicals, Inc.

  9. Temperature Rise during Primer, Adhesive, and Composite Resin Photopolymerization of a Low-Shrinkage Composite Resin under Caries-Like Dentin Lesions

    PubMed Central

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza

    2012-01-01

    Objective. This study evaluated temperature rise of low-shrinkage (LS) self-etch primer (P), LS self-etch adhesive (A), and P90 silorane-based composite resin systems, photopolymerized under normal and artificially demineralized dentin. Methods. Forty 1.5 mm-thick dentin discs were prepared from sound human molars, half of which were demineralized. Temperature rise was measured during photopolymerization using a K-type thermocouple under the discs: 10 s and 40 s irradiation of the discs (controls/groups 1 and 2); 10 s irradiation of primer (P), 10 s irradiation of adhesive (A), 40 s irradiation of P90 without P and A, and 40 s irradiation of P90 with P and A (groups 3 to 6, resp.). The samples were photopolymerized using an LED unit under 550 mW/cm2 light intensity. Data was analyzed using repeated measures ANOVA and paired-sample t-test (α = 0.05). Results. There were no significant differences in temperature rise means between the two dentin samples for each irradiation duration (P > 0.0001), with significant differences between the two irradiation durations (P > 0.0001). Temperature rise measured with 40 s irradiation was significantly higher than that of 10 s duration for undemineralized and demineralized dentin P < 0.0001). Conclusions. Light polymerization of P90 low-shrinkage composite resin resulted in temperature rise approaching threshold value under artificially demineralized and undemineralized dentin. PMID:23320185

  10. Multi-criteria assessment of socio-environmental aspects in shrinking cities. Experiences from eastern Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schetke, Sophie; Haase, Dagmar

    Demographic change and economic decline produce modified urban land use pattern and densities. Compared to the beginning of the 90s after the German reunification, nowadays massive housing and commercial vacancies followed by demolition and perforation come to pass in many cities of the former GDR. In consequence, a considerable surplus of urban brownfields has been created. Furthermore, the decline in the urban fabric affects social infrastructure and urban greenery of local neighbourhoods. Here, urban planning enters into 'uncharted territory' since it needs to assess the socio-environmental impact of shrinkage. In order to carry out such an evaluation quantitatively, a multi-criteriamore » assessment scheme (MCA) was developed and applied. Firstly, we identified infrastructure and land use changes related to vacancy and demolition. Secondly, demolition scenarios for the coming 20 years were applied in order to give an idea for a long-term monitoring approach at the local district level. A multi-criteria indicator matrix quantifies the socio-environmental impact on both urban greenery and residents. Using it, we set demolition scenarios against urban 'quality of life' targets. Empirical evidence comes from Leipzig, in eastern Germany, a representative case study for urban shrinkage processes. The results show that shrinkage implies socio-environmental changes of residential livelihoods, however, does not simply increase or decrease the overall urban quality of life. The integrated assessment of all indicators identifies environmental and social opportunities, as well as the challenges a shrinking city is faced with.« less

  11. Ultrasound assisted chrome tanning: Towards a clean leather production technology.

    PubMed

    Mengistie, Embialle; Smets, Ilse; Van Gerven, Tom

    2016-09-01

    Nowadays, there is a growing demand for a cleaner, but still effective alternative for production processes like in the leather industry. Ultrasound (US) assisted processing of leather might be promising in this sense. In the present paper, the use of US in the conventional chrome tanning process has been studied at different pH, temperature, tanning time, chrome dose and US exposure time by exposing the skin before tanning and during tanning operation. Both prior exposure of the skin to US and US during tanning improves the chrome uptake and reduces the shrinkage significantly. Prior exposure of the skin to US increase the chrome uptake by 13.8% or reduces the chrome dose from 8% to 5% (% based on skin weight) and shorten the process time by half while US during tanning increases the chrome uptake by 28.5% or reduces the chrome dose from 8% to 4% (half) and the tanning time to one third compared to the control without US. Concomitantly, the resulting leather quality (measured as skin shrinkage) improved from 5.2% to 3.2% shrinkage in the skin exposed to US prior tanning and to 1.3% in the skin exposed to US during the tanning experiment. This study confirms that US chrome tanning is an effective and eco-friendly tanning process which can produce a better quality leather product in a shorter process time with a lower chromium dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  13. Evaluation of DOTD semi-integral bridge and abutment system.

    DOT National Transportation Integrated Search

    2005-03-01

    The Louisiana Department of Transportation and Development (LADOTD) designed and constructed its first prototype semi-integral abutment bridge in 1989. In this design, large longitudinal movements due to expansion and contraction, creep, shrinkage, a...

  14. Evaluation of bridge deck with shrinkage-compensating concrete.

    DOT National Transportation Integrated Search

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  15. ENVIRONMENTALLY FRIENDLY LEATHER TANNING USING ENZYMES

    EPA Science Inventory

    The effectiveness of the leather tanning will be evaluated by measuring shrinkage temperature, and analyzing leather structure using Scan Electron Microscope (SEM). The team will also measure leather physical/mechanical properties, including softness, tensile strength, elon...

  16. Soil stabilization field trial : interim report II.

    DOT National Transportation Integrated Search

    2002-02-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft sections to investigate several alternative...

  17. Soil stabilization field trial : interim report.

    DOT National Transportation Integrated Search

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying : the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field : trial of six 1000 ft test sections to investigate several al...

  18. Research notes : geosynthetic materials in reflective crack prevention.

    DOT National Transportation Integrated Search

    2007-06-01

    Extension of transverse cracks across roadway travel lanes is common in Oregon. Cracks form as a result of shrinkage and brittleness during very cold temperatures. These cracks deteriorate over time, spalling and creating bumpy riding surfaces. Prema...

  19. Evaluation of performance based concrete for bridge decks.

    DOT National Transportation Integrated Search

    2015-06-01

    The Washington State Department of Transportation (WSDOT) revised the concrete : specification for bridge decks in 2011 to be more performance based with the desired effect of : having less early-age shrinkage cracking. This report evaluates a sample...

  20. Creep of high-strength normal and lightweight concrete.

    DOT National Transportation Integrated Search

    2004-01-01

    In addition to immediate elastic deformations, concrete undergoes time-dependent deformations that must be considered in design. Creep is defined as the time-dependent deformation resulting from a sustained stress. Shrinkage deformation is the time-d...

  1. 0-6723 : development of rapid, cement-based repair materials for transportation structures.

    DOT National Transportation Integrated Search

    2014-08-01

    The state of Texas has been plagued by various : durability-related issues in recent years, : including deterioration from alkali-silica : reaction, delayed ettringite formation, corrosion : of reinforcing steel, volume changes (plastic : shrinkage, ...

  2. Geosynthetic materials in reflective crack prevention.

    DOT National Transportation Integrated Search

    2007-07-01

    Reflective cracking due to shrinkage and brittleness in asphalt pavements can seriously degrade an asphalt overlay : before it is near the end of its design life. Geosynthetics have been used to impede the reflection of existing : transverse cracking...

  3. Geosynthetics for reflective crack control

    DOT National Transportation Integrated Search

    1999-03-01

    Reflective cracking due to shrinkage and brittleness in asphalt pavements can seriously degrade an asphalt overlay before it is near its design life. Geosynthetics have been used to impede the reflection of existing transverse cracking to the new ove...

  4. Soil stabilization field trial : interim report I.

    DOT National Transportation Integrated Search

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  5. Soil stabilization field trial : interim report III.

    DOT National Transportation Integrated Search

    2003-11-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    PubMed

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    Ballasted railway track is very suitable for heavy-rail networks because of its many superior advantages in design, construction, short- and long-term maintenance, sustainability, and life-cycle cost. The sleeper, which supports rail and distributes loads from rail to ballast, is a very important component of rail track system. Prestressed concrete is very popular used in manufacturing sleepers. Therefore, improved knowledge about design techniques for prestressed concrete (PC) sleepers has been developed. However, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers. Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of abrasions in concrete sleepers. This paper presents a comparative investigation using a variety of methods to evaluate creep and shrinkage effects in railway prestressed concrete sleepers. The outcome of this study will improve the material design, which is very critical to the durability of railway track components.

  8. Microtubule catastrophe and rescue.

    PubMed

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  10. Examining robustness of model selection with half-normal and LASSO plots for unreplicated factorial designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less

  11. Hemin-induced suicidal erythrocyte death.

    PubMed

    Gatidis, Sergios; Föller, Michael; Lang, Florian

    2009-08-01

    Several diseases, such as malaria, sickle cell disease, and ischemia/reperfusion may cause excessive formation of hemin, which may in turn trigger hemolysis. A variety of drugs and diseases leading to hemolysis triggers suicidal erythrocyte death or eryptosis, i.e., cell membrane scrambling and cell shrinkage. Eryptosis is elicited by increased cytosolic Ca(2+) activity and by ceramide. The present study explored whether hemin stimulates eryptosis. Cell membrane scrambling was estimated from annexin V-binding to phosphatidylserine exposed at the cell surface, cell shrinkage from forward scatter in fluorescence-activated cell sorter analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide formation from fluorescence-labeled antibody binding. Exposure to hemin (1-10 microM) within 48 h significantly increased annexin V-binding, decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, hemin stimulates suicidal cell death, which may in turn contribute to the clearance of circulating erythrocytes and thus to anemia.

  12. Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.

    PubMed

    Pitel, Anne Lise; Segobin, Shailendra H; Ritz, Ludivine; Eustache, Francis; Beaunieux, Hélène

    2015-07-01

    Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks. Copyright © 2014. Published by Elsevier Ltd.

  13. Quantitative determination of additive Chlorantraniliprole in Abamectin preparation: Investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Song, Xiangzhong; Tian, Kuangda; Chen, Yilin; Xiong, Yanmei; Min, Shungeng

    2018-02-01

    A novel method, mid-infrared (MIR) spectroscopy, which enables the determination of Chlorantraniliprole in Abamectin within minutes, is proposed. We further evaluate the prediction ability of four wavelength selection methods, including bootstrapping soft shrinkage approach (BOSS), Monte Carlo uninformative variable elimination (MCUVE), genetic algorithm partial least squares (GA-PLS) and competitive adaptive reweighted sampling (CARS) respectively. The results showed that BOSS method obtained the lowest root mean squared error of cross validation (RMSECV) (0.0245) and root mean squared error of prediction (RMSEP) (0.0271), as well as the highest coefficient of determination of cross-validation (Qcv2) (0.9998) and the coefficient of determination of test set (Q2test) (0.9989), which demonstrated that the mid infrared spectroscopy can be used to detect Chlorantraniliprole in Abamectin conveniently. Meanwhile, a suitable wavelength selection method (BOSS) is essential to conducting a component spectral analysis.

  14. Evidence of an enhanced nuclear radius of the α -halo state via α +12C inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ito, Makoto

    2018-04-01

    Evidence of the enhanced nuclear radius in the Hoyle rotational state, 22+, is derived from the differential cross sections in α +12C inelastic scattering. The prominent shrinkage is observed in the differential cross section of the 22+ state in comparison to the yrast 21+ state, and this shrinkage is the first evidence of the enhanced nuclear radius which originates from the 3 α structure in the 22+ state. A diffraction formula, that is, Blair's phase rule, is applied to the differential cross sections, and the present analysis predicts an enhancement of 0.6 to 1.0 fm in the nuclear radius of the 22+ state in comparison to the radius of the yrast 21+, which is considered to have a normal nuclear radius. Constraint on the recent ab initio calculation for 3 α states in 12C is also discussed.

  15. Throwing out the baby with the bathwater?: Comparing 2 approaches to implausible values of change in body size.

    PubMed

    Gray, Christine L; Robinson, Whitney R

    2014-07-01

    In childhood obesity research, the appearance of height loss, or "shrinkage," indicates measurement error. It is unclear whether a common response--excluding "shrinkers" from analysis--reduces bias. Using data from the National Longitudinal Study of Adolescent Health, we sampled 816 female adolescents (≥17 years) who had attained adult height by 1996 and for whom adult height was consistently measured in 2001 and 2008 ("gold-standard" height). We estimated adolescent obesity prevalence and the association of maternal education with adolescent obesity under 3 conditions: excluding shrinkers (for whom gold-standard height was less than recorded height in 1996), retaining shrinkers, and retaining shrinkers but substituting their gold-standard height. When we estimated obesity prevalence, excluding shrinkers decreased precision without improving validity. When we regressed obesity on maternal education, excluding shrinkers produced less valid and less precise estimates. In some circumstances, ignoring shrinkage is a better strategy than excluding shrinkers.

  16. Examining robustness of model selection with half-normal and LASSO plots for unreplicated factorial designs

    DOE PAGES

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    2017-04-12

    When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less

  17. Preparation and characterization of a novel willemite bioceramic.

    PubMed

    Zhang, Meili; Zhai, Wanyin; Chang, Jiang

    2010-04-01

    Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.

  18. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  19. New process for preparing complex-shaped dielectric film similar to Mylar

    NASA Astrophysics Data System (ADS)

    Lagasse, R. R.; Kraynik, A. M.

    1982-02-01

    A new thermoforming/heat-treatment process yields complex-shaped dielectric film having electrical and shrinkage properties similar to those of flat Mylar film. This similarity should extend to other physical properties because the new process is directly analogous to the process used to prepare Mylar. Commercially available poly(ethylene terephthalate) film is formed into a cavity at approx. 110 C and then heat treated at approx. 180 C. A laboratory-scale forming apparatus has produced cylindrically shaped films having depth/diameter ratio approx. 1, a tapered wall-section, and variation in wall thickness of 3X. Evaluation of other forming methods suggest that the production rate and thickness uniformity can be improved with existing technology. Thermal shrinkage at 150 C, 1 kHz dielectric constant from -55 to +70 C, leakage current at 1 kV, and breakdown voltage have been measured for both the complex-shaped film and Mylar.

  20. Macrosegregation Caused by Convection Associated with Directional Solidification through Cross-Section Change

    NASA Technical Reports Server (NTRS)

    Ghods, M.; Lauer, M.; Tewari, S. N.; Poirier, D. R..; Grugel, R. N.

    2015-01-01

    Al-7 wt% Si and Pb-6 wt% Sb alloy samples were directionally solidified (DS), with liquid above and solid below and gravity pointing down, in cylindrical graphite crucibles through an abrupt cross-section change. Fraction eutectic distribution in the microstructure, primary dendrite spacing and primary dendrite trunk diameters have been measured in the DS samples in the vicinity of section change in order to examine the effect of convection associated with the combined influence of thermosolutal factors and solidification shrinkage. It is observed that convection not only produces extensive radial and axial macrosegregation near cross-section change, it also affects the dendritic array morphology. Primary dendrite spacing and primary dendrite trunk diameter, both, are influenced by this convection. In addition to the experimental results, preliminary results from a numerical model which includes solidification shrinkage and thermosolutal convection in the mushy zone in its analysis will also be presented

  1. Improvement of the Assignment Methodology of the Approach Embankment Design to Highway Structures in Difficult Conditions

    NASA Astrophysics Data System (ADS)

    Chistyy, Y.; Kuzakhmetova, E.; Fazilova, Z.; Tsukanova, O.

    2018-03-01

    Design issues of junction of bridges and overhead road with approach embankment are studied. The reasons for the formation of deformations in the road structure are indicated. Activities to ensure sustainability and acceleration of the shrinkage of a weak subgrade approach embankment are listed. The necessity of taking into account the man-made impact of the approach embankment on the subgrade behavior is proved. Modern stabilizing agents to improve the properties of used soils in the embankment and the subgrade are suggested. Clarified methodology for determining an active zone of compression in the subgrade under load from the weight of the embankment is described. As an additional condition to the existing methodology for establishing the lower bound of the active zone of compression it is offered to accept the accuracy of evaluation of soil compressibility and determine shrinkage.

  2. [Urban shrinkage and challenges for the public health-care service].

    PubMed

    Kabisch, S

    2007-10-01

    In the 21st century, urban development is facing new challenges caused by the simultaneous growing and shrinking of cities and urban regions. Whilst the development patterns and instruments of urban growth are well-known and widely accepted, the processes of shrinkage with its broad consequences, sphere of impact and speed need intensive investigation. In particular, urban restructuring including housing demolition brings about psychological stress situations for the affected inhabitants. Until the present time public services, including health-care, are poorly prepared to cope with the new situation. To take account of these new challenges, the adaptation of tasks, instruments and targets is urgently needed. To be successful, a continuous cooperation and communication between municipal institutions and housing enterprises responsible for urban and housing development is indispensable. Furthermore, appropriately focussed scientific research results can support the creation of adequate strategies and instruments.

  3. Effect of Proteolytic Enzymes and Ginger Extract on Tenderization of M. pectoralis profundus from Holstein Steer.

    PubMed

    Moon, Sung Sil

    2018-02-01

    The effects of proteolytic enzymes (bromelain and bromelain+papain) and a ginger extract were assessed on collagen content and solubility, thermal shrinkage temperature of connective tissue, pH, cooking loss, drip loss, and Warner-Bratzler shear force (WBSF) of M. pectoralis profundus isolated from the beef brisket cut. Both proteolytic enzymes and ginger extract led to a significant increase in cooking loss and collagen solubility compared with untreated controls. On the other hand, the peak ( T p ) thermal shrinkage temperature markedly decreased in all treatments compared with those in controls. Samples treated with bromelain, bromelain + papain, and ginger extract showed a significant decrease in WBSF by 36%, 40%, and 37%, respectively, compared with untreated controls. Our findings suggest that ginger extract are useful for postmortem tenderization of meat containing high levels of collagen, compared to control even though, bromelain and bromelain + papain treatments have higher collagen solubility than ginger extract.

  4. Observations of simultaneous coronal loop shrinkage and expansion during the decay phase of a solar flare

    NASA Astrophysics Data System (ADS)

    Khan, J. I.; Fletcher, L.; Nitta, N. V.

    2006-07-01

    We report what we believe are the first direct and unambiguous observations of simultaneous coronal magnetic flux loop shrinkage and expansion during the decay phase of a solar flare. The retracting and expanding loops were observed nearly face-on (i.e., with the loop major axis approximately orthogonal to the line of sight) in emission in imaging data from the Yohkoh Soft X-ray Telescope (SXT). The retracting loop is observed to shrink with a speed of 118 ± 66 km s-1. The faint outward moving loop-like feature occurred ~200´´ above the shrinking loop during the time of the shrinking loop. We estimate the speed of the outward moving loop was ~129 ± 74 km s-1. We interpret the shrinking loop and simultaneous outward moving loop as direct evidence for reconnected magnetic field lines during a flare.

  5. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  6. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    DOE PAGES

    Li, Jin; Fan, Cuncai; Ding, Jie; ...

    2017-01-03

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  7. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    NASA Astrophysics Data System (ADS)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  8. Self-desiccation mechanism of high-performance concrete.

    PubMed

    Yang, Quan-Bing; Zhang, Shu-Qing

    2004-12-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relative humidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely. The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (T(r)/T(te) ratio).

  9. Hydrothermal epitaxy and resultant properties of EuTiO3 films on SrTiO3(001) substrate

    PubMed Central

    2014-01-01

    We report a novel epitaxial growth of EuTiO3 films on SrTiO3(001) substrate by hydrothermal method. The morphological, structural, chemical, and magnetic properties of these epitaxial EuTiO3 films were examined by scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffractometry, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometry, respectively. As-grown EuTiO3 films with a perovskite structure were found to show an out-of-plane lattice shrinkage and room-temperature ferromagnetism, possibly resulting from an existence of Eu3+. Postannealing at 1,000°C could reduce the amount of Eu3+, relax the out-of-plane lattice shrinkage, and impact the magnetic properties of the films. PACS 81.10.Aj; 81.15.-z; 61.05.-a PMID:24948889

  10. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms

    NASA Astrophysics Data System (ADS)

    McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel

    2014-09-01

    Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.

  11. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2017-09-07

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  12. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  13. Sensitive biomarkers of alcoholism's effect on brain macrostructure: similarities and differences between France and the United States

    PubMed Central

    Le Berre, Anne-Pascale; Pitel, Anne-Lise; Chanraud, Sandra; Beaunieux, Hélène; Eustache, Francis; Martinot, Jean-Luc; Reynaud, Michel; Martelli, Catherine; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2015-01-01

    Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS. PMID:26157376

  14. Effet de la poudre de verre sur le fluage du C-S-H

    NASA Astrophysics Data System (ADS)

    Danilova, Maryna

    Glass is a unique inert material that could be recycled many times without changing its physical and chemical properties. Nevertheless, for some reason, large quantities of glass are still not recycled and therefore are stored as a waste. Its alternative recycling has become, since long, a major environmental problem. Moreover, glass is a potentially useful material for the development of ecological concrete, consequently, this way valorization seems to be imminent. In this research, characterization of the creep of concrete incorporating waste glass in powder form, i.e. glass powder (GP) as a supplementary cementitious material (GP-concrete) was carried out at a macro- and nanolevels. First, results from experimental study on the under load behaviour of GP-concrete are presented. Different types of strain occurring under load or after unload were discussed: quasi-instantaneous deformation, total mechanical deformation due to the maintained uniaxial compressive load during 1 year, total creep, basic creep, elastic recovery and total recovery. Shrinkage under drying conditions and endogenous shrinkage were also studied. After 1 year creep, the effects of constant load and drying on residual strength were also examined. A comparison was made concerning the final state of the porosity. Afterwards, the thesis reveals the results of tests conducted on the cement paste, going down to its composition and properties of the hydrated phases, in particular of calcium silicate hydrates (C-S-H). All of this, in order to conclude on the harmlessness use of GP regarding to the creep. Keywords : Glass powder, Air-entrained concrete, Creep, Shrinkage, C-S-H, Nanoindentation

  15. Volumetric response of intracranial meningioma after photon or particle irradiation.

    PubMed

    Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E

    2017-03-01

    Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.

  16. Latent variable models for gene-environment interactions in longitudinal studies with multiple correlated exposures.

    PubMed

    Tao, Yebin; Sánchez, Brisa N; Mukherjee, Bhramar

    2015-03-30

    Many existing cohort studies designed to investigate health effects of environmental exposures also collect data on genetic markers. The Early Life Exposures in Mexico to Environmental Toxicants project, for instance, has been genotyping single nucleotide polymorphisms on candidate genes involved in mental and nutrient metabolism and also in potentially shared metabolic pathways with the environmental exposures. Given the longitudinal nature of these cohort studies, rich exposure and outcome data are available to address novel questions regarding gene-environment interaction (G × E). Latent variable (LV) models have been effectively used for dimension reduction, helping with multiple testing and multicollinearity issues in the presence of correlated multivariate exposures and outcomes. In this paper, we first propose a modeling strategy, based on LV models, to examine the association between repeated outcome measures (e.g., child weight) and a set of correlated exposure biomarkers (e.g., prenatal lead exposure). We then construct novel tests for G × E effects within the LV framework to examine effect modification of outcome-exposure association by genetic factors (e.g., the hemochromatosis gene). We consider two scenarios: one allowing dependence of the LV models on genes and the other assuming independence between the LV models and genes. We combine the two sets of estimates by shrinkage estimation to trade off bias and efficiency in a data-adaptive way. Using simulations, we evaluate the properties of the shrinkage estimates, and in particular, we demonstrate the need for this data-adaptive shrinkage given repeated outcome measures, exposure measures possibly repeated and time-varying gene-environment association. Copyright © 2014 John Wiley & Sons, Ltd.

  17. The effect of radiation-induced cross-linking on the relaxation of taut tie molecules during annealing of drawn LDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong Jiang Yan; Yunxia Luo; Bingzheng Jiang

    1993-02-05

    Shrinkage, retractive stress, and infrared dichroism of the drawn low-density polyethylene (LDPE) as-drawn and irradiated by [sup 60]Co-ray have been measured under different annealing conditions. The shrinkage and the disorientation of the irradiated sample was undergone more rapidly than that of unirradiated one as the temperature was continuously increased, surpassing a certain value, and a higher degree of shrinkage and disorientation was achieved finally for the irradiated sample when the samples were annealed with free ends. For the samples heated isothermally with fixed ends, the retractive stress went through a maximum and then attenuated to a limited value, and themore » degree of such a stress attenuation for the unirradiated sample was much more than that for the irradiated sample. These results show that the taut tie molecules (TTMs) in drawn PE can relax by the pulling of chain segments out of crystal blocks that they anchored in at elevated temperatures higher than the [alpha] transition and also by the displacing of microfibrils if the samples were annealed with free ends. The cross-links produced by irradiation prohibit the former process. It was further observed that the dependence of the average extinction coefficient of the band at 2,016 cm[sup [minus]1] on that of the band at 1,894 cm[sup [minus]1] is related to irradiation and annealing conditions, which has also been explained by the relaxation of TTMs and the function of irradiation-induced cross-linking on the relaxation.« less

  18. The engineering significance of shrinkage and swelling soils in blast damage investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitton, S.J.; Harris, W.W.

    1996-12-01

    In the US each year it has been estimated that expansive soils cause approximately $9.0 billion in damage to buildings, roads, airports, and other facilities. This figure alone exceeds the damage estimate for earthquakes, floods, tornadoes, and hurricanes combined. Unfortunately, some cases of expansive soil damage (swelling) are blamed on rock blasting operations if the blasting operations are located within the immediate area. While simple tests, such as the Atterberg limits test, can characterize a soil as expansive, it does not necessarily answer the question whether the foundation soils are causing distresses to a structure. In particular, it appears thatmore » once a soil has been labeled as nonexpansive it is no longer considered as a problem soil, in which case blast vibrations become the prime suspect. It should be emphasized, however, that even non-plastic soils, those soils with low to nonexistent plastic indexes, can exhibit significant shrinkage characteristics that can result in significant damage to structures. While expansive soil is a function of the mineralogy of the soil particles, i.e., swelling clay minerals, shrinkage is caused by the loss of moisture from soil as capillary pressures exceed the cohesion or tensile strength and is therefore a function of the soils particle size and its pore size distribution. This is a significant problem for all fine grained soils regardless of the soil`s mineralogy. It`s particularly important for regions of the US that typically have a positive water balance but experience significant drought periods when soil moisture is lost.« less

  19. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers.

    PubMed

    Wang, Xiaoyan; Cai, Qing; Zhang, Xuehui; Wei, Yan; Xu, Mingming; Yang, Xiaoping; Ma, Qi; Cheng, Yali; Deng, Xuliang

    2016-02-01

    The major objective of this study was to explore the effects of silicon dioxide (SiO2) nanofibers on the performance of 2, 2-bis-[4-(methacryloxypropoxy)-phenyl]-propane (Bis-GMA)/tri-(ethyleneglycol) dimethacrylate (TEGDMA) dental composites. At first, the mechanical properties of Bis-GMA/TEGDMA (50/50, w/w) resins containing different contents of SiO2 nanofibers were evaluated to identify the appropriate composition to achieve the significant reinforcing effect. Secondly, optimized contents (5 or 10wt.%) of SiO2 nanofibers were mixed into resins together with SiO2 microparticles, which was 60wt.% of the resin. Controls for comparison were Bis-GMA/TEGDMA resins containing only SiO2 microparticles (60wt.%) or with additional SiO2 nanoparticles (5 or 10wt.%). Properties including abrasion, polymerization shrinkage and mechanical properties were evaluated to determine the contribution of SiO2 nanofibers. In comparison with SiO2 nanoparticles, SiO2 nanofibers improved the overall performance of Bis-GMA/TEGDMA composite resins, especially in improving abrasion resistance and decreasing polymerization shrinkage. The explanations were that one-dimensional SiO2 nanofibers were able to shield particular fillers from being abraded off, and able to form a kind of overlapped fibrous network to resist polymerization shrinkage. With these approaches, SiO2 nanofiber-containing Bis-GMA composite resins were envisioned a promising choice to achieve long-term durable restorations in clinical therapies. Copyright © 2015. Published by Elsevier B.V.

  20. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    NASA Astrophysics Data System (ADS)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

Top