SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores
NASA Astrophysics Data System (ADS)
Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen
2017-07-01
Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.
Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film
NASA Astrophysics Data System (ADS)
Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle
2013-01-01
Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.
Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist
NASA Astrophysics Data System (ADS)
Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho
2002-07-01
Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.
"Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays.
Sollier, Kevin; Mandon, Céline A; Heyries, Kevin A; Blum, Loïc J; Marquette, Christophe A
2009-12-21
An innovative method for the production of microfluidic chips integrating protein spots is described. The technology, called "Print-n-Shrink", is based on the screen-printing of a microfluidic design (using a dielectric ink) onto Polyshrink polystyrene sheets. The initial print which has a minimum size of 15 microm (height) x 230 microm (width) is thermally treated (30 seconds, 163 degrees C) to shrink and generate features of 85 microm (height) x 100 microm (width). Concomitantly, proteins such as monoclonal antibodies or cellular adhesion proteins are spotted onto the Polyshrink sheets and shrunk together with the microfluidic design, creating a complete biochip integrating both complex microfluidic designs and protein spots for bioanalytical applications.
Capture of shrinking targets with realistic shrink patterns.
Hoffmann, Errol R; Chan, Alan H S; Dizmen, Coskun
2013-01-01
Previous research [Hoffmann, E. R. 2011. "Capture of Shrinking Targets." Ergonomics 54 (6): 519-530] reported experiments for capture of shrinking targets where the target decreased in size at a uniform rate. This work extended this research for targets having a shrink-size versus time pattern that of an aircraft receding from an observer. In Experiment 1, the time to capture the target in this case was well correlated in terms of Fitts' index of difficulty, measured at the time of capture of the target, a result that is in agreement with the 'balanced' model of Johnson and Hart [Johnson, W. W., and Hart, S. G. 1987. "Step Tracking Shrinking Targets." Proceedings of the human factors society 31st annual meeting, New York City, October 1987, 248-252]. Experiment 2 measured the probability of target capture for varying initial target sizes and target shrink rates constant, defined as the time for the target to shrink to half its initial size. Data of shrink time constant for 50% probability of capture were related to initial target size but did not greatly affect target capture as the rate of target shrinking decreased rapidly with time.
2016-03-31
Abstract: With the decrease of transistor feature sizes into the ultra-deep submicron range, leakage power becomes an important design challenge for...MTNCL design showed substantial improvements in terms of active energy and leakage power compared to the equivalent synchronous design. Keywords...switching could use a large portion of power. Additionally, leakage power has come to dominate power consumption as process sizes shrink. Adaptive
ERIC Educational Resources Information Center
Stock, S. E.; Davies, D. K.; Wehmeyer, M. L.; Palmer, S. B.
2008-01-01
Background: There are over two billion telephones in use worldwide. Yet, for millions of Americans with intellectual disabilities (ID), access to the benefits of cellphone technology is limited because of deficits in literacy, numerical comprehension, the proliferation of features and shrinking size of cellphone hardware and user interfaces.…
Hand tool permits shrink sizing of assembled tubing
NASA Technical Reports Server (NTRS)
Millett, A.; Odor, M.
1966-01-01
Portable tool sizes tubing ends without disassembling the tubing installation. The shrink sizing tool is clamped to the tubing and operated by a ratchet wrench. A gear train forces the tubing end against an appropriate die or mandrel to effect the sizing.
Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist
Kito, Tomonori; Sadato, Norihiro; Passingham, Richard E; Naito, Eiichi
2005-01-01
The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments. PMID:16336049
Sequential shrink photolithography for plastic microlens arrays
NASA Astrophysics Data System (ADS)
Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle
2011-07-01
Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.
Sequential shrink photolithography for plastic microlens arrays.
Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle
2011-07-18
Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.
Sequential shrink photolithography for plastic microlens arrays
Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle
2011-01-01
Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children’s toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays. PMID:21863126
Manna, Uttam; Carter, Matthew C D; Lynn, David M
2013-06-11
An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reflective small angle electron scattering to characterize nanostructures on opaque substrates
NASA Astrophysics Data System (ADS)
Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan
2017-09-01
Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.
Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrates.
Friedman, Lawrence H; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan
2017-09-01
Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.
Behaviour of Rotating Bose Einstein Condensates Under Shrinking
NASA Astrophysics Data System (ADS)
Zhai, Hui; Zhou, Qi
2005-01-01
When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].
Examining a shrinking rustbelt city: A case of Binghamton, NY (1990 - 2010)
NASA Astrophysics Data System (ADS)
Park, Paul Sung-Pyo
Shrinking cities are locations that have experienced population and economic loss. Each shrinking city is unique in the influential characteristics that result in loss, however, patterns of the contemporary city is highly based on economic changes. The impact of shrinking cities is a global phenomenon not only limited to the U.S. or the developed world. However, among large shrinking cities of the world, 25% are located in the U.S. Therefore, it is of utter importance to understand and examine these locations. The connection of spectral findings of a shrinking "Rustbelt" city of Binghamton, NY using a multilayer perceptron (MLP) artificial neural network (ANN) mean of classification was made with spatial findings of demographic and socioeconomic status of the local population. This resulted in a high scale classification of urban ecozones, which created the boundaries for examining the changes in population size and the types of individuals associated with these populations.
NASA Astrophysics Data System (ADS)
Ham, Boo-Hyun; Kim, Il-Hwan; Park, Sung-Sik; Yeo, Sun-Young; Kim, Sang-Jin; Park, Dong-Woon; Park, Joon-Soo; Ryu, Chang-Hoon; Son, Bo-Kyeong; Hwang, Kyung-Bae; Shin, Jae-Min; Shin, Jangho; Park, Ki-Yeop; Park, Sean; Liu, Lei; Tien, Ming-Chun; Nachtwein, Angelique; Jochemsen, Marinus; Yan, Philip; Hu, Vincent; Jones, Christopher
2017-03-01
As critical dimensions for advanced two dimensional (2D) DUV patterning continue to shrink, the exact process window becomes increasingly difficult to determine. The defect size criteria shrink with the patterning critical dimensions and are well below the resolution of current optical inspection tools. As a result, it is more challenging for traditional bright field inspection tools to accurately discover the hotspots that define the process window. In this study, we use a novel computational inspection method to identify the depth-of-focus limiting features of a 10 nm node mask with 2D metal structures (single exposure) and compare the results to those obtained with a traditional process windows qualification (PWQ) method based on utilizing a focus modulated wafer and bright field inspection (BFI) to detect hotspot defects. The method is extended to litho-etch litho-etch (LELE) on a different test vehicle to show that overlay related bridging hotspots also can be identified.
Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching
Nokes, Jolie M.; Sharma, Himanshu; Tu, Roger; Kim, Monica Y.; Chu, Michael; Siddiqui, Ali; Khine, Michelle
2016-01-01
We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing. PMID:28773318
Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching.
Nokes, Jolie M; Sharma, Himanshu; Tu, Roger; Kim, Monica Y; Chu, Michael; Siddiqui, Ali; Khine, Michelle
2016-03-14
We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.
Ultra-fast Escape of a Octopus-inspired Rocket
NASA Astrophysics Data System (ADS)
Weymouth, Gabriel; Triantafyllou, Michael
2013-11-01
The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.
Freezing effect on bread appearance evaluated by digital imaging
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.
1999-01-01
In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.
Self-expanding/shrinking structures by 4D printing
NASA Astrophysics Data System (ADS)
Bodaghi, M.; Damanpack, A. R.; Liao, W. H.
2016-10-01
The aim of this paper is to create adaptive structures capable of self-expanding and self-shrinking by means of four-dimensional printing technology. An actuator unit is designed and fabricated directly by printing fibers of shape memory polymers (SMPs) in flexible beams with different arrangements. Experiments are conducted to determine thermo-mechanical material properties of the fabricated part revealing that the printing process introduced a strong anisotropy into the printed parts. The feasibility of the actuator unit with self-expanding and self-shrinking features is demonstrated experimentally. A phenomenological constitutive model together with analytical closed-form solutions are developed to replicate thermo-mechanical behaviors of SMPs. Governing equations of equilibrium are developed for printed structures based on the non-linear Green-Lagrange strain tensor and solved implementing a finite element method along with an iterative incremental Newton-Raphson scheme. The material-structural model is then applied to digitally design and print SMP adaptive lattices in planar and tubular shapes comprising a periodic arrangement of SMP actuator units that expand and then recover their original shape automatically. Numerical and experimental results reveal that the proposed planar lattice as meta-materials can be employed for plane actuators with self-expanding/shrinking features or as structural switches providing two different dynamic characteristics. It is also shown that the proposed tubular lattice with a self-expanding/shrinking mechanism can serve as tubular stents and grippers for bio-medical or piping applications.
Dechmann, Dina K. N.; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R. E.; Zub, Karol; Wikelski, Martin
2017-01-01
Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs. PMID:28211896
Dechmann, Dina K N; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R E; Zub, Karol; Wikelski, Martin
2017-02-13
Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs.
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Robinson, P H; Swanepoel, N; Heguy, J M; Price, T; Meyer, D M
2016-01-15
Silage 'shrink' (i.e., loss of fresh chopped crop between ensiling and feedout) represents a nutrient loss which can degrade air quality as volatile carbon compounds, degrade surface waterways due to seepage, or degrade aquifers due to seepage. Virtually no research has documented shrink in large silage piles. The term 'shrink' is often ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost in the drying oven (vcoDM). Corn silage piles (4 wedge, 2 rollover/wedge, 1 bunker) from 950 to 12,204 tonnes as built, on concrete (4), soil (2) and a combination (1) in California's San Joaquin Valley, using a bacterial inoculant, covered within 24 h with an oxygen barrier inner film and black/white outer plastic, fed out using large front end loaders through an electronic feed tracking system, and from the 2013 crop year, were used. Shrink as WW, oDM and vcoDM were 90±17, 68±18 and 28±21 g/kg, suggesting that much WW shrink is water and much oDM shrink is volatiles lost during analytical oven drying. Most shrink occurred in the silage mass with losses from exposed silage faces, as well as between exposed face silage removal and the total mixed ration mixer, being low. Silage bulk density, exposed silage face management and face use rate did not have obvious impacts on any shrink measure, but age of the silage pile during silage feedout impacted shrink losses ('older' silage piles being higher), but most strongly for WW shrink. Real shrink losses (i.e., vcoDM) of large well managed corn silage piles are low, the exposed silage face is a small portion of losses, and many proposed shrink mitigations appeared ineffective, possibly because shrink was low overall and they are largely directed at the exposed silage face. Copyright © 2015 Elsevier B.V. All rights reserved.
Automated AFM for small-scale and large-scale surface profiling in CMP applications
NASA Astrophysics Data System (ADS)
Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il
2018-03-01
As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang
2014-01-01
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832
A novel ultrasonic NDE for shrink fit welded structures using interface waves.
Lee, Jaesun; Park, Junpil; Cho, Younho
2016-05-01
Reactor vessel inspection is a critical part of safety maintenance in a nuclear power plant. The inspection of shrink fit welded structures in a reactor nozzle can be a challenging task due to the complicated geometry. Nozzle inspection using pseudo interface waves allows us to inspect the nozzle from outside of the nuclear reactor. In this study, layered concentric pipes were manufactured with perfect shrink fit conditions using stainless steel 316. The displacement distributions were calculated with boundary conditions for a shrink fit welded structure. A multi-transducer guided wave phased array system was employed to monitor the welding quality of the nozzle end at a distance from a fixed position. The complicated geometry of a shrink fit welded structure can be overcome by using the pseudo interface waves in identifying the location and size of defects. The experimental results demonstrate the feasibility of detecting weld delamination and defects. Copyright © 2016 Elsevier B.V. All rights reserved.
CMOS time-to-digital converter based on a pulse-mixing scheme
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Hwang, Chorng-Sii; Liu, Keng-Chih; Chen, Guan-Hong
2014-11-01
This paper proposes a new pulse-mixing scheme utilizing both pulse-shrinking and pulse-stretching mechanisms to improve the performance of time-to-digital converters (TDCs). The temporal resolution of the conventional pulse-shrinking mechanism is determined by the size ratio between homogeneous and inhomogeneous elements. The proposed scheme which features double-stage operation derives its resolution according to the time difference between pulse-shrinking and pulse-stretching amounts. Thus, it can achieve greater immunity against temperature and ambient variations than that of the single-stage scheme. The circuit area also can be reduced by the proposed pulse-mixing scheme. In addition, this study proposes an improved cyclic delay line to eliminate the undesirable shift in the temporal resolution successfully. Therefore, the effective resolution can be controlled completely by the pulse-mixing unit to improve accuracy. The proposed TDC composed of only one cyclic delay line and one counter is fabricated in a TSMC CMOS 0.35-μm DPQM process. The chip core occupies an extremely small area of 0.02 mm2, which is the best among the related works. The experimental result shows that an effective resolution of around 53 ps within ±13% variation over a 0-100 °C temperature range is achieved. The power consumption is 90 μW at a sample rate of 1000 samples/s. In addition to the reduced area, the proposed TDC circuit achieves its resolution with less thermal-sensitivity and better fluctuations caused by process variations.
NASA Astrophysics Data System (ADS)
Khan, J. I.; Fletcher, L.; Nitta, N. V.
2006-07-01
We report what we believe are the first direct and unambiguous observations of simultaneous coronal magnetic flux loop shrinkage and expansion during the decay phase of a solar flare. The retracting and expanding loops were observed nearly face-on (i.e., with the loop major axis approximately orthogonal to the line of sight) in emission in imaging data from the Yohkoh Soft X-ray Telescope (SXT). The retracting loop is observed to shrink with a speed of 118 ± 66 km s-1. The faint outward moving loop-like feature occurred ~200´´ above the shrinking loop during the time of the shrinking loop. We estimate the speed of the outward moving loop was ~129 ± 74 km s-1. We interpret the shrinking loop and simultaneous outward moving loop as direct evidence for reconnected magnetic field lines during a flare.
NASA Astrophysics Data System (ADS)
Schaetz, Thomas; Hay, Bernd; Walden, Lars; Ziegler, Wolfram
1999-04-01
With the ongoing shrinking of design rules, the complexity of photomasks does increase continuously. Features are getting smaller and denser, their characterization requires sophisticated procedures. Looking for the deviation from their target value and their linewidth variation is not sufficient any more. In addition, measurements of corner rounding and line end shortening are necessary to define the pattern fidelity on the mask. Otherwise printing results will not be satisfying. Contacts and small features are suffering mainly from imaging inaccuracies. The size of the contacts as an example may come out too small on the photomask and therefore reduces the process window in lithography. In order to meet customer requirements for pattern fidelity, a measurement algorithm and a measurement procedure needs to be introduced and specifications to be defined. In this paper different approaches are compared, allowing an automatic qualification of photomask by optical light microscopy based on a MueTec CD-metrology system, the newly developed MueTec 2030UV, provided with a 365 nm light source. The i-line illumination allows to resolve features down to 0.2 micrometers size with good repeatability.
NASA Astrophysics Data System (ADS)
Bakar, Shahirah Abu; Arifin, Norihan Md; Ali, Fadzilah Md; Bachok, Norfifah; Nazar, Roslinda
2017-08-01
The stagnation-point flow over a shrinking sheet in Darcy-Forchheimer porous medium is numerically studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by using shooting technique method with Maple implementation. Dual solutions are observed in a certain range of the shrinking parameter. Regarding on numerical solutions, we prepared stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results or each solution, which enable us to discuss the features of the respective solutions.
ERIC Educational Resources Information Center
Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.
2013-01-01
Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…
Lailvaux, Simon P; Leifer, Jack; Kircher, Bonnie K; Johnson, Michele A
2015-10-01
The expression of male secondary sexual traits can be dynamic, changing size, shape, color, or structure over the course of different seasons. However, the factors underlying such changes are poorly understood. In male Anolis carolinensis lizards, a morphological secondary sexual signal called the dewlap changes size seasonally within individuals. Here, we test the hypothesis that seasonal changes in male dewlap size are driven by increased use and extension of the dewlap in spring and summer, when males are breeding, relative to the winter and fall. We captured male green anole lizards prior to the onset of breeding and constrained the dewlap in half of them such that it could not be extended. We then measured dewlap area in the spring, summer, and winter, and dewlap skin and belly skin elasticity in summer and winter. Dewlaps in unconstrained males increase in area from spring to summer and then shrink in the winter, whereas the dewlaps of constrained males consistently shrink from spring to winter. Dewlap skin is significantly more elastic than belly skin, and skin overall is more elastic in the summer relative to winter. These results show that seasonal changes in dewlap size are a function of skin elasticity and display frequency, and suggest that the mechanical properties of signaling structures can have important implications for signal evolution and design.
Sustainability for Shrinking Cities | Science Inventory | US EPA
Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing conditions and to cope with major events. The dynamics of shrinking cities are different than the dynamics of growing cities, and therefore intentional research and planning around creating sustainable cities is needed for shrinking cities. We propose research that can be applied to shrinking cities by identifying parallel challenges in growing cities and translating urban research and planning that is specific to each city’s dynamics. In addition, we offer applications of panarchy concepts to this problem. The contributions to this Special Issue take on this forward-looking planning task through drawing lessons for urban sustainability from shrinking cities, or translating general lessons from urban research to the context of shrinking cities. Humans are rapidly becoming an urban species, with greater populations in urban areas, increasing size of these urban areas, and increasing number of very large urban areas. As a consequence, much of what we know about cities is focused on how they grow and take shape, the strains that their growth puts on city infrastructure, the consequences for human and nonhuman inhabitants of these cities and their surroundings, and the policies which can
Robinson, P H; Swanepoel, N; Heguy, J M; Price, P; Meyer, D M
2016-07-15
Silage 'shrink' (i.e., fresh chop crop lost between ensiling and feedout) represents losses of potential animal nutrients which degrade air quality as volatile carbon compounds. Regulatory efforts have, in some cases, resulted in semi-mandatory mitigations (i.e., dairy farmers select a minimum number of mitigations from a list) to reduce silage shrink, mitigations often based on limited data of questionable relevance to large commercial silage piles where silage shrink may or may not be a problem of a magnitude equal to that assumed. Silage 'shrink' is generally ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost during oven drying (vcoDM). As no research has documented shrink in large cereal silage piles, 6 piles ranging from 1456 to 6297tonnes (as built) were used. Three used cereal cut at an immature stage and three at a mature stage. Physiologically immature silages had generally higher (P<0.01) levels of total volatile fatty acids (especially acetic acid; P=0.01) and total alcohols (P<0.01) than did physiologically mature crops, suggesting higher carbon compound volatilization potential from immature silages. However expressed as WW, oDM and vcoDM, total shrink (as well as from where in the piles it occurred) was little impacted by crop maturity, and whole pile vcoDM shrink was only ~35g/kg. Overall, real shrink losses (vcoDM) of large well managed cereal silage piles were relatively low, and a lower potential contributor to aerosol emissions of volatile carbon compounds than has often been assumed. Losses from the silage mass and the exposed silage face were approximately equal contributors to vcoDM shrink. Mitigations to reduce these relatively low emission levels of volatile organic compounds from cereal silage piles should focus on the ensiled mass and the exposed silage face. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbricatore, P.; Ambrosio, G.; Cheban, S.
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
Mu2e transport solenoid prototype design and manufacturing
Fabbricatore, P.; Ambrosio, G.; Cheban, S.; ...
2016-02-08
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai
2004-10-01
Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken
2015-05-18
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less
Fabrication of ultra-fine grained aluminium tubes by RTES technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.
Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less
Scalable lithography from Natural DNA Patterns via polyacrylamide gel
NASA Astrophysics Data System (ADS)
Qu, Jiehao; Hou, Xianliang; Fan, Wanchao; Xi, Guanghui; Diao, Hongyan; Liu, Xiangdon
2015-12-01
A facile strategy for fabricating scalable stamps has been developed using cross-linked polyacrylamide gel (PAMG) that controllably and precisely shrinks and swells with water content. Aligned patterns of natural DNA molecules were prepared by evaporative self-assembly on a PMMA substrate, and were transferred to unsaturated polyester resin (UPR) to form a negative replica. The negative was used to pattern the linear structures onto the surface of water-swollen PAMG, and the pattern sizes on the PAMG stamp were customized by adjusting the water content of the PAMG. As a result, consistent reproduction of DNA patterns could be achieved with feature sizes that can be controlled over the range of 40%-200% of the original pattern dimensions. This methodology is novel and may pave a new avenue for manufacturing stamp-based functional nanostructures in a simple and cost-effective manner on a large scale.
Comprehensive analysis of line-edge and line-width roughness for EUV lithography
NASA Astrophysics Data System (ADS)
Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai
2017-03-01
Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.
Variation and Defect Tolerance for Nano Crossbars
NASA Astrophysics Data System (ADS)
Tunc, Cihan
With the extreme shrinking in CMOS technology, quantum effects and manufacturing issues are getting more crucial. Hence, additional shrinking in CMOS feature size seems becoming more challenging, difficult, and costly. On the other hand, emerging nanotechnology has attracted many researchers since additional scaling down has been demonstrated by manufacturing nanowires, Carbon nanotubes as well as molecular switches using bottom-up manufacturing techniques. In addition to the progress in manufacturing, developments in architecture show that emerging nanoelectronic devices will be promising for the future system designs. Using nano crossbars, which are composed of two sets of perpendicular nanowires with programmable intersections, it is possible to implement logic functions. In addition, nano crossbars present some important features as regularity, reprogrammability, and interchangeability. Combining these features, researchers have presented different effective architectures. Although bottom-up nanofabrication can greatly reduce manufacturing costs, due to low controllability in the manufacturing process, some critical issues occur. Bottom- up nanofabrication process results in high variation compared to conventional top- down lithography used in CMOS technology. In addition, an increased failure rate is expected. Variation and defect tolerance methods used for conventional CMOS technology seem inadequate for adapting to emerging nano technology because the variation and the defect rate for emerging nano technology is much more than current CMOS technology. Therefore, variations and defect tolerance methods for emerging nano technology are necessary for a successful transition. In this work, in order to tolerate variations for crossbars, we introduce a framework that is established based on reprogrammability and interchangeability features of nano crossbars. This framework is shown to be applicable for both FET-based and diode-based nano crossbars. We present a characterization testing method which requires minimal number of test vectors. We formulate the variation optimization problem using Simulated Annealing with different optimization goals. Furthermore, we extend the framework for defect tolerance. Experimental results and comparison of proposed framework with exhaustive methods confirm its effectiveness for both variation and defect tolerance.
NASA Astrophysics Data System (ADS)
Wanta, K. C.; Perdana, I.; Petrus, H. T. B. M.
2016-11-01
Most of kinetics studies related to leaching process used shrinking core model to describe physical phenomena of the process. Generally, the model was developed in connection with transport and/or reaction of reactant components. In this study, commonly used internal diffusion controlled shrinking core model was evaluated for leaching process of Pomalaa nickel laterite using citric acid as leachant. Particle size was varied at 60-70, 100-120, -200 meshes, while the operating temperature was kept constant at 358 K, citric acid concentration at 0.1 M, pulp density at 20% w/v and the leaching time was for 120 minutes. Simulation results showed that the shrinking core model was inadequate to closely approach the experimental data. Meanwhile, the experimental data indicated that the leaching process was determined by the mobility of product molecules in the ash layer pores. In case of leaching resulting large product molecules, a mathematical model involving steps of reaction and product diffusion might be appropriate to develop.
Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness
Roach, Jennifer K.; Griffith, Dennis B.
2015-01-01
ContextLake size has declined on breeding grounds for international populations of waterfowl.ObjectivesOur objectives were to (1) model the relationship between waterfowl species richness and lake size; (2) use the model and trends in lake size to project historical, contemporary, and future richness at 2500+ lakes; (3) evaluate mechanisms for the species–area relationship (SAR); and (4) identify species most vulnerable to shrinking lakes.MethodsMonte Carlo simulations of the richness model were used to generate projections. Correlations between richness and both lake size and habitat diversity were compared to identify mechanisms for the SAR. Patterns of nestedness were used to identify vulnerable species.ResultsSpecies richness was greatest at lakes that were larger, closer to rivers, had more wetlands along their perimeters and were within 5 km of a large lake. Average richness per lake was projected to decline by 11 % from 1986 to 2050 but was heterogeneous across sub-regions and lakes. Richness in sub-regions with species-rich lakes was projected to remain stable, while richness in the sub-region with species-poor lakes was projected to decline. Lake size had a greater effect on richness than did habitat diversity, suggesting that large lakes have more species because they provide more habitat but not more habitat types. The vulnerability of species to shrinking lakes was related to species rarity rather than foraging guild.ConclusionsOur maps of projected changes in species richness and rank-ordered list of species most vulnerable to shrinking lakes can be used to identify targets for conservation or monitoring.
Light scattering techniques for the characterization of optical components
NASA Astrophysics Data System (ADS)
Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.
2017-11-01
The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.
Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma
NASA Astrophysics Data System (ADS)
Elg, Daniel Tyler
Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation of this debris is one of the main problems facing potential manufacturers of EUV sources. which can damage the collector optic in three ways: sputtering, implantation, and deposition. The first two damage processes are irreversible and are caused by the high energies (1-10 keV) of the ion debris. Debris mitigation methods have largely managed to reduce this problem by using collisions with H2 buffer gas to slow down the energetic ions. However, deposition can take place at all ion and neutral energies, and no mitigation method can deterministically deflect all neutrals away from the collector. Thus, deposition still takes place, lowering the collector reflectivity and increasing the time needed to deliver enough EUV power to pattern a wafer. Additionally, even once EUV reaches HVM insertion, source power will need to be continually increased as feature sizes continue to shrink; this increase in source power may potentially come at a cost of increased debris. Thus, debris mitigation solutions that work for the initial generation of commercial EUVL systems may not be adequate for future generations. An in-situ technology to clean collector optics without source downtime is required. which will require an in-situ technology to clean collector optics. The novel cleaning solution described in this work is to create the radicals directly on the collector surface by using the collector itself to drive a capacitively-coupled hydrogen plasma. This allows for radical creation at the desired location without requiring any delivery system and without requiring any source downtime. Additionally, the plasma provides energetic radicals that aid in the etching process. This work will focus on two areas. First, it will focus on experimental collector cleaning and EUV reflectivity restoration. Second, it will focus on developing an understanding of the fundamental processes governing Sn removal. It will be shown that this plasma technique can clean an entire collector optic and restore EUV reflectivity to MLMs without damaging them. Additionally, it will be shown that, within the parameter space explored, the limiting factor in Sn etching is not hydrogen radical flux or SnH4 decomposition but ion energy flux. This will be backed up by experimental measurements, as well as a plasma chemistry model of the radical density and a 3D model of SnH4 transport and redeposition.
"Sustaining the Shrinking City: Concepts, Dynamics and ...
Sustainability can be broadly defined as the resilient outcome of the interaction among social equity, economic stability, and environmental quality factors. For example, the utilization of natural resource capitals are constrained by economic forces, and further modulated by social norms and perceptions. Nowhere is this more apparent than in cities, where the social, economic and environmental capital within the city and in its supporting region may wax and wane due to internal dynamics and external drivers. These changes may be charted as shifts in land use, the type and qualities of infrastructure, population and its demography, and other characteristics that drive the trajectory of a city toward shrinkage. Our authors will discuss how fluxes of different capitals (social, cultural, financial, technological, natural resources, governance/political) might align or substitute for each other to create conditions in the structure and function of city to attain a sustainable size after undergoing a rapid depopulation. Other authors focus on how the misalignment of capitals can doom a city to shrink uncontrollably, and in combination with shifts in environmental quality, the may destroy a city’s ability to function as an integrative center for social and economic interactions. We see this special issue as an attractive venue for data-based research on environmental factors as they impact change in the socio-cultural, economic, political, and physiographic feature
Rahman, Maryam; Ogilvy, Christopher S; Zipfel, Gregory J; Derdeyn, Colin P; Siddiqui, Adnan H; Bulsara, Ketan R; Kim, Louis J; Riina, Howard A; Mocco, J; Hoh, Brian L
2011-01-01
The International Study of Intracranial Aneurysms found that for patients with no previous history of subarachnoid hemorrhage, small (< 7 mm) anterior circulation and posterior circulation aneurysms had a 0% and 2.5% risk of subarachnoid hemorrhage over 5 years, respectively. To determine whether cerebral aneurysms shrink with rupture. The clinical databases of 7 sites were screened for patients with imaging of cerebral aneurysms before and after rupture. Inclusion criteria included documented subarachnoid hemorrhage by imaging or lumbar puncture and intracranial imaging before and after cerebral aneurysm rupture. The patients were evaluated for aneurysm maximal height, maximal width, neck diameter, and other measurement parameters. Only a change of ≥ 2 mm was considered a true change. Data on 13 patients who met inclusion criteria were collected. The median age was 60, and 11 of the 13 patients (84.6%) were female. Only 5 patients had posterior circulation aneurysms. None of the aneurysms had a significant decrease in size. One aneurysm decreased by 1.8 mm in maximum size after rupture (7.7%). Six aneurysms had an increase in maximum size of at least 2 mm after rupture (46.2%) with a mean increase of 3.5 mm (± 0.5 mm). Unruptured aneurysms do not shrink when they rupture. The large percentage of ruptured small aneurysms in previous studies were likely small before they ruptured.
Jandial, Rahul; Hughes, Samuel A; Aryan, Henry E; Marshall, Lawrence F; Levy, Michael L
2004-11-01
THE PRACTICE OF "head-shrinking" has been the proper domain not of Africa but rather of the denizens of South America. Specifically, in the post-Columbian period, it has been most famously the practice of a tribe of indigenous people commonly called the Jivaro or Jivaro-Shuar. The evidence suggests that the Jivaro-Shuar are merely the last group to retain a custom widespread in northwestern South America. In both ceramic and textile art of the pre-Columbian residents of Peru, the motif of trophy heads smaller than normal life-size heads commonly recurs; the motif is seen even in surviving carvings in stone and shell. Moreover, although not true shrunken heads, trophy heads found in late pre-Columbian and even post-Columbian graves of the region demonstrate techniques of display very similar to those used by the Jivaro-Shuar, at least some of which are best understood in the context of head-shrinking. Regardless, the Jivaro-Shuar and their practices provide an illustrative counterexample to popular myth regarding the culture and science of the shrinking of human heads.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-02-11
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-01-01
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172
Advantages offered by high average power picosecond lasers
NASA Astrophysics Data System (ADS)
Moorhouse, C.
2011-03-01
As electronic devices shrink in size to reduce material costs, device size and weight, thinner material thicknesses are also utilized. Feature sizes are also decreasing, which is pushing manufacturers towards single step laser direct write process as an attractive alternative to conventional, multiple step photolithography processes by eliminating process steps and the cost of chemicals. The fragile nature of these thin materials makes them difficult to machine either mechanically or with conventional nanosecond pulsewidth, Diode Pumped Solids State (DPSS) lasers. Picosecond laser pulses can cut materials with reduced damage regions and selectively remove thin films due to the reduced thermal effects of the shorter pulsewidth. Also, the high repetition rate allows high speed processing for industrial applications. Selective removal of thin films for OLED patterning, silicon solar cells and flat panel displays is discussed, as well as laser cutting of transparent materials with low melting point such as Polyethylene Terephthalate (PET). For many of these thin film applications, where low pulse energy and high repetition rate are required, throughput can be increased by the use of a novel technique to using multiple beams from a single laser source is outlined.
Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi
2017-03-01
The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.
2011-01-12
NASA Spitzer Space Telescope was able to show that a tandard candle used to measure cosmological distances is shrinking, a finding that affects precise measurements of the age, size and expansion rate of our universe.
Lower pitch is larger, yet falling pitches shrink.
Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E
2014-01-01
Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.
Results from a new 193nm die-to-database reticle inspection platform
NASA Astrophysics Data System (ADS)
Broadbent, William H.; Alles, David S.; Giusti, Michael T.; Kvamme, Damon F.; Shi, Rui-fang; Sousa, Weston L.; Walsh, Robert; Xiong, Yalin
2010-05-01
A new 193nm wavelength high resolution reticle defect inspection platform has been developed for both die-to-database and die-to-die inspection modes. In its initial configuration, this innovative platform has been designed to meet the reticle qualification requirements of the IC industry for the 22nm logic and 3xhp memory generations (and shrinks) with planned extensions to the next generation. The 22nm/3xhp IC generation includes advanced 193nm optical lithography using conventional RET, advanced computational lithography, and double patterning. Further, EUV pilot line lithography is beginning. This advanced 193nm inspection platform has world-class performance and the capability to meet these diverse needs in optical and EUV lithography. The architecture of the new 193nm inspection platform is described. Die-to-database inspection results are shown on a variety of reticles from industry sources; these reticles include standard programmed defect test reticles, as well as advanced optical and EUV product and product-like reticles. Results show high sensitivity and low false and nuisance detections on complex optical reticle designs and small feature size EUV reticles. A direct comparison with the existing industry standard 257nm wavelength inspection system shows measurable sensitivity improvement for small feature sizes
NASA Astrophysics Data System (ADS)
Aman, Fazlina; Mohamad Khazim, Wan Nor Hafizah Wan; Mansur, Syahira
2017-09-01
Interaction of motile microorganisms and nanoparticles along with buoyancy forces will produce nanofluid bioconvection. Bioconvection happened because of the microorganisms are imposed into the nanofluid to stabilize the nanoparticles to suspend. In this paper, we investigated the problem of mixed convection flow of a nanofluid combined with gyrotactic microorganisms over a stretching/shrinking sheet under the influence of magnetic field. The nonlinear partial differential equations are transformed into a set of five similarities nonlinear ordinary differential equations by using similarity transformation, before being solved numerically. Some of the governing parameters involve in this problem are magnetic parameter, stretching/shrinking parameter, Brownian motion parameter, thermophoresis parameter and Prandtl number. Using tables and graphs, the consequences of numerous parameters on the flow and heat transfer features are examined and discussed. The results indicate that the skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms are strongly affected by the governing parameters.
Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken
2011-10-01
Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.
Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A
2013-04-23
Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing.
Rinaldi, Antonio; Araneo, Rodolfo; Celozzi, Salvatore; Pea, Marialilia; Notargiacomo, Andrea
2014-09-10
The piezoelectric performance of ultra-strength ZnO nanowires (NWs) depends on the subtle interplay between electrical and mechanical size-effects. "Size-dependent" modeling of compressed NWs illustrates why experimentally observed mechanical stiffening can indeed collide with electrical size-effects when the size shrinks, thereby lowering the actual piezoelectric function from bulk estimates. "Smaller" is not necessarily "better" in nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
Salari, A; Gnyawali, V; Griffiths, I M; Karshafian, R; Kolios, M C; Tsai, S S H
2017-11-29
Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.
Long-term reproducibility of relative sensitivity factors obtained with CAMECA Wf
NASA Astrophysics Data System (ADS)
Gui, D.; Xing, Z. X.; Huang, Y. H.; Mo, Z. Q.; Hua, Y. N.; Zhao, S. P.; Cha, L. Z.
2008-12-01
As the wafer size continues to increase and the feature size of the integrated circuits (IC) continues to shrink, process control of IC manufacturing becomes ever more important to reduce the cost of failures caused by the drift of processes or equipments. Characterization tools with high precision and reproducibility are required to capture any abnormality of the process. Although Secondary ion mass spectrometry (SIMS) has been widely used in dopant profile control, it was reported that magnetic sector SIMS, compared to quadrupole SIMS, has lower short-term repeatability and long-term reproducibility due to the high extraction field applied between sample and extraction lens. In this paper, we demonstrate that CAMECA Wf can deliver high long-term reproducibility because of its high-level automation and improved design of immersion lens. The relative standard deviation (R.S.D.) of the relative sensitivity factors (RSF) of three typical elements, i.e., boron (B), phosphorous (P) and nitrogen (N), over 3 years are 3.7%, 5.5% and 4.1%, respectively. The high reproducibility results have a practical implication that deviation can be estimated without testing the standards.
Progress on glass ceramic ZERODUR enabling nanometer precision
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas
2016-03-01
The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Peng, L.; Bronevetsky, G.
As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application aremore » most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.« less
Piezo-Phototronic Effect in a Quantum Well Structure.
Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin
2016-05-24
With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.
Technical Note: Orientation of cracks and hydrology in a shrink-swell soil
USDA-ARS?s Scientific Manuscript database
Crack orientations are an important soil physical property that affects water flow, particularly in vertic soils. However, the spatial and temporal variability of crack orientations across different land uses and gilgai features is not well-documented and addressed in hydrology models. Thus there is...
Cun, Xingli; Ruan, Shaobo; Chen, Jiantao; Zhang, Li; Li, Jianping; He, Qin; Gao, Huile
2016-02-01
Although development of nanomedicines has been a promising direction in tumor treatment, the therapeutic outcome of current nanomedicines is unsatisfying, partly because of the poor retention and penetration in tumors. Recently, a kind of tumor microenvironment sensitive size shrinkable nanoparticles (DOX-AuNPs-GNPs) has been developed by our lab, which could enhance the tumor penetration and retention depending on the size shrinking. However, the further enhancement is still restricted by dense collagen network in tumors. Thus in this study, we combined DOX-AuNPs-GNPs with losartan to deplete tumor collagen (constituted up to 90% of extracellular matrix) to further improve tumor penetration. In vitro, DOX-AuNPs-GNPs can shrink from over 117.8nm to less than 50.0nm and release DOX-AuNPs under the triggering of tumor overexpressed matrix metalloproteinases-2 (MMP-2). In vivo, pretreatment with losartan significantly decrease the collagen level and improve the tumor penetration. In combination, losartan combined with DOX-AuNPs-GNPs showed the best drug delivery efficiency, striking penetration efficiency and best 4T1 breast tumor inhibition effect. In conclusion, this study provided a promising synergetic strategy to improve the tumor treatment efficiency of nanomedicines. We have developed a dual strategy for deep tumor penetration through combining size shrinkable DOX-AuNPs-GNPs with depleting tumor collagen by losartan. Additionally, we demonstrate therapeutic efficacy in breast tumor bearing mouse model. DOX-AuNPs-GNPs co-administration with losartan is a novel and highly attractive strategy for anti-tumor drug delivery with the potential for broad applications in clinic. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Haman, Lynne
2010-01-01
Too often the professional development provided for teachers of mathematics is a short-term, one-shot effort. Today's shrinking budgets, increasing class sizes, and growing demands on teachers' time present further challenges. For the past six years, staff development efforts in the author's district have focused on language arts with little…
Reversible changes in size of cell nuclei isolated from Amoeba proteus: role of the cytoskeleton.
Pomorski, P; Grebecka, L; Grebecki, A; Makuch, R
2000-01-01
Micrurgically isolated interphasal nuclei of Amoeba proteus, which preserve F-actin cytoskeletal shells on their surface, shrink after perfusion with imidazole buffer without ATP, and expand to about 200% of their cross-sectional area upon addition of pyrophosphate. These changes in size may be reproduced several times with the same nucleus. The shrunken nuclei are insensitive to the osmotic effects of sugars and distilled water, whereas the expanded ones react only to the distilled water, showing further swelling. The shrinking-expansion cycles are partially inhibited by cytochalasins. They are attributed to the state of actomyosin complex in the perinuclear cytoskeleton, which is supposed to be in the rigor state in the imidazole buffer without ATP, and to dissociate in the presence of pyrophosphate. Inflow of external medium to the nuclei during dissociation of the myosin from the perinuclear F-actin may be due to colloidal osmosis depending on other macromolecular components of the karyoplasm.
The rigid-plate and shrinking-plate hypotheses: Implications for the azimuths of transform faults
NASA Astrophysics Data System (ADS)
Mishra, Jay Kumar; Gordon, Richard G.
2016-08-01
The rigid-plate hypothesis implies that oceanic lithosphere does not contract horizontally as it cools (hereinafter "rigid plate"). An alternative hypothesis, that vertically averaged tensional thermal stress in the competent lithosphere is fully relieved by horizontal thermal contraction (hereinafter "shrinking plate"), predicts subtly different azimuths for transform faults. The size of the predicted difference is as large as 2.44° with a mean and median of 0.46° and 0.31°, respectively, and changes sign between right-lateral (RL)-slipping and left-lateral (LL)-slipping faults. For the MORVEL transform-fault data set, all six plate pairs with both RL- and LL-slipping faults differ in the predicted sense, with the observed difference averaging 1.4° ± 0.9° (95% confidence limits), which is consistent with the predicted difference of 0.9°. The sum-squared normalized misfit, r, to global transform-fault azimuths is minimized for γ = 0.8 ± 0.4 (95% confidence limits), where γ is the fractional multiple of the predicted difference in azimuth between the shrinking-plate (γ = 1) and rigid-plate (γ = 0) hypotheses. Thus, observed transform azimuths differ significantly between RL-slipping and LL-slipping faults, which is inconsistent with the rigid-plate hypothesis but consistent with the shrinking-plate hypothesis, which indicates horizontal shrinking rates of 2% Ma-1 for newly created lithosphere, 1% Ma-1 for 0.1 Ma old lithosphere, 0.2% Ma-1 for 1 Ma old lithosphere, and 0.02% Ma-1 for 10 Ma old lithosphere, which are orders of magnitude higher than the mean intraplate seismic strain rate of 10-6 Ma-1 (5 × 10-19 s-1).
NASA Astrophysics Data System (ADS)
Schimka, Selina; Gordievskaya, Yulia D.; Lomadze, Nino; Lehmann, Maren; von Klitzing, Regine; Rumyantsev, Artem M.; Kramarenko, Elena Yu.; Santer, Svetlana
2017-07-01
Here we report on a light triggered remote control of microgel size in the presence of photosensitive surfactant. The hydrophobic tail of the cationic surfactant contains azobenzene group that undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. We have investigated light assisted behaviour and the complex formation of the microgels with azobenzene containing surfactant over the broad concentrational range starting far below and exceeding several times of the critical micelle concentration (CMC). At small surfactant concentration in solution (far below CMC), the surfactant in the trans-state accommodates within the microgel causing its compaction, while the cis-isomer desorbs out of microgel resulting in its swelling. The process of the microgel size change can be described as swelling on UV irradiation (trans-cis isomerization) and shrinking on irradiation with blue light (cis-trans isomerization). However, at the surfactant concentrations larger than CMC, the opposite behaviour is observed: the microgel swells on blue irradiation and shrinks during exposure to UV light. We explain this behaviour theoretically taking into account isomer dependent micellization of surfactant within the microgels.
NASA Astrophysics Data System (ADS)
Chen, Huaiguang; Fu, Shujun; Wang, Hong; Lv, Hongli; Zhang, Caiming
2018-03-01
As a high-resolution imaging mode of biological tissues and materials, optical coherence tomography (OCT) is widely used in medical diagnosis and analysis. However, OCT images are often degraded by annoying speckle noise inherent in its imaging process. Employing the bilateral sparse representation an adaptive singular value shrinking method is proposed for its highly sparse approximation of image data. Adopting the generalized likelihood ratio as similarity criterion for block matching and an adaptive feature-oriented backward projection strategy, the proposed algorithm can restore better underlying layered structures and details of the OCT image with effective speckle attenuation. The experimental results demonstrate that the proposed algorithm achieves a state-of-the-art despeckling performance in terms of both quantitative measurement and visual interpretation.
Phase-shift focus monitoring techniques
NASA Astrophysics Data System (ADS)
McQuillan, Matthew; Roberts, Bill
2006-03-01
Depth of focus (DOF) has become a victim of its mathematical relationship with Numerical Aperture (NA). While NA is being increased towards one to maximize scanner resolution capabilities, DOF is being minimized because of its inverse relationship with NA. Moore's law continues to drive the semiconductor industry towards smaller and smaller devices the need for high NA to resolve these shrinking devices will continue to consume the usable depth of focus (UDOF). Due to the shrinking UDOF a demand has been created for a feature or technology that will give engineers the capability to monitor scanner focus. Developing and implementation of various focus monitoring techniques have been used to prevent undetected tool focus excursions. Two overlay techniques to monitor ArF Scanner focus have been evaluated; our evaluation results will be presented here.
Discuss Similarity Using Visual Intuition
ERIC Educational Resources Information Center
Cox, Dana C.; Lo, Jane-Jane
2012-01-01
The change in size from a smaller shape to a larger similar shape (or vice versa) is created through continuous proportional stretching or shrinking in every direction. Students cannot solve similarity tasks simply by iterating or partitioning a composed unit, strategies typically used on numerical proportional tasks. The transition to thinking…
Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition
NASA Astrophysics Data System (ADS)
Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.
2016-02-01
We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.
Simulating Formation of Rifts on Saturn's and Uranus's Satellites versus Scarps on Mercury
NASA Astrophysics Data System (ADS)
Byrd, Gene G.
The formation of scarps or "wrinkles" on Mercury is typically explained as being due to the shrinkage of an interior covered by a crust of stony material that does not shrink. A simple classroom simulation of Mercury is to inflate a small spherical balloon and put belts of frosted plastic tape around it at several angles. Putting the balloon in a cooler causes the air in the balloon to shrink like Mercury's interior. The tape, unable to shrink with the balloon, creates scarps. Conversely, many of the medium-sized satellites of Saturn and Uranus show rifts extending for long distances over their outer crusts, which we hypothesize to be due to an expanding "ice"-rich interior. We describe a classroom simulation of the interior expansion's effect on a nonexpanding rigid crust using eggs. The shell represents the cooled solidified surface, while the white represents the water-rich semifluid interior. The eggs are put into a plastic bag and then put into a freezer. Upon freezing, the water in the interior expands. Some of the resulting crack patterns look remarkably like those on the medium satellites of Saturn or Uranus. The interior "lava" occasionally is extruded. One example was long and straight, extending almost halfway around the egg. It resembled the recently discovered rift and ridge extending across one side of the satellite Iapetus. Inspired by this resemblance, we think that the crusts of Iapetus and other satellites with similar features have a global crustal structure weaker to tension 90° to the global lines. For an equatorial rift, assume that a satellite's solid crust formed in an elongated shape continuously pointed at Saturn as the satellite rotates synchronously with its orbital motion. If the synchronism is disturbed, equatorial fractures may form because the crust there is flexed from "high" and "low" tides as the satellite turns relative to the planet. This does not happen at the poles. Then, if the interior expands, one of the fractures could open as a rift along the equator.
The shrinking mining city: urban dynamics and contested territory.
Martinez-Fernandez, Cristina; Wu, Chung-Tong; Schatz, Laura K; Taira, Nobuhisa; Vargas-Hernández, José G
2012-01-01
Shrinking mining cities — once prosperous settlements servicing a mining site or a system of mining sites — are characterized by long-term population and/or economic decline. Many of these towns experience periods of growth and shrinkage, mirroring the ebbs and flows of international mineral markets which determine the fortunes of the dominant mining corporation upon which each of these towns heavily depends. This dependence on one main industry produces a parallel development in the fluctuations of both workforce and population. Thus, the strategies of the main company in these towns can, to a great extent, determine future developments and have a great impact on urban management plans. Climate conditions, knowledge, education and health services, as well as transportation links, are important factors that have impacted on lifestyles in mining cities, but it is the parallel development with the private sector operators (often a single corporation) that constitutes the distinctive feature of these cities and that ultimately defines their shrinkage. This article discusses shrinking mining cities in capitalist economies, the factors underpinning their development, and some of the planning and community challenges faced by these cities in Australia, Canada, Japan and Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A
Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayersmore » continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.« less
SEM based overlay measurement between resist and buried patterns
NASA Astrophysics Data System (ADS)
Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart
2016-03-01
With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.
Micromégas: Altered Body-Environment Scaling in Literary Fiction.
Dieguez, Sebastian
2016-01-01
Architectonic embodiment postulates a bidirectional link between bodily awareness and the architectural environment. The standard size and features of the human body, for instance, are thought to influence the structure of interiors and buildings, as well as their perception and appreciation. Whereas architectural practice and theory, the visual arts and more recently the cognitive sciences have explored this relationship of humans with their crafted environments, many fictional literary works have long experimented with alterations of body-environment scaling. This so-called Gulliver theme - popular in the science-fiction genre but also in children's literature and philosophical satire - reveals, as a recurrent thought-experiment, our preoccupation with proportions and our fascination for the infinitely small and large. Here I provide an overview of the altered scaling theme in literature, including classics such as Voltaire's Micromégas, Swift's Gulliver's Travels, Caroll's Alice, and Matheson's The Shrinking man, closely examining issues relevant to architectonic embodiment such as: bodily, perceptual, cognitive, affective, and social changes related to alterations in body size relative to people, objects and architectural environments. I next provide a taxonomy of the Gulliver theme and highlight its main psychological features, and then proceed to review relevant work from cognitive science. Although fictional alterations of body-environment scaling far outreach current possibilities in experimental research, I argue that the peripetiae and morals outlined in the literary realm, as products of the human imagination, provide a unique window into the folk-psychology of body and space.
Topological inflation with graceful exit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl
We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
ERIC Educational Resources Information Center
Raths, David
2013-01-01
With the exception of a plague of locusts, it seems as if the past five years have thrown every imaginable challenge at IT--from the incredible shrinking budget to BYOD and now the MOOC monster. For those of a superstitious bent, these were probably just appetizers to the crises that will inevitably accompany a year featuring the number 13 (cue…
Decrumpling membranes by quantum effects
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Kleinert, H.
2001-02-01
The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/ln L.
Decreases in beetle body size linked to climate change and warming temperatures.
Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina
2018-05-01
Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Processing of presolar grains around post-AGB stars: SiC as the carrier of the ``21''μ m feature
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.; Speck, A. K.
2003-12-01
Intermediate mass stars (0.8-8.0 Msolar) eventually evolve on the H-R diagram, up the asymptotic giant branch (AGB). The intensive mass loss which characterizes the AGB produces a circumstellar shell of dust and neutral gas. At the end of the AGB, mass loss virtually stops and the circumstellar shell begins to drift away from the star. At the same time the central star begins to shrink and heat up. This is the proto-planetary nebula (PPN) phase. Some PPNe exhibit an enigmatic feature in their infrared (IR) spectra at ˜21μ m. This feature is not seen in the spectra of either the precursors to PPNe, the AGB stars, or the successors of PPNe, ``normal'' planetary nebulae (PNe). However the ``21''μ m feature has been seen in the spectra of PNe with Wolf-Rayet central stars. Therefore the carrier of this feature is unlikely to be a transient species that only exists in the PPNe phase. This feature has been attributed to various molecular and solid state species, none of which satisfy all constraints, although titanium carbide (TiC) and polycyclic aromatic hydrocarbons (PAHs) have seemed the most viable. We present new laboratory data for silicon carbide (SiC) and show that it has a spectral feature which is a good candidate for the carrier of the 21μ m feature. The SiC spectral feature appears at approximately the same wavelength (depending on polytype/grain size) and has the same asymmetric profile as the observed astronomical feature. We suggest that processing and cooling of the SiC grains known to exist around carbon-rich AGB stars are responsible for the emergence of the enigmatic 21μ m feature. The emergence of this feature in the spectra of post-AGB stars demonstrates the processing of dust due to the changing physical environments around evolving stars.
Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yayun; Zhao, Tao; Wang, Yanan, E-mail: wyn3615@126.com
Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions,more » and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.« less
Social Studies in the Elementary School.
ERIC Educational Resources Information Center
Ediger, Marlow
Since the world is "shrinking" in size due to better transportation and communication, it is important for students to study world issues in the social studies. Problems on the world scene make it imperative that pupils have the requisite understandings, skills, and attitudes to engage in problem-solving activities in the classroom. Teachers,…
Military Enlistment Propensity: New Directions for Research.
ERIC Educational Resources Information Center
Legree, Peter J.; Pifer, Mark
Since the advent of the all volunteer force, the U.S. military has supported research to monitor, understand, and influence the propensity of American youth to enlist in the military. Interest in understanding determinants of military enlistment has increased since 1992 due to the shrinking size of the available youth cohort, competing demands for…
Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong
2017-06-14
Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.
Neo-isolationism, balanced-budget conservatism, and the fiscal impacts of immigrants.
Huber, G A; Espenshade, T J
1997-01-01
"A rise in neo-isolationism in the United States has given encouragement to a new fiscal politics of immigration. Growing anti-immigrant sentiment has coalesced with forces of fiscal conservatism to make immigrants an easy target of budget cuts. Limits on legal alien access to social welfare programs that are contained in the 1996 welfare and immigration reform acts seem motivated not so much by a guiding philosophy of what it means to be a member of American society as by a desire to shrink the size of the federal government and to produce a balanced budget. Even more than in the past, the consequence of a shrinking welfare state is to metamorphose legal immigrants from public charges to windfall gains for the federal treasury." excerpt
Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.
Duan, Lian; Cao, Zhen; Yobas, Levent
2017-09-19
Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.
Advanced shrink material for NTD process with lower Y/X shrinkage bias of elongated patterns
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshihiro; Sekito, Takashi; Sagan, John; Horiba, Yuko; Kinuta, Takafumi; Nagahara, Tatsuro; Tarutani, Shinji
2015-03-01
Negative tone shrink materials (NSM) suitable for resolution enhancement of negative tone development (NTD) 193nm immersion resists have been developed. While this technology is being expanded to integrated circuits (IC) manufacturing, there still have two major problems to apply various processes. One of them is shrink ID bias which means shrink differences between isolated (I) and dense (D) CDs, and the other one is Y/X shrinkage bias which means shrinkage differences between major axis (Y) and minor axis (X) of the elongated or oval shape pattern. While we have presented the improvement of shrink ID bias at SPIE2014 [1], the reduction of Y/X shrinkage bias was the examination theme for quite some time. In this paper, we present Y/X shrinkage bias of current NTD shrink material, new concept material for Y/X bias reduction and the result of new shrink material. Current NTD shrink model has Y/X bias of 1.6 (Y shrink=16nm) at a mixing bake (MB) of 150°C on AZ AX2110P NTD elongated pattern of X=70nm and Y=210nm ADI. This means shrinkage of Y has larger shrinkage than X and that makes difficult to apply shrink material. We expected that the characteristic shape of elongated pattern was one of the root-cause for Y/X bias, and then simulated how to achieve equivalent shrinkage at Y and X. We concluded that available resist volume per each Y and X unit was not equivalent and need new shrink concept to solve Y/X bias. Based on our new concept, we prepared new shrink material which has lower Y/X bias and larger shrink amount compared with current NTD shrink material. Finally we have achieved lower Y/X bias from 1.6 to 1.1 at MB150°C and moreover got higher shrinkage than current NTD shrink material from 10.1nm to 16.7nm.
Ecology for the shrinking city (JA) | Science Inventory | US ...
This article brings together the concepts of shrinking cities—the hundreds of cities worldwide experiencing long-term population loss—and ecology for the city. Ecology for the city is the application of a social–ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city therefore acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compared with growing cities. Shrinking cities are well poised for transformations, because shrinking is perceived as a crisis and can mobilize the social capacity to change. Ecology is particularly well suited to contribute solutions because of the extent of vacant land in shrinking cities that can be leveraged for ecosystem-services provisioning. A crucial role of an ecology for the shrinking city is identifying innovative pathways that create locally desired amenities that provide ecosystem services and contribute to urban sustainability at multiple scales. This paper brings together the concepts of ecology for the city and shrinking cities – the hundreds of cities worldwide experiencing long-term population loss. Ecology for the city is the application of social-ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compa
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
The effect of social alliances on wolf population on their survival under hunting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebrat, S.; Kakol, J.
1997-04-01
We have introduced the modified Verhulst factor to simulate the dynamics of wolves` population. The new factor enlarges the capacity of environment for organisms living in organized groups. Under this factor, social behavior allows the population to reach the larger size in the same ecological niche. The other effect of the introduced factor is that additional non-selective killing factors limit the population size not only directly but also by shrinking the effective ecological niche capacity.
The Effect of Social Alliances on Wolf Population on Their Survival Under Hunting
NASA Astrophysics Data System (ADS)
Cebrat, Stanisław; Kakol, Jerzy
We have introduced the modified Verhulst factor to simulate the dynamics of wolves' population. The new factor enlarges the capacity of environment for organisms living in organized groups. Under this factor, social behavior allows the population to reach the larger size in the same ecological niche. The other effect of the introduced factor is that additional non-selective killing factors limit the population size not only directly but also by shrinking the effective ecological niche capacity.
Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress
NASA Astrophysics Data System (ADS)
Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed
2013-07-01
The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.
Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors
NASA Astrophysics Data System (ADS)
Lanham, Steven J.; Kushner, Mark J.
2017-08-01
The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.
Modeling multidomain hydraulic properties of shrink-swell soils
NASA Astrophysics Data System (ADS)
Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.
2016-10-01
Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.
NASA Astrophysics Data System (ADS)
Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole
2017-04-01
With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).
Micromégas: Altered Body–Environment Scaling in Literary Fiction
Dieguez, Sebastian
2016-01-01
Architectonic embodiment postulates a bidirectional link between bodily awareness and the architectural environment. The standard size and features of the human body, for instance, are thought to influence the structure of interiors and buildings, as well as their perception and appreciation. Whereas architectural practice and theory, the visual arts and more recently the cognitive sciences have explored this relationship of humans with their crafted environments, many fictional literary works have long experimented with alterations of body–environment scaling. This so-called Gulliver theme – popular in the science-fiction genre but also in children’s literature and philosophical satire – reveals, as a recurrent thought-experiment, our preoccupation with proportions and our fascination for the infinitely small and large. Here I provide an overview of the altered scaling theme in literature, including classics such as Voltaire’s Micromégas, Swift’s Gulliver’s Travels, Caroll’s Alice, and Matheson’s The Shrinking man, closely examining issues relevant to architectonic embodiment such as: bodily, perceptual, cognitive, affective, and social changes related to alterations in body size relative to people, objects and architectural environments. I next provide a taxonomy of the Gulliver theme and highlight its main psychological features, and then proceed to review relevant work from cognitive science. Although fictional alterations of body-environment scaling far outreach current possibilities in experimental research, I argue that the peripetiae and morals outlined in the literary realm, as products of the human imagination, provide a unique window into the folk-psychology of body and space. PMID:27148156
How to measure a-few-nanometer-small LER occurring in EUV lithography processed feature
NASA Astrophysics Data System (ADS)
Kawada, Hiroki; Kawasaki, Takahiro; Kakuta, Junichi; Ikota, Masami; Kondo, Tsuyoshi
2018-03-01
For EUV lithography features we want to decrease the dose and/or energy of CD-SEM's probe beam because LER decreases with severe resist-material's shrink. Under such conditions, however, measured LER increases from true LER, due to LER bias that is fake LER caused by random noise in SEM image. A gap error occurs between the right and the left LERs. In this work we propose new procedures to obtain true LER by excluding the LER bias from the measured LER. To verify it we propose a LER's reference-metrology using TEM.
2017-04-20
Given enough time, impact craters on Mars tend to fill up with different materials. For instance, some craters on Mars had lakes inside them in the past. When these lakes dried out, they left behind traces of their past existence, such as sedimentary deposits (materials that were carried along with the running water into the lake inside the crater and then settled down). Some craters, especially in high latitudes, contain ice deposits that filled the crater when an earlier ice age allowed ice to extend into the crater's latitude. Here, NASA's Mars Reconnaissance Orbiter spies a crater that lies close to Elysium, a major volcanic system on Mars. The whole region surrounding the crater was at some point covered by lava from the volcano creating vast lava plains, and in the process, flooding impact craters in their way. When the lava eventually cooled down, it solidified and began to shrink in size. This shrinking led to formation of cracks on the surface of the lava that grew in a circular pattern matching the shape of the crater it was filling. Scientists can study these fractures and estimate how much it shrank in volume to better understand the properties of the lava (such as its temperature) during the time it filled the crater. https://photojournal.jpl.nasa.gov/catalog/PIA21596
Field-driven chiral bubble dynamics analysed by a semi-analytical approach
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Leliaert, J.; Dupré, L.; Van Waeyenberge, B.
2017-12-01
Nowadays, field-driven chiral bubble dynamics in the presence of the Dzyaloshinskii-Moriya interaction are a topic of thorough investigation. In this paper, a semi-analytical approach is used to derive equations of motion that express the bubble wall (BW) velocity and the change in in-plane magnetization angle as function of the micromagnetic parameters of the involved interactions, thereby taking into account the two-dimensional nature of the bubble wall. It is demonstrated that the equations of motion enable an accurate description of the expanding and shrinking convex bubble dynamics and an expression for the transition field between shrinkage and expansion is derived. In addition, these equations of motion show that the BW velocity is not only dependent on the driving force, but also on the BW curvature. The absolute BW velocity increases for both a shrinking and an expanding bubble, but for different reasons: for expanding bubbles, it is due to the increasing importance of the driving force, while for shrinking bubbles, it is due to the increasing importance of contributions related to the BW curvature. Finally, using this approach we show how the recently proposed magnetic bubblecade memory can operate in the flow regime in the presence of a tilted sinusoidal magnetic field and at greatly reduced bubble sizes compared to the original device prototype.
Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios
NASA Astrophysics Data System (ADS)
Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko
2016-11-01
We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional 7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.
Sirbuly, Donald J; Friddle, Raymond W; Villanueva, Joshua; Huang, Qian
2015-02-01
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
In an ongoing phase II trial led by Jung-Min Lee, M.D., an Investigator in CCR’s Women’s Malignancies Branch, using the drug prexasertib led to decreases in tumor size in patients with advanced ovarian cancer, known as high-grade serious ovarian carcinoma, who currently have limited treatment options. Read more…
Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems
NASA Astrophysics Data System (ADS)
Cheung, William W. L.; Sarmiento, Jorge L.; Dunne, John; Frölicher, Thomas L.; Lam, Vicky W. Y.; Deng Palomares, M. L.; Watson, Reg; Pauly, Daniel
2013-03-01
Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms. Previous studies suggest that the most prominent biological responses are changes in distribution, phenology and productivity. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will reduce body size of marine fishes. However, the extent to which such changes would exacerbate the impacts of climate and ocean changes on global marine ecosystems remains unexplored. Here, we employ a model to examine the integrated biological responses of over 600 species of marine fishes due to changes in distribution, abundance and body size. The model has an explicit representation of ecophysiology, dispersal, distribution, and population dynamics. We show that assemblage-averaged maximum body weight is expected to shrink by 14-24% globally from 2000 to 2050 under a high-emission scenario. About half of this shrinkage is due to change in distribution and abundance, the remainder to changes in physiology. The tropical and intermediate latitudinal areas will be heavily impacted, with an average reduction of more than 20%. Our results provide a new dimension to understanding the integrated impacts of climate change on marine ecosystems.
NASA Astrophysics Data System (ADS)
van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.
2016-09-01
We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.
Gradient and size effects on spinodal and miscibility gaps
NASA Astrophysics Data System (ADS)
Tsagrakis, Ioannis; Aifantis, Elias C.
2018-05-01
A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.
NASA Astrophysics Data System (ADS)
Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA
2018-03-01
This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.
High-resolution direct 3D printed PLGA scaffolds: print and shrink.
Chia, Helena N; Wu, Benjamin M
2014-12-17
Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less
Stress state in turbopump bearing induced by shrink fitting
NASA Technical Reports Server (NTRS)
Sims, P.; Zee, R.
1991-01-01
The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.
Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinxiu; Chen, Mengjun, E-mail: kyling@swust.edu.cn; Chen, Haiyan
2014-02-15
Highlights: • A Brønsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior ofmore » copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.« less
Electronic transport with dielectric confinement in degenerate InN nanowires.
Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th
2012-06-13
In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.
Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles
NASA Astrophysics Data System (ADS)
Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu
2017-06-01
Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.
Landau quantization in monolayer GaAs
NASA Astrophysics Data System (ADS)
Chung, Hsien-Ching; Ho, Ching-Hong; Chang, Cheng-Peng; Chen, Chun-Nan; Chiu, Chih-Wei; Lin, Ming-Fa
In the past decade, the discovery of graphene has opened the possibility of two-dimensional materials both in fundamental researches and technological applications. However, the gapless feature shrinks the applications of pristine graphene. Recently, researchers have new challenges and opportunities for post-graphene two-dimensional nanomaterials, such as silicene (Si), germanene (Ge), and tinene (Sn), due to the large enough energy gap (of the size comparable to the thermal energy at room temperature). Apart from the graphene analogs of group IV elements, the buckled honeycomb lattices of the binary compositions of group III-V elements have been proposed as a new class of post-graphene two-dimensional nanomaterials. In this study, the generalized tight-binding model considering the spin-orbital coupling is used to investigate the essential properties of monolayer GaAs. The Landau quantization, band structure, wave function, and density of states are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant Number MOST 105-2811-M-017-003.
[Investigation Report of Tripterygium wilfordii and Tripterygium hypoglaucum].
Liu, Chao; Ge, Xiao-guang; Hao, Qing-xiu; Guo, Lan-ping; Yuan, Qing-jun; Huang, Lu-qi
2015-02-01
To get the information of resources, cultivation, commodity circulation and other aspects of Tripterygium wilfordii and Tripterygium hypoglaucum. Collect samples in 13 locations of Tripterygium wilfordii and Tripterygium hypoglaucum, compare their plant morphological characteristics and growth habit, and investigate their wild resources conditions, planting information, easy-confused varieties and different commodity features. (1) Tripterygium wilfordii and Tripterygium hypoglaucum were mainly collected under woods or on the edge of woods,and light and moisture attributed to their distribution to some extent. (2) Wild resources of Tripterygium wilfordii and Tripterygium hypoglaucum were shrinking, and both of their cultivation history were relatively short and their cultivation technique were still in a low level. (3) Due to lack of harvesting and processing standards, decoction pieces, varying from roots, rhizomes to stems of plants, were all sold as commercial medicines. Wild resources of Tripterygium wilfordii and Tripterygium hypoglaucum are shrinking,and the standardized research on cultivation-harvest processing and commercial medicines remains to be further carried out.
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle
2014-01-01
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
NASA Astrophysics Data System (ADS)
Sando, Shota; Zhang, Bo; Cui, Tianhong
2017-12-01
Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.
More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?
Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser
2018-01-01
The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.
More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser
2018-04-01
The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.
MEMS-based, RF-driven, compact accelerators
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.
2017-10-01
Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.
Agroecology for the Shrinking City
Many cities are experiencing long-term declines in population and economic activity. As a result, frameworks for urban sustainability need to address the unique challenges and opportunities of such shrinking cities. Shrinking, particularly in the U.S., has led to extensive vacant...
Sudhakar Rao, D V
2018-01-01
The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.
Improved resolution of 3D printed scaffolds by shrinking.
Chia, Helena N; Wu, Benjamin M
2015-10-01
Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uin, Janek
The Brechtel Manufacturing Inc. (BMI) Humidified Tandem Differential Mobility Analyzer (HT-DMA Model 3002) (Brechtel and Kreidenweis 2000a,b, Henning et al. 2005, Xerxes et al. 2014) measures how aerosol particles of different initial dry sizes grow or shrink when exposed to changing relative humidity (RH) conditions. It uses two different mobility analyzers (DMA) and a humidification system to make the measurements. One DMA selects a narrow size range of dry aerosol particles, which are exposed to varying RH conditions in the humidification system. The second (humidified) DMA scans the particle size distribution output from the humidification system. Scanning a wide rangemore » of particle sizes enables the second DMA to measure changes in size or growth factor (growth factor = humidified size/dry size), due to water uptake by the particles. A Condensation Particle Counter (CPC) downstream of the second DMA counts particles as a function of selected size in order to obtain the number size distribution of particles exposed to different RH conditions.« less
Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.
Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle
2016-03-09
The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rao, D V Sudhakar; Shivashankara, K S
2015-07-01
Freshly-harvested mature green mangoes (cvs. 'Alphonso' and 'Banganapalli') were individually shrink wrapped using two semi-permeable Cryovac films® (D-955 and LD-935) and a locally available LDPE film. The shrink wrapped and non-wrapped fruit were stored at 8 °C for 5 weeks and transferred to ambient conditions for subsequent ripening, to study the feasibility of alleviation of chilling injury (CI) and to determine shrink wrapping effect on fruit quality. Shrink wrapped mangoes of 'Banganapalli' and 'Alphonso' cultivars packed in D-955 (15 μm thickness) film could be stored for 5 weeks at 8 °C in fresh and unripe green condition. After storage, these cultivars respectively lost only 0.5 and 1.4 % mass in case of shrink wrapping as compared to 5.8 and 6.9 % loss in non-wrapped fruit. After removal from low temperature and unwrapping, shrink wrapped mangoes showed normal respiratory behaviour with production of CO2 and ethylene peaks (climacteric peaks) during ripening, whereas non-wrapped fruit did not show any respiratory peaks. Shrink wrapped mangoes ripened normally within a week at ambient temperature (24-32 °C and 60-70 % RH) with good surface yellow colour (reflected by hue and chroma values), edible softness, retention of nutritional quality and acceptable organoleptic quality. These quality parameters were better in fruit wrapped with D-955 film compared to LD-935 and LDPE films. Total carotenoids in terms of β-carotene content were significantly higher in shrink wrapped fruit when compared to non-wrapped fruit. Among different shrink films, total antioxidant capacity and DPPH radical scavenging abilities were higher in LD-935 wrapped fruit in case of 'Alphonso' cultivar whereas these were on par in LD-935 and D-955 film wrapped fruit in case of 'Banganapalli' cultivar.
Shocking features in the merging galaxy cluster RXJ0334.2-0111
NASA Astrophysics Data System (ADS)
Dasadia, Sarthak; Sun, Ming; Morandi, Andrea; Sarazin, Craig; Clarke, Tracy; Nulsen, Paul; Massaro, Francesco; Roediger, Elke; Harris, Dan; Forman, Bill
2016-05-01
We present a 66 ks Chandra X-ray observation of the galaxy cluster RXJ0334.2-0111. This deep observation revealed a unique bow shock system associated with a wide angle tail (WAT) radio galaxy and several intriguing substructures. The temperature across the bow shock jumps by a factor of ˜1.5 (from 4.1 to 6.2 keV), and is consistent with the Mach number M = 1.6_{-0.3}^{+0.5}. A second inner surface brightness edge is a cold front that marks the border between infalling subcluster cool core and the intracluster medium of the main cluster. The temperature across the cold front increases from 1.3_{-0.8}^{+0.3} to 6.2_{-0.6}^{+0.6} keV. We find an overpressurized region ˜250 kpc east of the cold front that is named `the eastern extension (EE)'. The EE may be a part of the third subcluster in the ongoing merger. We also find a tail shaped feature that originates near the bow shock and may extend up to a distance of ˜1 Mpc. This feature is also likely overpressurized. The luminous FR-I radio galaxy, 3C89, appears to be the cD galaxy of the infalling subcluster. We estimated 3C89's jet power from jet bending and the possible interaction between the X-ray gas and the radio lobes. A comparison between the shock stand-off distance and the Mach number for all known shock front/cold front combinations suggests that the core is continuously shrinking in size by stripping.
Reinforced cementitous composite with in situ shrinking microfibers
NASA Astrophysics Data System (ADS)
Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh
2017-03-01
This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.
NASA Astrophysics Data System (ADS)
Chan, Sze Qi; Aman, Fazlina; Mansur, Syahira
2017-09-01
Nanofluid containing nanometer sized particles has become an ideal thermal conductivity medium for the flow and heat transfer in many industrial and engineering applications due to their high rate of heat transfer. However, swimming microorganisms are imposed into the nanofluid to overcome the instability of nanoparticles due to a bioconvection phenomenon. This paper investigates the stagnation point flow on bioconvection heat transfer of a nanofluid over a stretching/shrinking surface containing gyrotactic microorganisms. Velocity and thermal slip effects are the two conditions incorporated into the model. Similarity transformation is applied to reduce the governing nonlinear partial differential equations into the nonlinear ordinary differential equations. The transformed equations are then solved numerically. The results are displayed in the form of graphs and tables. The effects of these governing parameters on the skin friction coefficient, local Nusselt number, local Sherwood number and the local density of the motile microorganisms are analysed and discussed in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Applying Financial Portfolio Analysis to Government Program Portfolios
2007-06-01
himself points out, “The Rational Man, like the unicorn , does not exist” (Markowitz, 1959). The various investor assumptions presented above break down...originally envisioned benefits quickly grow (Levine, 2005). As a recent Government Accountability Office report notes, the sheer size of IT spending in the...shows no change in EAC for the first three quarters and a decrease in the fourth quarter- although the SV and CV shrink and grow during the same period
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Atsushi; Saito, Yuika; Watanabe, Koichi
Localized surface plasmon resonances were controlled at deep-ultraviolet (DUV) wavelengths by fabricating aluminum (Al) nanostructures in a size-controllable manner. Plasmon resonances were obtained at wavelengths from near-UV down to 270 nm (4.6 eV) depending on the fabricated structure size. Such precise size control was realized by the nanosphere lithography technique combined with additional microwave heating to shrink the spaces in a close-packed monolayer of colloidal nanosphere masks. By adjusting the microwave heating time, the sizes of the Al nanostructures could be controlled from 80 nm to 50 nm without the need to use nanosphere beads of different sizes. With themore » outstanding controllability and versatility of the presented fabrication technique, the fabricated Al nanostructure is promising for use as a DUV plasmonic substrate, a light-harvesting platform for mediating strong light-matter interactions between UV photons and molecules placed near the metal nanostructure.« less
Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes
NASA Astrophysics Data System (ADS)
Szabó, Péter; Ispánovity, Péter Dusán; Groma, István
2015-02-01
The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasser, U., E-mail: urs.gasser@psi.ch; Hyatt, J. S.; Lietor-Santos, J.-J.
We study the form factor of thermoresponsive microgels based on poly(N-isopropylacrylamide) at high generalized volume fractions, ζ, where the particles must shrink or interpenetrate to fit into the available space. Small-angle neutron scattering with contrast matching techniques is used to determine the particle form factor. We find that the particle size is constant up to a volume fraction roughly between random close packing and space filling. Beyond this point, the particle size decreases with increasing particle concentration; this decrease is found to occur with little interpenetration. Noteworthily, the suspensions remain liquid-like for ζ larger than 1, emphasizing the importance ofmore » particle softness in determining suspension behavior.« less
Monitoring and predicting shrink potential and future processing quality of potato tubers
USDA-ARS?s Scientific Manuscript database
Long-term storage of potato tubers increases risks, which are often attributed to shrink and quality loss. To minimize shrink and ensure high quality tubers, producers must closely monitor the condition of the crop during storage and make necessary adjustments to management plans. Evaluation procedu...
Occupational asthma due to polyethylene shrink wrapping (paper wrapper's asthma).
Gannon, P F; Burge, P S; Benfield, G F
1992-01-01
Occupational asthma due to the pyrolysis products of polyvinyl chloride (PVC) produced by shrink wrapping processes has previously been reported. The first case of occupational asthma in a shrink wrap worker using a different plastic, polyethylene, is reported; the association was confirmed by specific bronchial provocation testing. PMID:1440477
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih
2015-12-01
This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm2 and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.
A NANO enhancement to Moore's law
NASA Astrophysics Data System (ADS)
Wu, Jerry; Shen, Yin-Lin; Reinhardt, Kitt; Szu, Harold
2012-06-01
In the past 46 years, Intel Moore observed an exponential doubling in the number of transistors in every 18 months through the size reduction of individual transistor components since 1965. In this paper, we are exploring the nanotechnology impact upon the Law. Since we cannot break down the atomic size barrier, the fact implies a fundamental size limit at the atomic or Nanotechnology scale. This means, no more simple 18 month doubling as in Moore's Law, but other forms of transistor doubling may happen at a different slope in new directions. We are particularly interested in the Nano enhancement area. (i) 3-D: If the progress in shrinking the in-plane dimensions (2D) is to slow down, vertical integration (3D) can help increasing the areal device transistor density and keep us on the modified Moore's Law curve including the 3rd dimension. As the devices continue to shrink further into the 20 to 30 nm range, the consideration of thermal properties and transport in such nanoscale devices becomes increasingly important. (ii) Carbon Computing: Instead of traditional Transistors, the other types of transistors material are rapidly developed in Laboratories Worldwide, e.g. IBM Spintronics bandgap material and Samsung Nano-storage material, HD display Nanotechnology, which are modifying the classical Moore's Law. We shall consider the overall limitation of phonon engineering, fundamental information unit 'Qubyte' in quantum computing, Nano/Micro Electrical Mechanical System (NEMS), Carbon NanoTubes (CNTs), single layer Graphemes, single strip Nano-Ribbons, etc., and their variable degree of fabrication maturities for the computing and information processing applications.
Flexible shrink-induced high surface area electrodes for electrochemiluminescent sensing.
Pegan, Jonathan D; Ho, Adrienne Y; Bachman, Mark; Khine, Michelle
2013-11-07
Photolithographically defined metallic thin film on commodity shrink-wrap is leveraged to create robust electrodes. By thermally shrinking the film, electrodes are reduced by 20× in footprint for improved resolution and conductivity with >600% enhancements in electrochemically active surface area; as electrochemiluminescent sensors, they demonstrate improved limits of detection.
Ally, Mina S; Tang, Jean Y; Joseph, Timmy; Thompson, Bobbye; Lindgren, Joselyn; Raphael, Maria Acosta; Ulerio, Grace; Chanana, Anita M; Mackay-Wiggan, Julian M; Bickers, David R; Epstein, Ervin H
2014-05-01
Keratocystic odontogenic tumors (KCOTs) of the jaw affect more than 65% of patients with basal cell nevus syndrome (BCNS). Surgery frequently causes facial disfigurement and is not always curative. Most BCNS-related and some sporadic KCOTs have malignant activation of the Hedgehog signaling pathway. We examined the effect of vismodegib (an oral Hedgehog pathway inhibitor) on KCOT size in patients with BCNS enrolled in a clinical trial testing vismodegib for basal cell carcinoma prevention (NCT00957229), using pretreatment and posttreatment magnetic resonance imaging. Four men and 2 women had pretreatment KCOTs (mean longest diameter, 2.0 cm; range, 0.7-3.3 cm), occurring primarily in the mandible. Patients were treated with vismodegib, 150 mg/d, for a mean (SD) of 18.0 (4.8) months (range, 11-24 months). Four patients experienced a size reduction and 2 had no change. Vismodegib reduced the mean longest diameter of KCOTs in all patients by 1.0 cm (95% CI, 0.03-1.94; P = .02) or 50% from baseline. We observed no enlargement of existing KCOTs or new KCOT development. Vismodegib shrinks some KCOTs in patients with BCNS and may offer an alternative to surgical therapy. These effects were maintained for at least 9 months after drug cessation in 1 patient. Further studies assessing long-term efficacy and optimal maintenance regimens should be performed.
Kinetic model for the mechanical response of suspensions of sponge-like particles.
Hütter, Markus; Faber, Timo J; Wyss, Hans M
2012-01-01
A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.
NASA Astrophysics Data System (ADS)
Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel
2017-03-01
In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.
49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits
Code of Federal Regulations, 2010 CFR
2010-10-01
... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...
49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits
Code of Federal Regulations, 2011 CFR
2011-10-01
... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...
49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits
Code of Federal Regulations, 2012 CFR
2012-10-01
... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...
49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits
Code of Federal Regulations, 2013 CFR
2013-10-01
... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...
49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits
Code of Federal Regulations, 2014 CFR
2014-10-01
... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...
Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.
Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing
2015-01-01
This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Effect of wafer geometry on lithography chucking processes
NASA Astrophysics Data System (ADS)
Turner, Kevin T.; Sinha, Jaydeep K.
2015-03-01
Wafer flatness during exposure in lithography tools is critical and is becoming more important as feature sizes in devices shrink. While chucks are used to support and flatten the wafer during exposure, it is essential that wafer geometry be controlled as well. Thickness variations of the wafer and high-frequency wafer shape components can lead to poor flatness of the chucked wafer and ultimately patterning problems, such as defocus errors. The objective of this work is to understand how process-induced wafer geometry, resulting from deposited films with non-uniform stress, can lead to high-frequency wafer shape variations that prevent complete chucking in lithography scanners. In this paper, we discuss both the acceptable limits of wafer shape that permit complete chucking to be achieved, and how non-uniform residual stresses in films, either due to patterning or process non-uniformity, can induce high spatial frequency wafer shape components that prevent chucking. This paper describes mechanics models that relate non-uniform film stress to wafer shape and presents results for two example cases. The models and results can be used as a basis for establishing control strategies for managing process-induced wafer geometry in order to avoid wafer flatness-induced errors in lithography processes.
Multi-bits error detection and fast recovery in RISC cores
NASA Astrophysics Data System (ADS)
Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu
2015-11-01
The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.
Minimal size of coffee ring structure.
Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing
2010-04-29
A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, D(c), for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, D(c) can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size approximately 100 nm, the minimum diameter of the coffee ring structure is found to be approximately 10 microm.
Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. Shrinking cities face decreased income, reduced property values, and decreased tax revenue. Fewer people per unit area creates ineffi...
Antigravity and the big crunch/big bang transition
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-08-01
We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.
1992-03-16
34A Hidden U.S. Export: Higher Education ." The WashinQton Post, 16 February 1992, H1 and H4. Brandin , David H., and Michael A. Harrison. The...frequent significant technological change now occurs within the individual person’s working lifespan, life-long education is a necessity to remain...INDUSTRIAL REVOLUTION The phenomenal increase in speed and in raw power of computer processors, the shrinking size and cost of basic computing systems, the
A Shrinking Army in Europe: Can the US Achieve Its Military Strategic Goals Without It?
2014-06-13
question is the US’s 2003 intervention in the 2nd Liberian Civil War . There are several reasons for this selection. First , this incident was a EUCOM led... first democratically elected female head of state in Africa.206 Although the peace agreement ended the civil war and the conflict in Monrovia...SUPPLEMENTARY NOTES 14. ABSTRACT Since the end of the Cold War , the US Army in Europe (USAREUR) has reduced its size from over 213,000 soldiers at
Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology
NASA Astrophysics Data System (ADS)
Banke, Bill, Jr.; Archie, Charles N.; Sendelbach, Matthew; Robert, Jim; Slinkman, James A.; Kaszuba, Phil; Kontra, Rick; DeVries, Mick; Solecky, Eric P.
2004-05-01
Perhaps never before in semiconductor microlithography has there been such an interest in the accuracy of measurement. This interest places new demands on our in-line metrology systems as well as the supporting metrology for verification. This also puts a burden on the users and suppliers of new measurement tools, which both challenge and complement existing manufacturing metrology. The metrology community needs to respond to these challenges by using new methods to assess the fab metrologies. An important part of this assessment process is the ability to obtain accepted reference measurements as a way of determining the accuracy and Total Measurement Uncertainty (TMU) of an in-line critical dimension (CD). In this paper, CD can mean any critical dimension including, for example, such measures as feature height or sidewall angle. This paper describes the trade-offs of in-line metrology systems as well as the limitations of Reference Measurement Systems (RMS). Many factors influence each application such as feature shape, material properties, proximity, sampling, and critical dimension. These factors, along with the metrology probe size, interaction volume, and probe type such as e-beam, optical beam, and mechanical probe, are considered. As the size of features shrinks below 100nm some of the stalwarts of reference metrology come into question, such as the electrically determined transistor gate length. The concept of the RMS is expanded to show how multiple metrologies are needed to achieve the right balance of accuracy and sampling. This is also demonstrated for manufacturing metrology. Various comparisons of CDSEM, scatterometry, AFM, cross section SEM, electrically determined CDs, and TEM are shown. An example is given which demonstrates the importance in obtaining TMU by balancing accuracy and precision for selecting manufacturing measurement strategy and optimizing manufacturing metrology. It is also demonstrated how the necessary supporting metrology will bring together formerly unlinked technology fields requiring new measurement science. The emphasis on accuracy will increase the importance and role of NIST and similar metrology organizations in supporting the semiconductor industry in this effort.
Origin of chemically distinct discs in the Auriga cosmological simulations
NASA Astrophysics Data System (ADS)
Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker
2018-03-01
The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.
Epidemic failure detection and consensus for extreme parallelism
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...
2017-02-01
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Burgette, Lane F; Reiter, Jerome P
2013-06-01
Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.
76 FR 15802 - Airworthiness Directives; Eurocopter France (Eurocopter) Model EC130 B4 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... in insert D of Figure 5 of the EASB, and determine if it is covered with heat shrink, P/N... shown in insert D of Figure 5 or the attachment screw is not covered with heat shrink, modify the.... Figure 5 of the EASB does not show the heat shrink installed for clarity of screw head and lug detail. (3...
PEG-protein interaction induced contraction of NalD chains.
Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao
2014-01-01
In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10-50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between -C-O-C- on PEG and -COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction.
PEG-Protein Interaction Induced Contraction of NalD Chains
Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao
2014-01-01
In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10–50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between –C-O-C– on PEG and –COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951
Micromachined mirrors for raster-scanning displays and optical fiber switches
NASA Astrophysics Data System (ADS)
Hagelin, Paul Merritt
Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.
Method and apparatus for packaging optical fiber sensors for harsh environments
Pickrell, Gary; Duan, Yuhong; Wang, Anbo
2005-08-09
A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.
Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.
Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang
2015-08-24
Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.
NASA Astrophysics Data System (ADS)
Rice, A. R.
2015-12-01
The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and heat stroke, www.ozemedicine.com/wiki/doku.php?id=heat illness 7/3/2010)
MHD stagnation-point flow over a nonlinearly shrinking sheet with suction effect
NASA Astrophysics Data System (ADS)
Awaludin, Izyan Syazana; Ahmad, Rokiah; Ishak, Anuar
2018-04-01
The stagnation point flow over a shrinking permeable sheet in the existence of magnetic field is numerically investigated in this paper. The system of partial differential equations are transformed to a nonlinear ordinary differential equation using similarity transformation and is solved numerically using the boundary value problem solver, bvp4c, in Matlab software. It is found that dual solutions exist for a certain range of the shrinking strength.
Shrinking pleuritis with lobar atelectasis, a morphologic variant of round atelectasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung-Park, M.; Tomashefski, J.F. Jr.; Cohen, A.M.
1989-04-01
Round atelectasis (shrinking pleuritis) is typically a localized process characterized by focal pleural scarring and subjacent peripheral atelectasis. We report three patients, studied at autopsy, with an unusual variant of round atelectasis, termed shrinking pleuritis with lobar atelectasis, which is characterized by lobar atelectasis, visceral pleural fibrosis involving multiple lobes, interlobar fibrous cords, pleural effusion, and nonspecific, persistent infiltrates on chest radiogram. The possible causes of shrinking pleuritis with lobar atelectasis in our patients were multiple and included environmental dust exposure, infection, uremia, and recurrent pleural effusions. Our findings support both the folding (pleural effusion) and fibrosing (pleural injury) theoriesmore » of pathogenesis of round atelectasis and emphasize the spectrum of morphologic variability in this condition.« less
Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai
2005-10-01
This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.
Strategies for success among OPOs: a study of three organ procurement organizations.
Shafer, T J; Kappel, D F; Heinrichs, D F
1997-03-01
Productivity among organ procurement organizations varies widely in the US, and the pressure to determine critical success factors increases as the organ pool shrinks and managed care expands. This study compared three successful organ procurement organizations, identified commonalities among them in cost of doing business, and examined direct and indirect expenses, staffing, specialized requestor programs, and professional and public education programs. The three organ procurement organizations were chosen because of their performance in terms of donors per million population, complexity, and size. The following key indicators were compared and analyzed: annual operating budget, size and composition of staff, funds and resources invested in professional education versus public education, tissue recovery operations, results of minority initiatives, and employee compensation programs.
The Incredibly Shrinking World of Imagination.
ERIC Educational Resources Information Center
Kassem, Lou
1992-01-01
Suggests that children's imaginations are not shrinking. Discusses seven ways in which English teachers, librarians, publishers, and authors have used adolescent literature in creative and imaginative ways. (RS)
How Accurately do Leading and Lagging Indictors Predict F-16 Aircraft Availability (AA)
2016-08-01
Predictions AU/ACSC/2016 vi PREFACE As the F-16 fleet continues to age, and budgets continue to shrink , United States Air Force (USAF... shrinking budgets, it is imperative for maintenance leaders to use all tools available to them to improve the amount of aircraft available for operations...remarkable considering the overall F-16 fleet shrinking at a steady pace (see table 2 for information). AA is one of the most critical factors that
NASA Astrophysics Data System (ADS)
Hung, Chi-Tung; Chuang, Mo-Hsiung; Lin, Wen-Yen
2017-04-01
The key factors of many discussions on shrinking towns are focusing at decreasing population and declining industries. Our study, using Hsinchu County as an example, has found that part of the county (Guanxi township) is following a typical and traditional town development pattern, while somewhere else of this county (Zhubei township) shows rapid growth in real estate but with a high vacancy rate. Even though the distance between Guanxi and Zhubei is less than 20 kilometers, the spatial development phenomenon of the two townships are both "shrinking" in the same county but very different in their developing paths. This study used GIS to overlay the maps from field survey and archive data, such as real estate prices of different years, environmental hazards and disaster records, local area power consumptions, and vulnerable population data, to clarify the causes and systems behind the shrinking phenomena of the two townships and to construct a theory of "shrinking town" in Taiwan. The contribution of this study is the findings of the tangling relations of the vulnerability from land-enclosure policy, the system design of local industrial development and urban planning, and structural factors of environmental hazards. Note: This study is part of the results from the Ministry of Science and Technology funding project (MOST 105-2621-M-120-002) KEYWORDS: shrinking town, environmental hazards, urban planning, spatial disasters, real estate development
19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.
Code of Federal Regulations, 2012 CFR
2012-04-01
...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...
... cause testicles to fail to develop normally or shrink. Most varicoceles develop over time. Fortunately, most varicoceles ... tubules. When damaged, as from varicocele, the testicle shrinks and softens. It's not clear what causes the ...
19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.
Code of Federal Regulations, 2013 CFR
2013-04-01
...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...
19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.
Code of Federal Regulations, 2014 CFR
2014-04-01
...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...
19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.
Code of Federal Regulations, 2011 CFR
2011-04-01
...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...
19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.
Code of Federal Regulations, 2010 CFR
2010-04-01
...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...
... a small rubber band around a hemorrhoid to shrink it by blocking blood flow. Stapling a hemorrhoid to block blood flow, causing it to shrink. Using a knife (scalpel) to remove hemorrhoids. You ...
Heiberg, Thomas; Hagen, Espen; Halnes, Geir; Einevoll, Gaute T
2016-05-01
Despite its prominent placement between the retina and primary visual cortex in the early visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regulating the visual signals entering the brain is still poorly understood. A striking feature of the dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses, where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell (GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking advantage of a recently developed biophysically detailed multicompartmental model for an IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic inhibition and standard axonal inhibition, on the response properties of RCs. We compute and investigate so-called area-response curves, that is, trial-averaged visual spike responses vs. spot size, for circular flashing spots in a network of RCs and INs. The model parameters are grossly tuned to give results in qualitative accordance with previous in vivo data of responses to such stimuli for cat GCs and RCs. We particularly investigate how the model ingredients affect salient response properties such as the receptive-field center size of RCs and INs, maximal responses and center-surround antagonisms. For example, while triadic inhibition not involving firing of IN action potentials was found to provide only a non-linear gain control of the conversion of input spikes to output spikes by RCs, axonal inhibition was in contrast found to substantially affect the receptive-field center size: the larger the inhibition, the more the RC center size shrinks compared to the GC providing the feedforward excitation. Thus, a possible role of the different inhibitory actions from INs to RCs in the dLGN circuit is to provide separate mechanisms for overall gain control (direct triadic inhibition) and regulation of spatial resolution (axonal inhibition) of visual signals sent to cortex.
... get rid of nasal polyps. Nasal steroid sprays shrink polyps. They help clear blocked nasal passages and ... is stopped. Corticosteroid pills or liquid may also shrink polyps, and can reduce swelling and nasal congestion. ...
NASA Astrophysics Data System (ADS)
Matsuo, Eriko Sato; Tanaka, Toyoichi
1992-08-01
POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.
Testing the Definition of the ESC Envelope
NASA Technical Reports Server (NTRS)
Vincent, Mark A.
2017-01-01
The previous effort, including a successful Change Control Request, addressed shrinking the size of the Earth Science Constellations' (ESC) Envelope by reducing the Margin. Fundamental to the purpose of the Envelope is the case where the argument of perigee of the secondary object circulates from 90 degrees to 270 degrees. This ("outside of the envelope, always outside the envelope") case was tested both numerically in a spreadsheet and analytically. Results showed how it is important to include the fact that a secondary with a different semi-major axis has a different frozen eccentricity value.
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
Ezrati, M
1997-01-01
"Japan's population is aging faster than that of any other country in the world. The unprecedented increase in retirees relative to the size of Japan's work force will force radical change if the nation is to avoid a fiscal crisis, or worse. These seemingly innocent demographic changes will force Japan to shrink its famously high savings rate, reverse its proud trade surplus, send more industry overseas, liberalize its tightly controlled markets, and take on a more active, high-profile foreign policy. Ultimately, these changes will shift the balance of power in East Asia." excerpt
NASA Astrophysics Data System (ADS)
Nokes, Jolie McLane
Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis <10°) a SH surface because micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of blood residue area and volume compared to the non-structured controls of the same material. In addition, blood clotting area is reduced >5x using whole blood directly from the patient. In this study, biocompatible SH surfaces are achieved using commodity shrink-wrap film and are scaled up for R2R manufacturing. The purely structural modification negates complex and expensive post processing, and SH features are achieved in commercially-available and FDA-approved plastics.
Riis, J
2014-01-01
This paper uses the frameworks and evidence from marketing and behavioral economics to highlight the opportunities and barriers for portion control in food service environments. Applying Kahneman's ‘thinking fast and slow' concepts, it describes 10 strategies that can be effective in ‘tricking' the consumer's fast cognitive system to make better decisions and in triggering the slow cognitive system to help prevent the fast system from making bad decisions. These strategies include shrinking defaults, elongating packages, increasing the visibility of small portions, offering more mixed virtue options, adding more small sizes, offering ‘right-sized' standard portions, using meaningful size labels, adopting linear pricing, using temporal landmarks to push smaller portions and facilitating pre-commitment. For each of these strategies, I discuss the specific cost and revenue barriers that a food service operator would face if the strategy were adopted. PMID:25033960
Riis, J
2014-07-01
This paper uses the frameworks and evidence from marketing and behavioral economics to highlight the opportunities and barriers for portion control in food service environments. Applying Kahneman's 'thinking fast and slow' concepts, it describes 10 strategies that can be effective in 'tricking' the consumer's fast cognitive system to make better decisions and in triggering the slow cognitive system to help prevent the fast system from making bad decisions. These strategies include shrinking defaults, elongating packages, increasing the visibility of small portions, offering more mixed virtue options, adding more small sizes, offering 'right-sized' standard portions, using meaningful size labels, adopting linear pricing, using temporal landmarks to push smaller portions and facilitating pre-commitment. For each of these strategies, I discuss the specific cost and revenue barriers that a food service operator would face if the strategy were adopted.
Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.
Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru
2013-01-15
We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.
On the existence of a scaling relation in the evolution of cellular systems
NASA Astrophysics Data System (ADS)
Fortes, M. A.
1994-05-01
A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.
... a very narrow, focused beam of light to shrink or destroy cancer cells. It can be used ... be used to: Destroy tumors and precancerous growths Shrink tumors that are blocking the stomach, colon, or ...
Effect of shrink wrap packaging for maintaining quality of cucumber during storage.
Dhall, Rajinder Kumar; Sharma, Sanjeev R; Mahajan, B V C
2012-08-01
Immature green cucumber cv. 'Padmini' fruits were individually shrink wrapped with Cryovac D955 (60 guage) film and stored at 12 ± 1 °C, 90-95% RH as well as ambient conditions (29-33 °C, 65-70% RH). At 12 ± 1 °C and 90-95% RH, individual shrink wrapped cucumber recorded minimum Physiological loss in weight (0.66%) as compared with unwrapped fruits (11.11%) at the end of refrigerated storage (15 days). The softening (loss of firmness) was maximum (1304.6-876.6 g force) in unwrapped cucumbers whereas in shrink wrapping, minimum loss in firmness (1304.6-1065.3 g force) was observed after 12 days storage at 12 ± 1 °C and 90-95% RH but greater loss of weight and firmness makes the control cucumbers unmarketable after 9 days of storage. There were no rotting at all both in shrink wrapped and unwrapped cucumbers upto 15 days of storage at 12 ± 1 °C and 90-95% RH. After 15 days storage of shrink wrapped cucumbers at 12 ± 1 °C and 90-95% RH, there was loss of green colour and development of yellowness and decay. The sensory attributes score was highest in shrink wrapped cucumbers as compared to unwrapped cucumbers at end of both storage conditions. Thus it can be concluded that individual shrink wrapped cucumber can be stored well upto 15 days at 12 ± 1 °C and 90-95% RH and for 5 days at ambient conditions (29-33 °C, 65-70% RH) with maximum retention of green colour, no spoilage, minimum weight and firmness loss and very good sensory quality attributes whereas, unwrapped fruits can be stored well upto 9 days at 12 ± 1 °C and 90-95% RH and for 2 days at ambient conditions with maximum retention of physico-chemical quality attributes.
Factors affecting body weight loss during commercial long haul transport of cattle in North America.
González, L A; Schwartzkopf-Genswein, K S; Bryan, M; Silasi, R; Brown, F
2012-10-01
The objective of the present study was to identify and quantify several factors affecting shrink in cattle during commercial long-haul transport (≥400 km; n = 6,152 journeys). Surveys were designed and delivered to transport carriers to collect relevant information regarding the characteristics of animals, time of loading, origin and destination, and loaded weight before and after transport. In contrast to fat cattle, feeder cattle exhibited greater shrink (4.9 vs. 7.9 ± 0.2% of BW, respectively; P < 0.01), and experienced longer total transport durations (12.4 vs. 14.9 ± 0.99, respectively; P < 0.01) due to border crossing protocols which require mandatory animal inspection. Shrink was greater (P < 0.001) for feeder cattle loaded at ranches/farms and feed yards compared with those loaded at auction markets. Cattle loaded during the afternoon and evening shrank more than those loaded during the night and morning (P < 0.05). Shrinkage was less in cattle transported by truck drivers having 6 or more years of experience hauling livestock compared with those with 5 yr or less (P < 0.05). Shrink increased with both midpoint ambient temperature (% of BW/°C; P < 0.001) and time on truck (% of BW/h; P < 0.001). Temperature and time on truck had a multiplicative effect on each other because shrink increased most rapidly in cattle transported for both longer durations and at higher ambient temperatures (P < 0.001). The rate of shrink over time (% of BW/h) was greatest in cull cattle, intermediate in calves and feeder cattle, and slowest in fat cattle (P < 0.05) but such differences disappeared when the effects of place of origin, loading time, and experience of truck drivers were included in the model. Cull cattle, calves and feeder cattle appear to be more affected by transport compared with fat cattle going to slaughter because of greater shrink. Several factors should be considered when developing guidelines to reduce cattle transport stress and shrink including type of cattle, ambient temperature, transport duration, driving quality, and time and origin of loading.
Hormone therapy for prostate cancer
... be used: Before radiation or surgery to help shrink tumors Along with radiation therapy for cancer that ... of most androgens in the body. This also shrinks or stops prostate cancer from growing. While effective, ...
Prediction of BRAF mutation status of craniopharyngioma using magnetic resonance imaging features.
Yue, Qi; Yu, Yang; Shi, Zhifeng; Wang, Yongfei; Zhu, Wei; Du, Zunguo; Yao, Zhenwei; Chen, Liang; Mao, Ying
2017-10-06
OBJECTIVE Treatment with a BRAF mutation inhibitor might shrink otherwise refractory craniopharyngiomas and is a promising preoperative treatment to facilitate tumor resection. The aim of this study was to investigate the noninvasive diagnosis of BRAF-mutated craniopharyngiomas based on MRI characteristics. METHODS Fifty-two patients with pathologically diagnosed craniopharyngioma were included in this study. Polymerase chain reaction was performed on tumor tissue specimens to detect BRAF and CTNNB1 mutations. MRI manifestations-including tumor location, size, shape, and composition; signal intensity of cysts; enhancement pattern; pituitary stalk morphology; and encasement of the internal carotid artery-were analyzed by 2 neuroradiologists blinded to patient identity and clinical characteristics, including BRAF mutation status. Results were compared between the BRAF-mutated and wild-type (WT) groups. Characteristics that were significantly more prevalent (p < 0.05) in the BRAF-mutated craniopharyngiomas were defined as diagnostic features. The minimum number of diagnostic features needed to make a diagnosis was determined by analyzing the receiver operating characteristic (ROC) curve. RESULTS Eight of the 52 patients had BRAF-mutated craniopharyngiomas, and the remaining 44 had BRAF WT tumors. The clinical characteristics did not differ significantly between the 2 groups. Interobserver agreement for MRI data analysis was relatively reliable, with values of Cohen κ ranging from 0.65 to 0.97 (p < 0.001). A comparison of findings in the 2 patient groups showed that BRAF-mutated craniopharyngiomas tended to be suprasellar (p < 0.001), spherical (p = 0.005), predominantly solid (p = 0.003), and homogeneously enhancing (p < 0.001), and that patients with these tumors tended to have a thickened pituitary stalk (p = 0.014). When at least 3 of these 5 features were present, a tumor might be identified as BRAF mutated with a sensitivity of 1.00 and a specificity of 0.91. The area under the ROC curve for the sum of all 5 diagnostic criteria was 0.989 (p < 0.001). CONCLUSIONS The BRAF mutation status of craniopharyngiomas might be predicted using certain MRI features with relatively high sensitivity and specificity, thus offering potential guidance for the preoperative administration of BRAF mutation inhibitors.
Fibroid Tumors in Women: A Hidden Epidemic?
... that lower progesterone levels could cause fibroids to shrink. That could help relieve pain and other symptoms ... estrogen alone. In theory, such a treatment could shrink fibroids but spare women from hot flashes and ...
Skin Diseases: NIH Research to Results
... with immune system cells found in tumors could shrink skin cancer tumors and possibly prolong life, too. ... altered in the lab could cause tumors to shrink in a small number of patients. More studies ...
Mai, Uyen; Mirarab, Siavash
2018-05-08
Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .
Decline of the world's saline lakes
NASA Astrophysics Data System (ADS)
Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie
2017-11-01
Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.
New Enhancements in April 85 NASTRAN Release
NASA Technical Reports Server (NTRS)
Chan, G. C.
1985-01-01
Several features were added to COSMIC NASTRAN, along with some enhancements to improve or update existing capabilities. Most of these additions and enhancements were provided by industry users to be incorporated into NASTRAN for wider use. DIAG 48 provides a synopsis of significant developments in past NASTRAN releases (1983-1985) and indexes all diagnostic output messages and operation requests (DOMOR). Other features include: volume and surface computation of the 2-D and 3-D elements, NOLIN5 input and; NASTRAN PLOTOPT-N (where N = 2, 3, 4, or 5); shrink element plots; and output scan. A nonprint option on stress and force output request cards was added. Automated find and nofind options on the plot card, fully stressed design, high level plate elements, eigenvalue messages, and upgrading of all FORTRAN source code to the ANSI standard are enhancements made.
Experimental study of contact edge roughness on sub-100 nm various circular shapes
NASA Astrophysics Data System (ADS)
Lee, Tae Y.; Ihm, Dongchul; Kang, Hyo C.; Lee, Jum B.; Lee, Byoung H.; Chin, Soo B.; Cho, Do H.; Song, Chang L.
2005-05-01
The measurement of edge roughness has become a hot issue in the semiconductor industry. Especially the contact roughness is being more critical as design rule shrinks. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. However the features currently available in commercial CD-SEM cannot provide a proper solution in monitoring the contact roughness. We had introduced a new parameter R, measurement algorithm and definition of contact edge roughness to quantify CER and CSR in previous paper. The parameter, R could provide an alternative solution to monitor contact or island pattern roughness. In this paper, we investigated to assess optimum number of CD measurement (1-D) and fitting method for CER or CSR. The study was based on a circular contact shape. Some new ideas to quantify CER or CSR were also suggested with preliminary experimental results.
Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang
2016-07-26
Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.
50 CFR 229.32 - Atlantic large whale take reduction plan regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...
50 CFR 229.32 - Atlantic large whale take reduction plan regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...
Re-appearance of cooperativity in ultra-small spin-crossover [Fe(pz){Ni(CN)₄}] nanoparticles.
Peng, Haonan; Tricard, Simon; Félix, Gautier; Molnár, Gábor; Nicolazzi, William; Salmon, Lionel; Bousseksou, Azzedine
2014-10-06
A reverse nanoemulsion technique was used for the elaboration of [Fe(pz){Ni(CN)4}] nanoparticles. Low-temperature micellar exchange made it possible to elaborate ultra-small nanoparticles with sizes down to 2 nm. When decreasing the size of the particles from 110 to 12 nm the spin transition shifts to lower temperatures, becomes gradual, and the hysteresis shrinks. On the other hand, a re-opening of the hysteresis was observed for smaller (2 nm) particles. A detailed (57)Fe Mössbauer spectroscopy analysis was used to correlate this unusual phenomenon to the modification of the stiffness of the nanoparticles thanks to the determination of their Debye temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Super-focusing of center-covered engineered microsphere.
Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui
2016-08-16
Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.
Super-focusing of center-covered engineered microsphere
Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui
2016-01-01
Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere. PMID:27528093
Sustainability for Shrinking Cities
Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubblefield, M.A.; Yang, C.; Lea, R.H.
The use of heat-activated thermal couplings is a quick and cost-effective joining method for composite-to-composite materials. In this study, a prepreg laminate which contains thermoset resins and fiberglass reinforcements is wrapped around the ends of components which are to be joined. A shrink tape, made of thermoplastic material, is placed over the prepreg laminate. When curing the shrink tape and the prepreg laminate, the shrink tape shrinks and compresses the prepreg to obtain good adhesion and the required mechanical properties. The mechanical strength of the heat coupling joint in bending increased by 29% over the currently used butt-weld method. Tomore » optimize the curing process, a finite element model was also developed to show the temperature distribution of the heat coupling joint during the curing process. Based on the tested prepreg material properties and model, the finite analysis temperature distribution differed less than 10% from that of the experimental data.« less
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, Luis; Martin, Thomas E
2010-09-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?
Biancucci, L.; Martin, T.E.
2010-01-01
1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.
Adsorption energy as a metric for wettability at the nanoscale
Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.
2017-01-01
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869
Numerical investigations of the potential for laser focus sensors in micrometrology
NASA Astrophysics Data System (ADS)
Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard
2017-06-01
Laser focus sensors (LFS)1 attached to a scanning nano-positioning and measuring machine (NPMM) enable near diffraction limit resolution with very large measuring areas up to 200 x 200 mm1. Further extensions are planned to address wafer sizes of 8 inch and beyond. Thus, they are preferably suited for micro-metrology on large wafers. On the other hand, the minimum lateral features in state-of-the-art semiconductor industry are as small as a few nanometer and therefore far beyond the resolution limits of classical optics. New techniques such as OCD or ODP3,4 a.k.a. as scatterometry have helped to overcome these constraints considerably. However, scatterometry relies on regular patterns and therefore, the measurements have to be performed on special reference gratings or boxes rather than in-die. Consequently, there is a gap between measurement and the actual structure of interest which becomes more and more an issues with shrinking feature sizes. On the other hand, near-field approaches would also allow to extent the resolution limit greatly5 but they require very challenging controls to keep the working distance small enough to stay within the near field zone. Therefore, the feasibility and the limits of a LFS scanner system have been investigated theoretically. Based on simulations of laser focus sensor scanning across simple topographies, it was found that there is potential to overcome the diffraction limitations to some extent by means of vicinity interference effects caused by the optical interaction of adjacent topography features. We think that it might be well possible to reconstruct the diffracting profile by means of rigorous diffraction simulation based on a thorough model of the laser focus sensor optics in combination with topography diffraction 6 in a similar way as applied in OCD. The difference lies in the kind of signal itself which has to be modeled. While standard OCD is based on spectra, LFS utilizes height scan signals. Simulation results are presented for different types of topographies (dense vs. sparse, regular vs. single) with lateral features near and beyond the classical resolution limit. Moreover, the influence of topography height on the detectability is investigated. To this end, several sensor principles and polarization setups are considered such as a dual color pin hole sensor and a Foucault knife sensor. It is shown that resolution beyond the Abbe or Rayleigh limit is possible even with "classical" optical setups when combining measurements with sophisticated profile retrieval techniques and some a-priori knowledge. Finally, measurement uncertainties are derived based on perturbation simulations according to the method presented in 7.
Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei
2017-05-10
We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO 2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.
Feasibility Study of Thin Film Thermocouple Piles
NASA Technical Reports Server (NTRS)
Sisk, R. C.
2001-01-01
Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.
NASA Astrophysics Data System (ADS)
Wen-bo, LUO; Ji-kun, WANG; Yin, GAN
2018-01-01
Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.
Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy
2004-02-01
We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.
CMOS image sensors: State-of-the-art
NASA Astrophysics Data System (ADS)
Theuwissen, Albert J. P.
2008-09-01
This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
..., shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the applicable percentage... national best offer, as appropriate, shrinks to the greater of: (a) 4 percentage points, or, (b) one...
Rigidity of complete generic shrinking Ricci solitons
NASA Astrophysics Data System (ADS)
Chu, Yawei; Zhou, Jundong; Wang, Xue
2018-01-01
Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.
Robust shrinking ellipsoid model predictive control for linear parameter varying system
Yan, Yan
2017-01-01
In this paper, a new off-line model predictive control strategy is presented for a kind of linear parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is constructed by solving linear matrix inequality. By splitting the objective function into two parts, the proposed strategy moves most computations off-line. The on-line computation is only calculating the current control to assure the system shrinking into the smaller ellipsoid. With the proposed formulation, the stability of the closed system is proved, followed with two numerical examples to demonstrate the proposed method’s effectiveness in the end. PMID:28575028
Shrinking cities examined from a shrinking scale – the impact ...
Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. Shrinking cities face decreased income, reduced property values, and decreased tax revenue. Fewer people per unit area creates inefficiencies and higher costs for infrastructure maintenance and the provision of public amenities. However, population losses and economic distress are not equal in all neighborhoods, and in fact are quite heterogeneously distributed across the landscape. Broader statements about the trajectory of a shrinking city may mask underlying differences in economic, cultural, and environmental impacts as well as the ability of some neighborhoods to be resilient and adaptive to economic changes as well as climate change and other environmental stressors. This paper examines the recent impact of population loss in neighborhoods in the Río Piedras watershed in San Juan, Puerto Rico, on the provision of ecosystem services, material and energy flows, and ecological impacts, using public data and data collected previously in two household surveys. Using scenarios, we estimate future population changes and their potential positive and negative impacts on the environment and human well-being in these neighborhoods. This paper expands on prior research on shrinking cities by examining the impacts of population loss on urban social-ecological systems at the household and neighborhood scales. The purpose
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
Interquantile Shrinkage in Regression Models
Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.
2012-01-01
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546
Earth Observations taken by the Expedition 15 Crew
2007-05-12
ISS015-E-07874 (12 May 2007) --- A major dust storm (center right) along the east side of the Aral Sea, Kazakhstan, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station while passing over central Asia. The white, irregular lines along the bottom of the image are salt and clay deposits on the present coastline. On the spring day when the ISS crew shot the image, winds were blowing from the west (lower left). The gray, puffy appearance is typical of dust clouds, allowing scientists to distinguish dust from fog and smog. The dust in this image is rising from the sea bed of the Aral Sea, from a point close to the middle of the original Aral Sea of 40--50 years ago, then the fourth largest inland sea on Earth. Heavy extraction of water from the main supply river, the Amu Dary'a, has resulted in rapid shrinking of the sea. According to scientists, dust storms have been occurring in the Aral Sea region for thousands of years, but since the drastic shrinking of the sea over the past half-century an important change in dust composition has occurred. The dust now includes fertilizer and pesticide washed into the Sea from the extensive cotton fields of the Amu Dary'a floodplain. Years of liberal application of agricultural chemicals have resulted in concentration of these pollutants on the sea bed. These are now exposed to the wind and transported hundreds of kilometers in a generally easterly direction. Research suggests that the remobilized chemicals are the cause of high rates of many diseases in the populations along the north, east and southern margins of the Aral Sea. This is one of the unintended consequences of the shrinking of the sea, which has made international news for many years due to the loss of the fishing industry and other significant ecological problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... generally packaged in shrink-wrap, cellophane, or other packaging materials, in single or multi-box packs... packaged in shrink-wrap, cellophane, other resin- based packaging films, or paperboard. Imports of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
..., as appropriate, shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the..., shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the applicable percentage...
Ecology for the shrinking city (JA)
This article brings together the concepts of shrinking cities—the hundreds of cities worldwide experiencing long-term population loss—and ecology for the city. Ecology for the city is the application of a social–ecological understanding to shaping urban form and function along su...
Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area
Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Heglund, Patricia J.; Rover, Jennifer R.; Koch, Joshua C.; Bertram, Mark R.
2015-01-01
Losses in lake area have been observed for several Arctic and Subarctic regions in recent decades, with unknown consequences for lake ecosystems. These reductions are primarily attributed to two climate-sensitive mechanisms, both of which may also cause changes in water chemistry: (i) increased imbalance of evaporation relative to inflow, whereby increased evaporation and decreased inflow act to concentrate solutes into smaller volumes; and (ii) accelerated permafrost degradation, which enhances sublacustrine drainage while simultaneously leaching previously frozen solutes into lakes. We documented changes in nutrients [total nitrogen (TN), total phosphorus (TP)] and ions (calcium, chloride, magnesium, sodium) over a 25 year interval in shrinking, stable, and expanding Subarctic lakes of the Yukon Flats, Alaska. Concentrations of all six solutes increased in shrinking lakes from 1985–1989 to 2010–2012, while simultaneously undergoing little change in stable or expanding lakes. This created a present-day pattern, much weaker or absent in the 1980s, in which shrinking lakes had higher solute concentrations than their stable or expanding counterparts. An imbalanced evaporation-to-inflow ratio (E/I) was the most likely mechanism behind such changes; all four ions, which behave semiconservatively and are prone to evapoconcentration, increased in shrinking lakes and, along with TN and TP, were positively related to isotopically derived E/I estimates. Moreover, the most conservative ion, chloride, increased >500% in shrinking lakes. Conversely, only TP concentration was related to probability of permafrost presence, being highest at intermediate probabilities. Overall, the substantial increases of nutrients (TN >200%, TP >100%) and ions (>100%) may shift shrinking lakes towards overly eutrophic or saline states, with potentially severe consequences for ecosystems of northern lakes.
Pairing mechanism in Bi-O superconductors: A finite-size chain calculation
NASA Astrophysics Data System (ADS)
Aligia, A. A.; Nuez Regueiro, M. D.; Gagliano, E. R.
1989-09-01
We have studied the pairing mechanism in BiO3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... on a first-come/first-serve basis. Should available cabinet inventory shrink to 40 cabinets or less... be limited to a maximum power level of 5kW. Should available cabinet inventory shrink to zero, the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... Managed Fund Shares of TrimTabs Float Shrink ETF under NYSE Arca Equities Rule 8.600; Correction November... Rule Change to List and Trade Managed Fund Shares of TrimTabs Float Shrink ETF under NYSE Arca Equities...
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
Shrink-induced single-cell plastic microwell array.
Lew, Valerie; Nguyen, Diep; Khine, Michelle
2011-12-01
The ability to interrogate and track single cells over time in a high-throughput format would provide critical information for fundamental biological understanding of processes and for various applications, including drug screening and toxicology. We have developed an ultrarapid and simple method to create single-cell wells of controllable diameter and depth with commodity shrink-wrap film and tape. Using a programmable CO(2) laser, we cut hole arrays into the tape. The tape then serves as a shadow mask to selectively etch wells into commodity shrink-wrap film by O(2) plasma. When the shrink-wrap film retracts upon briefly heating, high-aspect plastic microwell arrays with diameters down to 20 μm are readily achieved. We calibrated the loading procedure with fluorescent microbeads. Finally, we demonstrate the utility of the wells by loading fluorescently labeled single human embryonic stem cells into the wells. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.
Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.
Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M
2015-02-01
The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.
NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan
2017-04-01
The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
Scaling laws for first and second generation electrospray droplets
NASA Astrophysics Data System (ADS)
Basaran, Osman; Sambath, Krishnaraj; Anthony, Christopher; Collins, Robert; Wagoner, Brayden; Harris, Michael
2017-11-01
When uncharged liquid interfaces of pendant and free drops (hereafter referred to as parent drops) or liquid films are subject to a sufficiently strong electric field, they can emit thin fluid jets from conical tip structures that form at their surfaces. The disintegration of such jets into a spray consisting of charged droplets (hereafter referred to as daughter droplets) is common to electrospray ionization mass spectrometry, printing and coating processes, and raindrops in thunderclouds. We use simulation to determine the sizes and charges of these first-generation daughter droplets which are shown to be Coulombically stable and charged below the Rayleigh limit of stability. Once these daughter droplets shrink in size due to evaporation, they in turn reach their respective Rayleigh limits and explode by emitting yet even smaller second-generation daughter droplets from their conical tips. Once again, we use simulation and theory to deduce scaling laws for the sizes and charges of these second-generation droplets. A comparison is also provided for scaling laws pertaining to different generations of daughter droplets.
The Fysics of Filopodia (or The Physics of Philopodia)
NASA Astrophysics Data System (ADS)
Schwarz, Jen; Gopinathan, Ajay; Lee, Kun-Chun; Liu, Andrea; Yang, Louise
2006-03-01
Cell motility is driven by the dynamic reorganization of the cellular cytoskeleton which is composed of actin. Monomeric actin assembles into filaments that grow, shrink, branch and bundle. Branching generates new filaments that form a mesh-like structure that protrudes outward allowing the cell to move somewhere. But how does it know where to move? It has been proposed that filopodia serve as scouts for the cell. Filopodia are bundles of actin filaments that extend out ahead of the rest of the cell to probe its upcoming environment. Recent in vitro experiments [Vignjevic et al., J. Ce ll Bio. 160, 951 (2003)] determine the minimal ingredients required for such a process. We model these experiments analytically and via Monte Carlo simulations to estimate the typical bundle size and length. We also estimate the size of the mesh-like structure from which the filopodia emerge and explain the observed nonmonotonicity of this size as a function of capping protein concentration, which inhibits filament growth.
NASA Astrophysics Data System (ADS)
Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu
2005-10-01
A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.
Toroid Joining Gun For Fittings And Couplings
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.
1992-01-01
Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, B.
Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be describedmore » along with some considerations for future composite liners requirements in the HEDP Program.« less
Microstructural characterization, petrophysics and upscaling - from porous media to fractural media
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, K.; Regenauer-Lieb, K.
2017-12-01
We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging satisfies the convergence criteria. For strongly heterogeneous rocks, however, thermodynamic convergence criteria may not meet; a continuum approach cannot be justified in this case.
LOCAL POPULATION CHANGE AND VARIATIONS IN RACIAL INTEGRATION IN THE UNITED STATES, 2000-2010.
Bellman, Benjamin; Spielman, Seth E; Franklin, Rachel S
2018-03-01
While population growth has been consistently tied to decreasing racial segregation at the metropolitan level in the United States, little work has been done to relate small-scale changes in population size to integration. We address this question through a novel technique that tracks population changes by race and ethnicity for comparable geographies in both 2000 and 2010. Using the Theil Index, we analyze the fifty most populous Metropolitan Statistical Areas in 2010 for changes in multigroup segregation. We classify local areas by their net population change between 2000 and 2010 using a novel unit of analysis based on aggregating census blocks. We find strong evidence that growing parts of rapidly growing metropolitan areas of the United States are crucial to understanding regional differences in segregation that have emerged in past decades. Multigroup segregation declined the most in growing parts of growing metropolitan areas. Comparatively, growing parts of shrinking or stagnant metropolitan areas were less diverse and had smaller declines in segregation. We also find that local areas with shrinking populations had disproportionately high minority representation in 2000 before population loss took place. We conclude that the regional context of population growth or decline has important consequences for the residential mixing of racial groups.
Shrink-swell behavior of soil across a vertisol catena
USDA-ARS?s Scientific Manuscript database
Shrinking and swelling of soils and the associated formation and closing of cracks can vary spatially within the smallest hydrologic unit subdivision utilized in surface hydrology models. Usually in the application of surface hydrology models, cracking is not considered to vary within a hydrologic u...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... on a first-come/first-serve basis. Should available cabinet inventory shrink to 40 cabinets or less... be limited to a maximum power level of 5kW. Should available cabinet inventory shrink to zero, the...
Considerations for fine hole patterning for the 7nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei
2016-03-01
One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.
Wiriyakun, Natta; Nacapricha, Duangjai; Chantiwas, Rattikan
2016-12-01
This work presents a simple hot embossing method with a shrinking procedure to produce cross-shape microchannels on poly(methyl methacrylate) (PMMA) substrate for the fabrication of an electrophoresis chip. The proposed method employed a simple two-step hot embossing technique, carried out consecutively on the same piece of substrate to make the crossing channels. Studies of embossing conditions, i.e. temperature, pressure and time, were carried out to investigate their effects on the dimension of the microchannels. Applying a simple shrinking procedure reduced the size of the channels from 700±20µm wide×150±5µm deep to 250±10µm wide×30±2µm deep, i.e. 80% and 64% reduction in the depth and width, respectively. Thermal fusion was employed to bond the PMMA substrate with a PMMA cover plate to produce the microfluidic device. Replication of microchip was achieved by precise control of conditions in the fabrication process (pressure, temperature and time), resulting in lower than 7% RSD of channel dimension, width and depth (n =10 devices). The method was simple and robust without the use of expensive equipment to construct the microstructure on a thermoplastic substrate. The PMMA microchip was used for demonstration of amine functionalization on the PMMA surface, measurement of electroosmotic flow and for electrophoretic separation of amino acids in functional drink samples. The precision of migration time and peak area of the amino acids, Lys, Ile and Phe at 125μM to 500μM, were in the range 3.2-4.2% RSD (n=9 devices) and 4.5-5.3% RSD (n=9 devices), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
The social and ecological transitions of shrinking cities -- San Juan, Puerto Rico as a case study
Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. One in six cities globally is losing population. Shrinking cities share common attributes such as decreased household income, reduced...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... shrink to 40 cabinets or less, the Exchange will limit new cabinet orders to a maximum of 4 cabinets each... inventory shrink to zero, the Exchange will place firms seeking services on a waiting list based on that...
From Phenomena to Objects: Segmentation of Fuzzy Objects and its Application to Oceanic Eddies
NASA Astrophysics Data System (ADS)
Wu, Qingling
A challenging image analysis problem that has received limited attention to date is the isolation of fuzzy objects---i.e. those with inherently indeterminate boundaries---from continuous field data. This dissertation seeks to bridge the gap between, on the one hand, the recognized need for Object-Based Image Analysis of fuzzy remotely sensed features, and on the other, the optimization of existing image segmentation techniques for the extraction of more discretely bounded features. Using mesoscale oceanic eddies as a case study of a fuzzy object class evident in Sea Surface Height Anomaly (SSHA) imagery, the dissertation demonstrates firstly, that the widely used region-growing and watershed segmentation techniques can be optimized and made comparable in the absence of ground truth data using the principle of parsimony. However, they both have significant shortcomings, with the region growing procedure creating contour polygons that do not follow the shape of eddies while the watershed technique frequently subdivides eddies or groups together separate eddy objects. Secondly, it was determined that these problems can be remedied by using a novel Non-Euclidian Voronoi (NEV) tessellation technique. NEV is effective in isolating the extrema associated with eddies in SSHA data while using a non-Euclidian cost-distance based procedure (based on cumulative gradients in ocean height) to define the boundaries between fuzzy objects. Using this procedure as the first stage in isolating candidate eddy objects, a novel "region-shrinking" multicriteria eddy identification algorithm was developed that includes consideration of shape and vorticity. Eddies identified by this region-shrinking technique compare favorably with those identified by existing techniques, while simplifying and improving existing automated eddy detection algorithms. However, it also tends to find a larger number of eddies as a result of its ability to separate what other techniques identify as connected eddies. The research presented here is of significance not only to eddy research in oceanography, but also to other areas of Earth System Science for which the automated detection of features lacking rigid boundary definitions is of importance.
REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography
NASA Astrophysics Data System (ADS)
McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.
2012-03-01
REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.
Evaluating Application Resilience with XRay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sui; Bronevetsky, Greg; Li, Bin
2015-05-07
The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection andmore » tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.« less
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong
2018-01-01
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262
Taylor, Douglas; Dyer, David; Lew, Valerie; Khine, Michelle
2010-09-21
This paper presents a rapid, ultra-low-cost approach to fabricate microfluidic devices using a polyolefin shrink film and a digital craft cutter. The shrinking process (with a 95% reduction in area) results in relatively uniform and consistent microfluidic channels with smooth surfaces, vertical sidewalls, and high aspect ratio channels with lateral resolutions well beyond the tool used to cut them. The thermal bonding of the layers results in strongly bonded devices. Complex microfluidic designs are easily designed on the fly and protein assays are also readily integrated into the device. Full device characterization including channel consistency, optical properties, and bonding strength are assessed in this technical note.
A theoretical study of the spheroidal droplet evaporation in forced convection
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Jian
2014-11-01
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morvan, B.; Tinel, A.; Sainidou, R.
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Rapid process for producing transparent, monolithic porous glass
Coronado, Paul R [Livermore, CA
2006-02-14
A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.
Chaotic behaviour of high Mach number flows
NASA Technical Reports Server (NTRS)
Varvoglis, H.; Ghosh, S.
1985-01-01
The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroemqvist, Martin H., E-mail: stromqv@kth.se
We study the problem of optimally controlling the solution of the obstacle problem in a domain perforated by small periodically distributed holes. The solution is controlled by the choice of a perforated obstacle which is to be chosen in such a fashion that the solution is close to a given profile and the obstacle is not too irregular. We prove existence, uniqueness and stability of an optimal obstacle and derive necessary and sufficient conditions for optimality. When the number of holes increase indefinitely we determine the limit of the sequence of optimal obstacles and solutions. This limit depends strongly onmore » the rate at which the size of the holes shrink.« less
STS-79 Rolls over from OPF to VAB
NASA Technical Reports Server (NTRS)
1996-01-01
A vantage point high atop the Vehicle Assembly Building (VAB) shrinks the size and scale of the orbiter Atlantis as it is rolled from the Orbiter Processing Facility to the VAB. During the five working days it spends inside the huge building, Atlantis will be mated to the external tank/twin solid rocket booster assembly, and then rolled out to Launch Pad 39A. Here, the SPACEHAB Double Module will be installed in the orbiter's payload bay and final launch preparations will get underway. Atlantis is scheduled for liftoff on Mission STS-79 , the fourth docking with the Russian Space Station Mir, scheduled for July 31.
Investigating the Use of Ultrasound for Evaluating Aging Wiring Insulation
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2001-01-01
This paper reviews our initial efforts to investigate the use of ultrasound to evaluate wire insulation. Our initial model was a solid conductor with heat shrink tubing applied. In this model, various wave modes were identified. Subsequently, several aviation classes of wires (MIL-W- 81381, MIL-W-22759/34, and MIL-W-22759/87) were measured. The wires represented polyimide and ethylene-tetraflouroethylene insulations, and combinations of polyimide and flouropolymer plastics. Wire gages of 12, 16, and 20 AWG sizes were measured. Finally, samples of these wires were subjected to high temperatures for short periods of time to cause the insulation to degrade. Subsequent measurements indicated easily detectable changes.
Continuations of the nonlinear Schrödinger equation beyond the singularity
NASA Astrophysics Data System (ADS)
Fibich, G.; Klein, M.
2011-07-01
We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.
52. GENERAL VIEW OF THE HIGH BAY AND SHRINK PIT ...
52. GENERAL VIEW OF THE HIGH BAY AND SHRINK PIT PRODUCTION AREA, FROM THE WEST BALCONY; LOOKING SE. THE 217/40 TON CLEVELAND CRANE CAN BE SEEN IN THE UPPER RIGHT OF THE VIEW. (Ryan) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY
Direct Perception of Action-Scaled Affordances: The Shrinking Gap Problem
ERIC Educational Resources Information Center
Fajen, Brett R.; Matthis, Jonathan S.
2011-01-01
The aim of this study was to investigate the perception of possibilities for action (i.e., affordances) that depend on one's movement capabilities, and more specifically, the passability of a shrinking gap between converging obstacles. We introduce a new optical invariant that specifies in intrinsic units the minimum locomotor speed needed to…
Rodrigues, José B M; Sarantópoulos, Claire I G L; Bromberg, Renata; Andrade, Juliana C; Brunelli, Kleber; Miyagusku, Luciana; Marquezini, Miriam G; Yamada, Eunice A
2017-03-01
This study evaluates the potential of using non-irradiated barrier-shrink bags containing ethylene-vinyl alcohol copolymer (EVOH), polyamide (PA) and ethylene ionomer in their structures to preserve vacuum-packaged fresh beef as an alternative to traditional gamma-ray cross-linked bags containing polyvinylidene chloride (PVDC). Boneless beef rib eye roll cuts were vacuum-packed in an industrial processing plant using EVOH 44% mol, EVOH 32% mol and a control PVDC barrier shrink bags. The cuts were evaluated during storage at 0.5°C. The EVOH films presented similar performance compared to control PVDC barrier shrink bags related to bacteria growth and purge loss. Packages with EVOH 32% mol film presented better performance than control bag with respect to the meat sensorial attributes, including fewer bubbles and better adhesion. EVOH 44% mol bags presented the highest rate of colour loss. The EVOH 32% mol non-irradiated and chlorine-free film is as effective for the preservation of fresh beef as traditional PVDC-irradiated shrink bags. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Xi; He, Chengxia; Zhang, Feifang; Wang, Hailong; Yang, Bingcheng; Liang, Xinmiao
2014-12-01
Heat-shrink tubing, which shrinks in one plane only (its diameter) when heated, commonly used for sealing protection in electrical engineering, was found to be able to function as a solid-phase microextraction coating. Its utility was demonstrated for the determination of phthalic acid esters in an aqueous solution combined with high-performance liquid chromatography equipped with a UV absorbance detector. The preparation procedure was rather simple and only ∼10 min was needed. The fiber cost is extremely low (∼10 cent each). The parameters affecting the extraction were optimized. Heat-shrink tubing fiber exhibited a significant enrichment effect for the three examined phthalic acid esters and up to 931-fold enrichment factor was obtained. The limit of detection was <10 μg/L for all analytes. The operation repeatability and fiber-to-fiber reproducibility were 1.2-8.3 and 5.4-9.1%, respectively. It was successfully applied for the analysis of bottled drinking water with recoveries ranging from 90.1-100.5%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extension of the shelf life of guava by individual packaging with cling and shrink films.
Rana, Seema; Siddiqui, Saleem; Goyal, Ankit
2015-12-01
Guava is a climacteric fruit so physico-chemical changes continuously occur after harvest till fruit become unfit for consumption and suffers from post harvest losses. The main objective of this work was to assess the effectiveness of individual film in form of Shrink and Cling wrap on shelf life of guava. Fruits were individually packed in polythene bags (LDPE) of 200 gauge thickness by Shrink and Cling wrapping and stored at 7 ± 3 °C. Individual wrapping reduced the magnitude of changes during storage i.e., ripening process drastically as evident from lower total soluble solids, higher ascorbic acid, polyphenol content with lower polyphenol oxidase activity and physiological loss of weight (PLW) was less than 3.5 %. Film wrapping preserved freshness of wrapped fruits as they remained acceptable for whole storage time in contrast to control fruits which turned unacceptable by 15(th) day of storage. Control fruits showed significant compositional changes as well as in polyphenol content, ascorbic acid and reduced number of marketable fruits while Cling and Shrink wrapping enhanced the shelf life by 10 days.
Kinetics of electrically and chemically induced swelling in polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.
1990-09-01
Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.
Organ size control via hydraulically gated oscillations.
Ruiz-Herrero, Teresa; Alessandri, Kévin; Gurchenkov, Basile V; Nassoy, Pierre; Mahadevan, L
2017-12-01
Hollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells. © 2017. Published by The Company of Biologists Ltd.
Nanocoaxes for Optical and Electronic Devices
Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-01-01
The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400
Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature
Cremona, Andrea; Orsini, Francesco; Corsetto, Paola A.; Hoogenboom, Bart W.; Rizzo, Angela M.
2015-01-01
The formation of lipid microdomains (“rafts”) is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37°C, which is indicative of radical changes in local membrane order close to physiological temperature. PMID:26147107
Nanoparticle-induced unusual melting and solidification behaviours of metals
Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun
2017-01-01
Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147
Microgels: Structure, Dynamics, and Possible Applications.
NASA Astrophysics Data System (ADS)
McKenna, John; Streletzky, Kiril
2007-03-01
We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.
An experimental and theoretical investigation on torrefaction of a large wet wood particle.
Basu, Prabir; Sadhukhan, Anup Kumar; Gupta, Parthapratim; Rao, Shailendra; Dhungana, Alok; Acharya, Bishnu
2014-05-01
A competitive kinetic scheme representing primary and secondary reactions is proposed for torrefaction of large wet wood particles. Drying and diffusive, convective and radiative mode of heat transfer is considered including particle shrinking during torrefaction. The model prediction compares well with the experimental results of both mass fraction residue and temperature profiles for biomass particles. The effect of temperature, residence time and particle size on torrefaction of cylindrical wood particles is investigated through model simulations. For large biomass particles heat transfer is identified as one of the controlling factor for torrefaction. The optimum torrefaction temperature, residence time and particle size are identified. The model may thus be integrated with CFD analysis to estimate the performance of an existing torrefier for a given feedstock. The performance analysis may also provide useful insight for design and development of an efficient torrefier. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trends in electro-optical electronic warfare
NASA Astrophysics Data System (ADS)
Smith, Carl R.; Grasso, Robert; Pledger, Jack; Murarka, Naveen
2012-09-01
Protection of military aircraft from hostile threats is paramount to ensure the survivability of aircrews, platforms, and mission success. While the threat environment continues to become more complex, shrinking defense budgets places new challenges on the development of electronic warfare (EW) systems. This paper presents the trends in electro-optical EW system development including 1) features, 2) affordability, 3) open architecture, 4) multi-functionality, 5) integrated avionics survivability equipment, and 6) enabling technologies for sensors, and optical sources. While these system attributes are not new, they have grown in importance in the design of EW systems. And, if treated correctly can have a beneficial symbiotic relationship to each other and to the airframe they support.
Will Universities Rediscover Their Core Mission as They Shrink?
ERIC Educational Resources Information Center
Kissel, Adam
2011-01-01
If one intends to speculate about the effects of the bursting of the higher education bubble, one can gain some insight by examining universities that are already shrinking. The University of California (UC) system's state appropriation, for example, has decreased by almost a billion dollars since 2007-2008. In this article, the author talks about…
Challenges and limitations in studying the shrink-swell and crack dynamics of vertisol soils
USDA-ARS?s Scientific Manuscript database
The need to study the shrink-swell and crack properties of vertic soils has long been recognized given their dynamics in time and space, which modifies the physical properties that impact water and air movement in the soil, flow of water into the subsoil and ground water, and generally alter the hyd...
Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle
2011-12-22
A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decline of the world's saline lakes
Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore
2017-01-01
Many of the worldâs saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...
A Model Recycling Program: UNC Takes Action as Landfill Space Shrinks and Costs Rise.
ERIC Educational Resources Information Center
Sherman, Rhonda L.
1991-01-01
The University of North Carolina responded to escalating waste disposal costs and shrinking landfill space with a structured program of recycling, including a mobile recycling drop, student family housing recycling, a newspaper drop-off site, high-volume glass pick-up, high-volume newspaper pick-up, and cardboard recycling. Campus-wide cooperation…
1990-05-01
shrinking water supply, and shrinking fuel reserves. As these challenges multiply, the source of solutions becomes difficult to identify. A cooperative ... movement of the people through political channels seems to be the emerging source. 5 CHAPTER II IDENTIFYING NEW THREAT AREAS What does all this have to do
NASA Astrophysics Data System (ADS)
Ruan, Shaobo; He, Qin; Gao, Huile
2015-05-01
To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01408e
Hallman, Kelly K.; Kenworthy, Nora J.; Diers, Judith; Swan, Nick; Devnarain, Bashi
2015-01-01
Participatory mapping was undertaken with single-sex groups of grade 5 and grade 8–9 children in KwaZulu-Natal. Relative to grade 5 students, wide gender divergence in access to the public sphere was found at grade 8–9. With puberty, girls' worlds shrink, while boys' expand. At grade 5, female-defined community areas were equal or larger in size than those of males. Community area mapped by urban grade 8–9 girls, however, was only one-third that of male classmates and two-fifths that of grade 5 girls. Conversely, community area mapped by grade 8–9 boys was twice that of grade 5 boys. Similar differences emerged in the rural site. No female group rated a single community space as more than ‘somewhat safe’. Although curtailed spatial access is intended to protect girls, grade 8–9 girls reported most places in their small navigable areas as very unsafe. Expanded geographies of grade 8–9 boys contained a mix of safe and unsafe places. Reducing girls' access to the public sphere does not increase their perceived safety, but may instead limit their access to opportunities for human development. The findings emphasise the need for better violence prevention programming for very young adolescents. PMID:25303092
Cao, Yufei; Cai, Kaiming; Hu, Pingan; Zhao, Lixia; Yan, Tengfei; Luo, Wengang; Zhang, Xinhui; Wu, Xiaoguang; Wang, Kaiyou; Zheng, Houzhi
2015-01-01
A critical challenge for the integration of optoelectronics is that photodetectors have relatively poor sensitivities at the nanometer scale. Generally, a large electrodes spacing in photodetectors is required to absorb sufficient light to maintain high photoresponsivity and reduce the dark current. However, this will limit the optoelectronic integration density. Through spatially resolved photocurrent investigation, we find that the photocurrent in metal-semiconductor-metal (MSM) photodetectors based on layered GaSe is mainly generated from the region close to the metal-GaSe interface with higher electrical potential. The photoresponsivity monotonically increases with shrinking the spacing distance before the direct tunneling happens, which was significantly enhanced up to 5,000 AW−1 for the bottom Ti/Au contacted device. It is more than 1,700-fold improvement over the previously reported results. The response time of the Ti/Au contacted devices is about 10–20 ms and reduced down to 270 μs for the devices with single layer graphene as metallic electrodes. A theoretical model has been developed to well explain the photoresponsivity for these two types of device configurations. Our findings realize reducing the size and improving the performance of 2D semiconductor based MSM photodetectors simultaneously, which could pave the way for future high density integration of optoelectronics with high performances. PMID:25632886
Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R
2016-06-01
Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.
Lewis, Tyler; Lindberg, Mark S.; Heglund, Patricia J.; Schmutz, Joel A.; Schmidt, Joshua H.; Dubour, Adam J.; Rover, Jennifer R.; Bertram, Mark R.
2016-01-01
Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.
ERIC Educational Resources Information Center
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio
2011-01-01
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger
2015-01-01
The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...
Why Human Jawbones Shrink so Rapidly in Evolution Scale?
Holowko, Beata
2016-01-01
Deliberations are presented on the cause of human jawbones shrinking. It is argued that an interplay of the geometry of the sphenoid bone and the MYH16 gene mutation is the likely reason of decreasing ofhuman faces. The basicranial-flexion angle distribution of the new sample of 337 Central European patients is analyzed and compared with existing data from other continents.
Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.
Schartl, Manfred; Schmid, Michael; Nanda, Indrajit
2016-06-01
The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.
Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.
Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David
2016-01-01
Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.
High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces
NASA Astrophysics Data System (ADS)
Ozdemir, Aytekin
Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency by varying the geometric parameters of silicon nanodisks. Having two resonance mechanisms at the same frequency allows us to achieve full (0-2?) phase shift on the transmitted beam. To enable the miniaturization of pixel size for achieving high-resolution, planar, compact-size focal plane arrays (FPAs), we also present and explore the metasurface lens array-based FPAs. The investigated dielectric metasurface lens arrays achieved high focusing efficiency with superior optical crosstalk performance. We see a magnificent application prospect for metasurfaces in enhancing the fill factor and reducing the pixel size of FPAs and CCD, CMOS imaging sensors as well. Moreover, it is of paramount importance to design metasurfaces possessing tunable properties. Thus, we also propose a tunable beam steering device by combining phase manipulating metasurfaces concept and liquid crystals. Tunability feature is implemented by nematic liquid crystals infiltrated into nano holes in SiO2. Using electrically tunable nematic liquid crystals, dynamic beam steering is achieved.
Dynamic Morphologies and Stability of Droplet Interface Bilayers
NASA Astrophysics Data System (ADS)
Guiselin, Benjamin; Law, Jack O.; Chakrabarti, Buddhapriya; Kusumaatmaja, Halim
2018-06-01
We develop a theoretical framework for understanding dynamic morphologies and stability of droplet interface bilayers (DIBs), accounting for lipid kinetics in the monolayers and bilayer, and droplet evaporation due to imbalance between osmotic and Laplace pressures. Our theory quantitatively describes distinct pathways observed in experiments when DIBs become unstable. We find that when the timescale for lipid desorption is slow compared to droplet evaporation, the lipid bilayer will grow and the droplets approach a hemispherical shape. In contrast, when lipid desorption is fast, the bilayer area will shrink and the droplets eventually detach. Our model also suggests there is a critical size below which DIBs can become unstable, which may explain experimental difficulties in miniaturizing the DIB platform.
Tamoto, Akira; Aratani, Naoki; Yamada, Hiroko
2017-11-16
We have serendipitously discovered a unique transformation of a cyclooctatetraene derivative 1 into a cycloheptatriene spirolactone 3 upon oxidation, which is the first such transformation reported in 60 years. Product 3 could be reversibly interconverted into the aromatic tropylium cation 3H + by acid/base treatment, which was accompanied by drastic spectroscopic changes. The resultant cycloheptatriene could be further converted into benzene upon oxidation. We characterized all the key structures by X-ray studies. Eventually, the π-conjugated ring size shrinks from 8 to 7, then finally to 6 upon oxidation, in the direction of the stronger aromatization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.
2002-10-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.
Cryogenic anti-friction bearing with inner race
NASA Technical Reports Server (NTRS)
Blount, Dale H. (Inventor)
1990-01-01
This invention consists of a bearing designed to operate in a cryogenic environment and which has an inner raceway generally constructed as an annular band fitted by an interference fit to a rotating shaft. A pair of annular tension bands are fitted onto opposed sides of the band and function to firmly clamp the raceway to the shaft. This occurs because the tension bands are constructed of a material which, when cooled to approximately -335 F shrinks more than the raceway and the shaft to which it is fitted. The bands further relax somewhat at room temperature and permit the interference fit between the raceway and the shaft to be sized such that the raceway is not overly stressed.
Breast cancer Ki67 expression preoperative discrimination by DCE-MRI radiomics features
NASA Astrophysics Data System (ADS)
Ma, Wenjuan; Ji, Yu; Qin, Zhuanping; Guo, Xinpeng; Jian, Xiqi; Liu, Peifang
2018-02-01
To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are associated with Ki67 expression of breast cancer. In this institutional review board approved retrospective study, we collected 377 cases Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 53 low-Ki67 expression (Ki67 proliferation index less than 14%) and 324 cases with high-Ki67 expression (Ki67 proliferation index more than 14%). A binary-classification of low- vs. high- Ki67 expression was performed. A set of 52 quantitative radiomics features, including morphological, gray scale statistic, and texture features, were extracted from the segmented lesion area. Three most common machine learning classification methods, including Naive Bayes, k-Nearest Neighbor and support vector machine with Gaussian kernel, were employed for the classification and the least absolute shrink age and selection operator (LASSO) method was used to select most predictive features set for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity. The model that used Naive Bayes classification method achieved the best performance than the other two methods, yielding 0.773 AUC value, 0.757 accuracy, 0.777 sensitivity and 0.769 specificity. Our study showed that quantitative radiomics imaging features of breast tumor extracted from DCE-MRI are associated with breast cancer Ki67 expression. Future larger studies are needed in order to further evaluate the findings.
Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Comfort, Everett; Lee, Ji Ung
2016-06-01
The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.
Variations in diameter measurements of Robusta Eucalyptus due to swelling and shrinking of bark
Robert E. Burgan
1971-01-01
Trunk diameters of Eucalyptus robusta trees shrink and swell as bark moisture content changes. Diameter variations from this cause as measured on six trees with a dial-gage dendrometer were less than 1 percent of trunk diameter. To compare this variation with the variation in d.b.h. measurements that can result from personal techiques of using a...
LINER FOR EXTRUSION BILLET CONTAINERS
Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn
Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y
2009-01-01
To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.
Pinning transition in shrinking nanobubbles
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.
Validating automatic semantic annotation of anatomy in DICOM CT images
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Criminisi, Antonio; Shotton, Jamie; White, Steve; Robertson, Duncan; Sparks, Bobbi; Munasinghe, Indeera; Siddiqui, Khan
2011-03-01
In the current health-care environment, the time available for physicians to browse patients' scans is shrinking due to the rapid increase in the sheer number of images. This is further aggravated by mounting pressure to become more productive in the face of decreasing reimbursement. Hence, there is an urgent need to deliver technology which enables faster and effortless navigation through sub-volume image visualizations. Annotating image regions with semantic labels such as those derived from the RADLEX ontology can vastly enhance image navigation and sub-volume visualization. This paper uses random regression forests for efficient, automatic detection and localization of anatomical structures within DICOM 3D CT scans. A regression forest is a collection of decision trees which are trained to achieve direct mapping from voxels to organ location and size in a single pass. This paper focuses on comparing automated labeling with expert-annotated ground-truth results on a database of 50 highly variable CT scans. Initial investigations show that regression forest derived localization errors are smaller and more robust than those achieved by state-of-the-art global registration approaches. The simplicity of the algorithm's context-rich visual features yield typical runtimes of less than 10 seconds for a 5123 voxel DICOM CT series on a single-threaded, single-core machine running multiple trees; each tree taking less than a second. Furthermore, qualitative evaluation demonstrates that using the detected organs' locations as index into the image volume improves the efficiency of the navigational workflow in all the CT studies.
NASA Astrophysics Data System (ADS)
Spehr, Tinka; Frick, Bernhard; Grillo, Isabelle; Falus, Peter; Müller, Martin; Stühn, Bernd
2009-03-01
We present a detailed neutron scattering study of the structure, shape fluctuations, and translational diffusion of microemulsion droplets at low temperatures. We investigate the ternary microemulsion D2O , AOT [bis(2-ethyl-hexyl) sulfosuccinate], and toluene-d8 (or heptane-d16) which forms spherical water droplets surrounded by a monolayer of AOT dispersed in oil around room temperature. At T=290K , varying the molar ratio ω of water to AOT between 3 and 12, we find using small angle neutron scattering water core radii Rc between 7 and 18Å , respectively. We characterize the structure at low temperatures down to T=220K . Upon cooling the droplet structure is maintained and Rc stays roughly constant down to temperatures where the confined water is deeply supercooled. At an ω -dependent temperature Ts we observe for all compositions a shrinking of the droplets, which depends on the initial droplet size: the smaller the initial radii, the lower the Ts is. At the lowest investigated temperature T=220K we find an ω -independent remaining water core corresponding to a number of about 2 water molecules per AOT molecule. Neutron spin-echo spectroscopy is used to monitor shape fluctuations and translational diffusion for one microemulsion ( ω=8 , Rw=12Å ) from T=300K down to temperatures below the corresponding shrinking temperature Ts . Thereby we determine the bending elasticity to be κ=0.3kBT over the whole investigated temperature range where the droplets are stable. From these results we cannot establish a link between surfactant membrane elasticity and low temperature structural instability of the droplets. Moreover, our results show that reverse AOT micelles are an excellent tool for the study of soft confined water over a broad range of confining sizes and temperatures down to the supercooled state.
A preclinical study by Center for Cancer Research investigators and colleagues shows that a drug guided by an attached target-seeking antibody can recognize cells infiltrating tumors, the tumor stroma, and cause various types of tumors to shrink, and in many cases, disappear. Their findings suggest that when stromal cells take up the ADC, they cleave the drug from the antibody
Funnel for fuel pin loading system
Christiansen, D.W.; Steffen, J.M.; Brown, W.F.
1984-01-01
An enlarged funnel is described which is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.
Funnel for fuel pin loading system
Christiansen, David W.; Steffen, Jim M.; Brown, William F.
1985-01-01
An enlarged funnel is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.
A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures.
Wang, Ping; Xia, Zhiwei; Yan, Juan; Liu, Xunwei; Yao, Guangbao; Pei, Hao; Zuo, Xiaolei; Sun, Gang; He, Dannong
2015-04-21
We monitored the shrink and stretch of the tetrahedral DNA nanostructure (TDN) and the i-motif connected TDN structure at pH 8.5 and pH 4.5, and we found that not only the i-motif can change its structure when the pH changes, but also the TDN and the DNA double helix change their structures when the pH changes.
Shrink-Fit Solderable Inserts Seal Hermetically
NASA Technical Reports Server (NTRS)
Croucher, William C.
1992-01-01
Shrink-fit stainless-steel insert in aluminum equipment housing allows electrical connectors to be replaced by soldering, without degrading hermeticity of housing or connector. Welding could destroy electrostatic-sensitive components and harm housing and internal cables. Steel insert avoids problems because connector soldered directly to it rather than welded to housing. Seals between flange and housing, and between connector and flange resistant to leaks, even after mechanical overloading and thermal shocking.
Development of an Efficient Micro-Heat Exchanger: The Integration of Design Processing and Testing
2005-11-01
together at high temperatures and cooled to room temperature. Additionally, alumina and zirconia powders have a major difference in densification...efficient heat exchanger. The main problem that needed to be resolved was the fact that the zirconia powders shrink much more than alumina powder...been measured. Our measurement in dimensions verifies that zirconia powders shrink substantially more than alumina powder except CR-15 after final
Do low-shrink composites reduce polymerization shrinkage effects?
Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A
2011-05-01
Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.
Springtime Dust Storm Swirls at Martian North Pole
NASA Technical Reports Server (NTRS)
1996-01-01
Two Hubble Space Telescope images of Mars, taken about a month apart on September 18 and October 15, 1996, reveal a state-sized dust storm churning near the edge of the Martian north polar cap. The polar storm is probably a consequence of large temperature differences between the polar ice and the dark regions to the south, which are heated by the springtime sun. The increased sunlight also causes the dry ice in the polar cap to sublime and shrink.
Mars is famous for large, planet-wide dust storms. Smaller storms resembling the one seen here were observed in other regions by Viking orbiters in the late 1970s. However, this is the first time that such an event has been caught near the receding north polar cap. The Hubble images provide valuable new insights into the behavior of localized dust storms on Mars, which are typically below the resolution of ground-based telescopes. This kind of advanced planetary 'weather report' will be invaluable for aiding preparation for the landing of NASA's Pathfinder spacecraft in July 1997 and the arrival of Mars Global Surveyor orbiter in September 1997.Top (September 18, 1996) - The salmon colored notch in the white north polar cap is a 600-mile (1,000 kilometer) long storm -- nearly the width of Texas. The bright dust can also be seen over the dark surface surrounding the cap, where it is caught up in the Martian jet stream and blown easterly. The white clouds at lower latitudes are mostly associated with major Martian volcanos such as Olympus Mons. This image was taken when Mars was more than 186 million miles (300 million kilometers) from Earth, and the planet was smaller in angular size than Jupiter's Great Red Spot!Bottom (October 15, 1996) - Though the storm has dissipated by October, a distinctive dust-colored comma-shaped feature can be seen curving across the ice cap. The shape is similar to cold fronts on Earth, which are associated with low pressure systems. Nothing quite like this feature has been seen previously either in ground-based or spacecraft observation. The snow line marking the edge of the cap receded northward by approximately 120 miles (200 kilometers), while the distance to the Red Planet narrowed to 170 million miles (275 million kilometers).Technical notes: To help compare locations and sizes of features, map projections (right of each disk) are centered on the geographic north pole. Maps are oriented with 0 degrees longitude at the top and show meridians every 45 degrees of longitude (longitude increases clockwise); latitude circles are also shown for 40, 60, and 80 degrees north latitude. The color images were assembled from separate exposures taken with the Wide Field Planetary Camera 2.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/NASA Astrophysics Data System (ADS)
Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre
2017-04-01
Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces. We perform a parametric study of the classical Prakash-Clifton regularisation for different material contrasts. In particular mesh-dependence and regularisation-dependence of the numerical solutions are analysed in this parameter space. When regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are consistent solutions of the same physical problem. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic time scale regularisation is show to provide mesh-independent and physically well-posed numerical solutions during the acceleration phase toward an asymptotic speed. When generalised Rayleigh wave does not exist, numerical solutions are shown to tend toward an asymptotic velocity higher than the slowest shear wave speed. When generalised Rayleigh wave speed exists, as numerical solutions tend toward this velocity, increasing spurious oscillations develop and solutions become unstable. In this regime regularisation dependent and unstable finite-size pulses may be generated. This instability is associated with the singular behaviour of the slip-induced normal traction perturbations, and of the slip rate at the rupture front, in relation with complete shrinking of the dissipation zone. This phase requires to be modelled either by more complex interface constitutive laws involving velocity-strengthening effects that may stabilize short wavelength interfacial propagating modes or by considering non-ideal interfaces that introduce a new length scale in the problem that may promote selection and stabilization of the slip pulses.
Controlling the size of alginate gel beads by use of a high electrostatic potential.
Klokk, T I; Melvik, J E
2002-01-01
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.
Fundamental Fractal Antenna Design Process
NASA Astrophysics Data System (ADS)
Zhu, L. P.; Kim, T. C.; Kakas, G. D.
2017-12-01
Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.
Regression of Lingual Lymphatic Vessels in Sodium-restricted Mice.
He, Lianying; McCluskey, Lynnette Phillips
2018-05-01
Lymphatic vessel networks can expand and regress, with consequences for interstitial fluid drainage and nutrient supply to tissues, inflammation, and tumor spread. A diet high in sodium stimulates hyperplasia of cutaneous lymphatic capillaries. We hypothesized that dietary sodium restriction would have the opposite effect, shrinking lymphatic capillaries in the tongue. Lingual lymphatic capillary density and size was significantly reduced in mice fed a low-sodium diet (0.03%) for 3 weeks compared with control-fed mice. Blood vessel density was unchanged. Despite lymphatic capillary shrinkage, lingual edema was not observed. The effect on lymphatic capillaries was reversible, as lymphatic density and size in the tongue were restored by 3 weeks on a control diet. Lymphatic hyperplasia induced by a high-sodium diet is dependent on infiltrating macrophages. However, lingual CD68+ macrophage density was unchanged by sodium deficiency, indicating that distinct mechanisms may mediate lymphatic regression. Further studies are needed to test whether dietary sodium restriction is an effective, non-invasive co-therapy for oral cancer.
Simulating the bio nanoelectronic interface
NASA Astrophysics Data System (ADS)
Millar, Campbell; Roy, Scott; Brown, Andrew R.; Asenov, Asen
2007-05-01
As the size of conventional nano-CMOS devices continues to shrink, they are beginning to approach the size of biologically relevant macromolecules such as ion channels. This, in concert with the increasing understanding of the behaviour of proteins in vivo, creates the potential for a revolution in the sensing, measurement and interaction with biological systems. In this paper we will demonstrate the theoretical possibility of directly coupling a nanoscale MOSFET with a model ion channel protein. This will potentially allow a much better understanding of the behaviour of biologically relevant molecules, since the measurement of the motion of charged particles can reveal a substantial amount of information about protein structure-function relationships. We can use the MOSFET's innate sensitivity to stray charge to detect the positions of single ions and, thus, better explore the dynamics of ion conduction in channel proteins. In addition, we also demonstrate that the MOSFET can be 'tuned' to sense current flow through channel proteins, thus providing, for the first time, a direct solid state/biological interface at the atomic level.
Sintering of polydisperse viscous droplets
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.
2017-03-01
Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.
Laser treatment of cutaneous lesions with image-guided fine spot-scanning irradiation
NASA Astrophysics Data System (ADS)
Nitta, Isami; Zhao, Xuefeng; Kanno, Akihiro; Kan, Yasushi; Yoshimasa, Takezawa; Maruyama, Tomohiro; Maeda, Yoshitaka
2007-11-01
We propose a new laser irradiation method for the treatment of cutaneous lesions in plastic surgery. In general, lasers with a spot size of 1 to 10 mm are used in irradiation on diseased skin. Although the target absorbs more light energy according to the theory of selective photothermolysis, the surrounding tissue, however, is still somewhat damaged. In proposed method, an f-theta lens, which is assembled by a shrink fitter, focuses the irradiation laser beam to a very fine spot with the size of 125 μm. Guided by the captured object-image, such laser beam is conducted by a pair of galvanometer-driven mirrors to irradiate only the desired tissue target without thermal damage to surrounding tissue. Moreover, an optical coherence tomography, whose probe is capable of wide field of view, can be used to provide the guidance information for the best treatment. The usefulness of the developed laser therapy apparatus was demonstrated by performing an experiment on the removal of tattoo pigment.
Rituximab in the treatment of shrinking lung syndrome in systemic lupus erythematosus.
Peñacoba Toribio, Patricia; Córica Albani, María Emilia; Mayos Pérez, Mercedes; Rodríguez de la Serna, Arturo
2014-01-01
Shrinking lung syndrome (SLS) is a rare manifestation of systemic lupus erythematosus. We report the case of a patient with non-responding SLS (neither to glucocorticoids nor immunosupresors), who showed remarkable improvement after the onset of treatment with rituximab. Although there is a little evidence, treatment with rituximab could be proposed in SLS when classical treatment fails. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Improved high power/high frequency inductor
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1990-01-01
A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.
A shrinking hypersphere PSO for engineering optimisation problems
NASA Astrophysics Data System (ADS)
Yadav, Anupam; Deep, Kusum
2016-03-01
Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.
Elasticity of Relativistic Rigid Bodies?
NASA Astrophysics Data System (ADS)
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.
Hoya, T; Chambers, J A
2001-01-01
In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.
Protein footprinting by pyrite shrink-wrap laminate.
Leser, Micheal; Pegan, Jonathan; El Makkaoui, Mohammed; Schlatterer, Joerg C; Khine, Michelle; Law, Matt; Brenowitz, Michael
2015-04-07
The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.
Callosal Influence on Visual Receptive Fields Has an Ocular, an Orientation-and Direction Bias.
Conde-Ocazionez, Sergio A; Jungen, Christiane; Wunderle, Thomas; Eriksson, David; Neuenschwander, Sergio; Schmidt, Kerstin E
2018-01-01
One leading hypothesis on the nature of visual callosal connections (CC) is that they replicate features of intrahemispheric lateral connections. However, CC act also in the central part of the binocular visual field. In agreement, early experiments in cats indicated that they provide the ipsilateral eye part of binocular receptive fields (RFs) at the vertical midline (Berlucchi and Rizzolatti, 1968), and play a key role in stereoscopic function. But until today callosal inputs to receptive fields activated by one or both eyes were never compared simultaneously, because callosal function has been often studied by cutting or lesioning either corpus callosum or optic chiasm not allowing such a comparison. To investigate the functional contribution of CC in the intact cat visual system we recorded both monocular and binocular neuronal spiking responses and receptive fields in the 17/18 transition zone during reversible deactivation of the contralateral hemisphere. Unexpectedly from many of the previous reports, we observe no change in ocular dominance during CC deactivation. Throughout the transition zone, a majority of RFs shrink, but several also increase in size. RFs are significantly more affected for ipsi- as opposed to contralateral stimulation, but changes are also observed with binocular stimulation. Noteworthy, RF shrinkages are tiny and not correlated to the profound decreases of monocular and binocular firing rates. They depend more on orientation and direction preference than on eccentricity or ocular dominance of the receiving neuron's RF. Our findings confirm that in binocularly viewing mammals, binocular RFs near the midline are constructed via the direct geniculo-cortical pathway. They also support the idea that input from the two eyes complement each other through CC: Rather than linking parts of RFs separated by the vertical meridian, CC convey a modulatory influence, reflecting the feature selectivity of lateral circuits, with a strong cardinal bias.
Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.
Consequences of high-x proton size fluctuations in small collision systems at √{sNN}=200 GeV
NASA Astrophysics Data System (ADS)
McGlinchey, D.; Nagle, J. L.; Perepelitsa, D. V.
2016-08-01
Recent measurements of jet production rates at large transverse momentum (pT) in the collisions of small projectiles with large nuclei at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider indicate that they have an unexpected relationship with estimates of the collision centrality. One compelling interpretation of the data is that they capture an xp-dependent decrease in the average interaction strength of the nucleon in the projectile undergoing a hard scattering. A weakly interacting or "shrinking" nucleon in the projectile strikes fewer nucleons in the nucleus, resulting in a particular pattern of centrality-dependent modifications to high-pT processes. We describe a simple one-parameter geometric implementation of this picture within a modified Monte Carlo Glauber model tuned to d +Au jet data, and explore two of its major consequences. First, the model predicts a particular projectile-species effect on the centrality dependence at high xp, opposite to that expected from a final state energy loss effect. Second, we find that some of the large centrality dependence observed for forward dihadron production in d +Au collisions at RHIC may arise from the physics of the "shrinking" projectile nucleon, in addition to impact parameter dependent shadowing or saturation effects at low nuclear x . We conclude that analogous measurements in recently collected p +Au and 3He+Au collision data at RHIC can provide a unique test of these predictions.
Shrinking water's no man's land by lifting its low-temperature boundary
NASA Astrophysics Data System (ADS)
Seidl, Markus; Fayter, Alice; Stern, Josef N.; Zifferer, Gerhard; Loerting, Thomas
2015-04-01
Investigation of the properties and phase behavior of noncrystalline water is hampered by rapid crystallization in the so-called "no man's land." We here show that it is possible to shrink the no man's land by lifting its low-temperature boundary, i.e., the pressure-dependent crystallization temperature Tx(p ) . In particular, we investigate two types of high-density amorphous ice (HDA) in the pressure range of 0.10 -0.50 GPa and show that the commonly studied unannealed state, uHDA, is up to 11 K less stable against crystallization than a pressure-annealed state called eHDA. We interpret this finding based on our previously established microscopic picture of uHDA and eHDA, respectively [M. Seidl et al., Phys. Rev. B 88, 174105 (2013), 10.1103/PhysRevB.88.174105]. In this picture the glassy uHDA matrix contains ice Ih-like nanocrystals, which simply grow upon heating uHDA at pressures ≤0.20 GPa . By contrast, they experience a polymorphic phase transition followed by subsequent crystal growth at higher pressures. In comparison, upon heating purely glassy eHDA, ice nuclei of a critical size have to form in the first step of crystallization, resulting in a lifted Tx(p ) . Accordingly, utilizing eHDA enables the study of amorphous ice at significantly higher temperatures at which we regard it to be in the ultraviscous liquid state. This will boost experiments aiming at investigating the proposed liquid-liquid phase transition.
Strang, David; Siler, Kyle
2017-08-01
This paper analyzes the surface structure of research articles published in Administrative Science Quarterly between 1956 and 2008. The period is marked by a shift from essays that interweave theory, methods and results to experimental reports that separate them. There is dramatic growth in the size of theory, methods and discussion sections, accompanied by a shrinking results section. Bibliographic references and hypotheses expand in number and become concentrated in theory sections. Article structure varies primarily with historical time and also with research design (broadly, quantitative vs. qualitative) and the author's background. We link trends in article structure to the disciplinary development of organization studies and consider its distinctive trajectory relative to physical science.
An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction.
Nabetani, Yu; Takamura, Hazuki; Hayasaka, Yuika; Sasamoto, Shin; Tanamura, Yoshihiko; Shimada, Tetsuya; Masui, Dai; Takagi, Shinsuke; Tachibana, Hiroshi; Tong, Zhiwei; Inoue, Haruo
2013-04-21
From the viewpoint of developing photoresponsive supramolecular systems in microenvironments to exhibit more sophisticated photo-functions even at the macroscopic level, inorganic/organic hybrid compounds based on clay or niobate nanosheets as the microenvironments were prepared, characterized, and examined for their photoreactions. We show here a novel type of artificial muscle model unit having much similarity with that in natural muscle fibrils. Upon photoirradiation, the organic/inorganic hybrid nanosheets reversibly slide horizontally on a giant scale, and the interlayer spaces in the layered hybrid structure shrink and expand vertically. In particular, our layered hybrid molecular system exhibits a macroscopic morphological change on a giant scale (~1500 nm) compared with the molecular size of ~1 nm, based on a reversible sliding mechanism.
Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity
NASA Astrophysics Data System (ADS)
Wang, S. F.; Li, Q.; Zu, X. T.; Xiang, X.; Liu, W.; Li, S.
2016-12-01
(Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M2+ ion active sites were coordinated by -OH of the water molecules except for EDTA anions. The MFe2O4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe2O4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly.
Ratcliff, William C; Hawthorne, Peter; Travisano, Michael; Denison, R Ford
2009-06-25
Stresses like dietary restriction or various toxins increase lifespan in taxa as diverse as yeast, Caenorhabditis elegans, Drosophila and rats, by triggering physiological responses that also tend to delay reproduction. Food odors can reverse the effects of dietary restriction, showing that key mechanisms respond to information, not just resources. Such environmental cues can predict population trends, not just individual prospects for survival and reproduction. When population size is increasing, each offspring produced earlier makes a larger proportional contribution to the gene pool, but the reverse is true when population size is declining. We show mathematically that natural selection can favor facultative delay in reproduction when environmental cues predict a decrease in total population size, even if lifetime fecundity decreases with delay. We also show that increased reproduction from waiting for better conditions does not increase fitness (proportional representation) when the whole population benefits similarly. We conclude that the beneficial effects of stress on longevity (hormesis) in diverse taxa are a side-effect of delaying reproduction in response to environmental cues that population size is likely to decrease. The reversal by food odors of the effects of dietary restriction can be explained as a response to information that population size is less likely to decrease, reducing the chance that delaying reproduction will increase fitness.
NASA Astrophysics Data System (ADS)
Lu, Tien-Chang; Chou, Yu-Hsun; Hong, Kuo-Bin; Chung, Yi-Cheng; Lin, Tzy-Rong; Arakelian, S. M.; Alodjants, A. P.
2017-08-01
Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economou, Demetre J.
As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less
NASA Technical Reports Server (NTRS)
1983-01-01
Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.
2012-04-01
Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain
NASA Astrophysics Data System (ADS)
Ghasemi, F.; Abbasi Davani, F.
2015-06-01
Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.
2017-12-01
Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1991-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9 track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to shrink the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
Data storage and retrieval system
NASA Technical Reports Server (NTRS)
Nakamoto, Glen
1992-01-01
The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9-track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to 'shrink' the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn
This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects onmore » carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.« less
Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun
2016-11-16
There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.
Morphological characteristics of motile plants for dynamic motion
NASA Astrophysics Data System (ADS)
Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon
2014-11-01
Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).
Cigar magazines: using tobacco to sell a lifestyle.
Wenger, L D; Malone, R E; George, A; Bero, L A
2001-09-01
To assess the content of two cigar "lifestyle" magazines, Cigar Aficionado and Smoke. Content analysis of cigar focused articles. Cigar focused articles (n = 353) from Cigar Aficionado and Smoke magazines. Primary focus; mention of health effects, environmental tobacco smoke, or scientific research; quotation and description of individuals; characteristics such as sex, age, ethnicity, smoking status, affiliation, and stance towards cigars; and overall image of cigars. Cigar business-focused articles were the largest category (40%, n = 143), followed by articles about cigar events (12%, n = 42). Notable were articles featuring cigar benefits to raise money for health charities. Celebrities were featured in 34% (n = 121) of articles and 96% (n = 271) favoured cigar use. Only four (1%) articles featured health effects of cigars as a primary focus. Cigar Aficionado and Smoke broke new ground in tobacco marketing by combining promotion of product, lifestyle, and industry in the same vehicle and linking the medium directly to product related events that extended its reach. The creation and marketing of new tobacco use sites challenges the increasing "isolation" of smokers, and positions cigar use as a socially welcome relief from restrictions. Public health advocates should anticipate and challenge other new tobacco marketing vehicles as communications technologies advance and public spaces for smoking shrink.
Complex of solonetzes and vertic chestnut soils in the manych-gudilo depression
NASA Astrophysics Data System (ADS)
Kovda, I. V.; Morgun, E. P.; Il'ina, L. P.
2013-01-01
Morphological, physicochemical, and isotopic properties of a two-member soil complex developed under dry steppe have been studied in the central part of the Manych Depression. The soils are formed on chocolate-colored clayey sediments, and have pronounced microrelief and the complex vegetation pattern. A specific feature of the studied soil complex is the inverse position of its components: vertic chestnut soil occupies the microhigh, while solonetz is in the microlow. The formation of such complexes is explained by the biological factor, i.e., by the destruction of the solonetzic horizon under the impact of vegetation and earth-burrowing animals with further transformation under steppe plants and dealkalinization of the soil in the microhighs. The manifestation of vertic features and shrink-swell process in soils of the complex developing in dry steppe are compared with those in the vertic soils of the Central Pre-Caucasus formed under more humid environment. It is supposed that slickensides in the investigated vertic chestnut soil are relict feature inherited from the former wetter stage of the soil development and are subjected to a gradual degradation at present. In the modern period, vertic processes are weak and cannot be distinctly diagnosed. However, their activation may take place upon an increase of precipitation or the rise in the groundwater level.
A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang
2009-11-01
Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.
RE-INTERPRETATION OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Sabrina L.; McKenzie, David E.; Reeves, Katharine K.
Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now an expected observation of extreme ultra-violet and soft X-ray coronal imagers and spectrographs (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior to the operation of AIA suggested that these plasma voids (which are seen in contrast to bright, high-temperature plasma associated with current sheets) are the cross-sections of evacuated flux tubes retracting from reconnection sites high in the corona. The high temperature imaging afforded bymore » AIA's 131, 94, and 193 Angstrom-Sign channels coupled with the fast temporal cadence allows for unprecedented scrutiny of the voids. For a flare occurring on 2011 October 22, we provide evidence suggesting that SADs, instead of being the cross-sections of relatively large, evacuated flux tubes, are actually wakes (i.e., trailing regions of low density) created by the retraction of much thinner tubes. This re-interpretation is a significant shift in the fundamental understanding of SADs, as the features once thought to be identifiable as the shrinking loops themselves now appear to be 'side effects' of the passage of the loops through the supra-arcade plasma. In light of the fact that previous measurements have attributed to the shrinking loops characteristics that may instead belong to their wakes, we discuss the implications of this new interpretation on previous parameter estimations and on reconnection theory.« less
Overcoming etch challenges related to EUV based patterning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter
2017-04-01
Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.
Finding the right way: DFM versus area efficiency for 65 nm gate layer lithography
NASA Astrophysics Data System (ADS)
Sarma, Chandra S.; Scheer, Steven; Herold, Klaus; Fonseca, Carlos; Thomas, Alan; Schroeder, Uwe P.
2006-03-01
DFM (Design for Manufacturing) has become a buzzword for lithography since the 90nm node. Implementing DFM intelligently can boost yield rates and reliability in semiconductor manufacturing significantly. However, any restriction on the design space will always result in an area loss, thus diminishing the effective shrink factor for a given technology. For a lithographer, the key task is to develop a manufacturable process, while not sacrificing too much area. We have developed a high performing lithography process for attenuated gate level lithography that is based on aggressive illumination and a newly optimized SRAF placement schemes. In this paper we present our methodology and results for this optimization, using an anchored simulation model. The wafer results largely confirm the predictions of the simulations. The use of aggressive SRAF (Sub Resolution Assist Features) strategy leads to reduction of forbidden pitch regions without any SRAF printing. The data show that our OPC is capable of correcting the PC tip to tip distance without bridging between the tips in dense SRAM cells. SRAF strategy for various 2D cases has also been verified on wafer. We have shown that aggressive illumination schemes yielding a high performing lithography process can be employed without sacrificing area. By carefully choosing processing conditions, we were able develop a process that has very little restrictions for design. In our approach, the remaining issues can be addressed by DFM, partly in data prep procedures, which are largely area neutral and transparent to the designers. Hence, we have shown successfully, that DFM and effective technology shrinks are not mutually exclusive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun; Cho, Younho; Park, Jun-Pil
Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.
Investigation of Hydrophobic Radomes for Microwave Landing System.
1982-11-01
horizontal heating wires on the inside surface, and 2) a slotted waveguide unit (C-band waveguide, about 2 feet in length) covered with a Teflon shrink tube ...AZ) Fiberglass flat 1.5ft x 13ft NE sandwich (EL) Teflon shrink 1 in x 2 ft SW tubing (Field Mon.) 7 (8) Hydrophobic Coating for Antenna Weather...SURFACE PREPARATION 13 24 Mar Conolite Primer: Vellox S-048 Finish: Microfine FSD, 7 coats, sprayed 14 24 Mar Conolite Teflon film, C-TAPE-36
Hubble’s Planetary Portrait Captures New Changes in Jupiter’s Great Red Spot
2017-12-08
New imagery from the Hubble Space Telescope is revealing details never before seen on Jupiter. Hubble’s new Jupiter maps were used to create this Ultra HD animation. These new maps and spinning globes of Jupiter were made from observations performed with NASA’s Hubble Space Telescope. They are the first products to come from a program to study the solar system’s outer planets – Jupiter, Uranus, Neptune and, later, Saturn – each year using Hubble. The observations are designed to capture a broad range of features, including winds, clouds, storms and atmospheric chemistry. These annual studies will help current and future scientists see how these giant worlds change over time. Scientists at NASA’s Goddard Space Flight Center, the Jet Propulsion Laboratory, and the University of California at Berkeley produced two global maps of Jupiter from the observations, which were made using Hubble’s high-performance Wide Field Camera 3. The two maps represent nearly back-to-back rotations of the planet, making it possible to determine the speeds of Jupiter’s winds. Already, the images have revealed a rare wave just north of the planet’s equator and a unique filament-like feature in the core of the Great Red Spot that had not been seen previously. In addition, the new images confirm that the Great Red Spot continues to shrink and become more circular, as it has been doing for years. The long axis of this characteristic storm is about 150 miles (240 kilometers) shorter now than it was in 2014. Recently, the storm had been shrinking at a faster-than-usual rate, but the latest change is consistent with the long-term trend. Read more: www.nasa.gov/press-release/goddard/hubble-s-planetary-por... Credits: NASA/ESA/Goddard/UCBerkeley/JPL-Caltech/STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.
Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S
2016-01-01
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.
Comparison of Phase Field Crystal and Molecular Dynamics Simulations for a Shrinking Grain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Nicholson, Don M
2012-01-01
The Phase-Field Crystal (PFC) model represents the atomic density as a continuous function, whose spatial distribution evolves at diffusional, rather than vibrational time scales. PFC provides a tool to study defect interactions at the atomistic level but over longer time scales than in molecular dynamics (MD). We examine the behavior of the PFC model with the goal of relating the PFC parameters to physical parameters of real systems, derived from MD simulations. For this purpose we model the phenomenon of the shrinking of a spherical grain situated in a matrix. By comparing the rate of shrinking of the central grainmore » using MD and PFC we obtain a relationship between PFC and MD time scales for processes driven by grain boundary diffusion. The morphological changes in the central grain including grain shape and grain rotation are also examined in order to assess the accuracy of the PFC in capturing the evolution path predicted by MD.« less
Shrinking cities: urban challenges of globalization.
Martinez-Fernandez, Cristina; Audirac, Ivonne; Fol, Sylvie; Cunningham-Sabot, Emmanuèle
2012-01-01
Urban shrinkage is not a new phenomenon. It has been documented in a large literature analyzing the social and economic issues that have led to population flight, resulting, in the worse cases, in the eventual abandonment of blocks of housing and neighbourhoods. Analysis of urban shrinkage should take into account the new realization that this phenomenon is now global and multidimensional — but also little understood in all its manifestations. Thus, as the world's population increasingly becomes urban, orthodox views of urban decline need redefinition. The symposium includes articles from 10 urban analysts working on 30 cities around the globe. These analysts belong to the Shrinking Cities International Research Network (SCIRN), whose collaborative work aims to understand different types of city shrinkage and the role that different approaches, policies and strategies have played in the regeneration of these cities. In this way the symposium will inform both a rich diversity of analytical perspectives and country-based studies of the challenges faced by shrinking cities. It will also disseminate SCIRN's research results from the last 3 years.
Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M
2015-01-01
Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking. DOI: http://dx.doi.org/10.7554/eLife.10113.001 PMID:26439009
NASA Astrophysics Data System (ADS)
Rienow, Andreas; Stenger, Dirk
2014-07-01
The Ruhr is an "old acquaintance" in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.
Earth Observations taken by the Expedition 13 crew
2006-09-07
ISS013-E-78506 (7 Sept. 2006) --- Sand dunes near Mongolia's Har Lake are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. Har (or Black) Lake is located in the western part of the country within the Valley of Lakes--part of a system of closed basins that stretches across central Asia. According to scientists, these basins are the remnants of larger paleolakes that had begun to shrink in size by approximately five thousand years ago as regional climate became drier. Today, the Valley of Lakes is an important ecological resource for study of steppe grasslands, and as resting points for large numbers of migratory birds. Portions of the basin are designated as national parks or other protected areas, and Har Lake itself is an ecotourism destination (usually by horseback). This oblique view captures the dynamic nature of the landscape of Har Lake. The lake is encircled by sand dune fields which encroach on the lower slopes of the Tobhata Mountains to the west and south. Gaps in the mountains have been exploited by sand dunes moving eastward (indicating westerly winds) -- the most striking example being a series of dunes entering Har Lake along its southwestern shoreline. Here, the dune forms reflect the channeling of winds through the break in the mountain ridgeline, leading to dune crests oriented transverse to northwesterly winds. Another well-developed line of dunes is visible between Har and Baga Lakes. While these dunes appear to cut across a lake surface, the dunes have in fact moved across a narrow stream channel.
Radiation-driven Turbulent Accretion onto Massive Black Holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu
Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.
On the design of GaN vertical MESFETs on commercial LED sapphire wafers
NASA Astrophysics Data System (ADS)
Atalla, Mahmoud R. M.; Noor Elahi, Asim M.; Mo, Chen; Jiang, Zhenyu; Liu, Jie; Ashok, S.; Xu, Jian
2016-12-01
Design of GaN-based vertical metal-semiconductor field-effect transistors (MESFETs) on commercial light-emitting-diode (LED) epi-wafers has been proposed and proof of principle devices have been fabricated. In order to better understand the IV curves, these devices have been simulated using the charge transport model. It was found that shrinking the drain pillar size would significantly help in reaching cut-off at much lower gate bias even at high carrier concentration of unintentionally doped GaN and considerable leakage current caused by the Schottky barrier lowering. The realization of these vertical MESFETs on LED wafers would allow their chip-level integration. This would open a way to many intelligent lighting applications like on-chip current regulator and signal regulation/communication in display technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Fan, Cuncai; Ding, Jie
High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less
Kim, Kang O; Kim, Sunjung
2016-05-01
Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte. The amount and kind of Cu- and Ag-based complexes determine the deposition rate, size, elemental composition, and surface morphology of Cu-Ag alloy nano-nuclei formed on W surface.
Electromigration in Sn-Cu intermetallic compounds
NASA Astrophysics Data System (ADS)
Wei, C. C.; Chen, C. F.; Liu, P. C.; Chen, Chih
2009-01-01
As the shrinking in bump size continues, the effect of intermetallic compounds (IMCs) on electromigration becomes more pronounced. Electromigration in Sn-Cu intermetallic compounds was examined using edge displacement method. It was found that Cu6Sn5 compounds are more susceptible to electromigration than Cu3Sn compounds. The lower solidus temperature and higher resistivity of the Cu6Sn5 IMCs are responsible for its higher electromigration rate. Length-dependent electromigration behavior was found in the stripes of various lengths and the critical length was determined to be between 5 and 10 μm at 225 °C, which corresponded to a critical product between 2.5 and 5 A/cm. Furthermore, the Sn-Cu compounds were proven to have better electromigration resistance than eutectic SnAgCu solder.
Cryogenic anti-friction bearing with reinforced inner race
NASA Technical Reports Server (NTRS)
Blount, Dale H. (Inventor)
1991-01-01
This invention consists of a bearing (26) designed to operate in a cryogenic environment and which has an inner raceway (30) generally constructed as an annular band fitted by an interference fit to a rotating shaft (12). A pair of annular tension bands (32, 34) are fitted onto opposed sides of the band and function to firmly clamp the raceway (30) to the shaft (12). This occurs because the tension bands are constructed of a material which, when cooled to aproximately -385.degree. F., shrinks more than the raceway (30) and the shaft (12) to which it is fitted. The bands further relax somewhat at room temperature and permit the interference fit between the raceway (30) and the shaft (12) to be sized such that the raceway (30) is not overly stessed.
Soft Robots: Manipulation, Mobility, and Fast Actuation
NASA Astrophysics Data System (ADS)
Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George
2012-02-01
Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.
Coupled flow and deformations in granular systems beyond the pendular regime
NASA Astrophysics Data System (ADS)
Yuan, Chao; Chareyre, Bruno; Darve, Felix
2017-06-01
A pore-scale numerical model is proposed for simulating the quasi-static primary drainage and the hydro-mechanical couplings in multiphase granular systems. The solid skeleton is idealized to a dense random packing of polydisperse spheres by DEM. The fluids (nonwetting and wetting phases) space is decomposed to a network of tetrahedral pores based on the Regular Triangulation method. The local drainage rules and invasion logic are defined. The fluid forces acting on solid grains are formulated. The model can simulate the hydraulic evolution from a fully saturated state to a low level of saturation but beyond the pendular regime. The features of wetting phase entrapments and capillary fingering can also be reproduced. Finally, a primary drainage test is performed on a 40,000 spheres of sample. The water retention curve is obtained. The solid skeleton first shrinks then swells.
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing
2017-10-01
The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.
Effect of droplet shrinking on surface acoustic wave response in microfluidic applications
NASA Astrophysics Data System (ADS)
Bui, ThuHang; Nguyen, Van; Vollebregt, Sten; Morana, Bruno; van Zeijl, Henk; Chu Duc, Trinh; Sarro, Pasqualina M.
2017-12-01
The effect of the contact angle and radius of a microsize droplet on the surface acoustic wave (SAW) response for microfluidic applications is reported. It is studied through the dynamic change of the droplet shape during the evaporation process. An aluminium nitride SAW device, operating at 125.7 MHz, is utilized to investigate the deformation of the droplet shape (contact angle and contact radius) caused by shrinking. The large cavity placed on the propagation path distorts the in-band SAW response one time at the centre frequency. The fractional coefficient of the SAW insertion loss, before and after dropping the liquid on the propagation path, is continuously recorded. The change in the fractional coefficient shows that the radiated acoustic kinetic energy depends on the contact area between the sessile micro-size droplet and the SAW device more than the contact angle of the droplet. Three droplet volumes have been considered, namely 0.05, 0.1 and 0.13 μl, and the electrical results show a better agreement with the theoretical data than the optical image data. The average duration of the fractional coefficient change for these cases is 420, 573 and 760 s, respectively. The effect of the hydrophobicity versus hydrophilicity of the contact surface on the duration of the fractional coefficient change is studied by coating the SAW with a silicon oxide or hexamethyldisilazane (HMDS) thin layer. For the same 0.05 μl sessile droplet on the hydrophobic surface, this duration is on average 110 s longer than that on the hydrophilic surface.
Naser, Mohamed A.; Patterson, Michael S.
2011-01-01
Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647
Laser heating tunability by off-resonant irradiation of gold nanoparticles.
Hormeño, Silvia; Gregorio-Godoy, Paula; Pérez-Juste, Jorge; Liz-Marzán, Luis M; Juárez, Beatriz H; Arias-Gonzalez, J Ricardo
2014-01-29
Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo-responsive poly(N-isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter-propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo-responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How To Identify Plasmons from the Optical Response of Nanostructures
2017-01-01
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057
Determination of the paraxial focal length using Zernike polynomials over different apertures
NASA Astrophysics Data System (ADS)
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
Simulating glories and cloudbows in color.
Gedzelman, Stanley D
2003-01-20
Glories and cloudbows are simulated in color by use of the Mie scattering theory of light upwelling from small-droplet clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. Glories are generally more distinct for clouds of droplets of as much as approximately 10 microm in radius. As droplet radius increases, the glory shrinks and becomes less prominent, whereas the cloudbow becomes more distinct and eventually colorful. Cloudbows typically consist of a broad, almost white band with a slightly orange outer edge and a dark inner band. Multiple light and dark bands that are related to supernumerary rainbows first appear inside the cloudbow as droplet radius increases above approximately 10 microm and gradually become more prominent when all droplets are the same size. Bright glories with multiple rings and high color purity are simulated when all droplets are the same size and every light beam is scattered just once. Color purity decreases and outer rings fade as the range of droplet sizes widens and when skylight, reflected light from the ground or background, and multiply scattered light from the cloud are included. Consequently, the brightest and most colorful glories and bows are seen when the observer is near a cloud or a rain swath with optical thickness of approximately 0.25 that consists of uniform-sized drops and when a dark or shaded background lies a short distance behind the cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, F.; Batebi, S., E-mail: s-batebi@guilan.ac.ir; Soofi, M. Q.
2017-03-15
Our work is based on high harmonic generation in a gaseous medium (helium ion), by exploiting gold bowtie nanostructures as laser field amplifiers. As the result of emission of a laser pulse, the wave function of the atom varies with time; so, it is necessary to solve 1D time-dependent Schrödinger equation by means of split operator method. By illumination of a short duration, long wavelength three color laser pulse inside the gap, the enhanced field not only changes with time, but also varies in space. In this work we considered this space inhomogeneity in linear and nonlinear schemes. We showmore » that in nonlinear case, the plateau region is more extended. We also show that in larger gaps, cutoff occurs on higher frequencies. But limitation of electron motion in bowtie nanostructures leads to the choice of an optimum 16 nm gap size in our case. We predict that, by the superposition of supercontinuum harmonics, a 26 attosecond pulse can be generated.« less
Phase information contained in meter-scale SAR images
NASA Astrophysics Data System (ADS)
Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda
2007-10-01
The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.
Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.
Duan, Fei; He, Bin; Wei, Tao
2015-04-01
The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.
EVA Suit R and D for Performance Optimization
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2014-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations
Pharmacotherapy for thyroid nodules. A systematic review and meta-analysis.
Richter, Bernd; Neises, Gudrun; Clar, Christine
2002-09-01
The review highlights the uncertainty in the management of nodular thyroid disease. Thyroxine suppressive treatment is given in the hope that nodules might decrease in size, sometimes assuming that dependency on TSH is different in benign and malignant nodular disease. Follow-up of benign nodules over 10 years suggested that most remain the same, shrink, or disappear [14]. TSH suppression may lead to hyperthyroidism, reduced bone density [37.39], and atrial fibrilation; however, apart from reduction of nodule size or arrest in nodule growth, thyroxine therapy may benefit patients by reducing perinodular volume. Consequently, both pressure symptoms and cosmetic complaints could improve. Unfortunately, no information concerning symptoms or well-being is available from published randomized trials. In conclusion, more high quality studies of sufficient duration with adequate power estimation are needed. Uncertainty about predictors of response or the impact on outcomes that are important to patients leaves considerable doubt about the wisdom of applying suppressive therapy. Future studies shoudl include patient-important outcomes including thyroid cancer incidence, health-related quality of life and costs.
Kumar, Rajendra; Meis, Jeanne M; Amini, Behrang; McEnery, Kevin W; Madewell, John E; Rhines, Laurence D; Benjamin, Robert S
2017-05-15
Case report and literature review. To describe treatment of a unique case of acute airway obstruction by a large C7 giant cell tumor (GCT) with preoperative denosumab followed by surgical resection, and review the literature on this rare entity. Standard treatment for GCTs includes surgical resection or curettage and packing. Large lesions in the spine may require preoperative therapy with denosumab, a human monoclonal antibody to RANKL, to facilitate surgery. It is highly unusual for GCT arising in cervical spine to present with acute asphyxia (requiring tracheostomy). We report a patient with large C7 GCT that caused tracheal compression with almost complete airway obstruction requiring emergency intubation. The tumor responded to subcutaneously administered denosumab with marked decrease in size and relief of symptoms. Increased tumor mineralization in response to therapy facilitated subsequent successful surgical tumor resection. The patient remains symptom-free 2 years after surgery without tumor recurrence. Denosumab can shrink the size of large GCTs, providing symptom relief before surgery and facilitate tumor resection. 5.
[Therapeutic use of somatostatin analogues in endocrinology].
Faglia, G; Arosio, M
1992-11-01
The recent availability of the long-acting somatostatin analogue, octreotide, has allowed its therapeutical use in a wide variety of human diseases, including some digestive, neoplastic and autoimmune disorders. This review focuses on the treatment of some endocrine disorders with octreotide. Evidence is accumulating that octreotide treatment is effective in improving the cure rate of pituitary surgery in acromegaly by shrinking the tumour size, and in lowering GH and IGF-I levels in the vaste majority of patients. Octreotide is also effective in ameliorating TSH-induced hyperthyroidism in patients with TSH-secreting adenomas. Moreover, octreotide has proved useful in the management of endocrine tumours of the gastroenteropancreatic tract (vipomas, glucagonomas, gastrinomas, insulinomas, and carcinoids) by reducing hormone levels and in some instances the size of the primary and/or metastatic lesions. Besides the above well-established indications there are some other potential indications (non-secreting pituitary tumours, medullary thyroid carcinoma, ectopic Cushing's syndrome, diabete mellitus, Graves' ophthalmopathy, tall children and polycystic ovary syndrome) that still await further investigation. Side-effects of octreotide, particularly the formation of gallstones, should be carefully monitored.
Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen
2016-01-01
Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Model-based multiple patterning layout decomposition
NASA Astrophysics Data System (ADS)
Guo, Daifeng; Tian, Haitong; Du, Yuelin; Wong, Martin D. F.
2015-10-01
As one of the most promising next generation lithography technologies, multiple patterning lithography (MPL) plays an important role in the attempts to keep in pace with 10 nm technology node and beyond. With feature size keeps shrinking, it has become impossible to print dense layouts within one single exposure. As a result, MPL such as double patterning lithography (DPL) and triple patterning lithography (TPL) has been widely adopted. There is a large volume of literature on DPL/TPL layout decomposition, and the current approach is to formulate the problem as a classical graph-coloring problem: Layout features (polygons) are represented by vertices in a graph G and there is an edge between two vertices if and only if the distance between the two corresponding features are less than a minimum distance threshold value dmin. The problem is to color the vertices of G using k colors (k = 2 for DPL, k = 3 for TPL) such that no two vertices connected by an edge are given the same color. This is a rule-based approach, which impose a geometric distance as a minimum constraint to simply decompose polygons within the distance into different masks. It is not desired in practice because this criteria cannot completely capture the behavior of the optics. For example, it lacks of sufficient information such as the optical source characteristics and the effects between the polygons outside the minimum distance. To remedy the deficiency, a model-based layout decomposition approach to make the decomposition criteria base on simulation results was first introduced at SPIE 2013.1 However, the algorithm1 is based on simplified assumption on the optical simulation model and therefore its usage on real layouts is limited. Recently AMSL2 also proposed a model-based approach to layout decomposition by iteratively simulating the layout, which requires excessive computational resource and may lead to sub-optimal solutions. The approach2 also potentially generates too many stiches. In this paper, we propose a model-based MPL layout decomposition method using a pre-simulated library of frequent layout patterns. Instead of using the graph G in the standard graph-coloring formulation, we build an expanded graph H where each vertex represents a group of adjacent features together with a coloring solution. By utilizing the library and running sophisticated graph algorithms on H, our approach can obtain optimal decomposition results efficiently. Our model-based solution can achieve a practical mask design which significantly improves the lithography quality on the wafer compared to the rule based decomposition.
NASA Astrophysics Data System (ADS)
Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping
2018-03-01
In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic. Overlay improvements derived from a high-densely sampled Overlay map measured with 5x5 um2 In Device Metrology (IDM) targets were investigated on a customer Logic application. In this work we present both the main design aspects of the 5x5 um2 IDM targets, as well as the results on the improved Overlay performance.
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex
2015-03-01
As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.
Effect of Dissolution Kinetics on Feature Size in Dip-Pen Nanolithography
NASA Astrophysics Data System (ADS)
Weeks, B. L.; Noy, A.; Miller, A. E.; de Yoreo, J. J.
2002-06-01
We have investigated the effects of humidity, tip speed, and dwell time on feature size during dip pen nanolithography. Our results indicate a transition between two distinct deposition regimes occurs at a dwell time independent of humidity. While feature size increases with humidity, the relative increase is independent of dwell time. The results are described by a model that accounts for detachment and reattachment at the tip. The model suggests that, at short dwell times (high speed), the most important parameter controlling the feature size is the activation energy for thiol detachment.
How warm is too warm for the life cycle of actinopterygian fishes?
Motani, Ryosuke; Wainwright, Peter C.
2015-01-01
We investigated the highest constant temperature at which actinopterygian fishes can complete their lifecycles, based on an oxygen supply model for cleavage-stage eggs. This stage is one of the most heat-sensitive periods during the lifecycle, likely reflecting the exhaustion of maternally supplied heat shock proteins without new production. The model suggests that average eggs would not develop normally under a constant temperature of about 36 °C or higher. This estimate matches published empirical values derived from laboratory and field observations. Spermatogenesis is more heat sensitive than embryogenesis in fishes, so the threshold may indeed be lower, at about 35 °C, unless actinopterygian fishes evolve heat tolerance during spermatogenesis as in birds. Our model also predicts an inverse relationship between egg size and temperature, and empirical data support this prediction. Therefore, the average egg size, and hence hatching size, is expected to shrink in a greenhouse world but a feeding function prohibits the survival of very small hatchlings, posing a limit to the shrinkage. It was once suggested that a marine animal community may be sustained under temperatures up to about 38 °C, and this value is being used, for example, in paleotemperature reconstruction. A revision of the value is overdue. (199/200) PMID:26166622
Hu, Chuan; Cun, Xingli; Ruan, Shaobo; Liu, Rui; Xiao, Wei; Yang, Xiaotong; Yang, Yuanyuan; Yang, Chuanyao; Gao, Huile
2018-06-01
Chemotherapy remains restricted by poor drug delivery efficacy due to the heterogenous nature of tumor. Herein, we presented a novel nanoparticle that could not only response to the tumor microenvironment but also modulate it for deep tumor penetration and combination therapy. The intelligent nanoparticle (IDDHN) was engineered by hyaluronidase (HAase)-triggered size shrinkable hyaluronic acid shells, which were modified with NIR laser sensitive nitric oxide donor (HN), small-sized dendrimeric prodrug (IDD) of doxorubicin (DOX) as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. IDDHN displayed synergistic deep penetration both in vitro and in vivo, owing to the enzymatically degradable HN shell mediated by HAase and laser-enhanced NO release triggered deep penetration upon strong hyperthermia effect of ICG under the NIR laser irradiation. The therapeutic effect of IDDHN was verified in 4T1 xenograft tumor model, and IDDHN showed a much better antitumor efficiency with few side effects upon NIR laser irradiation. Therefore, the valid of this study might provide a novel tactic for engineering nanoparticles both response to and modulate the tumor microenvironment for improving penetration and heterogeneity distribution of therapeutic agents in tumor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saripella, Kalyan K; Mallipeddi, Rama; Neau, Steven H
2014-11-20
Polyplasdone of different particle size was used to study the sorption, desorption, and distribution of water, and to seek evidence that larger particles can internalize water. The three samples were Polyplasdone® XL, XL-10, and INF-10. Moisture sorption and desorption isotherms at 25 °C at 5% intervals from 0 to 95% relative humidity (RH) were generated by dynamic vapor sorption analysis. The three products provided similar data, judged to be Type III with a small hysteresis that appears when RH is below 65%. An absent rounded knee in the sorption curve suggests that multilayers form before the monolayer is completed. The hysteresis indicates that internally absorbed moisture is trapped as the water is desorbed and the polymer sample shrinks, thus requiring a lower level of RH to continue desorption. The fit of the Guggenheim-Anderson-de Boer (GAB) and the Young and Nelson equations was accomplished in the data analysis. The W(m), C(G), and K values from GAB analysis are similar across the three samples, revealing 0.962 water molecules per repeating unit in the monolayer. A small amount of absorbed water is identified, but this is consistent across the three particle sizes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young
2013-11-01
The spin drying, in which a rinsing liquid deposited on a wafer is rapidly dried by wafer spinning, is an essential step in the semiconductor manufacturing process. While the liquid evaporates, its meniscus straddles neighboring submicron-size patterns such as pillars and walls. Then the capillary effects that pull the patterns together may lead to direct contact of the patterns, which is often referred to as pattern leaning. This poses a problem becoming more and more serious as the pattern size shrinks and the aspect ratio of the patterns increases. While the clustering behavior of high-aspect-ratio micro- and nanopillars was investigated before, a technical strategy to prevent such clustering has been pursed in industrial practices without being supported by the recently established theory of elastocapillarity. Here we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the leaning of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern leaning in semiconductor manufacturing. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).
Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie
2018-06-07
Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.
Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.
2013-01-01
Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675
ILT optimization of EUV masks for sub-7nm lithography
NASA Astrophysics Data System (ADS)
Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin
2017-06-01
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
Charge-induced secondary atomization in diffusion flames of electrostatic sprays
NASA Technical Reports Server (NTRS)
Gomez, Alessandro; Chen, Gung
1994-01-01
The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.
Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models
Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.
2016-01-01
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921
Influence of time and length size feature selections for human activity sequences recognition.
Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran
2014-01-01
In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.
Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)
NASA Astrophysics Data System (ADS)
Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.
2017-12-01
Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.
Lithography-based automation in the design of program defect masks
NASA Astrophysics Data System (ADS)
Vakanas, George P.; Munir, Saghir; Tejnil, Edita; Bald, Daniel J.; Nagpal, Rajesh
2004-05-01
In this work, we are reporting on a lithography-based methodology and automation in the design of Program Defect masks (PDM"s). Leading edge technology masks have ever-shrinking primary features and more pronounced model-based secondary features such as optical proximity corrections (OPC), sub-resolution assist features (SRAF"s) and phase-shifted mask (PSM) structures. In order to define defect disposition specifications for critical layers of a technology node, experience alone in deciding worst-case scenarios for the placement of program defects is necessary but may not be sufficient. MEEF calculations initiated from layout pattern data and their integration in a PDM layout flow provide a natural approach for improvements, relevance and accuracy in the placement of programmed defects. This methodology provides closed-loop feedback between layout and hard defect disposition specifications, thereby minimizing engineering test restarts, improving quality and reducing cost of high-end masks. Apart from SEMI and industry standards, best-known methods (BKM"s) in integrated lithographically-based layout methodologies and automation specific to PDM"s are scarce. The contribution of this paper lies in the implementation of Design-For-Test (DFT) principles to a synergistic interaction of CAD Layout and Aerial Image Simulator to drive layout improvements, highlight layout-to-fracture interactions and output accurate program defect placement coordinates to be used by tools in the mask shop.
Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.
Giesa, Tristan; Schuetz, Roman; Fratzl, Peter; Buehler, Markus J; Masic, Admir
2017-10-24
Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.
Bernardello, Gabriel; Aguilar, Ramiro; Anderson, Gregory J
2004-02-01
Sophora fernandeziana is the only legume endemic to Isla Robinson Crusoe (Archipelago Juan Fernández, Chile); it is uncommon and becoming rare. Although its preservation status is listed as "vulnerable," as with many species, little is known of its reproductive biology. Flowering phenology, floral morphology, nectar features, breeding system, and visitors were analyzed in two populations. Flowering is from late winter to early spring. Flowers last 6 d and have a number of ornithophilous features. A floral nectary begins to secrete highly concentrated nectar 48 h after flowers open. Nectar secretion increases as the flower ages but culminates in active nectar reabsorption as the flower senesces. Nectar production is negatively affected by nectar removal. Self-pollen germinates and tubes grow down the style. However, pollen tubes were only observed to enter the ovaries in open pollinated styles, suggesting the possibility of an ovarian self-incompatibility mechanism. Both sexes of the two hummingbird species that inhabit the island are regular visitors. Low fruit and seed set, low genetic diversity, and a shrinking number of populations all contribute to increased concern about the future of this species-and perhaps the hummingbirds that depend on it.
Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo
2016-09-14
We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.
Gels from soft hairy nanoparticles in polymeric matrices
NASA Astrophysics Data System (ADS)
Vlassopoulos, Dimitris
2013-03-01
Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it imposes and internal strain on the particle, which in turn changes the shell conformation and under some conditions can lead to thermal melting of the gel. These alternative avenues for manipulating the gel-to-liquid transition have potential implications in directing the properties of hairy nanoparticles and their assemblies in viscoelastic matrices. Parts of this work reflect collaboration with D. Truzzolillo (FORTH), J. F. Moll and S. K.Kumar (Columbia). R. H. Colby (Penn State), M. Gauthier (Waterloo) and B. C. Benicewicz (Univ. South Carolina).
NASA Astrophysics Data System (ADS)
Mantel, Anna; Engel, Susen; Nuissl, Henning
2018-03-01
The small town of Altena is among the fastest-shrinking cities in western Germany and has recently attracted national and international attention due to its "welcoming culture" for refugees. This can be understood within the context of the town's strategic urban development policies aiming to counter the demographic change. This article argues that a regeneration strategy directed towards immigration and integration can offer a chance for shrinking cities but is simultaneously faced with considerable challenges and uncertainties, which could be dealt with through an "integrative approach" to urban development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Toyoto; Tomiyasu, Dr. Keisuke; Ikeda, Kazutaka
Local atomic structural investigations of LiAlD4, which is composed of Li+ and [AlD4], at 40 300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD4. The results showed that the Al D pair distribution almost unchanged, while the Li D pair distribution clearly started to broaden and shrink above 200 250 K. The shrinking of the Li D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD4.
NASA Astrophysics Data System (ADS)
Mantel, Anna; Engel, Susen; Nuissl, Henning
2018-04-01
The small town of Altena is among the fastest-shrinking cities in western Germany and has recently attracted national and international attention due to its "welcoming culture" for refugees. This can be understood within the context of the town's strategic urban development policies aiming to counter the demographic change. This article argues that a regeneration strategy directed towards immigration and integration can offer a chance for shrinking cities but is simultaneously faced with considerable challenges and uncertainties, which could be dealt with through an "integrative approach" to urban development.
Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage.
Aggarwal, Priya; Shrivastava, Parth; Kabra, Tanay; Gupta, Anubha
2017-03-01
This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l 1 minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.
Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.
Goodarzy, Farhad; Skafidas, Stan E
2014-01-01
An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.
NASA Astrophysics Data System (ADS)
Koster, N. B.; Molkenboer, F. T.; van Veldhoven, E.; Oostrom, S.
2011-04-01
We report on our findings on EUVL reticle contamination removal, inspection and repair. We show that carbon contamination can be removed without damage to the reticle by our plasma process. Also organic particles, simulated by PSL spheres, can be removed from both the surface of the absorber as well as from the bottom of the trenches. The particles shrink in size during the plasma treatment until they are vanished. The determination of the necessary cleaning time for PSL spheres was conducted on Ru coated samples and the final experiment was performed on our dummy reticle. Finally we show that the Helium Ion Microscope in combination with a Gas Injection System is capable of depositing additional lines and squares on the reticle with sufficient resolution for pattern repair.
The power-consumption-controlled extruder: a tool for pellet production.
Kleinebudde, P; Sølvberg, A J; Lindner, H
1994-07-01
Based on the assumption that there is a link between power consumption of an extruder and pellet properties, a control circuit for power consumption was developed. Powder and granulation liquid are fed separately into a twin-screw extruder. The power consumption is controlled by varying the pump rate at a given powder-feed rate; consequently each level of power consumption results in a specific water content of the extrudate for a particular formulation. The shape of pellets depends almost entirely on the level of power consumption irrespective of formulation. The size of dry pellets is additionally affected by a shrinking factor which depends on the water content. The power-consumption-controlled extruder is an appropriate tool for the production of pellets. The system is able to adapt the water content for a formulation automatically.
Contraction star-shaped cracks: From 90 degrees to 120 degrees crack intersections
NASA Astrophysics Data System (ADS)
Lazarus, Veronique; Gauthier, Georges
2010-05-01
Giant's Causeway, Port Arthur tessellated pavement, Bimini Road, Mars polygons, fracture networks in permafrost, septarias are some more or less known examples of self-organized crack patterns that have intrigued people through out history. These pavements are formed by constrained shrinking of the media due, for instance, to cooling or drying leading to fracture. The crack networks form in some conditions star-shaped cracks with mostly 90 or 120 degrees angles. Here, we report experiments allowing to control the transition between 90 and 120 degrees. We show that the transition is governed by the linear elastic fracture mechanics energy minimization principle, hence by two parameters: the cell size and the Griffith's length (balance between the energy needed to create cracks and to deform the material elastically). The results are used to infer new informations on tessellated pavements formation.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-12-16
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.
Understanding force-generating microtubule systems through in vitro reconstitution
Kok, Maurits; Dogterom, Marileen
2016-01-01
ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396
Accidental inflation from Kähler uplifting
NASA Astrophysics Data System (ADS)
Ben-Dayan, Ido; Jing, Shenglin; Westphal, Alexander; Wieck, Clemens
2014-03-01
We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ``left-rolling" ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ``inflation by deflation" (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ~ 0.012 and enhanced tensor-to-scalar ratio r ~ 10-5. The latter results differ significantly from many string inflation models.
Howell, D.G.
1989-01-01
If the volume of continents has been growing since 4 Ga then the area of the ocean basins must have been shrinking. Therefore, by inferring a constant continental freeboard, in addition to constant continental crustal thicknesses and seawater volume, it is possible to calculate the necessary combinations of increased ridge lengths and spreading rates required to displace the seawater in the larger oceans of the past in order to maintain the constant freeboard. A reasonable choice from the various possibilities is that at 4 Ga ago, the ridge length and spreading rates were ca. 2.5 times greater than the averages of these parameters during the past 200 Ma. By 2.5 Ga ago the ridge length and spreading rate decreased to about 1.8 times the recent average and by 1 Ga ago these features became reduced to approximately 1.4 times recent averages. ?? 1989.
2002-10-24
KENNEDY SPACE CENTER, FLA. - The Ice, Cloud, and Land Elevation Satellite, or ICESat, logo features an artist's rendition of the satellite orbiting the Earth. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. ICESat is scheduled for launch, with the Cosmic Hot Interstellar Plasma Spectrometer or CHIPSat, on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT
NASA Technical Reports Server (NTRS)
Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.
2010-01-01
We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.
Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.
Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen
2015-10-28
Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.
Optimal number of features as a function of sample size for various classification rules.
Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R
2005-04-15
Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.
Mechanisms of stability of armored bubbles: FY 1996 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, W.R.; Kam, S.I.
1996-11-01
Theoretical and experimental studies examine how a coating, or {open_quotes}armor,{close_quotes} of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of themore » particles into a rigid framework. Stability analysis suggests that a slightly shrunken bubble would not expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Expulsion of particles from more stressed bubbles at zero capillary pressure is energetically favored in some cases. It is not clear, however, whether this expulsion would proceed spontaneously from a small perturbation or require a large initial disturbance of the bubble. In some cases, it appears that a bubble would expel some particles and shrink, but the bubble would approach a final, stable size rather than disappear completely. This simplified analysis leaves out several factors. For instance, only one perturbation toward expelling a solid from the armor is considered; perhaps other perturbations would be more energetically favored than that tested. Other considerations (particle deformation, surface roughness, contact-angle hysteresis, and adhesion or physical bonding between adjacent particles) would make expelling solids more difficult than indicated by this theoretical study.« less
A New Satellite System for Measuring BRDF from Space
NASA Technical Reports Server (NTRS)
Wiscombe, W.; Kaufman, Y.; Herman, J.
1999-01-01
Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tung-Cheng; Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Yeh, Chi-Tai
2015-10-15
4-Acetylantroquinonol B (4-AAQB), closely related to the better known antroquinonol, is a bioactive isolate of the mycelia of Antrodia camphorata, a Taiwanese mushroom with documented anti-inflammatory, hypoglycemic, vasorelaxative, and recently demonstrated, antiproliferative activity. Based on its traditional use, we hypothesized that 4-AAQB may play an active role in the suppression of cellular transformation, tumor aggression and progression, as well as chemoresistance in colorectal carcinoma (CRC). In this study, we investigated the antiproliferative role of 4-AAQB and its underlying molecular mechanism. We also compared its anticancer therapeutic potential with that of antroquinonol and the CRC combination chemotherapy of choice — folinicmore » acid, fluorouracil and oxaliplatin (FOLFOX). Our results showed that 4-AAQB was most effective in inhibiting tumor proliferation, suppressing tumor growth and attenuating stemness-related chemoresistance. 4-AAQB negatively regulates vital oncogenic and stem cell maintenance signal transduction pathways, including the Lgr5/Wnt/β-catenin, JAK–STAT, and non-transmembrane receptor tyrosine kinase signaling pathways, as well as inducing a dose-dependent downregulation of ALDH and other stemness related factors. These results were validated in vivo, with animal studies showing 4-AAQB possessed comparable tumor-shrinking ability as FOLFOX and potentiates ability of the later to reduce tumor size. Thus, 4-AAQB, a novel small molecule, projects as a potent therapeutic agent for monotherapy or as a component of standard combination chemotherapy. - Highlights: • 4-Acetylantroquinonol B (4-AAQB) suppressed tumor cell proliferation. • 4-AAQB regulates oncogenic and stem cell maintenance signal pathways. • 4-AAQB negatively regulates Lgr5/Wnt/β-catenin and JAK–STAT pathways. • 4-AAQB reduced ALDH and other stemness related factor expression. • In vivo, 4-AAQB has comparable tumor-shrinking ability as FOLFOX.« less
A non-volatile flip-flop based on diode-selected PCM for ultra-low power systems
NASA Astrophysics Data System (ADS)
Ye, Yong; Du, Yuan; Gao, Dan; Kang, Yong; Song, Zhitang; Chen, Bomy
2016-10-01
As the process technology is continuously shrinking, low power consumption is a major issue in VLSI Systems-on-Chip (SoCs), especially for standby-power-critical applications. Recently, the emerging CMOS-compatible non-volatile memories (NVMs), such as Phase Change Memory (PCM), have been used as on-chip storage elements, which can obtain non-volatile processing, nearly-zero standby power and instant-on capability. PCM has been considered as the best candidate for the next generation of NVMs for its low cost, high density and high resistance transformation ratio. In this paper, for the first time, we present a diode-selected PCM based non-volatile flip-flop (NVFF) which is optimized for better power consumption and process variation tolerance. With dual trench isolation process, the diode-selected PCM realizes ultra small area, which is very suitable for multi-context configuration and large scale flip-flops matrix. Since the MOS-selected PCM is hard to shrink further due to large amount of PCM write current, the proposed NVFF achieves higher power efficiency without loss of current driving capability. Using the 40nm manufacturing process, the area of the cell (1D1R) is as small as 0.016 μm2. Simulation results show that the energy consumption during the recall operation is 62 fJ with 1.1 standard supply voltage, which is reduced by 54.9% compared to the previous 2T2R based NVFF. When the supply voltage reduces to 0.7 V, the recall energy is as low as 17 fJ. With the great advantages in cell size and energy, the proposed diode-selected NVFF is very applicable and cost-effective for ULP systems.
Modeling high-efficiency extreme ultraviolet etched multilayer phase-shift masks
NASA Astrophysics Data System (ADS)
Sherwin, Stuart; Neureuther, Andrew; Naulleau, Patrick
2017-10-01
Achieving high-throughput extreme ultraviolet (EUV) patterning remains a major challenge due to low source power; phase-shift masks can help solve this challenge for dense features near the resolution limit by creating brighter images than traditional absorber masks when illuminated with the same source power. We explore applications of etched multilayer phase-shift masks for EUV lithography, both in the current-generation 0.33 NA and next-generation 0.55 NA systems. We derive analytic formulas for the thin-mask throughput gains, which are 2.42× for lines and spaces and 5.86× for contacts compared with an absorber mask with dipole and quadrupole illumination, respectively. Using rigorous finite-difference time-domain simulations, we quantify variations in these gains by pitch and orientation, finding 87% to 113% of the thin-mask value for lines and spaces and a 91% to 99% for contacts. We introduce an edge placement error metric, which accounts for CD errors, relative feature motion, and telecentricity errors, and use this metric both to optimize mask designs for individual features and to explore which features can be printed on the same mask. Furthermore, we find that although partial coherence shrinks the process window, at an achievable sigma of 0.2 we obtain a depth of focus of 340 nm and an exposure latitude of 39.2%, suggesting that partial coherence will not limit the feasibility of this technology. Finally, we show that many problems such as sensitivity to etch uniformity can be greatly mitigated using a central obscuration in the imaging pupil.
Yamasaki, Lilyan C; De Vito Moraes, André G; Barros, Mathew; Lewis, Steven; Francci, Carlos; Stansbury, Jeffrey W; Pfeifer, Carmem S
2013-09-01
To evaluate "low-shrink" composites in terms of polymerization kinetics, stress development and mechanical properties. "Low-shrink" materials (Kalore/KAL, N'Durance/NDUR, and Filtek P90/P90) and one control (Esthet X HD/EHD) were tested. Polymerization stress (PS) was measured using the Instron 5565 tensometer. Volumetric shrinkage (VS) was determined by the ACTA linometer. Elastic modulus (E) and flexural strength (FS) were obtained by a three-point bending test. Degree of conversion (DC) and polymerization rate (Rp) were determined by NIR spectroscopy (6165cm(-1) for dimethacrylates; 4156 and 4071cm(-1) for P90). Photopolymerization was performed at 740mW/cm(2)×27s. Glass transition temperature (Tg), degree of heterogeneity and crosslink density were obtained in a DMA for the fully cured specimens. Analysis of extracts was done by (1)H NMR. Data were analyzed with one-way ANOVA/Tukey's test (α=0.05). The control presented the highest shrinkage and Tg. P90 showed the highest modulus, and NDUR demonstrated the highest conversion. The polymerization rates were comparable for all materials. NDUR and KAL had the highest and the lowest network homogeneity, respectively. The multifunctional P90 had the highest crosslink density, with no difference between other composites. The control had the greatest stress development, similar to NDUR. Crosslinking density and polymer network homogeneity were influenced by degree of conversion and monomer structure. Not all "low-shrink" composites reduced polymerization stress. P90 and NDUR had no leachable monomers, which was also a function of high crosslinking (P90) and high conversion (NDUR). Copyright © 2013 Academy of Dental Materials. All rights reserved.
Guo, Xiaoya; Zhu, Jian; Maehara, Akiko; Monoly, David; Samady, Habib; Wang, Liang; Billiar, Kristen L.; Zheng, Jie; Yang, Chun; Mintz, Gary S.; Giddens, Don P.; Tang, Dalin
2016-01-01
Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid–structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young’s modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150–180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50–75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50–75 % stress and 150–180 % strain variations. PMID:27561649
Key role of collagen fibers orientation in casing-meat adhesion.
Yang, Shuang; Wang, Jinfeng; Wang, Yuanliang; Luo, Yanfeng
2016-11-01
Meat adhesion of collagen casings is important for the quality of sausages. In view of the crucial role of surface morphology in material adhesion, we hypothesize that the fiber orientation of collagen casings controls the meat adhesion. To verify this hypothesis, the casing-meat adhesion of four manufactured collagen casings (MCCs) was examined by the visual observation and the peeling force detection. The corresponding fiber orientation was investigated by using scanning electric microscope (SEM) and tensile tests. The results showed that MCC1 and MCC2 which had narrower directionality peak (-20° to -40° and -20° to 40°, respectively) and higher axial (σ a ) to radial (σ r ) strength ratios (1.90±0.07 and 1.31±0.02, respectively) demonstrated lower peeling forces than MCC3 and MCC4, indicating that a more isotropic structure is advantageous to the casing-meat adhesion. Further detection of the radial and axial shrink (including free shrinkage (S r , S a ) and shrink force (F r , F a )) and observation of the local meat-casing interfaces by hematoxylin and eosin (HE) staining showed that appropriate S r (15%-20%) and F r (0.2-0.4N) values at 80°C helped to make the sausage tight whereas high F a (>0.7N) promoted the peeling off of the casings from meat. These results imply that an isotropic structure leads to balanced radial and axial shrink of MCCs, which may enhance the casing-meat adhesion. Overall, controlling a uniform fiber orientation should be an effective way to enhance the meat adhesion of collagen casings. Besides, shrinking properties should be efficient indicators for the meat adhesion of collagen casings. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fountaine, Katherine T.; Ito, Mikinori; Pala, Ragip; Atwater, Harry A.
2016-09-01
Spectrally-selective nanophotonic and plasmonic structures enjoy widespread interest for application as color filters in imaging devices, due to their potential advantages over traditional organic dyes and pigments. Organic dyes are straightforward to implement with predictable optical performance at large pixel size, but suffer from inherent optical cross-talk and stability (UV, thermal, humidity) issues and also exhibit increasingly unpredictable performance as pixel size approaches dye molecule size. Nanophotonic and plasmonic color filters are more robust, but often have polarization- and angle-dependent optical response and/or require large-range periodicity. Herein, we report on design and fabrication of polarization- and angle-insensitive CYM color filters based on a-Si nanopillar arrays as small as 1um2, supported by experiment, simulation, and analytic theory. Analytic waveguide and Mie theories explain the color filtering mechanism- efficient coupling into and interband transition-mediated attenuation of waveguide-like modes—and also guided the FDTD simulation-based optimization of nanopillar array dimensions. The designed a-Si nanopillar arrays were fabricated using e-beam lithography and reactive ion etching; and were subsequently optically characterized, revealing the predicted polarization- and angle-insensitive (±40°) subtractive filter responses. Cyan, yellow, and magenta color filters have each been demonstrated. The effects of nanopillar array size and inter-array spacing were investigated both experimentally and theoretically to probe the issues of ever-shrinking pixel sizes and cross-talk, respectively. Results demonstrate that these nanopillar arrays maintain their performance down to 1um2 pixel sizes with no inter-array spacing. These concepts and results along with color-processed images taken with a fabricated color filter array will be presented and discussed.
Single Droplet Combustion of Decane in Microgravity: Experiments and Numerical Modeling
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegam, M.; Xu, G.
2004-01-01
This paper presents experimental data on single droplet combustion of decane in microgravity and compares the results to a numerical model. The primary independent experiment variables are the ambient pressure and oxygen mole fraction, pressure, droplet size (over a relatively small range) and ignition energy. The droplet history (D(sup 2) history) is non-linear with the burning rate constant increasing throughout the test. The average burning rate constant, consistent with classical theory, increased with increasing ambient oxygen mole fraction and was nearly independent of pressure, initial droplet size and ignition energy. The flame typically increased in size initially, and then decreased in size, in response to the shrinking droplet. The flame standoff increased linearly for the majority of the droplet lifetime. The flame surrounding the droplet extinguished at a finite droplet size at lower ambient pressures and an oxygen mole fraction of 0.15. The extinction droplet size increased with decreasing pressure. The model is transient and assumes spherical symmetry, constant thermo-physical properties (specific heat, thermal conductivity and species Lewis number) and single step chemistry. The model includes gas-phase radiative loss and a spherically symmetric, transient liquid phase. The model accurately predicts the droplet and flame histories of the experiments. Good agreement requires that the ignition in the experiment be reasonably approximated in the model and that the model accurately predict the pre-ignition vaporization of the droplet. The model does not accurately predict the dependence of extinction droplet diameter on pressure, a result of the simplified chemistry in the model. The transient flame behavior suggests the potential importance of fuel vapor accumulation. The model results, however, show that the fractional mass consumption rate of fuel in the flame relative to fuel vaporized is close to 1.0 for all but the lowest ambient oxygen mole fractions.
Pai, Yi-Hao; Lin, Gong-Ru
2011-01-17
By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.
NASA Astrophysics Data System (ADS)
Petrus, H. B. T. M.; Wanta, K. C.; Setiawan, H.; Perdana, I.; Astuti, W.
2018-01-01
Nickel laterite ore contains oxide of iron, aluminum or both with nickel, cobalt and chromium which can be leached out using hydrometallurgical process. For the purpose of meeting the world’s increasing demand of nickel, there is a need to invent environmentally friendly process to efficiently leach nickel. This experiment used nickel laterite ore obtained from Pomalaa, South Sulawesi. The leaching agent is metabolic citric acid produced by Aspergillus niger under optimum condition. Leaching process was done in three-necked flask in atmospheric temperature and constant stirring speed of 200 rpm. The variable examined in the experiment was pulp density and particle size of nickel laterite ore. Samples were taken at 3, 7, 10, 14, and 17 minutes and then filtered and diluted to be analyzed using ICP-AES. The result of the experiment showed the maximum recovery of metals increase with the decrease of the pulp density. The maximum recovery for varying pulp density were at 5% solid/liquid ratio and the recovery were Ni at 1.63%, Al at 0.47%, Fe at 0.23% and Mg at 1.09%. The effect of particle size on leaching process showed that the leaching process follows the shrinking core model. The maximum recovery of metals at particle size were at 100-120 mesh with Ni at 1.37%, Fe at 0.10%, Al at 0.72% and Mg at 0.62%.
NASA Astrophysics Data System (ADS)
Assouar, Badreddine; Li, Yong
2016-04-01
The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).
GaN Nanowire Devices: Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Scott, Reum
The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 μm to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased. To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.
Bokka, Sriharsha; Trivedi, Adarsh
2016-01-01
Background: A chronic subdural hematoma is an old clot of blood on the surface of the brain between dura and arachnoid membranes. These liquefied clots most often occur in patients aged 60 and older with brain atrophy. When the brain shrinks inside the skull over time, minor head trauma can cause tearing of blood vessels over the brain surface, resulting in a slow accumulation of blood over several days to weeks. Aim of the Study: To evaluate the role of membrane in hematoma evaluation and to correlate its histopathology with clinic-radiological aspects of the condition and overall prognosis of patients. Material and Methods: The study incorporated all cases of chronic SDH admitted to the Neurosurgery department of JLN Hospital and Research Centre, Bhilai, between November 2011 and November 2013. All such cases were analyzed clinically, radiologically like site, size, thickness in computed tomography, the attenuation value, midline shift and histopathological features were recorded. Criteria for Inclusion: All cases of chronic subdural haematoma irrespective of age and sex were incorporated into the study. Criteria for Exclusion: All cases of acute subdural haematoma and cases of chronic sub dural hematoma which were managed conservatively irrespective of age and sex were excluded from the study Results: In our series of cases, the most common histopathological type of membrane was the inflammatory membrane (Type II) seen in 42.30% of cases followed by hemorrhagic inflammatory membrane (Type III) seen in 34.62% of cases while scar inflammatory type of membrane (Type IV) was seen in 23.08% of cases. No case with noninflammatory type (Type I) was encountered. PMID:26889276
Andreev reflections and the quantum physics of black holes
NASA Astrophysics Data System (ADS)
Manikandan, Sreenath K.; Jordan, Andrew N.
2017-12-01
We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P
2018-03-01
Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.
Experimental study on pore structure and performance of sintered porous wick
NASA Astrophysics Data System (ADS)
He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng
2018-02-01
Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.
Hubble’s Planetary Portrait Captures New Changes in Jupiter’s Great Red Spot
2017-12-08
New imagery from the Hubble Space Telescope is revealing details never before seen on Jupiter. Hubble’s new Jupiter maps were used to create this Ultra HD animation. These new maps and spinning globes of Jupiter were made from observations performed with NASA’s Hubble Space Telescope. They are the first products to come from a program to study the solar system’s outer planets – Jupiter, Uranus, Neptune and, later, Saturn – each year using Hubble. The observations are designed to capture a broad range of features, including winds, clouds, storms and atmospheric chemistry. These annual studies will help current and future scientists see how these giant worlds change over time. Scientists at NASA’s Goddard Space Flight Center, the Jet Propulsion Laboratory, and the University of California at Berkeley produced two global maps of Jupiter from the observations, which were made using Hubble’s high-performance Wide Field Camera 3. The two maps represent nearly back-to-back rotations of the planet, making it possible to determine the speeds of Jupiter’s winds. Already, the images have revealed a rare wave just north of the planet’s equator and a unique filament-like feature in the core of the Great Red Spot that had not been seen previously. In addition, the new images confirm that the Great Red Spot continues to shrink and become more circular, as it has been doing for years. The long axis of this characteristic storm is about 150 miles (240 kilometers) shorter now than it was in 2014. Recently, the storm had been shrinking at a faster-than-usual rate, but the latest change is consistent with the long-term trend. Read more:http://www.nasa.gov/press-release/goddard/hubble-s-planetary-portrait-captures-new-changes-in-jupiter-s-great-red-spot Credits: NASA/ESA/Goddard/UCBerkeley/JPL-Caltech/STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick
With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the pastmore » decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however, with EUV not expected in production before the 22-nm half pitch node even finer resolution capabilities are now required from development tools. The SEMATECH Berkeley MET's custom-coherence illuminator allows it to be used with aggressive modified illumination enabling kJ factors as low as 0.25. Noting that the lithographic resolution of an exposure tool is defined as k{sub 1}{lambda}/NA, yielding an ultimate resolution limit of 11 nm. To achieve sub-20-nm aerial-image resolution while avoiding forbidden pitches on Manhattan-geometry features with the centrally-obscured MET optic, a 45-degree oriented dipole pupil fill is used. Figure 1 shows the computed aerial-image contrast as a function of half pitch for a dipole pupil fill optimized to print down to the 19-nm half pitch level. This is achieved with relatively uniform performance at larger dimensions. Using this illumination, printing down to the 20-nm half pitch level has been demonstrated in chemically amplified resists as shown in Fig. 2. The SEMATECH Berkeley MET tool plays a crucial role in the advancement of EUV resists. The unique programmable coherence properties of this tool enable it to achieve higher resolution than other EUV projection tools. As presented here, over the past year the tool has been used to demonstrate resist resolutions of 20 half pitch. Although not discussed here, because the Berkeley MET tool is a true projection lithography tool, it also plays a crucial role in advanced EUV mask research. Examples of the work done in this area include defect printability, mask architecture, and phase shift masks.« less
NASA Astrophysics Data System (ADS)
Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah
2017-01-01
A numerical study is performed to evaluate the problem of stagnation - point flow towards a shrinking sheet with homogeneous - heterogeneous reaction effects. By using non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results of the equations can be obtained numerically by shooting method with maple implementation. Based on the numerical results obtained, the velocity ratio parameter λ< 0, the dual solutions do exist. Then, the stability analysis is carried out to determine which solution is more stable between both of the solutions by bvp4c solver in Matlab.
NASA Astrophysics Data System (ADS)
Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza
2017-04-01
The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.
NASA Astrophysics Data System (ADS)
Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan
2018-05-01
This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.
Active clearance control system for a turbomachine
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Knapp, M. H.; Coulson, C. E. (Inventor)
1982-01-01
An axial compressor is provided with a cooling air manifold surrounding a portion of the shroud, and means for bleeding air from the compressor to the manifold for selectively flowing it in a modulating manner axially along the outer side of the stator/shroud to cool and shrink it during steady state operating conditions so as to obtain minimum shroud/rotor clearance conditions. Provision is also made to selectively divert the flow of cooling air from the manifold during transient periods of operation so as to alter the thermal growth or shrink rate of the stator/shroud and result in adequate clearance with the compressor rotor.
Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors
NASA Technical Reports Server (NTRS)
Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)
1974-01-01
The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.
Why Y chromosome is shorter and women live longer?
NASA Astrophysics Data System (ADS)
Biecek, P.; Cebrat, S.
2008-09-01
We have used the Penna ageing model to analyze how the differences in evolution of sex chromosomes depend on the strategy of reproduction. In panmictic populations, when females (XX) can freely choose the male partner (XY) for reproduction from the whole population, the Y chromosome accumulates defects and eventually the only information it brings is a male sex determination. As a result of shrinking Y chromosome the male genomes de facto loose one copy of the X chromosome information and, as a result, males are characterized by higher mortality, observed also in the human populations. If it is assumed in the model that the presence of the male is indispensable at least during the pregnancy of his female partner and he cannot be seduced by another female at least during the one reproduction cycle-the Y chromosome preserves its content, does not shrink and the lifespan of females and males is the same. Thus, Y chromosome shrinks not because of existing in one copy, without the possibility of recombination, but because it stays under weaker selection pressure; in panmictic populations without the necessity of being faithful, a considerable fraction of males is dispensable and they can be eliminated from the population without reducing its reproduction potential.
Shrinking galaxy disks with fountain-driven accretion from the halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A., E-mail: bge@watson.ibm.com, E-mail: curt@iastate.edu, E-mail: dah@lowell.edu
2014-12-01
Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a ratemore » proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.« less
Wiechmann, Thorsten; Pallagst, Karina M
2012-01-01
Many American and European cities have to deal with demographic and economic trajectories leading to urban shrinkage. According to official data, 13% of urban regions in the US and 54% of those in the EU have lost population in recent years. However, the extent and spatial distribution of declining populations differ significantly between Europe and the US. In Germany, the situation is driven by falling birth rates and the effects of German reunification. In the US, shrinkage is basically related to long-term industrial transformation. But the challenges of shrinking cities seldom appeared on the agendas of politicians and urban planners until recently. This article provides a critical overview of the development paths and local strategies of four shrinking cities: Schwedt and Dresden in eastern Germany; Youngstown and Pittsburgh in the US. A typology of urban growth and shrinkage, from economic and demographic perspectives, enables four types of city to be differentiated and the differences between the US and eastern Germany to be discussed. The article suggests that a new transatlantic debate on policy and planning strategies for restructuring shrinking cities is needed to overcome the dominant growth orientation that in most cases intensifies the negative consequences of shrinkage.
Precuring implant photoresists for shrink and patterning control
NASA Astrophysics Data System (ADS)
Winroth, Gustaf; Rosseel, Erik; Delvaux, Christie; Sanchez, Efrain Altamirano; Ercken, Monique
2013-10-01
193-nm compatible photoresists are turning out to be the new platform for implant lithography, due to the increasing requirements in both resolution and overlay. Shrinkage of such resists is becoming progressively the most topical issue for aggressive nodes, where conventional pretreatments from older resist platforms, such as ultraviolet flood exposures, are not directly transferable to (meth-)acrylate-type resists. The precuring options available for state-of-the-art implant photoresists for 193-nm lithography is explored, in which we target to reduce the shrinkage during implantation for trenching critical dimensions (CDs) that are relevant for nodes <20 nm. An extensive study comprising different approaches, including laser-, ion-, and electron-based treatments, is presented. Each treatment is individually investigated with the aim to find not only a valid pretreatment for shrinkage control during implantation, but also to understand what effect alternative pretreatments have on the morphology and the CDs of thick photoresists used as implant stopping layers. Viable options for further process optimization in order to integrate them into device process flows are found. To this extent, the shrink behavior after pretreatment is shown, and the additional shrink dynamics after implantation are compared.
2016-09-12
Saturn's shadow stretched beyond the edge of its rings for many years after Cassini first arrived at Saturn, casting an ever-lengthening shadow that reached its maximum extent at the planet's 2009 equinox. This image captured the moment in 2015 when the shrinking shadow just barely reached across the entire main ring system. The shadow will continue to shrink until the planet's northern summer solstice, at which point it will once again start lengthening across the rings, reaching across them in 2019. Like Earth, Saturn is tilted on its axis. And, just as on Earth, as the sun climbs higher in the sky, shadows get shorter. The projection of the planet's shadow onto the rings shrinks and grows over the course of its 29-year-long orbit, as the angle of the sun changes with respect to Saturn's equator. This view looks toward the sunlit side of the rings from about 11 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Jan. 16, 2015. The view was obtained at a distance of approximately 1.6 million miles (2.5 million kilometers) from Saturn. Image scale is about 90 miles (150 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20498
Cai, Shao-Bo; Huang, Zheng-Hua; Zhang, Xing-Qun; Cao, Zhang-Jun; Zhou, Mei-Hua; Hong, Feng
2011-01-01
A wool-degrading bacterium was isolated from decomposition wool fabrics in China. The strain, named 3096-4, showed excellent capability of removing cuticle layer of wool fibers, as demonstrated by removing cuticle layer completely within 48 h. According to the phenotypic characteristics and 16S rRNA profile, the isolate was classified as Pseudomonas. Bacteria growth and keratinase activity of the isolate were determined during cultivation on raw wool at different temperatures, initial pH, and rotation speed using orthogonal matrix method. Maximum growth and keratinase activity of the bacterium were observed under the condition including 30 °C, initial pH 7.6, and rotational speeds 160 rpm. The keratinase-containing crude enzyme prepared from 3096-4 was evaluated in the treatment of wool fabrics. The optimal condition of our enzymatic improvement of shrink resistance was the combination of 30 °C, initial pH 7.6, and rotation speeds 160 rpm. After the optimized treatment, the wool fabrics felting shrink was 4.1% at 6 h, and textile strength was not lost.
Gupta, Diksha; Singh, Bani
2014-01-01
The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements. PMID:24672310
New Particle Formation Events During 2013 in Hada Al Sham, Saudi-Arabia
NASA Astrophysics Data System (ADS)
Neitola, K.; Hyvärinen, A.; Lihavainen, H.; Alghamdi, M.; Hussein, T.; Khodeir, M.; Shehata, A.; Laaksonen, A. J.; Kulmala, M. T.
2014-12-01
New particle formation (NPF) is the dominant source of aerosol particles in the atmosphere and plays an important role in the global climate (Kulmala et al., 2013). NPF events has been observed in various places around the world (Kulmala et al., 2007). Arabian Peninsula has one of the highest aerosol burdens due to dust storms, local petroleum industry, traffic and advection from southern Asia. Here we present results of new particle formation event analysis from the first full year of measurements in the new measurement station in Hada Al Sham, Saudi-Arabia. The background station in Hada Al Sham (21.802° North, 39.729° East, 254 m a.s.l.) was founded at the end of 2012 on an agricultural test field 60 km to southeast from the city of Jeddah. The terrain around the station is arid desert with very scarce yearly precipitation. There are no local pollution sources. Main instrumentation include: PM2.5 and PM10, number size distribution (7 nm - 10 μm) and total concentration, absorption and scattering coefficients, and the basic weather parameters. We analysed the twin DMPS data from year 2013 classifying new particle formation events by visual day-to-day method. The days were classified following the principal presented in Dal Maso et al., (2005). The data coverage was 264 days (72.3 %) of the year. 210 Days (79.5 %) were classified as NPF event (Class I and II) days, 37 days (14.0 %) as undefined and 17 days (6.4 %) as non-event days. The analysis of the NPF event days was considered again as the freshly formed particles was observed shrinking after the original growth in most of the NPF event days. Typical event day DMPS data with a shrinking mode of particles is presented in Fig.1. Some of the days involved simultaneous shrinking and growth of the particles. Table 1 summarizes the frequency of each type of event day. Events G S G + S unclear 210 25 102 33 50 Days 100 11.9 48.6 15.7 23.8 (%) Table 1. Reclassification of the event days (classes I and II). G is clear growth, S is clear shrinkage, G + S is both growth and shrinkage and unclear is not clear in either way.ReferencesM. Dal Maso, et al. (2005). Bor. Env. Res., 10, 323-336.M. Kulmala, et al. (2006). Atmos. Chem. Phys., 6, 787-793. M. Kulmala, et al. (2013). Science, 336, 943-946.
Laboratory Reflectance Spectra in the Middle-infrared: Effects of Grain Size on Spectral Features
NASA Astrophysics Data System (ADS)
Le Bras, A.; Erard, S.; Fulchignoni, M.
2000-10-01
Since spectral mineral features are sensitive to surface parameters, interpretation of remote-sensing asteroids spectra in terms of mineral composition is not easy nor unique, and laboratory spectra are needed in order to understand the influence of each parameter. We developped an experimental program at IAS, using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. We present here the results obtained variing the grain size. We studied grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalte (dark) in the 2-40 microns range. We observed variations of the spectral contrast with grain size, shifts in wavelengths and variations of the intensity of some characteristic spectral features, and appearence of transparency features at wavelengths longer than 8 microns.
Ejected Particle Size Distributions from Shocked Metal Surfaces
Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...
2017-04-12
Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.
Ejected Particle Size Distributions from Shocked Metal Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, M. M.; Buttler, W. T.; Frayer, D. K.
Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.
Risse, Sarah; Hohenstein, Sven; Kliegl, Reinhold; Engbert, Ralf
2014-01-01
Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words. PMID:24771996
Ripening of Semiconductor Nanoplatelets.
Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J
2017-11-08
Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.
Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot
NASA Astrophysics Data System (ADS)
Simon, Amy A.; Tabataba-Vakili, Fachreddin; Cosentino, Richard; Beebe, Reta F.; Wong, Michael H.; Orton, Glenn S.
2018-04-01
Observations of Jupiter’s Great Red Spot (GRS) span more than 150 years. This allows for careful measurements of its size and drift rate. High spatial resolution spacecraft data also allow tracking of its spectral characteristics and internal dynamics and structure. The GRS continues to shrink in longitudinal length at an approximately linear rate of 0.°194 yr‑1 and in latitudinal width at 0.°048 yr‑1. Its westward drift rate (relative to System III W. longitude) has increased from ∼0.°26/day in the 1980s to ∼0.°36/day currently. Since 2014, the GRS’s short wavelength (<650 nm) reflectance has continued to decrease, while it has become brighter at 890 nm, indicating a change in clouds/haze at high altitudes. In addition, its north–south color asymmetry has decreased, and the dark core has become smaller. Internal velocities have increased on its east and west edges, and decreased on the north and south, resulting in decreased relative vorticity and circulation. The GRS’s color changes from 2014 to 2017 may be explained by changes in stretching vorticity or divergence acting to balance the decrease in relative vorticity.
Neuroticism as Distancing: Perceptual Sources of Evidence
Liu, Tianwei; Ode, Scott; Moeller, Sara K.; Robinson, Michael D.
2013-01-01
Several theories and self-reported sources of data link individual differences in negative affectivity to avoidance motivation. Chronic avoidance motivation, through repeated practice, may result in a relatively cognitive distance-enhancing dynamic whereby events and stimuli are perceived as further away from the self, even when they are not threatening. Such predictions are novel, but follow from cybernetic theories of self-regulation. In five studies (total N = 463), relations of this type were investigated. Study 1 presented participants with phrases that were ambiguous and found that trait negative affect predicted phrase interpretation in a distance-enhancing temporal direction. Study 2 replicated this effect across a systematic manipulation of event valence. Study 3 asked individuals to estimate the size of words and found that individuals higher in neuroticism generally perceived words to be smaller than did individuals lower in neuroticism. In Study 4, people high (but not low) in neuroticism perceived words to be shrinking faster than they were growing. In Study 5, greater perceptual distancing, in a font size estimation task, predicted more adverse reactions to negative events in daily life. Although normative effects varied across studies, consistent support for a chronic distancing perspective of individual differences in negative affectivity was found. PMID:23527850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Yi-Siang; Chen, Jui-Yuan; Huang, Chun-Wei
Recently, the mechanism of resistive random access memory (RRAM) has been partly clarified and determined to be controlled by the forming and erasing of conducting filaments (CF). However, the size of the CF may restrict the application and development as devices are scaled down. In this work, we synthesized CuO nanowires (NW) (∼150 nm in diameter) to fabricate a CuO NW RRAM nanodevice that was much smaller than the filament (∼2 μm) observed in a bulk CuO RRAM device in a previous study. HRTEM indicated that the Cu{sub 2}O phase was generated after operation, which demonstrated that the filament could be minimizemore » to as small as 3.8 nm when the device is scaled down. In addition, energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) show the resistive switching of the dielectric layer resulted from the aggregated oxygen vacancies, which also match with the I-V fitting results. Those results not only verify the switching mechanism of CuO RRAM but also show RRAM has the potential to shrink in size, which will be beneficial to the practical application of RRAM devices.« less
Micro-miniature radio frequency transmitter for communication and tracking applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, R.I.; Emery, M.S.; Falter, K.G.
1996-12-31
A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its smallmore » size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.« less
Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.
Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca
2015-03-01
Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.
HPC-Microgels: New Look at Structure and Dynamics
NASA Astrophysics Data System (ADS)
McKenna, John; Streletzky, Kiril; Mohieddine, Rami
2006-10-01
Issues remain unresolved in targeted chemotherapy including: an inability to effectively target cancerous tissue, the loss of low molecular weight medicines to the RES system, the high cytotoxicity of currently used drug carriers, and the inability to control the release of medicines upon arrival to the target. Hydroxy-propyl cellulose(HPC) microgels may be able to surmount these obstacles. HPC is a high molecular weight polymer with low cytotoxicity and a critical temperature around 41C. We cross-linked HPC polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a multi to uni-modal transition around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. During the phase transition it is found that the microgel particles actually shrink. This property might be particularly useful for controlled drug delivery and release.
Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal
2016-08-05
This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex
We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less
Wearable Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Bell, John
2015-01-01
The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.
Studies of Islands on Freely Suspended Bubbles of Smectic Liquid Crystal
NASA Technical Reports Server (NTRS)
Pattanaporkratana, A.; Mavel, B.; Park, C. S.; Maclennan, J. E.; Clark, N. A.
2002-01-01
We have constructed an optical system for observing the internal structure of freely suspended smectic liquid crystal bubbles using a reflected light microscope. Liquid crystal bubbles can have thicker circular regions (islands) which can easily be generated by shrinking the bubble diameter. The diameter of these islands is approximately 10 microns and they are typically up to five times thicker than the surrounding liquid crystal film (500 angstroms). In the Laboratory, the location of the islands is strongly influenced by gravity, which causes the majority of islands to migrate to the bottom half of the bubble. We will describe the size and thickness distributions of islands and their time evolution, and also discuss two-dimensional hydrodynamics and turbulence of smectic bubbles, the shapes of islands and holes affected by bubble vibrations, and the interactions between islands, which we have probed using optical tweezers.
Profile of traditional birth attendants in a rural area of north India.
Singh, A
1994-01-01
Two hundred traditional birth attendants (TBAs) of a community development block of India were interviewed. The majority were age 45 years or above (81%), illiterate (85%), and of low caste (78%). Most (88%) had three or more children. Although 27% had inherited the profession from older female relatives, only 4% have daughters or daughters-in-law in the profession. Almost half (48%) had conducted 11 or more deliveries in last year. The TBAs charged more money to deliver a male infant than to deliver a female. The TBA workforce in India appears to be shrinking, possibly because of gradual reduction in family size. Backup support from state maternal health care services is lacking. Existing cadre of TBAs should be involved in primary health care to ensure the survival of the institution of dais (TBAs) and to ensure the availability of basic maternity services to rural women.
The future of the national laboratories
Cohen, Linda R.; Noll, Roger G.
1996-01-01
The end of the Cold War has called into question the activities of the national laboratories and, more generally, the level of support now given to federal intramural research in the United States. This paper seeks to analyze the potential role of the laboratories, with particular attention to the possibility, on the one hand, of integrating private technology development into the laboratory’s menu of activities and, on the other hand, of outsourcing traditional mission activities. We review the economic efficiency arguments for intramural research and the political conditions that are likely to constrain the activities of the laboratories, and analyze the early history of programs intended to promote new technology via cooperative agreements between the laboratories and private industry. Our analysis suggests that the laboratories are likely to shrink considerably in size, and that the federal government faces a significant problem in deciding how to organize a downsizing of the federal research establishment. PMID:8917479
Contrarian behavior in a complex adaptive system
NASA Astrophysics Data System (ADS)
Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
A magnetostatic-coupling based remote query sensor for environmental monitoring
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.
1999-01-01
A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.
Fessler, Daniel M T; Holbrook, Colin
2013-05-01
In situations of potential violent conflict, deciding whether to fight, flee, or try to negotiate entails assessing many attributes contributing to the relative formidability of oneself and one's opponent. Summary representations can usefully facilitate such assessments of multiple factors. Because physical size and strength are both phylogenetically ancient and ontogenetically recurrent contributors to the outcome of violent conflicts, these attributes provide plausible conceptual dimensions that may be used by the mind to summarize the relative formidability of opposing parties. Because the presence of allies is a vital factor in determining victory, we hypothesized that men accompanied by male companions would therefore envision a solitary foe as physically smaller and less muscular than would men who were alone. We document the predicted effect in two studies, one using naturally occurring variation in the presence of male companions and one employing experimental manipulation of this factor.
Simoncelli, Sabrina; Roller, Eva-Maria; Urban, Patrick; Schreiber, Robert; Turberfield, Andrew J; Liedl, Tim; Lohmüller, Theobald
2016-11-22
DNA origami is a powerful approach for assembling plasmonic nanoparticle dimers and Raman dyes with high yields and excellent positioning control. Here we show how optothermal-induced shrinking of a DNA origami template can be employed to control the gap sizes between two 40 nm gold nanoparticles in a range from 1 to 2 nm. The high field confinement achieved with this optothermal approach was demonstrated by detection of surface-enhanced Raman spectroscopy (SERS) signals from single molecules that are precisely placed within the DNA origami template that spans the nanoparticle gap. By comparing the SERS intensity with respect to the field enhancement in the plasmonic hot-spot region, we found good agreement between measurement and theory. Our straightforward approach for the fabrication of addressable plasmonic nanosensors by DNA origami demonstrates a path toward future sensing applications with single-molecule resolution.
Selection of the simplest RNA that binds isoleucine
LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL
2003-01-01
We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881
Transport phenomena of growth-in-gel zeolite crystallization in microgravity
NASA Technical Reports Server (NTRS)
Zhang, H.; Ostrach, S.; Kamotani, Y.
1993-01-01
Secondary nucleation (SN) due to crystal sedimentation has been believed to be one of the major effects that causes smaller sizes of final zeolite crystals. The present investigation indicates that, in a reactor, this gravity-induced SN occurs only within a white opaque column termed the gel portion. Under normal gravity this portion shrinks to the bottom of the hydrothermal reactor, leaving a clear portion of solution at the top, due to depletion of the flocculated gel particles. Solution phase nucleation and crystallization is assumed and a correlation for the shrinkage is therefore derived, which shows good agreement with experimental observations. A non-dimensional parameter is suggested as a criterion for the occurrence of SN. Based on the parameter whether or not microgravity is beneficial to zeolite growth is discussed. Also, the growth mechanism and the transport phenomena in the absence of gravity are discussed.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Nanophotonic integrated circuits from nanoresonators grown on silicon.
Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie
2014-07-07
Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.
NASA Astrophysics Data System (ADS)
Chen, Guang; Das, Siddhartha
2017-11-01
Polyelectrolyte (PE) brushes have aroused increasing attention in applications in energy conversion and chemical sensing due to the environmentally-responsive and designable nature. PE brushes are charged polymer chains densely grafted on solid-liquid interfaces. By designing copolymeric systems, one can localize the ionizable sites at the brush tip in order to get end-charged PE brushes. Such brushes demonstrate anomalous shrinking/swelling behaviors with tunable environmental parameters such as pH and salt concentration. In this study, we probe the conformation and electrostatics of such PE brush systems with various size, grafting density and charge distribution, and exploit the electrochemomechanical energy conversion capabilities of nanochannels grafted with such PE brush systems. Our results indicate that the presence of the end-charged PE brush layer can massively enhance the streaming potential mediated energy conversion efficiency, and the improvement is more significant in strongly ionic solution.
Li, Jin; Fan, Cuncai; Ding, Jie; ...
2017-01-03
High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan
2015-01-01
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
Cigar magazines: using tobacco to sell a lifestyle
Wenger, L.; Malone, R.; George, A.; Bero, L.
2001-01-01
OBJECTIVE—To assess the content of two cigar "lifestyle" magazines, Cigar Aficionado and Smoke. DESIGN—Content analysis of cigar focused articles. SUBJECTS—Cigar focused articles (n = 353) from Cigar Aficionado and Smoke magazines. MAIN OUTCOME MEASURES—Primary focus; mention of health effects, environmental tobacco smoke, or scientific research; quotation and description of individuals; characteristics such as sex, age, ethnicity, smoking status, affiliation, and stance towards cigars; and overall image of cigars. RESULTS—Cigar business-focused articles were the largest category (40%, n = 143), followed by articles about cigar events (12%, n = 42). Notable were articles featuring cigar benefits to raise money for health charities. Celebrities were featured in 34% (n = 121) of articles and 96% (n = 271) favoured cigar use. Only four (1%) articles featured health effects of cigars as a primary focus. CONCLUSIONS—Cigar Aficionado and Smoke broke new ground in tobacco marketing by combining promotion of product, lifestyle, and industry in the same vehicle and linking the medium directly to product related events that extended its reach. The creation and marketing of new tobacco use sites challenges the increasing "isolation" of smokers, and positions cigar use as a socially welcome relief from restrictions. Public health advocates should anticipate and challenge other new tobacco marketing vehicles as communications technologies advance and public spaces for smoking shrink. Keywords: cigars; cigar magazines; lifestyles; tobacco marketing PMID:11544394
NASA Astrophysics Data System (ADS)
Ye, Zhou; Ellis, Michael W.; Nain, Amrinder S.; Behkam, Bahareh
2017-04-01
Microbial fuel cells (MFCs) are envisioned to serve as compact and sustainable sources of energy; however, low current and power density have hindered their widespread use. Introduction of 3D micro/nanostructures on the MFC anode is known to improve its performance by increasing the surface area available for bacteria attachment; however, the role of the feature size remains poorly understood. To delineate the role of feature size from the ensuing surface area increase, nanostructures with feature heights of 115 nm and 300 nm, both at a height to width aspect ratio of 0.3, are fabricated in a grid pattern on glassy carbon electrodes (GCEs). Areal current densities and bacteria attachment densities of the patterned and unpatterned GCEs are compared using Shewanella oneidensis Δbfe in a three-electrode bioreactor. The 115 nm features elicit a remarkable 40% increase in current density and a 78% increase in bacterial attachment density, whereas the GCE with 300 nm pattern does not exhibit significant change in current density or bacterial attachment density. The current density dependency on feature size is maintained over the entire 160 h experiment. Thus, optimally sized surface features have a substantial effect on current production that is independent of their effect on surface area.
Stability of deep features across CT scanners and field of view using a physical phantom
NASA Astrophysics Data System (ADS)
Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.
2018-02-01
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
Working memory for visual features and conjunctions in schizophrenia.
Gold, James M; Wilk, Christopher M; McMahon, Robert P; Buchanan, Robert W; Luck, Steven J
2003-02-01
The visual working memory (WM) storage capacity of patients with schizophrenia was investigated using a change detection paradigm. Participants were presented with 2, 3, 4, or 6 colored bars with testing of both single feature (color, orientation) and feature conjunction conditions. Patients performed significantly worse than controls at all set sizes but demonstrated normal feature binding. Unlike controls, patient WM capacity declined at set size 6 relative to set size 4. Impairments with subcapacity arrays suggest a deficit in task set maintenance: Greater impairment for supercapacity set sizes suggests a deficit in the ability to selectively encode information for WM storage. Thus, the WM impairment in schizophrenia appears to be a consequence of attentional deficits rather than a reduction in storage capacity.
... has grown Another possible treatment is an ethanol (alcohol) injection into the nodule to shrink ... Division of Metabolism, Endocrinology & Nutrition, University of Washington School of Medicine, ...
Optimization of temperature field of tobacco heat shrink machine
NASA Astrophysics Data System (ADS)
Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang
2018-06-01
A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.
Optimization of rotor shaft shrink fit method for motor using "Robust design"
NASA Astrophysics Data System (ADS)
Toma, Eiji
2018-01-01
This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Park, Junpil, E-mail: jaesun@pusan.ac.kr, E-mail: jpp@pusan.ac.kr; Cho, Younho, E-mail: mechcyh@pusan.ac.kr
The nuclear power plant inspection is very important for the safety issue. However due to some radiation and geometric problems, the detection of CRDM(Control Rod Drive Mechanism) can be very difficult by using conventional Ultrasonic Testing method. Also the shrink fit boundary condition can also be an obstacle for the inspection in this paper, instead of conventional Ultrasonic Testing, guided wave was used for the detection of some complicated structures. The CRDM nozzle was installed in reactor head with perfect shrink fit condition by using stainless steel. The wave amplitude distribution on the circumferential direction was calculated with various boundarymore » conditions and the experimental result shows a possibility of the defect detection on J-groove weld.« less