Sample records for shrinking reactive core

  1. Evaluation of shrinking core model in leaching process of Pomalaa nickel laterite using citric acid as leachant at atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Wanta, K. C.; Perdana, I.; Petrus, H. T. B. M.

    2016-11-01

    Most of kinetics studies related to leaching process used shrinking core model to describe physical phenomena of the process. Generally, the model was developed in connection with transport and/or reaction of reactant components. In this study, commonly used internal diffusion controlled shrinking core model was evaluated for leaching process of Pomalaa nickel laterite using citric acid as leachant. Particle size was varied at 60-70, 100-120, -200 meshes, while the operating temperature was kept constant at 358 K, citric acid concentration at 0.1 M, pulp density at 20% w/v and the leaching time was for 120 minutes. Simulation results showed that the shrinking core model was inadequate to closely approach the experimental data. Meanwhile, the experimental data indicated that the leaching process was determined by the mobility of product molecules in the ash layer pores. In case of leaching resulting large product molecules, a mathematical model involving steps of reaction and product diffusion might be appropriate to develop.

  2. Improved high power/high frequency inductor

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1990-01-01

    A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.

  3. Parameter Sensitivity Study of the Unreacted-Core Shrinking Model: A Computer Activity for Chemical Reaction Engineering Courses

    ERIC Educational Resources Information Center

    Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio

    2011-01-01

    The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…

  4. NO 2 oxidation reactivity and burning mode of diesel particulates

    DOE PAGES

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; ...

    2016-03-24

    The NO 2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O 2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activationmore » energy measured, specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO 2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O 2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  5. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles

    PubMed Central

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-01-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and STED imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1–30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size, or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles. PMID:24561832

  6. Will Universities Rediscover Their Core Mission as They Shrink?

    ERIC Educational Resources Information Center

    Kissel, Adam

    2011-01-01

    If one intends to speculate about the effects of the bursting of the higher education bubble, one can gain some insight by examining universities that are already shrinking. The University of California (UC) system's state appropriation, for example, has decreased by almost a billion dollars since 2007-2008. In this article, the author talks about…

  7. Analysis and design of a calcium-based sulfur sorbent for applications in integrated gasification combined cycle energy systems

    NASA Astrophysics Data System (ADS)

    Hasler, David Johann Ludwig

    The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.

  8. Optimization of rotor shaft shrink fit method for motor using "Robust design"

    NASA Astrophysics Data System (ADS)

    Toma, Eiji

    2018-01-01

    This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.

  9. Protein footprinting by pyrite shrink-wrap laminate.

    PubMed

    Leser, Micheal; Pegan, Jonathan; El Makkaoui, Mohammed; Schlatterer, Joerg C; Khine, Michelle; Law, Matt; Brenowitz, Michael

    2015-04-07

    The structure of macromolecules and their complexes dictate their biological function. In "footprinting", the solvent accessibility of the residues that constitute proteins, DNA and RNA can be determined from their reactivity to an exogenous reagent such as the hydroxyl radical (·OH). While ·OH generation for protein footprinting is achieved by radiolysis, photolysis and electrochemistry, we present a simpler solution. A thin film of pyrite (cubic FeS2) nanocrystals deposited onto a shape memory polymer (commodity shrink-wrap film) generates sufficient ·OH via Fenton chemistry for oxidative footprinting analysis of proteins. We demonstrate that varying either time or H2O2 concentration yields the required ·OH dose-oxidation response relationship. A simple and scalable sample handling protocol is enabled by thermoforming the "pyrite shrink-wrap laminate" into a standard microtiter plate format. The low cost and malleability of the laminate facilitates its integration into high throughput screening and microfluidic devices.

  10. A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate.

    PubMed

    Xu, Kun; Tan, Ying; Chen, Qiang; An, Huiyong; Li, Wenbo; Dong, Lisong; Wang, Pixin

    2010-05-15

    Series of hydrophilic core-shell microgels with cross-linked poly(N-isopropylacrylamide) (PNIPAAm) as core and poly(vinyl amine) (PVAm) as shell are synthesized via surfactant-free emulsion polymerization. Then, the microgels are treated with a small amount of potassium persulfate (KPS) to generate free radicals on the amine nitrogens of PVAm, which subsequently initiate the graft copolymerization of acrylic acid (AA), acryloyloxyethyl trimethyl ammonium chloride (DAC), and acrylamide (AAm) onto microgels to prepare multi-responsive composite hydrogels. The composite hydrogels consist of cross-linked ungrafted polyampholyte chains as the first network and microgels with grafted polyampholyte chains as graft point and second network and show surprising mechanical strength and rapid response rate. The investigation shows the compress strength of composite hydrogels is up to 17-30 MPa, which is 60-100 times higher than that of the hydrogel matrix. The composite hydrogel shows reversible switch of transmittance when traveling the lowest critical temperature (LCST) of microgels. When the composite hydrogel swollen in pH 2.86 solution at ambient condition is immersed into the pH 7.00 solution at 45 °C, a rapid dynamic shrinking can be observed. And the character time (τ) of shrinking dynamic of composite hydrogel is 251.9 min, which is less than that of hydrogel matrix (τ=2273.7 min). Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Seed robustness of oriented relative fuzzy connectedness: core computation and its applications

    NASA Astrophysics Data System (ADS)

    Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.

    2017-02-01

    In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.

  12. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettan, M.; Silverman, I.; Shapira, M.

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  14. An analysis of the flow field near the fuel injection location in a gas core reactor.

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Murty, B. G. K.; Porter, R. W.

    1971-01-01

    An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.

  15. CALCINATION AND SINTERING MODELS FOR APPLICATION TO HIGH-TEMPERATURE, SHORT-TIME SULFATION OF CALCIUM-BASED SORBENTS

    EPA Science Inventory

    To simulate the staged availability of transient high surface area CaO observed in high-temperature flow-reactor data, the rate of calcination of CaCO3 or Ca(OH)2 is described by an empirical modification of the shrinking-core model. The physical model depicts particle decomposi...

  16. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  17. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  18. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Aubrey L.

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFBmore » riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.« less

  19. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials.

    PubMed

    He, Kai; Xin, Huolin L; Zhao, Kejie; Yu, Xiqian; Nordlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A; Richards, Ryan M; Doeff, Marca M; Yang, Xiao-Qing; Stach, Eric A; Li, Ju; Lin, Feng; Su, Dong

    2015-02-11

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni(2+) → Ni(0)) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a "shrinking-core" mode). However, the interior capacity for Ni(2+) → Ni(0) can be accessed efficiently following the nucleation of lithiation "fingers" that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging.

  20. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  1. Core-in-shell sorbent for hot coal gas desulfurization

    DOEpatents

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  2. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (2) Critical experiment of lithium-6 used in LEM and LIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunoda, Hirokazu; Sato, Osamu; Okajima, Shigeaki

    2002-07-01

    In order to achieve fully automated reactor operation of RAPID-L reactor, innovative reactivity control systems LEM, LIM, and LRM are equipped with lithium-6 as a liquid poison. Because lithium-6 has not been used as a neutron absorbing material of conventional fast reactors, measurements of the reactivity worth of Lithium-6 were performed at the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute (JAERI). The FCA core was composed of highly enriched uranium and stainless steel samples so as to simulate the core spectrum of RAPID-L. The samples of 95% enriched lithium-6 were inserted into the core parallel to themore » core axis for the measurement of the reactivity worth at each position. It was found that the measured reactivity worth in the core region well agreed with calculated value by the method for the core designs of RAPID-L. Bias factors for the core design method were obtained by comparing between experimental and calculated results. The factors were used to determine the number of LEM and LIM equipped in the core to achieve fully automated operation of RAPID-L. (authors)« less

  3. 75 FR 22813 - Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Results for Antibody to Hepatitis B Core Antigen (Anti-HBc); Availability AGENCY: Food and Drug... Deferred Because of Reactive Test Results for Antibody to Hepatitis B Core Antigen (Anti- HBc),'' dated May... were repeatedly reactive for antibodies to hepatitis B core antigen (anti-HBc) were falsely positive...

  4. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol.

  5. High-Mass Stars in the Centers of Young Dense Clusters: Mass Segregation, Binary Mergers and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    We start by discussing dense, young star-clusters, particularly the 30 Doradus cluster with its core R136. The question of mass segregation and core collapse of the massive stars is addressed. Analytical estimates of relaxation times and collision times predict that the central N=10 subsystem of massive stars in the R136 core will evolve dynamically in such a way and fast enough (i.e. within their main-sequence lifetime of a few Myr) that a dominant massive binary system is formed whose orbit will shrink to a point where merging of the components appears inevitable. The merger product will be spinning rapidly, and we put forward the idea that this rare and very massive object might be the perfect precursor of a gamma-ray burst (collapsar).

  6. Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth

    PubMed Central

    2018-01-01

    Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals. PMID:29569443

  7. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing.

    PubMed

    Xu, Liang; Liang, Hai-Wei; Yang, Yuan; Yu, Shu-Hong

    2018-04-11

    Nanoparticles exist far from the equilibrium state due to their high surface energy. Nanoparticles are therefore extremely unstable and easily change themselves or react with active substances to reach a relatively stable state in some cases. This causes desired changes or undesired changes to nanoparticles and thus makes them exhibit a high reactivity and a poor stability. Such dual nature (poor stability and high reactivity) of nanoparticles may result in both negative and positive effects for nanoparticle processing. However, the existing studies mainly focus on the high reactivity of nanoparticles, whereas their poor stability has been neglected or considered inconsequential. In fact, in some cases the unstable process, which is derived from the poor stability of nanoparticles, offers an opportunity to design and fabricate unique nanomaterials, such as by chemically transforming the "captured" intermediate nanostructures during a changing process, assembling destabilized nanoparticles into larger ordered assemblies, or shrinking/processing pristine materials into the desired size or shape via selective etching. In this review, we aim to present the stability and reactivity of nanoparticles on three levels: the foundation, concrete manifestations, and applications. We start with a brief introduction of dangling bonds and the surface chemistry of nanoparticles. Then, concrete manifestations of the poor stability and high reactivity of nanoparticles are presented from four perspectives: dispersion stability, thermal stability, structural stability, and chemical stability/reactivity. Next, we discuss some issues regarding the stability and reactivity of nanomaterials during applications. Finally, conclusions and perspectives on this field are presented.

  8. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.« less

  9. SC'11 Poster: A Highly Efficient MGPT Implementation for LAMMPS; with Strong Scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppelstrup, T; Stukowski, A; Marian, J

    2011-12-07

    The MGPT potential has been implemented as a drop in package to the general molecular dynamics code LAMMPS. We implement an improved communication scheme that shrinks the communication layer thickness, and increases the load balancing. This results in unprecedented strong scaling, and speedup continuing beyond 1/8 atom/core. In addition, we have optimized the small matrix linear algebra with generic blocking (for all processors) and specific SIMD intrinsics for vectorization on Intel, AMD, and BlueGene CPUs.

  10. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  11. Experimental and numerical study of steam gasification of a single charcoal particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mermoud, F.; Van de Steene, L.; Golfier, F.

    2006-04-15

    The present work deals with a study coupling experiments and modeling of charcoal gasification by steam at large particle scale. A reliable set of experiments was first established using a specially developed 'macro-TG' apparatus where a particle was suspended and continuously weighed during its gasification. The main control parameters of a fixed-bed process were modified separately: steam gasification of beech charcoal spheres of different diameters (10 to 30 mm) was studied at different temperatures (830 to 1030{sup o}C), different steam partial pressures (0.1 to 0.4 atm H{sub 2}O), and different gas velocities around the particle (0.09 to 0.30 m/s). Simulationsmore » with the particle model were performed for each case. Confrontations with experimental data indicate that the model predictions are both qualitatively and quantitatively satisfactory, with an accuracy of 7%, until 60% of conversion, despite the fact that the phenomena of reactive surface evolution and particle fracturing are not well understood. Anisotropy and peripheral fragmentation make the end of the process difficult to simulate. Finally, an analysis of the thermochemical situation is proposed: it is demonstrated that the usual homogeneous or shrinking core particle models are not satisfying and that only the assumption of thermal equilibrium between the particle and the surrounding gas is valid for a model at bed scale. (author)« less

  12. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, Emily R.

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less

  13. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    PubMed

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  14. Advanced shrink material for NTD process with lower Y/X shrinkage bias of elongated patterns

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshihiro; Sekito, Takashi; Sagan, John; Horiba, Yuko; Kinuta, Takafumi; Nagahara, Tatsuro; Tarutani, Shinji

    2015-03-01

    Negative tone shrink materials (NSM) suitable for resolution enhancement of negative tone development (NTD) 193nm immersion resists have been developed. While this technology is being expanded to integrated circuits (IC) manufacturing, there still have two major problems to apply various processes. One of them is shrink ID bias which means shrink differences between isolated (I) and dense (D) CDs, and the other one is Y/X shrinkage bias which means shrinkage differences between major axis (Y) and minor axis (X) of the elongated or oval shape pattern. While we have presented the improvement of shrink ID bias at SPIE2014 [1], the reduction of Y/X shrinkage bias was the examination theme for quite some time. In this paper, we present Y/X shrinkage bias of current NTD shrink material, new concept material for Y/X bias reduction and the result of new shrink material. Current NTD shrink model has Y/X bias of 1.6 (Y shrink=16nm) at a mixing bake (MB) of 150°C on AZ AX2110P NTD elongated pattern of X=70nm and Y=210nm ADI. This means shrinkage of Y has larger shrinkage than X and that makes difficult to apply shrink material. We expected that the characteristic shape of elongated pattern was one of the root-cause for Y/X bias, and then simulated how to achieve equivalent shrinkage at Y and X. We concluded that available resist volume per each Y and X unit was not equivalent and need new shrink concept to solve Y/X bias. Based on our new concept, we prepared new shrink material which has lower Y/X bias and larger shrink amount compared with current NTD shrink material. Finally we have achieved lower Y/X bias from 1.6 to 1.1 at MB150°C and moreover got higher shrinkage than current NTD shrink material from 10.1nm to 16.7nm.

  15. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  16. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  17. Ecology for the shrinking city (JA) | Science Inventory | US ...

    EPA Pesticide Factsheets

    This article brings together the concepts of shrinking cities—the hundreds of cities worldwide experiencing long-term population loss—and ecology for the city. Ecology for the city is the application of a social–ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city therefore acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compared with growing cities. Shrinking cities are well poised for transformations, because shrinking is perceived as a crisis and can mobilize the social capacity to change. Ecology is particularly well suited to contribute solutions because of the extent of vacant land in shrinking cities that can be leveraged for ecosystem-services provisioning. A crucial role of an ecology for the shrinking city is identifying innovative pathways that create locally desired amenities that provide ecosystem services and contribute to urban sustainability at multiple scales. This paper brings together the concepts of ecology for the city and shrinking cities – the hundreds of cities worldwide experiencing long-term population loss. Ecology for the city is the application of social-ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compa

  18. CMOS time-to-digital converter based on a pulse-mixing scheme

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Liu, Keng-Chih; Chen, Guan-Hong

    2014-11-01

    This paper proposes a new pulse-mixing scheme utilizing both pulse-shrinking and pulse-stretching mechanisms to improve the performance of time-to-digital converters (TDCs). The temporal resolution of the conventional pulse-shrinking mechanism is determined by the size ratio between homogeneous and inhomogeneous elements. The proposed scheme which features double-stage operation derives its resolution according to the time difference between pulse-shrinking and pulse-stretching amounts. Thus, it can achieve greater immunity against temperature and ambient variations than that of the single-stage scheme. The circuit area also can be reduced by the proposed pulse-mixing scheme. In addition, this study proposes an improved cyclic delay line to eliminate the undesirable shift in the temporal resolution successfully. Therefore, the effective resolution can be controlled completely by the pulse-mixing unit to improve accuracy. The proposed TDC composed of only one cyclic delay line and one counter is fabricated in a TSMC CMOS 0.35-μm DPQM process. The chip core occupies an extremely small area of 0.02 mm2, which is the best among the related works. The experimental result shows that an effective resolution of around 53 ps within ±13% variation over a 0-100 °C temperature range is achieved. The power consumption is 90 μW at a sample rate of 1000 samples/s. In addition to the reduced area, the proposed TDC circuit achieves its resolution with less thermal-sensitivity and better fluctuations caused by process variations.

  19. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    NASA Astrophysics Data System (ADS)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  20. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  1. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolutionmore » of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.« less

  2. Capture of shrinking targets with realistic shrink patterns.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Dizmen, Coskun

    2013-01-01

    Previous research [Hoffmann, E. R. 2011. "Capture of Shrinking Targets." Ergonomics 54 (6): 519-530] reported experiments for capture of shrinking targets where the target decreased in size at a uniform rate. This work extended this research for targets having a shrink-size versus time pattern that of an aircraft receding from an observer. In Experiment 1, the time to capture the target in this case was well correlated in terms of Fitts' index of difficulty, measured at the time of capture of the target, a result that is in agreement with the 'balanced' model of Johnson and Hart [Johnson, W. W., and Hart, S. G. 1987. "Step Tracking Shrinking Targets." Proceedings of the human factors society 31st annual meeting, New York City, October 1987, 248-252]. Experiment 2 measured the probability of target capture for varying initial target sizes and target shrink rates constant, defined as the time for the target to shrink to half its initial size. Data of shrink time constant for 50% probability of capture were related to initial target size but did not greatly affect target capture as the rate of target shrinking decreased rapidly with time.

  3. 'Shrink' losses in commercially sized corn silage piles: Quantifying total losses and where they occur.

    PubMed

    Robinson, P H; Swanepoel, N; Heguy, J M; Price, T; Meyer, D M

    2016-01-15

    Silage 'shrink' (i.e., loss of fresh chopped crop between ensiling and feedout) represents a nutrient loss which can degrade air quality as volatile carbon compounds, degrade surface waterways due to seepage, or degrade aquifers due to seepage. Virtually no research has documented shrink in large silage piles. The term 'shrink' is often ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost in the drying oven (vcoDM). Corn silage piles (4 wedge, 2 rollover/wedge, 1 bunker) from 950 to 12,204 tonnes as built, on concrete (4), soil (2) and a combination (1) in California's San Joaquin Valley, using a bacterial inoculant, covered within 24 h with an oxygen barrier inner film and black/white outer plastic, fed out using large front end loaders through an electronic feed tracking system, and from the 2013 crop year, were used. Shrink as WW, oDM and vcoDM were 90±17, 68±18 and 28±21 g/kg, suggesting that much WW shrink is water and much oDM shrink is volatiles lost during analytical oven drying. Most shrink occurred in the silage mass with losses from exposed silage faces, as well as between exposed face silage removal and the total mixed ration mixer, being low. Silage bulk density, exposed silage face management and face use rate did not have obvious impacts on any shrink measure, but age of the silage pile during silage feedout impacted shrink losses ('older' silage piles being higher), but most strongly for WW shrink. Real shrink losses (i.e., vcoDM) of large well managed corn silage piles are low, the exposed silage face is a small portion of losses, and many proposed shrink mitigations appeared ineffective, possibly because shrink was low overall and they are largely directed at the exposed silage face. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  5. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less

  6. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  7. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    NASA Astrophysics Data System (ADS)

    Cao, P.; Karpyn, Z.; Li, L.

    2013-12-01

    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  8. Reactivity control assembly for nuclear reactor. [LMFBR

    DOEpatents

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  9. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  10. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  11. Cell viability study of thermo-responsive core-shell superparamagnetic nanoparticles for multimodal cancer therapy

    NASA Astrophysics Data System (ADS)

    Shah, Saqlain A.; Majeed, A.; Shafique, M. A.; Rashid, K.; Awan, Saif-Ullah

    2014-02-01

    This is a vital extension of our previously published work. Thermo-responsive copolymer coated superparamagnetic MnFe2O4 nanoparticles are tested for cell viability and affinity on HeLa carcinoma cells under different conditions. Nanoparticles were loaded with anticancer drug doxorubicin. Composite nanoparticles of average diameter 45 nm were of core-shell structure having magnetic core of about 18 nm. Magnetic hyperthermia effects on cell viability and drug delivery were studied by exposing the cell suspension to high frequency magnetic field, and living cells were quantified using MTT method. There was almost absence of drug release at 37 °C. Drug was released at temperatures above lower critical solution temperature (LCST) by magnetic heating. LCST of the thermo-responsive copolymer was observed to be around 39 °C. Below this temperature, copolymer was hydrophilic and swelled. But above LCST, copolymer could become hydrophobic, expel water and drug and shrink in volume. Combination of hyperthermia and drug delivery effectively treated cancer cells.

  12. Magnetic Reconnections in Mast

    NASA Astrophysics Data System (ADS)

    Turri, G.; Buttery, R. J.; Hastie, R. J.; Gimblett, C. G.; Cowley, S. C.; Lehane, I.

    2004-11-01

    In MAST the appearance of a spontaneous snake in the plasma core has many of the properties of a full reconnection. Analysis of SXR and TS data indicates a strongly radiating core with high impurity levels forming before the onset of the snake. Following the appearance of an x-point (island on the q=1 surface) the former core is hypothesised to move off axis and shrink, appearing as a radiative region with flux-tube-like rotating helical structure (the snake). A code has been developed to compare this with a slow full Kadomtsev type reconnection process including effects of impurities, density and temperature perturbations, current profile evolution and transport. The code reproduces many of the trends and effects seen in the data, confirming the event as consistent with full reconnection. The time-scale of the event is also consistent with estimates of hybrid growth times for such a reconnection process. Further analysis will be presented exploring the physics of this process in more detail.

  13. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  14. Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment

    NASA Technical Reports Server (NTRS)

    Gotsky, Edward R.; Cusick, James P.; Bogart, Donald

    1959-01-01

    Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.

  15. Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, G.; Moberg, L.

    SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less

  16. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  17. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  18. Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing

    2017-10-01

    The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.

  19. An examination of the shrinking-core model of sub-micron aluminum combustion

    NASA Astrophysics Data System (ADS)

    Buckmaster, John; Jackson, Thomas L.

    2013-04-01

    We revisit the shrinking-core model of sub-micron aluminum combustion with particular attention to the mass flux balance at the reaction front which necessarily leads to a displacement velocity of the alumina shell surrounding the liquid aluminum. For the planar problem this displacement simply leads to an equal displacement of the entire alumina layer, and therefore a straightforward mathematical framework can be constructed. In this way we are able to construct a single curve which defines the burn time for arbitrary values of the diffusion coefficient of O atoms, the reaction rate, the characteristic length of the combustion field, and the O atom mass concentration within the alumina provided that it is much smaller than the aluminum density. This demonstrates a transition between a 'd 2-t' law for fast chemistry and a 'd-t' law for slow chemistry. For the spherical geometry, the one of physical interest, the outward displacement velocity creates not a simple displacement, but a stress field which, when examined within the framework of linear elasticity, strongly suggests the creation of internal cracking. We note that if the molten aluminum is pushed into these cracks by the high internal pressure characteristic of the stress field, its surface, where reaction occurs, could be fractal in nature and affect the fundamental nature of the burning law. Indeed, if this ingredient is added to the planar model, a single curve for the burn time can again be derived, and this describes a transition from a 'd 2-t' law to a 'd ν-t' law, where 0<ν<1.

  20. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    NASA Astrophysics Data System (ADS)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  1. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways

    NASA Astrophysics Data System (ADS)

    Mogollón, J. M.; Lassaletta, L.; Beusen, A. H. W.; van Grinsven, H. J. M.; Westhoek, H.; Bouwman, A. F.

    2018-04-01

    Reactive nitrogen (N) inputs in agriculture strongly outpace the outputs at the global scale due to inefficiencies in cropland N use. While improvement in agricultural practices and environmental legislation in developed regions such as Western Europe have led to a remarkable increase in the N use efficiency since 1985, this lower requirement for reactive N inputs via synthetic fertilizers has yet to occur in many developing and transition regions. Here, we explore future N input requirements and N use efficiency in agriculture for the five shared socioeconomic pathways. Results show that under the most optimistic sustainability scenario, the global synthetic fertilizer use in croplands stabilizes and even shrinks (85 Tg N yr‑1 in 2050) regardless of the increase in crop production required to feed the larger estimated population. This scenario is highly dependent on projected increases in N use efficiency, particularly in South and East Asia. In our most pessimistic scenario, synthetic fertilization application rates are expected to increase almost threefold by 2050 (260 Tg N yr‑1). Excepting the sustainability scenario, all other projected scenarios reveal that the areal N surpluses will exceed acceptable limits in most of the developing regions.

  2. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .

  3. Stress state in turbopump bearing induced by shrink fitting

    NASA Technical Reports Server (NTRS)

    Sims, P.; Zee, R.

    1991-01-01

    The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.

  4. "Shrink-to-fit" superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.

    PubMed

    Manna, Uttam; Carter, Matthew C D; Lynn, David M

    2013-06-11

    An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conceptual model analysis of interaction at a concrete-Boom Clay interface

    NASA Astrophysics Data System (ADS)

    Liu, Sanheng; Jacques, Diederik; Govaerts, Joan; Wang, Lian

    In many concepts for deep disposal of high-level radioactive waste, cementitious materials are used in the engineered barriers. For example, in Belgium the engineered barrier system is based on a considerable amount of cementitious materials as buffer and backfill in the so-called supercontainer embedded in the hosting geological formation. A potential hosting formation is Boom Clay. Insight in the interaction between the high-pH pore water of the cementitious materials and neutral-pH Boom Clay pore water is required. Two problems are quite common for modeling of such a system. The first one is the computational cost due to the long timescale model assessments envisaged for the deep disposal system. Also a very fine grid (in sub-millimeter), especially at interfaces has to be used in order to accurately predict the evolution of the system. The second one is whether to use equilibrium or kinetic reaction models. The objectives of this paper are twofold. First, we develop an efficient coupled reactive transport code for this diffusion-dominated system by making full use of multi-processors/cores computers. Second, we investigate how sensitive the system is to chemical reaction models especially when pore clogging due to mineral precipitation is considered within the cementitious system. To do this, we selected two portlandite dissolution models, i.e., equilibrium (fastest) and diffusion-controlled model with precipitation of a calcite layer around portlandite particles (diffusion-controlled dissolution). The results show that with shrinking core model portlandite dissolution and calcite precipitation are much slower than with the equilibrium model. Also diffusion-controlled dissolution smooths out dissolution fronts compared to the equilibrium model. However, only a slight difference with respect to the clogging time can be found even though we use a very small diffusion coefficient (10-20 m2/s) in the precipitated calcite layer.

  6. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  7. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  8. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  9. Electroplating of aluminium microparticles with nickel to synthesise reactive core-shell structures for thermal joining applications

    NASA Astrophysics Data System (ADS)

    Schreiber, S.; Zaeh, M. F.

    2018-06-01

    Reactive particles represent a promising alternative for effectively joining components with freeform surfaces and different material properties. While the primary application of reactive systems is combustion synthesis for the production of high-performance alloys, the highly exothermic reaction can also be used to firmly bond thermosensitive joining partners. Core-shell structures are of special interest, since they function as separate microreactors. In this paper, a method to synthesise reactive nickel-aluminium core-shell structures via a two-step plating process is described. Based on an electroless process, the natural oxide layer of the aluminium particles is removed and substituted with a thin layer of nickel. Subsequently, the pre-treated particles are electroplated with nickel. The high reactivity of aluminium and the oxide layer play a significant role in adjusting the process parameters of the Watts bath. Additionally, the developed experimental set-up is introduced and the importance of process control is shown. In order to achieve reproducible results, the electroplating process was automated. Ignition tests with electromagnetic waves demonstrated that the particles undergo an exothermic reaction. Therefore, they can be used as a heat source in thermal joining applications.

  10. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  11. Oxidation kinetics for conversion of U 3O 8 to ε-UO 3 with NO 2

    DOE PAGES

    Johnson, J. A.; Rawn, C. J.; Spencer, B. B.; ...

    2017-04-04

    The oxidation kinetics of U 3O 8 powder to ε-UO 3 in an NO 2 environment was measured by in situ x-ray diffraction (XRD). Experiments were performed at temperatures of 195, 210, 235, and 250°C using a custom designed and fabricated sample isolation stage. Data were refined to quantify phase fractions using a newly proposed structure for the ε-UO 3 polymorph. The kinetics data were modeled using a shrinking core approach. A proposed two-step reaction process is presented based on the developed models.

  12. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    NASA Astrophysics Data System (ADS)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  13. Comparative DFT study of structure, reactivity and IR spectra of phosphorus-containing dendrons with Pdbnd Nsbnd Pdbnd S linkages, vinyl and azide functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Gottis, S.; Laurent, R.; Kovalenko, V. I.

    2015-07-01

    Fourier transform IR spectra of the first generation dendrons built from thiophosphoryl core with terminal Psbnd Cl groups, vinyl (G1) and azide (G2) functional group at the level of the core have been recorded. The optimized geometries of low energy isomers of G1 and G2 have been calculated by density functional (DFT) method at the PBE/TZ2P level of theory. DFT is used for analyzing the properties of each structural part (core, branches, surface). It was found that the repeated branching units of G1 and G2 contain planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd Prbond2 fragments. DFT results for the structure of G1 and G2 are in good agreement with X-ray diffraction measurements. A complete vibrational assignment is proposed for different parts of G1 and G2. The global and local reactivity descriptors have been used to characterize the reactivity pattern of the core functional and terminal groups. Natural bond orbital (NBO) analysis has been applied to comparative study of charge delocalization. Our study reveals why azide group linked to phosphorus has a different reactivity when compared to organic azides.

  14. Influence of hot exposure on 12-week-old turkey hen physiology, welfare, and meat quality and 16-week-old turkey tom core body temperature when crated at transport density.

    PubMed

    Vermette, C J; Henrikson, Z A; Schwean-Lardner, K V; Crowe, T G

    2017-09-01

    The influence of hot conditions on 12-week-old turkey hens and 16-week-old toms while crated at transport density was evaluated. Forty-eight hens and 48 toms (8 birds per flock × 3 flocks × 2 humidity levels) were used in neutral treatments (trt; 20°C), and 16 hens and 16 toms (8 birds per flock × 1 flock × 2 humidity levels) were used in the hot trt (35°C). Birds were placed in crates at a transport stocking density of approximately 83 kg/m2, then inside a pre-conditioned chamber for 8 hours. Live shrink, core body temperature (CBT), heterophil/lymphocyte (H/L) ratio, and breast and thigh pH and color were recorded. Differences were declared significant at P ≤ 0.05. Live shrink after exposure to the 35°C trt (4.92%) was greater (P < 0.0001) than when birds were exposed to 20°C (1.48%). The 35°C trt (P < 0.0001) had higher Δ CBT (final minus initial) compared to the 20°C trt. The 35°C trt also caused higher (P < 0.0001) H/L ratio, 4.07 vs. 1.57 for the 20°C trt. Breast (P = 0.0110) and thigh pH levels (P < 0.0001) measured 27 h postmortem were lower for the 35°C trt at 5.64 and 5.73 compared to the 20°C trt at 5.70 and 5.92, respectively. Breast meat from birds exposed to 35°C was darker (P < 0.0001), while the color of thigh meat was unaffected. Toms quickly became distressed in the hot conditions, forcing those tests to be aborted. Only CBT data were analyzed. The CBT increased at a mean rate of 0.09°C/min for hens at both RH levels, while the CBT of toms increased at 0.12 and 0.18°C/min when exposed to 35°C, 30%; and 35°C, 80%, respectively. Exposure to hot temperatures caused higher CBT, greater live shrink, and greater H/L ratio. Toms were more greatly affected than hens to the hot trt, with CBT increasing at a greater rate. © 2017 Poultry Science Association Inc.

  15. Metal-in-metal localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  16. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    NASA Astrophysics Data System (ADS)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  17. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  18. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  19. A New Domain of Reactivity for High-Valent Dinuclear [M(μ-O)2 M'] Complexes in Oxidation Reactions.

    PubMed

    Engelmann, Xenia; Yao, Shenglai; Farquhar, Erik R; Szilvási, Tibor; Kuhlmann, Uwe; Hildebrandt, Peter; Driess, Matthias; Ray, Kallol

    2017-01-02

    The strikingly different reactivity of a series of homo- and heterodinuclear [(M III )(μ-O) 2 (M III )'] 2+ (M=Ni; M'=Fe, Co, Ni and M=M'=Co) complexes with β-diketiminate ligands in electrophilic and nucleophilic oxidation reactions is reported, and can be correlated to the spectroscopic features of the [(M III )(μ-O) 2 (M III )'] 2+ core. In particular, the unprecedented nucleophilic reactivity of the symmetric [Ni III (μ-O) 2 Ni III ] 2+ complex and the decay of the asymmetric [Ni III (μ-O) 2 Co III ] 2+ core through aromatic hydroxylation reactions represent a new domain for high-valent bis(μ-oxido)dimetal reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Performance of U3Si2 Fuel in a Reactivity Insertion Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Cuadra, Arantxa; Todosow, Michael

    In this study we examined the performance of the U3Si2 fuel cladded with Zircaloy (Zr) in a reactivity insertion accident (RIA) in a PWR core. The power excursion as a result of a $1 reactivity insertion was calculated by a TRACE PWR plant model using point-kinetics, for alternative cores with UO2 and U3Si2 fuel assemblies. The point-kinetics parameters (feedback coefficients, prompt-neutron lifetime and group constants for six delayed-neutron groups) were obtained from beginning-of-cycle equilibrium full core calculations with PARCS. In the PARCS core calculations, the few-group parameters were developed utilizing the TRITON/NEWT tools in the SCALE package. In order tomore » assess the fuel response in finer detail (e.g. the maximum fuel temperature) the power shape and thermal boundary conditions from the TRACE/PARCS calculations were used to drive a BISON model of a fuel pin with U3Si2 and UO2 respectively. For a $1 reactivity transient both TRACE and BISON predicted a higher maximum fuel temperature for the UO2 fuel than the U3Si2 fuel. Furthermore, BISON is noted to calculate a narrower gap and a higher gap heat transfer coefficient than TRACE. This resulted in BISON predicting consistently lower fuel temperatures than TRACE. This study also provides a systematic comparison between TRACE and BISON using consistent transient boundary conditions. The TRACE analysis of the RIA only reflects the core-wide response in power. A refinement to the analysis would be to predict the local peaking in a three-dimensional core as a result of control rod ejection.« less

  1. Sequential shrink photolithography for plastic microlens arrays

    NASA Astrophysics Data System (ADS)

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  2. Sequential shrink photolithography for plastic microlens arrays.

    PubMed

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-18

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  3. Sequential shrink photolithography for plastic microlens arrays

    PubMed Central

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-01-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children’s toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays. PMID:21863126

  4. Examining a shrinking rustbelt city: A case of Binghamton, NY (1990 - 2010)

    NASA Astrophysics Data System (ADS)

    Park, Paul Sung-Pyo

    Shrinking cities are locations that have experienced population and economic loss. Each shrinking city is unique in the influential characteristics that result in loss, however, patterns of the contemporary city is highly based on economic changes. The impact of shrinking cities is a global phenomenon not only limited to the U.S. or the developed world. However, among large shrinking cities of the world, 25% are located in the U.S. Therefore, it is of utter importance to understand and examine these locations. The connection of spectral findings of a shrinking "Rustbelt" city of Binghamton, NY using a multilayer perceptron (MLP) artificial neural network (ANN) mean of classification was made with spatial findings of demographic and socioeconomic status of the local population. This resulted in a high scale classification of urban ecozones, which created the boundaries for examining the changes in population size and the types of individuals associated with these populations.

  5. Microcapsules with three orthogonal reactive sites

    PubMed Central

    Mason, Brian P.; Hira, Steven M.; Strouse, Geoffrey F.; McQuade, D. Tyler

    2009-01-01

    Polymeric microcapsules containing reactive sites on the shell surface and two orthogonally reactive polymers encapsulated within the interior are selectively labeled. The capsules provide three spatially separate and differentially reactive sites. Confocal fluorescence microscopy is used to characterize the distribution of labels. Polymers encapsulated are distributed homogeneously within the core and do not interact with the shell even when oppositely charged. PMID:19254010

  6. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  7. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinxiu; Chen, Mengjun, E-mail: kyling@swust.edu.cn; Chen, Haiyan

    2014-02-15

    Highlights: • A Brønsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior ofmore » copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.« less

  8. Imaging and estimating the surface heterogeneity on a droplet containing cosolvents.

    PubMed

    Fang, Xiaohua; Li, Bingquan; Wu, Jun; Maldarelli, Charles; Sokolov, Jonathan C; Rafailovich, Miriam H; Somasundaran, Ponisseril

    2009-07-23

    Cosolvents have numerous applications in many industries as well as scientific research. The shortage in the knowledge of the structures in a cosolvent system is significant. In this work, we display the spatial as well as the kinetic distribution of the cosolvents using droplets as paradigms. When an alcohol/water-containing sessile droplet evaporates on a substrate, it phase segregates into a water-enriched core and a thin alcohol prevailing shell. This is considered to be due to the different escaping rate of solvents out of the liquid-vapor (l-v) interfaces. In between the core and shell phases, there exists a rough and solid-like liquid-liquid (l-l) wall interface as marked by the fluorescent polystyrene spheres and imaged by a confocal microscope. Holes and patches of beads are observed to form on this phase boundary. The water-dispersed beads prefer to partition within the core. The shell prevails in the droplet during most of the drying and shrinks with the l-v boundary. By monitoring the morphological progression of the droplet, the composition of the cosolvent at the liquid-vapor interface is obtained.

  9. Agroecology for the Shrinking City

    EPA Science Inventory

    Many cities are experiencing long-term declines in population and economic activity. As a result, frameworks for urban sustainability need to address the unique challenges and opportunities of such shrinking cities. Shrinking, particularly in the U.S., has led to extensive vacant...

  10. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs. 'Mridula' and 'Bhagwa') at ambient and low temperature.

    PubMed

    Sudhakar Rao, D V

    2018-01-01

    The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.

  11. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  12. Design and implementation of a simple nuclear power plant simulator

    NASA Astrophysics Data System (ADS)

    Miller, William H.

    1983-02-01

    A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.

  13. Individual shrink wrapping extends the storage life and maintains the antioxidants of mango (cvs. 'Alphonso' and 'Banganapalli') stored at 8 °C.

    PubMed

    Rao, D V Sudhakar; Shivashankara, K S

    2015-07-01

    Freshly-harvested mature green mangoes (cvs. 'Alphonso' and 'Banganapalli') were individually shrink wrapped using two semi-permeable Cryovac films® (D-955 and LD-935) and a locally available LDPE film. The shrink wrapped and non-wrapped fruit were stored at 8 °C for 5 weeks and transferred to ambient conditions for subsequent ripening, to study the feasibility of alleviation of chilling injury (CI) and to determine shrink wrapping effect on fruit quality. Shrink wrapped mangoes of 'Banganapalli' and 'Alphonso' cultivars packed in D-955 (15 μm thickness) film could be stored for 5 weeks at 8 °C in fresh and unripe green condition. After storage, these cultivars respectively lost only 0.5 and 1.4 % mass in case of shrink wrapping as compared to 5.8 and 6.9 % loss in non-wrapped fruit. After removal from low temperature and unwrapping, shrink wrapped mangoes showed normal respiratory behaviour with production of CO2 and ethylene peaks (climacteric peaks) during ripening, whereas non-wrapped fruit did not show any respiratory peaks. Shrink wrapped mangoes ripened normally within a week at ambient temperature (24-32 °C and 60-70 % RH) with good surface yellow colour (reflected by hue and chroma values), edible softness, retention of nutritional quality and acceptable organoleptic quality. These quality parameters were better in fruit wrapped with D-955 film compared to LD-935 and LDPE films. Total carotenoids in terms of β-carotene content were significantly higher in shrink wrapped fruit when compared to non-wrapped fruit. Among different shrink films, total antioxidant capacity and DPPH radical scavenging abilities were higher in LD-935 wrapped fruit in case of 'Alphonso' cultivar whereas these were on par in LD-935 and D-955 film wrapped fruit in case of 'Banganapalli' cultivar.

  14. Total 'shrink' losses, and where they occur, in commercially sized silage piles constructed from immature and mature cereal crops.

    PubMed

    Robinson, P H; Swanepoel, N; Heguy, J M; Price, P; Meyer, D M

    2016-07-15

    Silage 'shrink' (i.e., fresh chop crop lost between ensiling and feedout) represents losses of potential animal nutrients which degrade air quality as volatile carbon compounds. Regulatory efforts have, in some cases, resulted in semi-mandatory mitigations (i.e., dairy farmers select a minimum number of mitigations from a list) to reduce silage shrink, mitigations often based on limited data of questionable relevance to large commercial silage piles where silage shrink may or may not be a problem of a magnitude equal to that assumed. Silage 'shrink' is generally ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost during oven drying (vcoDM). As no research has documented shrink in large cereal silage piles, 6 piles ranging from 1456 to 6297tonnes (as built) were used. Three used cereal cut at an immature stage and three at a mature stage. Physiologically immature silages had generally higher (P<0.01) levels of total volatile fatty acids (especially acetic acid; P=0.01) and total alcohols (P<0.01) than did physiologically mature crops, suggesting higher carbon compound volatilization potential from immature silages. However expressed as WW, oDM and vcoDM, total shrink (as well as from where in the piles it occurred) was little impacted by crop maturity, and whole pile vcoDM shrink was only ~35g/kg. Overall, real shrink losses (vcoDM) of large well managed cereal silage piles were relatively low, and a lower potential contributor to aerosol emissions of volatile carbon compounds than has often been assumed. Losses from the silage mass and the exposed silage face were approximately equal contributors to vcoDM shrink. Mitigations to reduce these relatively low emission levels of volatile organic compounds from cereal silage piles should focus on the ensiled mass and the exposed silage face. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  16. Qualification of APOLLO2 BWR calculation scheme on the BASALA mock-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaglio-Gaudard, C.; Santamarina, A.; Sargeni, A.

    2006-07-01

    A new neutronic APOLLO2/MOC/SHEM/CEA2005 calculation scheme for BWR applications has been developed by the French 'Commissariat a l'Energie Atomique'. This scheme is based on the latest calculation methodology (accurate mutual and self-shielding formalism, MOC treatment of the transport equation) and the recent JEFF3.1 nuclear data library. This paper presents the experimental validation of this new calculation scheme on the BASALA BWR mock-up The BASALA programme is devoted to the measurements of the physical parameters of high moderation 100% MOX BWR cores, in hot and cold conditions. The experimental validation of the calculation scheme deals with core reactivity, fission rate maps,more » reactivity worth of void and absorbers (cruciform control blades and Gd pins), as well as temperature coefficient. Results of the analysis using APOLLO2/MOC/SHEM/CEA2005 show an overestimation of the core reactivity by 600 pcm for BASALA-Hot and 750 pcm for BASALA-Cold. Reactivity worth of gadolinium poison pins and hafnium or B{sub 4}C control blades are predicted by APOLLO2 calculation within 2% accuracy. Furthermore, the radial power map is well predicted for every core configuration, including Void configuration and Hf / B{sub 4}C configurations: fission rates in the central assembly are calculated within the {+-}2% experimental uncertainty for the reference cores. The C/E bias on the isothermal Moderator Temperature Coefficient, using the CEA2005 library based on JEFF3.1 file, amounts to -1.7{+-}03 pcm/ deg. C on the range 10 deg. C-80 deg. C. (authors)« less

  17. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    NASA Astrophysics Data System (ADS)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  18. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less

  19. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    PubMed

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the 30 sera of known genotypes. The antigens did not detect antibodies to genotype-3a, but detected antibodies to all genotypes and did not discriminate them genotype wise. A panel of 175 of HCV-suspected serum samples was subjected to comparative analysis with our in-house ELISA assay and with commercial HCV screening assays. After subjecting the results to the formulas for determining the quality parameters, immunoblot assay had 100% sensitivity and specificity, while the ELISA assay had 100% sensitivity and 98.8% specificity as compared to commercially available assays. This study indicates that a mixture of Core and E2 antigens are potentially valuable antigens and there is the possibility of developing serological assays for monitoring HCV infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Reinforced cementitous composite with in situ shrinking microfibers

    NASA Astrophysics Data System (ADS)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  1. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  2. Wide-Field CCD Photometry around Nine Open Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Pandey, A. K.; Ogura, K.; Mito, H.; Tarusawa, K.; Sagar, R.

    2006-10-01

    In this paper we study the evolution of the core and corona of nine open clusters using the projected radial density profiles derived from homogeneous CCD photometric data obtained with the 105 cm Kiso Schmidt telescope. The age and galactocentric distance of the target clusters vary from 16 to 2000 Myr and 9 to 10.8 kpc, respectively. Barring Be 62, which is a young open cluster, other clusters show a uniform reddening across the cluster region. The reddening in Be 62 varies from E(B-V)min=0.70 mag to E(B-V)max=1.00 mag. The coronae of six of the clusters in the present sample are found to be elongated; however, on the basis of the present sample it is not possible to establish any correlation between the age and shape of the core. The elongated core in the case of the young cluster Be 62 may reflect the initial conditions in the parental molecular cloud. The other results of the present study are as follows: (1) Core radius rc and corona size rcn/cluster radius rcl are linearly correlated. (2) The rc, rcn, and rcl are linearly correlated with the number of stars in that region. (3) In the age range 10-1000 Myr, the core and corona shrink with age. (4) We find that in the galactocentric distance range 9-10 kpc, the core and corona/cluster extent of the clusters increase with the galactocentric distance.

  3. Aerodynamics inside a rapid compression machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Gaurav; Sung, Chih-Jen

    2006-04-15

    The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstratedmore » to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)« less

  4. Analysis of Accidents at the Pakistan Research Reactor-1 Using Proposed Mixed-Fuel (HEU and LEU) Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokhari, Ishtiaq H.

    2004-12-15

    The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried outmore » at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.« less

  5. Monitoring and predicting shrink potential and future processing quality of potato tubers

    USDA-ARS?s Scientific Manuscript database

    Long-term storage of potato tubers increases risks, which are often attributed to shrink and quality loss. To minimize shrink and ensure high quality tubers, producers must closely monitor the condition of the crop during storage and make necessary adjustments to management plans. Evaluation procedu...

  6. Occupational asthma due to polyethylene shrink wrapping (paper wrapper's asthma).

    PubMed Central

    Gannon, P F; Burge, P S; Benfield, G F

    1992-01-01

    Occupational asthma due to the pyrolysis products of polyvinyl chloride (PVC) produced by shrink wrapping processes has previously been reported. The first case of occupational asthma in a shrink wrap worker using a different plastic, polyethylene, is reported; the association was confirmed by specific bronchial provocation testing. PMID:1440477

  7. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm2 and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  8. A non-local mixing-length theory able to compute core overshooting

    NASA Astrophysics Data System (ADS)

    Gabriel, M.; Belkacem, K.

    2018-04-01

    Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MIchael A. Pope

    Six early cores of the MASURCA R-Z program were modeled using ERANOS 2.1. These cores were designed such that their neutron spectra would be similar to that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were evaluated using JEFF-3.1 cross-section libraries. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a resultmore » of differences in the angular dependence of elastic scattering which is more forward-peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross-sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross-sections than the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross-sections. In the cores which contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.« less

  10. An investigation of reactivity effect due to inadvertent filling of the irradiation channels with water in NIRR-1 Nigeria Research Reactor-1.

    PubMed

    Iliyasu, U; Ibrahim, Y V; Umar, Sadiq; Agbo, S A; Jibrin, Y

    2017-05-01

    Investigation of reactivity variation due to flooding of the irradiation channels of Nigeria Research Reactor (NIRR-1) a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria using the MCNP code for High Enrich Uranium (HEU) and Low Enrich Uranium (LEU) core has been simulated in this present study. In this work, the excess reactivity worth of flooding HEU core for 1 inner, 2 inner, 3 inner, 4 inner and all inner are 0.318mk, 0.577mk, 0.318mk, 1.204mk and 1.503mk respectively, and outer irradiation channels are 0.119mk, 0.169mk, 0.348mk, 0.438mk and 0.418mk respectively, the highest excess reactivity result from flooding both inner and outer irradiation channels is 2.04mk (±1.72×10 -7 ), the excess reactivity for LEU core was 0.299mk, 0.568mk, 0.896mk, 1.195mk and 1.524mk in the inner irradiation channels, and the outer irradiation channels are 0.129mk, 0.189mk, 0.219mk, 0.269mk and 0.548mk where the highest excess reactivity was 1.942mk (±1.64×10 -7 ) resulting from flooding inner and outer irradiation channels. The reactivity induced by flooding of the irradiation channels of NIRR-1 with water is within design safety limit enshrined in Safety Analysis Report of NIRR-1. The results also compare well with literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the additionmore » of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.« less

  12. In-situ verification techniques for fast critical assembly cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbach, S.B.; Amundson, P.I.; Roche, C.T.

    1979-01-01

    Active and passive autoradiographic techniques were used to obtain piece counts of fuel plates in fast critical assembly drawers and to verify the assembly loading pattern. Active autoradiography using prompt-fission and fission-product radiation was more successful with uranium fuel while passive autoradiography was more successful with plutonium fuel. A source multiplication technique was used to measure changes in reactivity when small quantities (2-2.5 kg) of fissile material were removed from a subcritical reference core of the Zero Power Plutonium Reactor. Efforts to compensate for unsuccessful. Some compensation was achieved by replacing U-238 with polyethylene. The sensitivity for detection of partiallymore » compensated fuel removed from minimum worth regions was approximately 2.5 kg (fissile) for a core containing 2600 kg (fissile). Substitution of polyethylene was detected with a spectral index which was the ratio of the rate of the In-115 (n,..gamma..) reaction to the rate of the In-115 (n,n') reaction. This spectral index was sensitive to the presence of an 0.64-cm-thick, 5.08-cm-high polyethylene column 10-15 cm away from the indium foil. The reactivity worth of Pu-239 was also obtained as a function of location in the reactor core with the use of an inverse kinetics technique. Reactivity worths for Pu-239 varied from a maximum of 58.67 Ih/kg near the core center to a minimum of 14.86 Ih/kg at the core edge.« less

  13. Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi

    According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.

  14. Reactivity control assembly for nuclear reactor

    DOEpatents

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  15. Flexible shrink-induced high surface area electrodes for electrochemiluminescent sensing.

    PubMed

    Pegan, Jonathan D; Ho, Adrienne Y; Bachman, Mark; Khine, Michelle

    2013-11-07

    Photolithographically defined metallic thin film on commodity shrink-wrap is leveraged to create robust electrodes. By thermally shrinking the film, electrodes are reduced by 20× in footprint for improved resolution and conductivity with >600% enhancements in electrochemically active surface area; as electrochemiluminescent sensors, they demonstrate improved limits of detection.

  16. Split-core heat-pipe reactors for out-of-pile thermionic power systems.

    NASA Technical Reports Server (NTRS)

    Niederauer, G.; Lantz, E.; Breitweiser, R.

    1971-01-01

    Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-

  17. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I., E-mail: vlevitas@iastate.edu; McCollum, Jena; Pantoya, Michelle L.

    2015-09-07

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al{sub 2}O{sub 3}) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoringmore » internal stresses.« less

  18. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  19. Electrical study of DSA shrink process and CD rectification effect at sub-60nm using EUV test vehicle

    NASA Astrophysics Data System (ADS)

    Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel

    2017-03-01

    In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.

  20. Sustainability for Shrinking Cities | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing conditions and to cope with major events. The dynamics of shrinking cities are different than the dynamics of growing cities, and therefore intentional research and planning around creating sustainable cities is needed for shrinking cities. We propose research that can be applied to shrinking cities by identifying parallel challenges in growing cities and translating urban research and planning that is specific to each city’s dynamics. In addition, we offer applications of panarchy concepts to this problem. The contributions to this Special Issue take on this forward-looking planning task through drawing lessons for urban sustainability from shrinking cities, or translating general lessons from urban research to the context of shrinking cities. Humans are rapidly becoming an urban species, with greater populations in urban areas, increasing size of these urban areas, and increasing number of very large urban areas. As a consequence, much of what we know about cities is focused on how they grow and take shape, the strains that their growth puts on city infrastructure, the consequences for human and nonhuman inhabitants of these cities and their surroundings, and the policies which can

  1. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...

  2. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...

  3. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...

  4. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...

  5. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sealed plastic bag or shrink wrapping; or must have a peelable, sealed lid or other easily visible tamper...) together in a sealed plastic bag or shrink wrapping separate from the collection container; or must be wrapped (with cap) individually in sealed plastic bags or shrink wrapping; or must have peelable, sealed...

  6. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    PubMed Central

    Nokes, Jolie M.; Sharma, Himanshu; Tu, Roger; Kim, Monica Y.; Chu, Michael; Siddiqui, Ali; Khine, Michelle

    2016-01-01

    We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing. PMID:28773318

  7. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching.

    PubMed

    Nokes, Jolie M; Sharma, Himanshu; Tu, Roger; Kim, Monica Y; Chu, Michael; Siddiqui, Ali; Khine, Michelle

    2016-03-14

    We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH) substrates directly in commodity shrink wrap film utilizing Argon (Ar) plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM) images confirm the presence of these biomimetic structures. Contact angle (CA) and contact angle hysteresis (CAH) measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  8. Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2015-01-01

    This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Reactivity change in a fast-spectrum space power reactor due to a 328-meter-per-second (1075-ft/sec) impact

    NASA Technical Reports Server (NTRS)

    Peoples, J. A., Jr.; Puthoff, R. L.

    1973-01-01

    Application of nuclear reactors in space will present operational problems. One such problem is the possibility of an earth impact at velocities in excess of 305 m/sec (1000 ft/sec). This report shows the results of an impact against concrete at 328 m/sec (1075 ft/sec) and examines the deformed core to estimate the range of activity inserted as a result of the impact. The results of this examination are that the deformation of the reactor core within the containment vessel left only an estimated 2.7 percent void in the core and that the reactivity inserted due to this impact deformation could be from 4.0 to 10.25 dollars.

  10. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.

    PubMed

    Patty, Kira; Sadeghi, Seyed M; Campbell, Quinn; Hamilton, Nathan; West, Robert G; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  11. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    PubMed Central

    Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin

    2014-01-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide. PMID:25316953

  12. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media

    NASA Astrophysics Data System (ADS)

    Beckingham, Lauren E.; Steefel, Carl I.; Swift, Alexander M.; Voltolini, Marco; Yang, Li; Anovitz, Lawrence M.; Sheets, Julia M.; Cole, David R.; Kneafsey, Timothy J.; Mitnick, Elizabeth H.; Zhang, Shuo; Landrot, Gautier; Ajo-Franklin, Jonathan B.; DePaolo, Donald J.; Mito, Saeko; Xue, Ziqiu

    2017-05-01

    The rates of mineral dissolution reactions in porous media are difficult to predict, in part because of a lack of understanding of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area used in reactive transport models for porous media are typically ad hoc and often based on average grain size, increased to account for surface roughness or decreased by several orders of magnitude to account for reduced surface reactivity of field as opposed to laboratory samples. In this study, accessible mineral surface areas are determined for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan) using a multi-scale image analysis based on synchrotron X-ray microCT, SEM QEMSCAN, XRD, SANS, and FIB-SEM. This analysis not only accounts for accessibility of mineral surfaces to macro-pores, but also accessibility through connected micro-pores in smectite, the most abundant clay mineral in this sample. While the imaging analysis reveals that most of the micro- and macro-pores are well connected, some pore regions are unconnected and thus inaccessible to fluid flow and diffusion. To evaluate whether mineral accessible surface area accurately reflects reactive surface area a flow-through core experiment is performed and modeled at the continuum scale. The core experiment is performed under conditions replicating the pilot site and the evolution of effluent solutes in the aqueous phase is tracked. Various reactive surface area models are evaluated for their ability to capture the observed effluent chemistry, beginning with parameter values determined as a best fit to a disaggregated sediment experiment (Beckingham et al., 2016) described previously. Simulations that assume that all mineral surfaces are accessible (as in the disaggregated sediment experiment) over-predict the observed mineral reaction rates, suggesting that a reduction of RSA by a factor of 10-20 is required to match the core flood experimental data. While the fit of the effluent chemistry (and inferred mineral dissolution rates) greatly improve when the pore-accessible mineral surface areas are used, it was also necessary to include highly reactive glass phases to match the experimental observations, in agreement with conclusions from the disaggregated sediment experiment. It is hypothesized here that the 10-20 reduction in reactive surface areas based on the limited pore accessibility of reactive phases in core flood experiment may be reasonable for poorly sorted and cemented sediments like those at the Nagaoka site, although this reflects pore rather than larger scale heterogeneity.

  13. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chirone, R.; Scala, F.; Solimene, R.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less

  14. Shrinking cities examined from a shrinking scale – the impact of household and neighborhood heterogeneity on changes in material and energy consumption, ecosystem services and environmental impact

    EPA Science Inventory

    Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. Shrinking cities face decreased income, reduced property values, and decreased tax revenue. Fewer people per unit area creates ineffi...

  15. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide

    PubMed Central

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-01-01

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly—otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA. PMID:28813019

  16. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide.

    PubMed

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-08-16

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the T g of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly-otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannan, N. A.; Matos, J. E.; Stillman, J. A.

    At the request of the Czech Technical University (CTU) in Prague, ANL has performed independent verification calculations using the MCNP Monte Carlo code for three core configurations of the VR-1 reactor: a current core configuration B1 with HEU (36%) IRT-3M fuel assemblies and planned core configurations C1 and C2 with LEU (19.7%) IRT-4M fuel assemblies. Details of these configurations were provided to ANL by CTU. For core configuration B1, criticality calculations were performed for two sets of control rod positions provided to ANL by CTU. Fore core configurations C1 and C2, criticality calculations were done for cases with all controlmore » rods at the top positions, all control rods at the bottom positions, and two critical states of the reactor for different control rod positions. In addition, sensitivity studies for variation of the {sup 235}U mass in each fuel assembly and variation of the fuel meat and cladding thicknesses in each of the fuel tubes were doe for the C1 core configuration. The reactivity worth of the individual control rods was calculated for the B1, C1, and C2 core configurations. Finally, the reactivity feedback coefficients, the prompt neutron lifetime, and the total effective delay neutron fraction were calculated for each of the three cores.« less

  18. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  19. Single-Event Transient Testing of Low Dropout PNP Series Linear Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Adell, Philippe; Allen, Gregory

    2013-01-01

    As demand for high-speed, on-board, digital-processing integrated circuits on spacecraft increases (field-programmable gate arrays and digital signal processors in particular), the need for the next generation point-of-load (POL) regulator becomes a prominent design issue. Shrinking process nodes have resulted in core rails dropping to values close to 1.0 V, drastically reducing margin to standard switching converters or regulators that power digital ICs. The goal of this task is to perform SET characterization of several commercial POL converters, and provide a discussion of the impact of these results to state-of-the-art digital processing IC through laser and heavy ion testing

  20. 76 FR 15802 - Airworthiness Directives; Eurocopter France (Eurocopter) Model EC130 B4 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... in insert D of Figure 5 of the EASB, and determine if it is covered with heat shrink, P/N... shown in insert D of Figure 5 or the attachment screw is not covered with heat shrink, modify the.... Figure 5 of the EASB does not show the heat shrink installed for clarity of screw head and lug detail. (3...

  1. Tailoring the response of Autonomous Reactivity Control (ARC) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qvist, Staffan A.; Hellesen, Carl; Gradecka, Malwina

    The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety of Generation IV reactors while having a minimal impact on reactor performance and economic viability. In this study we present the transient response of fast reactor cores to postulated accident scenarios with and without ARC systems installed. Using a combination of analytical methods and numerical simulation, the principles of ARC system design that assure stability and avoids oscillatory behavior have been identified. A comprehensive transient analysis study for ARC-equipped cores, including a series of Unprotected Loss of Flow (ULOF) and Unprotected Loss of Heat Sink (ULOHS) simulations, weremore » performed for Argonne National Laboratory (ANL) Advanced Burner Reactor (ABR) designs. With carefully designed ARC-systems installed in the fuel assemblies, the cores exhibit a smooth non-oscillatory transition to stabilization at acceptable temperatures following all postulated transients. To avoid oscillations in power and temperature, the reactivity introduced per degree of temperature change in the ARC system needs to be kept below a certain threshold the value of which is system dependent, the temperature span of actuation needs to be as large as possible.« less

  2. Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO2 core and its adsorption capacity of CO2

    NASA Astrophysics Data System (ADS)

    Yang, R. L.; Zheng, Y. P.; Wang, T. Y.; Li, P. P.; Wang, Y. D.; Yao, D. D.; Chen, L. X.

    2018-01-01

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO2 due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO2 without aggregation state.

  3. PRB CHEMISTRY CASE STUDY: DENVER FEDERAL CENTER

    EPA Science Inventory

    The Denver Federal Center permeable reactive barrier is a funnel-and-gate system with four reactive gates, each separated by up to about 120 m of metal sheet pile. In this study, ground water sampling, core collection, and solid phase characterization studies were carried out in...

  4. Method and apparatus for packaging optical fiber sensors for harsh environments

    DOEpatents

    Pickrell, Gary; Duan, Yuhong; Wang, Anbo

    2005-08-09

    A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

  5. A novel ultrasonic NDE for shrink fit welded structures using interface waves.

    PubMed

    Lee, Jaesun; Park, Junpil; Cho, Younho

    2016-05-01

    Reactor vessel inspection is a critical part of safety maintenance in a nuclear power plant. The inspection of shrink fit welded structures in a reactor nozzle can be a challenging task due to the complicated geometry. Nozzle inspection using pseudo interface waves allows us to inspect the nozzle from outside of the nuclear reactor. In this study, layered concentric pipes were manufactured with perfect shrink fit conditions using stainless steel 316. The displacement distributions were calculated with boundary conditions for a shrink fit welded structure. A multi-transducer guided wave phased array system was employed to monitor the welding quality of the nozzle end at a distance from a fixed position. The complicated geometry of a shrink fit welded structure can be overcome by using the pseudo interface waves in identifying the location and size of defects. The experimental results demonstrate the feasibility of detecting weld delamination and defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional weakening was observed during re-activation.

  7. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  8. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  9. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    NASA Astrophysics Data System (ADS)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; La Haye, R. J.; Bañón Navarro, A.; McKee, G. R.

    2017-06-01

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to interaction with Edge Localized Modes (ELMs) is reported for the first time. This work shows that perturbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n = 2/1 islands (m/n being the poloidal/toroidal mode numbers). In synchronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability due to modified pressure gradient (∇p) and perturbed bootstrap current (δjBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations ( n ˜ ) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n ˜ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measurements suggest that n ˜ accelerates NTM recovery after an ELM crash via accelerating the relaxation of ∇p at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing ∇p and therefore restoring δjBS at the O-point. The key physics of the relationship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-β tokamak plasmas.

  10. Structure and dynamics of reverse micelles containing supercooled water investigated by neutron scattering

    NASA Astrophysics Data System (ADS)

    Spehr, Tinka; Frick, Bernhard; Grillo, Isabelle; Falus, Peter; Müller, Martin; Stühn, Bernd

    2009-03-01

    We present a detailed neutron scattering study of the structure, shape fluctuations, and translational diffusion of microemulsion droplets at low temperatures. We investigate the ternary microemulsion D2O , AOT [bis(2-ethyl-hexyl) sulfosuccinate], and toluene-d8 (or heptane-d16) which forms spherical water droplets surrounded by a monolayer of AOT dispersed in oil around room temperature. At T=290K , varying the molar ratio ω of water to AOT between 3 and 12, we find using small angle neutron scattering water core radii Rc between 7 and 18Å , respectively. We characterize the structure at low temperatures down to T=220K . Upon cooling the droplet structure is maintained and Rc stays roughly constant down to temperatures where the confined water is deeply supercooled. At an ω -dependent temperature Ts we observe for all compositions a shrinking of the droplets, which depends on the initial droplet size: the smaller the initial radii, the lower the Ts is. At the lowest investigated temperature T=220K we find an ω -independent remaining water core corresponding to a number of about 2 water molecules per AOT molecule. Neutron spin-echo spectroscopy is used to monitor shape fluctuations and translational diffusion for one microemulsion ( ω=8 , Rw=12Å ) from T=300K down to temperatures below the corresponding shrinking temperature Ts . Thereby we determine the bending elasticity to be κ=0.3kBT over the whole investigated temperature range where the droplets are stable. From these results we cannot establish a link between surfactant membrane elasticity and low temperature structural instability of the droplets. Moreover, our results show that reverse AOT micelles are an excellent tool for the study of soft confined water over a broad range of confining sizes and temperatures down to the supercooled state.

  11. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  12. Shrinking of core neoclassical tearing mode magnetic islands due to edge localized modes and the role of ion-scale turbulence in island recovery in DIII-D

    DOE PAGES

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.; ...

    2017-06-08

    Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to inter- action with Edge Localized Modes (ELMs) is reported for the first time. This work shows that per- turbations associated with ELMs result in peaking of the electron temperature (Te) in the O-point region of saturated core m/n 1/4 2/1 islands (m/n being the poloidal/toroidal mode numbers). In syn- chronization with this Te peak, the island width shrinks by as much as 30% suggesting a key role of the Te peak in NTM stability duemore » to modified pressure gradient (rp) and perturbed bootstrap cur- rent (djBS) at the O-point. Next, this Te peak relaxes via anomalous transport (i.e., the diffusivity is 2 orders of magnitude larger than the neoclassical value) and the island recovers. Long-wavelength turbulent density fluctuations (n~) are reduced at the O-point of flat islands but these fluctuations are increased when Te is peaked which offers an explanation for the observed anomalous transport that is responsible for the relaxation of the Te peak. Linear gyrokinetic simulations indicate that n~ inside the peaked island is dominantly driven by the Ion Temperature Gradient instability. These measure- ments suggest that n~ accelerates NTM recovery after an ELM crash via accelerating the relaxation of rp at the O-point. These observations are qualitatively replicated by coupled predator-prey equations and modified Rutherford equation. In this simple model, turbulence accelerates NTM recovery via relaxing rp and therefore restoring djBS at the O-point. The key physics of the rela- tionship between the Te peak and NTM stability has potentially far-reaching consequences, such as NTM control via pellet injection in high-b tokamak plasmas.« less

  13. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  14. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  15. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  16. Reactive Transport Modeling of CO2-induced Porosity and Permeability Changes in Heterogeneous Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Smith, M. M.; Mason, H. E.; Carroll, S.

    2015-12-01

    It has long been appreciated that chemical interactions have a major effect on rock porosity and permeability evolution and may alter the behavior or performance of both natural and engineered reservoir systems. Such reaction-induced permeability evolution is of particular importance for geological CO2 sequestration and storage associated with enhanced oil recovery. In this study we used a three-dimensional Darcy scale reactive transport model to simulate CO2 core flood experiments in which the CO2-equilibrated brine was injected into dolostone cores collected from the Arbuckle carbonate reservoir, Wellington, Kansas. Heterogeneous distributions of macro pores, fractures, and mineral phases inside the cores were obtained from X-ray computed microtomography (XCMT) characterization data, and then used to construct initial model macroscopic properties including porosity, permeability, and mineral compositions. The reactive transport simulations were performed by using the Nonisothermal Unsaturated Flow and Transport (NUFT) code, and their results were compared with experimental data. It was observed both experimentally and numerically that the dissolution fronts became unstable in highly heterogeneous and less permeable formations, leading to the development of highly porous flow paths or wormholes. Our model results indicate that the continuum-scale reactive transport models are able to adequately capture the evolution of distinct dissolution fronts as observed in carbonate rocks at a core scale. The impacts of rock heterogeneity, chemical kinetics and porosity-permeability relationships were also examined in this study. The numerical model developed in this study will not only help improve understanding of coupled physical and chemical processes controlling carbonate dissolution, but also provide a useful basis for upscaling transport and reaction properties from core scale to field scale. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kai; Xin, Huolin L.; Zhao, Kejie

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore » time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  18. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE PAGES

    He, Kai; Xin, Huolin L.; Zhao, Kejie; ...

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore » time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  19. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  20. Reactivation of hepatitis B in patients of chronic hepatitis C with hepatitis B virus infection treated with direct acting antivirals.

    PubMed

    Yeh, Ming-Lun; Huang, Chung-Feng; Hsieh, Meng-Hsuan; Ko, Yu-Min; Chen, Kuan-Yu; Liu, Ta-Wei; Lin, Yi-Hung; Liang, Po-Cheng; Hsieh, Ming-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Ching-I; Huang, Jee-Fu; Kuo, Po-Lin; Dai, Chia-Yen; Yu, Ming-Lung; Chuang, Wan-Long

    2017-10-01

    Hepatitis B virus (HBV) may reactivate when treating chronic hepatitis C (CHC) with direct acting antivirals (DAA). We aim to investigate the risk of HBV reactivation during DAA therapy. Chronic hepatitis C patients receiving pan-oral DAA therapy from December 2013 to August 2016 were evaluated. Fifty-seven patients that had a past HBV infection (negative hepatitis B surface antigen [HBsAg] and positive hepatitis B core antibody) and seven patients that had a current HBV infection (positive HBsAg) were enrolled. Serum HBV and hepatitis C virus (HCV) markers were regularly measured. The endpoints were the HCV sustained virological response (SVR) and the HBV virological/clinical reactivation. The overall SVR 12 rate was 96.9%, and two patients, one with positive HBsAg, had a relapse of HCV. No episodes of HBV virological reactivation were observed among the patients with a past HBV infection. For the seven patients with a current HBV infection, HBV virological reactivation was found in four (57.1%) of the seven patients. Clinical reactivation of HBV was observed in one patient with pretreatment detectable HBV DNA and recovered after entecavir administration. For the other three patients with HBV virological reactivation, the reappearance of low level HBV DNA without clinical reactivation was observed. HBsAg levels demonstrated only small fluctuations in all the patients. There was a minimal impact of hepatitis B core antibody seropositivity on HCV efficacy and safety. For CHC patients with current HBV infection, the risk of HBV reactivation was present, and monitoring the HBV DNA level during therapy is warranted. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  1. Method and apparatus for measuring the state of charge in a battery based on volume of battery components

    DOEpatents

    Rouhani, S. Zia

    1996-10-22

    The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

  2. MHD stagnation-point flow over a nonlinearly shrinking sheet with suction effect

    NASA Astrophysics Data System (ADS)

    Awaludin, Izyan Syazana; Ahmad, Rokiah; Ishak, Anuar

    2018-04-01

    The stagnation point flow over a shrinking permeable sheet in the existence of magnetic field is numerically investigated in this paper. The system of partial differential equations are transformed to a nonlinear ordinary differential equation using similarity transformation and is solved numerically using the boundary value problem solver, bvp4c, in Matlab software. It is found that dual solutions exist for a certain range of the shrinking strength.

  3. Shrinking pleuritis with lobar atelectasis, a morphologic variant of round atelectasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung-Park, M.; Tomashefski, J.F. Jr.; Cohen, A.M.

    1989-04-01

    Round atelectasis (shrinking pleuritis) is typically a localized process characterized by focal pleural scarring and subjacent peripheral atelectasis. We report three patients, studied at autopsy, with an unusual variant of round atelectasis, termed shrinking pleuritis with lobar atelectasis, which is characterized by lobar atelectasis, visceral pleural fibrosis involving multiple lobes, interlobar fibrous cords, pleural effusion, and nonspecific, persistent infiltrates on chest radiogram. The possible causes of shrinking pleuritis with lobar atelectasis in our patients were multiple and included environmental dust exposure, infection, uremia, and recurrent pleural effusions. Our findings support both the folding (pleural effusion) and fibrosing (pleural injury) theoriesmore » of pathogenesis of round atelectasis and emphasize the spectrum of morphologic variability in this condition.« less

  4. CHROMIUM REMOVAL PROCESSES DURING GROUNDWATER REMEDIATION BY A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron, permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City (NC). The PRB was installed in 1996 to treat groundwater contami...

  5. Preliminary Study of Gas Cooled Fast Breeder Reactor with Heterogen Percentage of Uranium-Plutonium Carbide based fuel and 300 MWt Power

    NASA Astrophysics Data System (ADS)

    Clief Pattipawaej, Sandro; Su'ud, Zaki

    2017-01-01

    A preliminary design study of GFR with helium gas-cooled has been performed. In this study used natural uranium and plutonium results LWR waste as fuel. Fuel with a small percentage of plutonium are arranged on the inside of the core area, and the fuel with a greater percentage set on the outside of the core area. The configuration of such fuel is deliberately set to increase breeding in this part of the central core and reduce the leakage of neutrons on the outer side of the core, in order to get long-lived reactor with a small reactivity. Configuration of fuel as it is also useful to generate a peak power reactors with relatively low in both the direction of axial or radial. Optimization has been done to fuel fraction 45.0% was found that the reactor may be operating in more than 10 year time with excess reactivity less than 1%.

  6. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel-based) porosity changes can be decomposed into local mineral dissolution and deposition. Moreover, it is found that the microporosity evolutions are differently distributed in the samples after the reactive coreflood experiments. In the last part of the paper, for the case of quasi-uniform dissolution, we combine the tomographic images with numerical calculations of permeability along the core to characterize the relationship between changes in permeability and the fractions of the mineral dissolved and deposited. A consistency is found between the calculated longitudinal permeability changes and the quantified distribution of mineral dissolved and deposited along the sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    NASA Astrophysics Data System (ADS)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel-based) porosity changes can be decomposed into local mineral dissolution and deposition. Moreover, it is found that the microporosity evolutions are differently distributed in the samples after the reactive coreflood experiments. In the last part of the paper, for the case of quasi-uniform dissolution, we combine the tomographic images with numerical calculations of permeability along the core to characterize the relationship between changes in permeability and the fractions of the mineral dissolved and deposited. A consistency is found between the calculated longitudinal permeability changes and the quantified distribution of mineral dissolved and deposited along the sample.

  8. Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.

    2002-12-01

    Reactivity of several oxide materials (OM) with BSCCO powder and oxygen diffusion through OM layer has been tested at temperature ≈840 °C in air. The OM (e.g.: BaZrO 3, SrCO 3, MgO and ZrO 2) showing the low or no reactivity with BSCCO have been mixed (10 wt.%) with precursor powder and used for single-core tapes. Bi-2223/Ag/OM/Ag single-core tapes with oxide barriers made of BaZrO 3, SrCO 3, ZrO 2 and Al 2O 3 have been also prepared by a standard powder-in-tube technique. The used OM in the direct contact with BSCCO influences the electrical properties of Bi-2223 phase differently. These is because the oxides react with BSCCO during the heat treatment and simultaneously affect the 2212→2223 phase transformation, the Bi-2223 grain growth and so also grain connectivity. SrCO 3 powder has been evaluated as the best material from the point of no destructive effect on 2223 phase transport current property. The oxide barrier controls the oxygen diffusion during the tape heat treatment and simultaneously the HTS phase formation kinetics, its purity and content within the superconducting core. For single-core Bi-2223/Ag/OM/Ag tapes, the highest current density was measured for Al 2O 3 due to only slightly reduced oxygen diffusion through the barrier.

  9. The Incredibly Shrinking World of Imagination.

    ERIC Educational Resources Information Center

    Kassem, Lou

    1992-01-01

    Suggests that children's imaginations are not shrinking. Discusses seven ways in which English teachers, librarians, publishers, and authors have used adolescent literature in creative and imaginative ways. (RS)

  10. How Accurately do Leading and Lagging Indictors Predict F-16 Aircraft Availability (AA)

    DTIC Science & Technology

    2016-08-01

    Predictions AU/ACSC/2016 vi PREFACE As the F-16 fleet continues to age, and budgets continue to shrink , United States Air Force (USAF... shrinking budgets, it is imperative for maintenance leaders to use all tools available to them to improve the amount of aircraft available for operations...remarkable considering the overall F-16 fleet shrinking at a steady pace (see table 2 for information). AA is one of the most critical factors that

  11. A Paradox of Town Spatial Development: The Growing Real Estate and Shrinking Town - a Case Study of Hsinchu County, Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Tung; Chuang, Mo-Hsiung; Lin, Wen-Yen

    2017-04-01

    The key factors of many discussions on shrinking towns are focusing at decreasing population and declining industries. Our study, using Hsinchu County as an example, has found that part of the county (Guanxi township) is following a typical and traditional town development pattern, while somewhere else of this county (Zhubei township) shows rapid growth in real estate but with a high vacancy rate. Even though the distance between Guanxi and Zhubei is less than 20 kilometers, the spatial development phenomenon of the two townships are both "shrinking" in the same county but very different in their developing paths. This study used GIS to overlay the maps from field survey and archive data, such as real estate prices of different years, environmental hazards and disaster records, local area power consumptions, and vulnerable population data, to clarify the causes and systems behind the shrinking phenomena of the two townships and to construct a theory of "shrinking town" in Taiwan. The contribution of this study is the findings of the tangling relations of the vulnerability from land-enclosure policy, the system design of local industrial development and urban planning, and structural factors of environmental hazards. Note: This study is part of the results from the Ministry of Science and Technology funding project (MOST 105-2621-M-120-002) KEYWORDS: shrinking town, environmental hazards, urban planning, spatial disasters, real estate development

  12. 19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...

  13. Varicocele

    MedlinePlus

    ... cause testicles to fail to develop normally or shrink. Most varicoceles develop over time. Fortunately, most varicoceles ... tubules. When damaged, as from varicocele, the testicle shrinks and softens. It's not clear what causes the ...

  14. 19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...

  15. 19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...

  16. 19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...

  17. 19 CFR 102.22 - Rules of origin for textile and apparel products of Israel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: bleaching, shrinking, fulling, napping, decating, permanent stiffening, weighting, permanent embossing, or... as showerproofing, superwashing, bleaching, decating, fulling, shrinking, mercerizing, or similar...

  18. Hemorrhoid surgery

    MedlinePlus

    ... a small rubber band around a hemorrhoid to shrink it by blocking blood flow. Stapling a hemorrhoid to block blood flow, causing it to shrink. Using a knife (scalpel) to remove hemorrhoids. You ...

  19. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  20. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    PubMed

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  1. Nasal polyps

    MedlinePlus

    ... get rid of nasal polyps. Nasal steroid sprays shrink polyps. They help clear blocked nasal passages and ... is stopped. Corticosteroid pills or liquid may also shrink polyps, and can reduce swelling and nasal congestion. ...

  2. Patterns in shrinking gels

    NASA Astrophysics Data System (ADS)

    Matsuo, Eriko Sato; Tanaka, Toyoichi

    1992-08-01

    POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.

  3. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  4. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-04-05

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. 18 O and 2 H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  5. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  6. Laser therapy for cancer

    MedlinePlus

    ... a very narrow, focused beam of light to shrink or destroy cancer cells. It can be used ... be used to: Destroy tumors and precancerous growths Shrink tumors that are blocking the stomach, colon, or ...

  7. Effect of shrink wrap packaging for maintaining quality of cucumber during storage.

    PubMed

    Dhall, Rajinder Kumar; Sharma, Sanjeev R; Mahajan, B V C

    2012-08-01

    Immature green cucumber cv. 'Padmini' fruits were individually shrink wrapped with Cryovac D955 (60 guage) film and stored at 12 ± 1 °C, 90-95% RH as well as ambient conditions (29-33 °C, 65-70% RH). At 12 ± 1 °C and 90-95% RH, individual shrink wrapped cucumber recorded minimum Physiological loss in weight (0.66%) as compared with unwrapped fruits (11.11%) at the end of refrigerated storage (15 days). The softening (loss of firmness) was maximum (1304.6-876.6 g force) in unwrapped cucumbers whereas in shrink wrapping, minimum loss in firmness (1304.6-1065.3 g force) was observed after 12 days storage at 12 ± 1 °C and 90-95% RH but greater loss of weight and firmness makes the control cucumbers unmarketable after 9 days of storage. There were no rotting at all both in shrink wrapped and unwrapped cucumbers upto 15 days of storage at 12 ± 1 °C and 90-95% RH. After 15 days storage of shrink wrapped cucumbers at 12 ± 1 °C and 90-95% RH, there was loss of green colour and development of yellowness and decay. The sensory attributes score was highest in shrink wrapped cucumbers as compared to unwrapped cucumbers at end of both storage conditions. Thus it can be concluded that individual shrink wrapped cucumber can be stored well upto 15 days at 12 ± 1 °C and 90-95% RH and for 5 days at ambient conditions (29-33 °C, 65-70% RH) with maximum retention of green colour, no spoilage, minimum weight and firmness loss and very good sensory quality attributes whereas, unwrapped fruits can be stored well upto 9 days at 12 ± 1 °C and 90-95% RH and for 2 days at ambient conditions with maximum retention of physico-chemical quality attributes.

  8. Factors affecting body weight loss during commercial long haul transport of cattle in North America.

    PubMed

    González, L A; Schwartzkopf-Genswein, K S; Bryan, M; Silasi, R; Brown, F

    2012-10-01

    The objective of the present study was to identify and quantify several factors affecting shrink in cattle during commercial long-haul transport (≥400 km; n = 6,152 journeys). Surveys were designed and delivered to transport carriers to collect relevant information regarding the characteristics of animals, time of loading, origin and destination, and loaded weight before and after transport. In contrast to fat cattle, feeder cattle exhibited greater shrink (4.9 vs. 7.9 ± 0.2% of BW, respectively; P < 0.01), and experienced longer total transport durations (12.4 vs. 14.9 ± 0.99, respectively; P < 0.01) due to border crossing protocols which require mandatory animal inspection. Shrink was greater (P < 0.001) for feeder cattle loaded at ranches/farms and feed yards compared with those loaded at auction markets. Cattle loaded during the afternoon and evening shrank more than those loaded during the night and morning (P < 0.05). Shrinkage was less in cattle transported by truck drivers having 6 or more years of experience hauling livestock compared with those with 5 yr or less (P < 0.05). Shrink increased with both midpoint ambient temperature (% of BW/°C; P < 0.001) and time on truck (% of BW/h; P < 0.001). Temperature and time on truck had a multiplicative effect on each other because shrink increased most rapidly in cattle transported for both longer durations and at higher ambient temperatures (P < 0.001). The rate of shrink over time (% of BW/h) was greatest in cull cattle, intermediate in calves and feeder cattle, and slowest in fat cattle (P < 0.05) but such differences disappeared when the effects of place of origin, loading time, and experience of truck drivers were included in the model. Cull cattle, calves and feeder cattle appear to be more affected by transport compared with fat cattle going to slaughter because of greater shrink. Several factors should be considered when developing guidelines to reduce cattle transport stress and shrink including type of cattle, ambient temperature, transport duration, driving quality, and time and origin of loading.

  9. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggestsmore » the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.« less

  10. Computational Cosmology at the Bleeding Edge

    NASA Astrophysics Data System (ADS)

    Habib, Salman

    2013-04-01

    Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Shuai; Wang, Jian

    In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes.more » The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.« less

  12. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    PubMed

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, M. H.; Kim, S. J.; Yoo, J.

    The major roles of a prototype SFR are to provide irradiation test capability for the fuel and structure materials, and to obtain operational experiences of systems. Due to a compromise between the irradiation capability and construction costs, the power level should be properly determined. In this paper, a trade-off study on the power level of the prototype SFR was performed from a neutronics viewpoint. To select candidate cores, the parametric study of pin diameters was estimated using 20 wt.% uranium fuel. The candidate cores of different power levels, 125 MWt, 250 MWt, 400 MWt, and 500 MWt, were compared withmore » the 1500 MWt reference core. The resulting core performance and economic efficiency indices became insensitive to the power at about 400-500 MWt and sharply deteriorated at about 125-250 MWt with decreasing core sizes. Fuel management scheme, TRU core performance comparing with uranium core, and sodium void reactivity were also evaluated with increasing power levels. It is found that increasing the number of batches showed higher burnup performance and economic efficiency. However, increasing the cycle length showed the trends in lower economic efficiency. Irradiation performance of TRU and enriched TRU cores was improved about 20 % and 50 %, respectively. The maximum sodium void reactivity of 5.2$ was confirmed less than the design limit of 7.5$. As a result, the power capacity of the prototype SFR should not be less than 250 MWt and would be appropriate at {approx} 500 MWt considering the performance and economic efficiency. (authors)« less

  14. Hormone therapy for prostate cancer

    MedlinePlus

    ... be used: Before radiation or surgery to help shrink tumors Along with radiation therapy for cancer that ... of most androgens in the body. This also shrinks or stops prostate cancer from growing. While effective, ...

  15. Fibroid Tumors in Women: A Hidden Epidemic?

    MedlinePlus

    ... that lower progesterone levels could cause fibroids to shrink. That could help relieve pain and other symptoms ... estrogen alone. In theory, such a treatment could shrink fibroids but spare women from hot flashes and ...

  16. Skin Diseases: NIH Research to Results

    MedlinePlus

    ... with immune system cells found in tumors could shrink skin cancer tumors and possibly prolong life, too. ... altered in the lab could cause tumors to shrink in a small number of patients. More studies ...

  17. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees.

    PubMed

    Mai, Uyen; Mirarab, Siavash

    2018-05-08

    Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .

  18. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  19. 50 CFR 229.32 - Atlantic large whale take reduction plan regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...

  20. 50 CFR 229.32 - Atlantic large whale take reduction plan regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...

  1. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  2. Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO 2 core-flood experiments

    DOE PAGES

    Smith, Megan M.; Hao, Y.; Carroll, S. A.

    2017-01-02

    Here, beneficial pore space and permeability enhancements are likely to occur as CO 2-charged fluids partially dissolve carbonate minerals in carbonate reservoir formations used for geologic CO 2 storage. The ability to forecast the extent and impact of changes in porosity and permeability will aid geologic CO 2 storage operations and lower uncertainty in estimates of long-term storage capacity. Our work is directed toward developing calibrated reactive transport models that more accurately capture the chemical impacts of CO 2-fluid-rock interactions and their effects on porosity and permeability by matching pressure, fluid chemistry, and dissolution features that developed as a resultmore » of reaction with CO 2-acidified brines at representative reservoir conditions. We present new results from experiments conducted on seven core samples from the Arbuckle Dolostone (near Wellington, Kansas, USA, recovered as part of the South-Central Kansas CO 2 Demonstration). Cores were obtained from both target reservoir and lower-permeability baffle zones, and together these samples span over 3–4 orders of magnitude of permeability according to downhole measurements. Core samples were nondestructively imaged by X-ray computed tomography and the resulting characterization data were mapped onto a continuum domain to further develop a reactive transport model for a range of mineral and physical heterogeneity. We combine these new results with those from previous experimental studies to more fully constrain the governing equations used in reactive transport models to better estimate the transition of enhanced oil recovery operations to long-term geology CO 2 storage. Calcite and dolomite kinetic rate constants (mol m –2 s –1) derived by fitting the results from core-flood experiments range from k calcite,25C = 10 –6.8 to 10 –4.6, and k dolomite,25C = 10 –7.5 to 10 –5.3. The power law-based porosity-permeability relationship is sensitive to the overall pore space heterogeneity of each core. Stable dissolution fronts observed in the more homogeneous dolostones could be accurately simulated using an exponential value of n = 3. Furthermore, unstable dissolution fronts consisting of preferential flowpaths could be simulated using an exponential value of n = 3 for heterogeneous dolostones, and larger values ( n = 6–8) for heterogeneous limestones.« less

  3. Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO 2 core-flood experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Megan M.; Hao, Y.; Carroll, S. A.

    Here, beneficial pore space and permeability enhancements are likely to occur as CO 2-charged fluids partially dissolve carbonate minerals in carbonate reservoir formations used for geologic CO 2 storage. The ability to forecast the extent and impact of changes in porosity and permeability will aid geologic CO 2 storage operations and lower uncertainty in estimates of long-term storage capacity. Our work is directed toward developing calibrated reactive transport models that more accurately capture the chemical impacts of CO 2-fluid-rock interactions and their effects on porosity and permeability by matching pressure, fluid chemistry, and dissolution features that developed as a resultmore » of reaction with CO 2-acidified brines at representative reservoir conditions. We present new results from experiments conducted on seven core samples from the Arbuckle Dolostone (near Wellington, Kansas, USA, recovered as part of the South-Central Kansas CO 2 Demonstration). Cores were obtained from both target reservoir and lower-permeability baffle zones, and together these samples span over 3–4 orders of magnitude of permeability according to downhole measurements. Core samples were nondestructively imaged by X-ray computed tomography and the resulting characterization data were mapped onto a continuum domain to further develop a reactive transport model for a range of mineral and physical heterogeneity. We combine these new results with those from previous experimental studies to more fully constrain the governing equations used in reactive transport models to better estimate the transition of enhanced oil recovery operations to long-term geology CO 2 storage. Calcite and dolomite kinetic rate constants (mol m –2 s –1) derived by fitting the results from core-flood experiments range from k calcite,25C = 10 –6.8 to 10 –4.6, and k dolomite,25C = 10 –7.5 to 10 –5.3. The power law-based porosity-permeability relationship is sensitive to the overall pore space heterogeneity of each core. Stable dissolution fronts observed in the more homogeneous dolostones could be accurately simulated using an exponential value of n = 3. Furthermore, unstable dissolution fronts consisting of preferential flowpaths could be simulated using an exponential value of n = 3 for heterogeneous dolostones, and larger values ( n = 6–8) for heterogeneous limestones.« less

  4. Verification of Three Dimensional Triangular Prismatic Discrete Ordinates Transport Code ENSEMBLE-TRIZ by Comparison with Monte Carlo Code GMVP

    NASA Astrophysics Data System (ADS)

    Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi

    2014-06-01

    This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.

  5. Sustainability for Shrinking Cities

    EPA Science Inventory

    Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing...

  6. Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist

    PubMed Central

    Kito, Tomonori; Sadato, Norihiro; Passingham, Richard E; Naito, Eiichi

    2005-01-01

    The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments. PMID:16336049

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubblefield, M.A.; Yang, C.; Lea, R.H.

    The use of heat-activated thermal couplings is a quick and cost-effective joining method for composite-to-composite materials. In this study, a prepreg laminate which contains thermoset resins and fiberglass reinforcements is wrapped around the ends of components which are to be joined. A shrink tape, made of thermoplastic material, is placed over the prepreg laminate. When curing the shrink tape and the prepreg laminate, the shrink tape shrinks and compresses the prepreg to obtain good adhesion and the required mechanical properties. The mechanical strength of the heat coupling joint in bending increased by 29% over the currently used butt-weld method. Tomore » optimize the curing process, a finite element model was also developed to show the temperature distribution of the heat coupling joint during the curing process. Based on the tested prepreg material properties and model, the finite analysis temperature distribution differed less than 10% from that of the experimental data.« less

  8. Observations of simultaneous coronal loop shrinkage and expansion during the decay phase of a solar flare

    NASA Astrophysics Data System (ADS)

    Khan, J. I.; Fletcher, L.; Nitta, N. V.

    2006-07-01

    We report what we believe are the first direct and unambiguous observations of simultaneous coronal magnetic flux loop shrinkage and expansion during the decay phase of a solar flare. The retracting and expanding loops were observed nearly face-on (i.e., with the loop major axis approximately orthogonal to the line of sight) in emission in imaging data from the Yohkoh Soft X-ray Telescope (SXT). The retracting loop is observed to shrink with a speed of 118 ± 66 km s-1. The faint outward moving loop-like feature occurred ~200´´ above the shrinking loop during the time of the shrinking loop. We estimate the speed of the outward moving loop was ~129 ± 74 km s-1. We interpret the shrinking loop and simultaneous outward moving loop as direct evidence for reconnected magnetic field lines during a flare.

  9. Selected Reaction Monitoring to Differentiate and Relatively Quantitate Isomers of Sulfated and Unsulfated Core 1 O-Glycans from Salivary MUC7 Protein in Rheumatoid Arthritis*

    PubMed Central

    Flowers, Sarah A.; Ali, Liaqat; Lane, Catherine S.; Olin, Magnus; Karlsson, Niclas G.

    2013-01-01

    Rheumatoid arthritis is a common and debilitating systemic inflammatory condition affecting up to 1% of the world's population. This study aimed to investigate the immunological significance of O-glycans in chronic arthritis at a local and systemic level. O-Glycans released from synovial glycoproteins during acute and chronic arthritic conditions were compared and immune-reactive glycans identified. The sulfated core 1 O-glycan (Galβ1–3GalNAcol) was immune reactive, showing a different isomeric profile in the two conditions. From acute reactive arthritis, three isomers could be sequenced, but in patients with chronic rheumatoid arthritis, only a single 3-Gal sulfate-linked isomer could be identified. The systemic significance of this glycan epitope was investigated using the salivary mucin MUC7 in patients with rheumatoid arthritis and normal controls. To analyze this low abundance glycan, a selected reaction monitoring (SRM) method was developed to differentiate and relatively quantitate the core 1 O-glycan and the sulfated core 1 O-glycan Gal- and GalNAc-linked isomers. The acquisition of highly sensitive full scan linear ion trap MS/MS spectra in addition to quantitative SRM data allowed the 3- and 6-linked Gal isomers to be differentiated. The method was used to relatively quantitate the core 1 glycans from MUC7 to identify any systemic changes in this carbohydrate epitope. A statistically significant increase in sulfation was identified in salivary MUC7 from rheumatoid arthritis patients. This suggests a potential role for this epitope in chronic inflammation. This study was able to develop an SRM approach to specifically identify and relatively quantitate sulfated core 1 isomers and the unsulfated structure. The expansion of this method may afford an avenue for the high throughput investigation of O-glycans. PMID:23457413

  10. Expanding the scope of psychiatric nursing practice: devaluing the essence of psychiatric nursing?

    PubMed

    Hogan, Beverly Kay

    2012-09-01

    Psychiatric Nurse Practitioners are quickly becoming sought after employees, especially in public mental health systems where a shrinking number of psychiatrists necessitate alternate access to prescribers. In addition, new guidelines necessitate greater attention to the follow up and monitoring of the medical problems of psychiatric patients. These events are occurring in the midst of declining reimbursement and rising litigation concerns in psychiatry. At the same time there is an increased focus on a recovery orientation to psychiatry alongside the primacy of psychotropic medicine as the most cost effective treatment, which can become competing aims for practitioners. It is important for psychiatric nurses and psychiatric nurse practitioners to consider how these opportunities might also have a negative impact on the core foundation of psychiatric nursing.

  11. Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light.

    PubMed

    Beravat, Ramin; Wong, Gordon K L; Frosz, Michael H; Xi, Xiao Ming; Russell, Philip St J

    2016-11-01

    A century ago, Einstein proposed that gravitational forces were the result of the curvature of space-time and predicted that light rays would deflect when passing a massive celestial object. We report that twisting the periodically structured "space" within a coreless photonic crystal fiber creates a helical channel where guided modes can form despite the absence of any discernible core structure. Using a Hamiltonian optics analysis, we show that the light rays follow closed spiral or oscillatory paths within the helical channel, in close analogy with the geodesics of motion in a two-dimensional gravitational field. The mode diameter shrinks, and its refractive index rises, as the twist rate increases. The birefringence, orbital angular momentum, and dispersion of these unusual modes are explored.

  12. Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response.

    PubMed

    Kühn, Simone; Gallinat, Jürgen

    2011-04-01

    The present quantitative meta-analysis set out to test whether cue-reactivity responses in humans differ across drugs of abuse and whether these responses constitute the biological basis of drug craving as a core psychopathology of addiction. By means of activation likelihood estimation, we investigated the concurrence of brain regions activated by cue-induced craving paradigms across studies on nicotine, alcohol and cocaine addicts. Furthermore, we analysed the concurrence of brain regions positively correlated with self-reported craving in nicotine and alcohol studies. We found direct overlap between nicotine, alcohol and cocaine cue reactivity in the ventral striatum. In addition, regions of close proximity were observed in the anterior cingulate cortex (ACC; nicotine and cocaine) and amygdala (alcohol, nicotine and cocaine). Brain regions of concurrence in drug cue-reactivity paradigms that overlapped with brain regions of concurrence in self-reported craving correlations were found in the ACC, ventral striatum and right pallidum (for alcohol). This first quantitative meta-analysis on drug cue reactivity identifies brain regions underlying nicotine, alcohol and cocaine dependency, i.e. the ventral striatum. The ACC, right pallidum and ventral striatum were related to drug cue reactivity as well as self-reported craving, suggesting that this set of brain regions constitutes the core circuit of drug craving in nicotine and alcohol addiction. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  14. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  15. A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.

    2017-12-01

    Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.

  16. A Model-based Approach to Reactive Self-Configuring Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Nayak, P. Pandurang

    1996-01-01

    This paper describes Livingstone, an implemented kernel for a self-reconfiguring autonomous system, that is reactive and uses component-based declarative models. The paper presents a formal characterization of the representation formalism used in Livingstone, and reports on our experience with the implementation in a variety of domains. Livingstone's representation formalism achieves broad coverage of hybrid software/hardware systems by coupling the concurrent transition system models underlying concurrent reactive languages with the discrete qualitative representations developed in model-based reasoning. We achieve a reactive system that performs significant deductions in the sense/response loop by drawing on our past experience at building fast prepositional conflict-based algorithms for model-based diagnosis, and by framing a model-based configuration manager as a prepositional, conflict-based feedback controller that generates focused, optimal responses. Livingstone automates all these tasks using a single model and a single core deductive engine, thus making significant progress towards achieving a central goal of model-based reasoning. Livingstone, together with the HSTS planning and scheduling engine and the RAPS executive, has been selected as the core autonomy architecture for Deep Space One, the first spacecraft for NASA's New Millennium program.

  17. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less

  18. 77 FR 3019 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ..., shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the applicable percentage... national best offer, as appropriate, shrinks to the greater of: (a) 4 percentage points, or, (b) one...

  19. Rigidity of complete generic shrinking Ricci solitons

    NASA Astrophysics Data System (ADS)

    Chu, Yawei; Zhou, Jundong; Wang, Xue

    2018-01-01

    Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.

  20. Robust shrinking ellipsoid model predictive control for linear parameter varying system

    PubMed Central

    Yan, Yan

    2017-01-01

    In this paper, a new off-line model predictive control strategy is presented for a kind of linear parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is constructed by solving linear matrix inequality. By splitting the objective function into two parts, the proposed strategy moves most computations off-line. The on-line computation is only calculating the current control to assure the system shrinking into the smaller ellipsoid. With the proposed formulation, the stability of the closed system is proved, followed with two numerical examples to demonstrate the proposed method’s effectiveness in the end. PMID:28575028

  1. Shrinking cities examined from a shrinking scale – the impact ...

    EPA Pesticide Factsheets

    Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. Shrinking cities face decreased income, reduced property values, and decreased tax revenue. Fewer people per unit area creates inefficiencies and higher costs for infrastructure maintenance and the provision of public amenities. However, population losses and economic distress are not equal in all neighborhoods, and in fact are quite heterogeneously distributed across the landscape. Broader statements about the trajectory of a shrinking city may mask underlying differences in economic, cultural, and environmental impacts as well as the ability of some neighborhoods to be resilient and adaptive to economic changes as well as climate change and other environmental stressors. This paper examines the recent impact of population loss in neighborhoods in the Río Piedras watershed in San Juan, Puerto Rico, on the provision of ecosystem services, material and energy flows, and ecological impacts, using public data and data collected previously in two household surveys. Using scenarios, we estimate future population changes and their potential positive and negative impacts on the environment and human well-being in these neighborhoods. This paper expands on prior research on shrinking cities by examining the impacts of population loss on urban social-ecological systems at the household and neighborhood scales. The purpose

  2. Fabrication of hollow boron-doped diamond nanostructure via electrochemical corrosion of a tungsten oxide template.

    PubMed

    Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon

    2018-08-10

    In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

  3. An Equation Governing Ultralow-Velocity Zones: Implications for Holes in the ULVZ, Lateral Chemical Reactions at the Core-Mantle Boundary, and Damping of Heat Flux Variations in the Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Matsui, H.

    2017-12-01

    Ultralow-velocity zones (ULVZ) are increasingly illuminated by seismology, revealing surprising diversity in size, shape, and physical characteristics. The only viable hypotheses are that ULVZs are a compositionally distinct FeO-enriched dense material, which could have formed by fractional crystallization of a basal magma ocean, segregation of subducted banded iron formations, precipitation of solids from the outer core, partial melting and segregation of iron-rich melts from subducted basalts, or most likely a combination of many different processes. But many questions remain: Are ULVZ partially molten in some places, and not in others? Are ULVZ simply the thicker portions of an otherwise global thin layer, covering the entire CMB and thus blocking or moderating chemical interactions between the core and overlying mantle? Is such a layer inter-connected and able to conduct electrical currents that allow electro-magnetic coupling of core and mantle angular momentum? Are they being eroded and shrinking in size due to viscous entrainment, or is more material being added to ULVZ over time? Here we derive an advection-diffusion-like equation that governs the dynamical evolution of a chemically distinct ULVZ. Analysis of this equation shows that ULVZ should become readily swept aside by viscous mantle flows at the CMB, exposing "ordinary mantle" to the top of the core, thus inducing chemical heterogeneity that drives lateral CMB chemical reactions. These reactions are correlated with heat flux, thus maintaining large-scale pressure variations atop the core that induce cyclone-like flows centered around ULVZ and ponded subducted slabs. We suggest that turbulent diffusion across adjacent cyclone streams inside a stratified region atop the core readily accommodates lateral transport and re-distribution of components such as O and Si, in addition to heat. Our model implies that the deeper core is at least partly shielded from the influence of strong heat flux variations at the CMB which might otherwise cause problems for producing a geodynamo.

  4. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Morrison, Stan; Morris, Sarah

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  5. Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes.

    PubMed

    Kim, Jalee; Shin, Bongki; Kim, Hyunjeong; Lee, Junhyung; Kang, Joongoo; Yanagisawa, Sachiko; Ogura, Takashi; Masuda, Hideki; Ozawa, Tomohiro; Cho, Jaeheung

    2015-07-06

    A set of nickel(III) peroxo complexes bearing tetraazamacrocyclic ligands, [Ni(III)(TBDAP)(O2)](+) (TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane) and [Ni(III)(CHDAP)(O2)](+) (CHDAP = N,N'-dicyclohexyl-2,11-diaza[3.3](2,6)pyridinophane), were prepared by reacting [Ni(II)(TBDAP)(NO3)(H2O)](+) and [Ni(II)(CHDAP)(NO3)](+), respectively, with H2O2 in the presence of triethylamine. The mononuclear nickel(III) peroxo complexes were fully characterized by various physicochemical methods, such as UV-vis, electrospray ionization mass spectrometry, resonance Raman, electron paramagnetic resonance, and X-ray analysis. The spectroscopic and structural characterization clearly shows that the NiO2 cores are almost identical where the peroxo ligand is bound in a side-on fashion. However, the different steric properties of the supporting ligands were confirmed by X-ray crystallography, where the CHDAP ligand gives enough space around the Ni core compared to the TBDAP ligand. The nickel(III) peroxo complexes showed reactivity in the oxidation of aldehydes. In the aldehyde deformylation reaction, the nucleophilic reactivity of the nickel(III) peroxo complexes was highly dependent on the steric properties of the macrocyclic ligands, with a reactivity order of [Ni(III)(TBDAP)(O2)](+) < [Ni(III)(CHDAP)(O2)](+). This result provides fundamental insight into the mechanism of the structure (steric)-reactivity relationship of metal peroxo intermediates.

  6. Detection of antibodies to hepatitis B core antigen using the Abbott ARCHITECT anti-HBc assay: analysis of borderline reactive sera.

    PubMed

    Ollier, Laurence; Laffont, Catherine; Kechkekian, Aurore; Doglio, Alain; Giordanengo, Valérie

    2008-12-01

    Routine use of the automated chemiluminescent microparticle immunoassay Abbott ARCHITECT anti-HBc for diagnosis of hepatitis B is limited in case of borderline reactive sera with low signal close to the cut-off index. In order to determine the significance of anti-HBc detection when borderline reactivity occurs using the ARCHITECT anti-HBc assay, a comparative study was designed. 3540 serum samples collected over a 2-month period in the hospital of Nice were examined for markers of HBV infection (HBsAg, anti-HBs and anti-HBc). One hundred seven samples with sufficient volume and with borderline reactivity by the ARCHITECT assay were tested by two other anti-HBc assays, a microparticle enzyme immunoassay (MEIA, AxSYM Core, Abbott Laboratories, IL, USA) and an enzyme linked fluorescent assay (ELFA, VIDAS Anti-HBc Total II, bioMérieux, Lyon, France). Only 46 samples were confirmed by the AxSYM and the VIDAS assays. Additional serological information linked to patient history showed that the remaining samples (61) were false positives (11), had low titer of anti-HBc antibodies (13), or were inconclusive (37). This comparative study highlighted the existence of a grey zone around the cut-off index. Confirmative results through a different immunoassay are needed to confirm the diagnosis of HBV on borderline reactive sera using the ARCHITECT anti-HBc assay.

  7. Hand tool permits shrink sizing of assembled tubing

    NASA Technical Reports Server (NTRS)

    Millett, A.; Odor, M.

    1966-01-01

    Portable tool sizes tubing ends without disassembling the tubing installation. The shrink sizing tool is clamped to the tubing and operated by a ratchet wrench. A gear train forces the tubing end against an appropriate die or mandrel to effect the sizing.

  8. 78 FR 14269 - Folding Gift Boxes From the People's Republic of China: Final Results of the Second Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... generally packaged in shrink-wrap, cellophane, or other packaging materials, in single or multi-box packs... packaged in shrink-wrap, cellophane, other resin- based packaging films, or paperboard. Imports of the...

  9. 75 FR 59305 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing of a Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ..., as appropriate, shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the..., shrinks to the greater of: (a) 4 percentage points, or, (b) one-quarter the applicable percentage...

  10. Ecology for the shrinking city (JA)

    EPA Science Inventory

    This article brings together the concepts of shrinking cities—the hundreds of cities worldwide experiencing long-term population loss—and ecology for the city. Ecology for the city is the application of a social–ecological understanding to shaping urban form and function along su...

  11. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frau, P.; Girart, J. M.; Padovani, M.

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starlessmore » cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A {sub V} to N{sub H{sub 2}} factor of (1.27 {+-} 0.12) Multiplication-Sign 10{sup -21} mag cm{sup 2} and a background visual extinction of {approx}6.7 mag possibly arising from the cloud material. We derived an average core diameter of {approx}0.08 pc, density of {approx}10{sup 5} cm{sup -3}, and mass of {approx}1.7 M {sub Sun }. Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the 'diffuse' (e.g., the 'ubiquitous' CO, C{sub 2}H, and CS), 'oxo-sulfurated' (e.g., SO and CH{sub 3}OH), and 'deuterated' (e.g., N{sub 2}H{sup +}, CN, and HCN) starless core groups. The chemically defined core groups seem to be related to different evolutionary stages: 'diffuse' cores present the cloud chemistry and are less dense, while 'deuterated' cores are the densest and present a chemistry typical of evolved dense cores. 'Oxo-sulfurated' cores might be in a transitional stage exhibiting intermediate properties and a very characteristic chemistry.« less

  13. Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.

    The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less

  14. Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends

    DOE PAGES

    Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.; ...

    2017-01-18

    The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less

  15. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    NASA Astrophysics Data System (ADS)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media, and the X-curve, commonly used to depict the relative permeability of fractures. Relative permeability measurements from the cores containing a higher degree of fracturing showed a better fit to X-curve, while data from the minimally fractured cores were better described by fitting to the Corey-curve.

  16. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  17. Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Heglund, Patricia J.; Rover, Jennifer R.; Koch, Joshua C.; Bertram, Mark R.

    2015-01-01

    Losses in lake area have been observed for several Arctic and Subarctic regions in recent decades, with unknown consequences for lake ecosystems. These reductions are primarily attributed to two climate-sensitive mechanisms, both of which may also cause changes in water chemistry: (i) increased imbalance of evaporation relative to inflow, whereby increased evaporation and decreased inflow act to concentrate solutes into smaller volumes; and (ii) accelerated permafrost degradation, which enhances sublacustrine drainage while simultaneously leaching previously frozen solutes into lakes. We documented changes in nutrients [total nitrogen (TN), total phosphorus (TP)] and ions (calcium, chloride, magnesium, sodium) over a 25 year interval in shrinking, stable, and expanding Subarctic lakes of the Yukon Flats, Alaska. Concentrations of all six solutes increased in shrinking lakes from 1985–1989 to 2010–2012, while simultaneously undergoing little change in stable or expanding lakes. This created a present-day pattern, much weaker or absent in the 1980s, in which shrinking lakes had higher solute concentrations than their stable or expanding counterparts. An imbalanced evaporation-to-inflow ratio (E/I) was the most likely mechanism behind such changes; all four ions, which behave semiconservatively and are prone to evapoconcentration, increased in shrinking lakes and, along with TN and TP, were positively related to isotopically derived E/I estimates. Moreover, the most conservative ion, chloride, increased >500% in shrinking lakes. Conversely, only TP concentration was related to probability of permafrost presence, being highest at intermediate probabilities. Overall, the substantial increases of nutrients (TN >200%, TP >100%) and ions (>100%) may shift shrinking lakes towards overly eutrophic or saline states, with potentially severe consequences for ecosystems of northern lakes.

  18. Histomorphometrical analysis following augmentation of infected extraction sites exhibiting severe bone loss and primarily closed by intrasocket reactive soft tissue.

    PubMed

    Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph

    2012-06-01

    Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.

  19. Neutronics and Transient Calculations for the Conversion of the Transient Reactor Rest Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.

    2015-01-01

    The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less

  20. 75 FR 6748 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... on a first-come/first-serve basis. Should available cabinet inventory shrink to 40 cabinets or less... be limited to a maximum power level of 5kW. Should available cabinet inventory shrink to zero, the...

  1. 76 FR 68521 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... Managed Fund Shares of TrimTabs Float Shrink ETF under NYSE Arca Equities Rule 8.600; Correction November... Rule Change to List and Trade Managed Fund Shares of TrimTabs Float Shrink ETF under NYSE Arca Equities...

  2. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.

    PubMed

    Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai

    2004-10-01

    Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.

  3. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  4. Shrink-induced single-cell plastic microwell array.

    PubMed

    Lew, Valerie; Nguyen, Diep; Khine, Michelle

    2011-12-01

    The ability to interrogate and track single cells over time in a high-throughput format would provide critical information for fundamental biological understanding of processes and for various applications, including drug screening and toxicology. We have developed an ultrarapid and simple method to create single-cell wells of controllable diameter and depth with commodity shrink-wrap film and tape. Using a programmable CO(2) laser, we cut hole arrays into the tape. The tape then serves as a shadow mask to selectively etch wells into commodity shrink-wrap film by O(2) plasma. When the shrink-wrap film retracts upon briefly heating, high-aspect plastic microwell arrays with diameters down to 20 μm are readily achieved. We calibrated the loading procedure with fluorescent microbeads. Finally, we demonstrate the utility of the wells by loading fluorescently labeled single human embryonic stem cells into the wells. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  5. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.

    PubMed

    Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M

    2015-02-01

    The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.

  6. Fabrication of Covalently Crosslinked and Amine-Reactive Microcapsules by Reactive Layer-by-Layer Assembly of Azlactone-Containing Polymer Multilayers on Sacrificial Microparticle Templates

    PubMed Central

    Saurer, Eric M.; Flessner, Ryan M.; Buck, Maren E.; Lynn, David M.

    2011-01-01

    We report on the fabrication of covalently crosslinked and amine-reactive hollow microcapsules using ‘reactive’ layer-by-layer assembly to deposit thin polymer films on sacrificial microparticle templates. Our approach is based on the alternating deposition of layers of a synthetic polyamine and a polymer containing reactive azlactone functionality. Multilayered films composed of branched poly(ethylene imine) (BPEI) and poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) were fabricated layer-by-layer on the surfaces of calcium carbonate and glass microparticle templates. After fabrication, these films contained residual azlactone functionality that was accessible for reaction with amine-containing molecules. Dissolution of the calcium carbonate or glass cores using aqueous ethylenediamine tetraacetic acid (EDTA) or hydrofluoric acid (HF), respectively, led to the formation of hollow polymer microcapsules. These microcapsules were robust enough to encapsulate and retain a model macromolecule (FITC-dextran) and were stable for at least 22 hours in high ionic strength environments, in low and high pH solutions, and in several common organic solvents. Significant differences in the behaviors of capsules fabricated on CaCO3 and glass cores were observed and characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Whereas capsules fabricated on CaCO3 templates collapsed upon drying, capsules fabricated on glass templates remained rigid and spherical. Characterization using EDS suggested that this latter behavior results, at least in part, from the presence of insoluble metal fluoride salts that are trapped or precipitate within the walls of capsules after etching of the glass cores using HF. Our results demonstrate that the assembly of BPEI/PVDMA films on sacrificial templates can be used to fabricate reactive microcapsules of potential use in a wide range of fields, including catalysis, drug and gene delivery, imaging, and biomedical research. PMID:21383867

  7. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    NASA Astrophysics Data System (ADS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  8. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randolph, B.

    Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be describedmore » along with some considerations for future composite liners requirements in the HEDP Program.« less

  10. Behaviour of Rotating Bose Einstein Condensates Under Shrinking

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhou, Qi

    2005-01-01

    When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].

  11. Shrink-swell behavior of soil across a vertisol catena

    USDA-ARS?s Scientific Manuscript database

    Shrinking and swelling of soils and the associated formation and closing of cracks can vary spatially within the smallest hydrologic unit subdivision utilized in surface hydrology models. Usually in the application of surface hydrology models, cracking is not considered to vary within a hydrologic u...

  12. 75 FR 6426 - Self-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing of Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... on a first-come/first-serve basis. Should available cabinet inventory shrink to 40 cabinets or less... be limited to a maximum power level of 5kW. Should available cabinet inventory shrink to zero, the...

  13. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    DOE PAGES

    McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-11-06

    In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less

  14. Self-expanding/shrinking structures by 4D printing

    NASA Astrophysics Data System (ADS)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2016-10-01

    The aim of this paper is to create adaptive structures capable of self-expanding and self-shrinking by means of four-dimensional printing technology. An actuator unit is designed and fabricated directly by printing fibers of shape memory polymers (SMPs) in flexible beams with different arrangements. Experiments are conducted to determine thermo-mechanical material properties of the fabricated part revealing that the printing process introduced a strong anisotropy into the printed parts. The feasibility of the actuator unit with self-expanding and self-shrinking features is demonstrated experimentally. A phenomenological constitutive model together with analytical closed-form solutions are developed to replicate thermo-mechanical behaviors of SMPs. Governing equations of equilibrium are developed for printed structures based on the non-linear Green-Lagrange strain tensor and solved implementing a finite element method along with an iterative incremental Newton-Raphson scheme. The material-structural model is then applied to digitally design and print SMP adaptive lattices in planar and tubular shapes comprising a periodic arrangement of SMP actuator units that expand and then recover their original shape automatically. Numerical and experimental results reveal that the proposed planar lattice as meta-materials can be employed for plane actuators with self-expanding/shrinking features or as structural switches providing two different dynamic characteristics. It is also shown that the proposed tubular lattice with a self-expanding/shrinking mechanism can serve as tubular stents and grippers for bio-medical or piping applications.

  15. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  16. Relaxation mechanisms, structure and properties of semi-coherent interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-10-15

    In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes.more » The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.« less

  17. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2015-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10-7 to 10-9 m s-1, n = 14). Results at one of these sites (1.1 × 10-10 to 3.5 × 10-9 m s-1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, XF; Zhao, X; Huang, K

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrodemore » potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.« less

  19. Centennial changes in North Pacific anoxia linked to tropical trade winds

    USGS Publications Warehouse

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  20. The social and ecological transitions of shrinking cities -- San Juan, Puerto Rico as a case study

    EPA Science Inventory

    Urban populations continue to increase globally and cities have become the dominant human habitat. However, the growth of cities is not universal. One in six cities globally is losing population. Shrinking cities share common attributes such as decreased household income, reduced...

  1. 75 FR 6746 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing of Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... shrink to 40 cabinets or less, the Exchange will limit new cabinet orders to a maximum of 4 cabinets each... inventory shrink to zero, the Exchange will place firms seeking services on a waiting list based on that...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  3. Implementation of New Reactivity Measurement System and New Reactor Noise Analysis Equipment in a VVER-440 Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor

    2010-10-01

    The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.

  4. Current status of SPINNORs designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki

    2010-06-22

    This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less

  5. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  6. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

    PubMed

    Kim, Hong-Seok; Ahn, Jun-Young; Kim, Cheolyong; Lee, Seockheon; Hwang, Inseong

    2014-10-01

    Effects of anions (NO3(-), HCO3(-), Cl(-), SO4(2-)) and humic acid on the reactivity and core/shell chemistries of polyacrylic acid-coated nanoscale zero-valent iron (PAA-NZVI) and inorganically modified NZVI (INORG-NZVI) particles were investigated. The reactivity tests under various ion concentrations (0.2-30mN) revealed the existence of a favorable molar ratio of anion/NZVI that increased the reactivity of NZVI particles. The presence of a relatively small amount of humic acid (0.5mgL(-1)) substantially decreased the INORG-NZVI reactivity by 76%, whereas the reactivity of PAA-NZVI decreased only by 12%. The XRD and TEM results supported the role of the PAA coating of PAA-NZVI in impeding the oxidation of the Fe(0) core by groundwater solutes. This protective role provided by the organic coating also resulted in a 2.3-fold increase in the trichloroethylene (TCE) reduction capacity of PAA-NZVI compared to that of INORG-NZVI in the presence of anions/humic acid. Ethylene and ethane were simultaneously produced as the major reduction products of TCE in both NZVI systems, suggesting that a hydrodechlorination occurred without the aid of metallic catalysts. The PAA coating, originally designed to improve the mobility of NZVI, enhanced TCE degradation performances of NZVI in the presence of anions and humic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Method for producing chemical energy

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  8. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  9. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  10. A stability analysis on forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Bakar, Shahirah Abu; Arifin, Norihan Md; Ali, Fadzilah Md; Bachok, Norfifah; Nazar, Roslinda

    2017-08-01

    The stagnation-point flow over a shrinking sheet in Darcy-Forchheimer porous medium is numerically studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by using shooting technique method with Maple implementation. Dual solutions are observed in a certain range of the shrinking parameter. Regarding on numerical solutions, we prepared stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results or each solution, which enable us to discuss the features of the respective solutions.

  11. Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel.

    PubMed

    Taylor, Douglas; Dyer, David; Lew, Valerie; Khine, Michelle

    2010-09-21

    This paper presents a rapid, ultra-low-cost approach to fabricate microfluidic devices using a polyolefin shrink film and a digital craft cutter. The shrinking process (with a 95% reduction in area) results in relatively uniform and consistent microfluidic channels with smooth surfaces, vertical sidewalls, and high aspect ratio channels with lateral resolutions well beyond the tool used to cut them. The thermal bonding of the layers results in strongly bonded devices. Complex microfluidic designs are easily designed on the fly and protein assays are also readily integrated into the device. Full device characterization including channel consistency, optical properties, and bonding strength are assessed in this technical note.

  12. "Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays.

    PubMed

    Sollier, Kevin; Mandon, Céline A; Heyries, Kevin A; Blum, Loïc J; Marquette, Christophe A

    2009-12-21

    An innovative method for the production of microfluidic chips integrating protein spots is described. The technology, called "Print-n-Shrink", is based on the screen-printing of a microfluidic design (using a dielectric ink) onto Polyshrink polystyrene sheets. The initial print which has a minimum size of 15 microm (height) x 230 microm (width) is thermally treated (30 seconds, 163 degrees C) to shrink and generate features of 85 microm (height) x 100 microm (width). Concomitantly, proteins such as monoclonal antibodies or cellular adhesion proteins are spotted onto the Polyshrink sheets and shrunk together with the microfluidic design, creating a complete biochip integrating both complex microfluidic designs and protein spots for bioanalytical applications.

  13. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  14. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.

  15. Fail-safe reactivity compensation method for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less

  16. Self-healing cable apparatus and methods

    NASA Technical Reports Server (NTRS)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  17. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less

  18. 52. GENERAL VIEW OF THE HIGH BAY AND SHRINK PIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. GENERAL VIEW OF THE HIGH BAY AND SHRINK PIT PRODUCTION AREA, FROM THE WEST BALCONY; LOOKING SE. THE 217/40 TON CLEVELAND CRANE CAN BE SEEN IN THE UPPER RIGHT OF THE VIEW. (Ryan) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  19. Direct Perception of Action-Scaled Affordances: The Shrinking Gap Problem

    ERIC Educational Resources Information Center

    Fajen, Brett R.; Matthis, Jonathan S.

    2011-01-01

    The aim of this study was to investigate the perception of possibilities for action (i.e., affordances) that depend on one's movement capabilities, and more specifically, the passability of a shrinking gap between converging obstacles. We introduce a new optical invariant that specifies in intrinsic units the minimum locomotor speed needed to…

  20. Evaluation of the effectiveness of non-irradiated and chlorine-free packaging for fresh beef preservation.

    PubMed

    Rodrigues, José B M; Sarantópoulos, Claire I G L; Bromberg, Renata; Andrade, Juliana C; Brunelli, Kleber; Miyagusku, Luciana; Marquezini, Miriam G; Yamada, Eunice A

    2017-03-01

    This study evaluates the potential of using non-irradiated barrier-shrink bags containing ethylene-vinyl alcohol copolymer (EVOH), polyamide (PA) and ethylene ionomer in their structures to preserve vacuum-packaged fresh beef as an alternative to traditional gamma-ray cross-linked bags containing polyvinylidene chloride (PVDC). Boneless beef rib eye roll cuts were vacuum-packed in an industrial processing plant using EVOH 44% mol, EVOH 32% mol and a control PVDC barrier shrink bags. The cuts were evaluated during storage at 0.5°C. The EVOH films presented similar performance compared to control PVDC barrier shrink bags related to bacteria growth and purge loss. Packages with EVOH 32% mol film presented better performance than control bag with respect to the meat sensorial attributes, including fewer bubbles and better adhesion. EVOH 44% mol bags presented the highest rate of colour loss. The EVOH 32% mol non-irradiated and chlorine-free film is as effective for the preservation of fresh beef as traditional PVDC-irradiated shrink bags. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Heat-shrink tubing as a solid-phase microextraction coating for the enrichment and determination of phthalic acid esters.

    PubMed

    Luo, Xi; He, Chengxia; Zhang, Feifang; Wang, Hailong; Yang, Bingcheng; Liang, Xinmiao

    2014-12-01

    Heat-shrink tubing, which shrinks in one plane only (its diameter) when heated, commonly used for sealing protection in electrical engineering, was found to be able to function as a solid-phase microextraction coating. Its utility was demonstrated for the determination of phthalic acid esters in an aqueous solution combined with high-performance liquid chromatography equipped with a UV absorbance detector. The preparation procedure was rather simple and only ∼10 min was needed. The fiber cost is extremely low (∼10 cent each). The parameters affecting the extraction were optimized. Heat-shrink tubing fiber exhibited a significant enrichment effect for the three examined phthalic acid esters and up to 931-fold enrichment factor was obtained. The limit of detection was <10 μg/L for all analytes. The operation repeatability and fiber-to-fiber reproducibility were 1.2-8.3 and 5.4-9.1%, respectively. It was successfully applied for the analysis of bottled drinking water with recoveries ranging from 90.1-100.5%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Extension of the shelf life of guava by individual packaging with cling and shrink films.

    PubMed

    Rana, Seema; Siddiqui, Saleem; Goyal, Ankit

    2015-12-01

    Guava is a climacteric fruit so physico-chemical changes continuously occur after harvest till fruit become unfit for consumption and suffers from post harvest losses. The main objective of this work was to assess the effectiveness of individual film in form of Shrink and Cling wrap on shelf life of guava. Fruits were individually packed in polythene bags (LDPE) of 200 gauge thickness by Shrink and Cling wrapping and stored at 7 ± 3 °C. Individual wrapping reduced the magnitude of changes during storage i.e., ripening process drastically as evident from lower total soluble solids, higher ascorbic acid, polyphenol content with lower polyphenol oxidase activity and physiological loss of weight (PLW) was less than 3.5 %. Film wrapping preserved freshness of wrapped fruits as they remained acceptable for whole storage time in contrast to control fruits which turned unacceptable by 15(th) day of storage. Control fruits showed significant compositional changes as well as in polyphenol content, ascorbic acid and reduced number of marketable fruits while Cling and Shrink wrapping enhanced the shelf life by 10 days.

  3. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  4. The science of shrinking human heads: tribal warfare and revenge among the South American Jivaro-Shuar.

    PubMed

    Jandial, Rahul; Hughes, Samuel A; Aryan, Henry E; Marshall, Lawrence F; Levy, Michael L

    2004-11-01

    THE PRACTICE OF "head-shrinking" has been the proper domain not of Africa but rather of the denizens of South America. Specifically, in the post-Columbian period, it has been most famously the practice of a tribe of indigenous people commonly called the Jivaro or Jivaro-Shuar. The evidence suggests that the Jivaro-Shuar are merely the last group to retain a custom widespread in northwestern South America. In both ceramic and textile art of the pre-Columbian residents of Peru, the motif of trophy heads smaller than normal life-size heads commonly recurs; the motif is seen even in surviving carvings in stone and shell. Moreover, although not true shrunken heads, trophy heads found in late pre-Columbian and even post-Columbian graves of the region demonstrate techniques of display very similar to those used by the Jivaro-Shuar, at least some of which are best understood in the context of head-shrinking. Regardless, the Jivaro-Shuar and their practices provide an illustrative counterexample to popular myth regarding the culture and science of the shrinking of human heads.

  5. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    PubMed

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  7. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    NASA Astrophysics Data System (ADS)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-01-01

    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the methane mechanism, RKC-GPU performed more than 65 and 11 times faster, for problem sizes consisting of 131,072 ODEs and larger, than the single- and six-core RKC-CPU versions, and up to 57 times faster than the six-core CPU-based implicit VODE algorithm on 65,536 ODEs. In the presence of more severe stiffness, such as ethylene oxidation (111 species and 1566 irreversible reactions), RKC-GPU performed more than 17 times faster than RKC-CPU on six cores for 32,768 ODEs and larger, and at best 4.5 times faster than VODE on six CPU cores for 65,536 ODEs. With a larger time step size, RKC-GPU performed at best 2.5 times slower than six-core VODE for 8192 ODEs and larger. Therefore, the need for developing new strategies for integrating stiff chemistry on GPUs was discussed.

  8. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less

  10. Study of Reactive Materials for Development of new Protective Clothing Concepts

    DTIC Science & Technology

    1977-10-01

    G, and V agents and must not unduly change the fabric permeability. Microencapsulation , the technique of encasing extremely small droplets or...preparing and evaluating decontaminating microcapsules that contain strong-base alkali- metal hydroxides, s-Im-bis(N,chloro-2,4,6-trichlorophenyl) urea...and various amines as the core phase. We are now identifying and developing microcapsule wall materials that will be stable to the highly basic core

  11. Extending the maximum operation time of the MNSR reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Successful Management of Graft Reinfection of HCV Genotype 2 in Living Donor Liver Transplantation from a Hepatitis B Core Antibody-Positive Donor with Sofosbuvir and Ribavirin

    PubMed Central

    Sasaki, Reina; Kanda, Tatsuo; Ohtsuka, Masayuki; Yasui, Shin; Haga, Yuki; Nakamura, Masato; Yokoyama, Masayuki; Wu, Shuang; Nakamoto, Shingo; Arai, Makoto; Maruyama, Hitoshi; Miyazaki, Masaru; Yokosuka, Osamu

    2016-01-01

    Direct-acting antivirals (DAAs) are relatively safe and highly effective for the eradication of hepatitis C virus (HCV) in liver transplant recipients. In this case study, we present a female with a graft reinfected with HCV genotype 2 who was treated with a combination of sofosbuvir and ribavirin after living donor liver transplantation (LDLT). Because the graft was from a hepatitis B core antibody-positive donor, passive immunization with hyperimmune hepatitis B immunoglobulin (HBIG) and entecavir were also provided to prevent hepatitis B virus (HBV) reactivation. It became clear that the combination of sofosbuvir and ribavirin promptly led to a sustained virologic response and that this combination was safe to treat graft reinfection with HCV genotype 2 after LDLT. Adverse events caused by DAAs were not observed, except for slight anemia. HBIG and entecavir were useful in the prevention of HBV reactivation. In conclusion, the present case indicated that DAA treatment for graft reinfection with HCV is safe and effective in LDLT from hepatitis B core antibody-positive donors. PMID:27721720

  13. Earth's Climate History from Glaciers and Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  14. Challenges and limitations in studying the shrink-swell and crack dynamics of vertisol soils

    USDA-ARS?s Scientific Manuscript database

    The need to study the shrink-swell and crack properties of vertic soils has long been recognized given their dynamics in time and space, which modifies the physical properties that impact water and air movement in the soil, flow of water into the subsoil and ground water, and generally alter the hyd...

  15. Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives.

    PubMed

    Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle

    2011-12-22

    A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Decline of the world's saline lakes

    Treesearch

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  17. A Model Recycling Program: UNC Takes Action as Landfill Space Shrinks and Costs Rise.

    ERIC Educational Resources Information Center

    Sherman, Rhonda L.

    1991-01-01

    The University of North Carolina responded to escalating waste disposal costs and shrinking landfill space with a structured program of recycling, including a mobile recycling drop, student family housing recycling, a newspaper drop-off site, high-volume glass pick-up, high-volume newspaper pick-up, and cardboard recycling. Campus-wide cooperation…

  18. Beyond the Nation-State: A Process for Determining the Security Strategy for the Integrated United Continent of Europe

    DTIC Science & Technology

    1990-05-01

    shrinking water supply, and shrinking fuel reserves. As these challenges multiply, the source of solutions becomes difficult to identify. A cooperative ... movement of the people through political channels seems to be the emerging source. 5 CHAPTER II IDENTIFYING NEW THREAT AREAS What does all this have to do

  19. Inside out: Speed-dependent barriers to reactive mixing

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas; Nevins, Thomas

    2015-11-01

    Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.

  20. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids

    PubMed Central

    Koo, Kyung A.; Waisbourd-Zinman, Orith; Wells, Rebecca G.; Pack, Michael; Porter, John R.

    2016-01-01

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP and EVK. PMID:26713899

  1. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids.

    PubMed

    Koo, Kyung A; Waisbourd-Zinman, Orith; Wells, Rebecca G; Pack, Michael; Porter, John R

    2016-02-15

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP and EVK.

  2. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid.

    PubMed

    Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal

    2016-08-05

    This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    PubMed

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-08

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.

  4. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  5. In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Mu, Wangzhong; Dogan, Neslihan

    2018-05-01

    Better understanding of removal of non-metallic inclusions is of importance in the steelmaking process to control the cleanliness of steel. In this study, the dissolution rate of Al2O3 and Al2TiO5 inclusions in a liquid CaO-SiO2-Al2O3 slag was measured using high-temperature confocal scanning laser microscopy (HT-CSLM) at 1550°C. The dissolution rate of inclusions is expressed as a function of the rate of decrease of the radius of solid particles with time. It is found that Al2O3 inclusions have a slower dissolution rate than that of Al2TiO5 inclusions at 1550°C. The rate-limiting steps are investigated in terms of a shrinking core model. It is shown that the rate-limiting step for dissolution of both inclusion types is mass transfer in the slag at 1550°C.

  6. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    NASA Technical Reports Server (NTRS)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lizarraga, Joanes; Urrestilla, Jon; Daverio, David

    We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck . We obtain revised constraints on the cosmic string tension parameter G μ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find G μ < 2.0 × 10{sup −7} at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully themore » physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on G μ is instead an improved treatment of the string evolution across the radiation-matter transition.« less

  8. Evidence of the hydrogen release mechanism in bulk MgH2

    PubMed Central

    Nogita, Kazuhiro; Tran, Xuan Q.; Yamamoto, Tomokazu; Tanaka, Eishi; McDonald, Stuart D.; Gourlay, Christopher M.; Yasuda, Kazuhiro; Matsumura, Syo

    2015-01-01

    Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-high voltage transmission electron microscopy (TEM) to directly verify the mechanisms of the hydride decomposition of bulk MgH2 in Mg-Ni alloys. We find that the hydrogen release mechanism from bulk (2 μm) MgH2 particles is based on the growth of multiple pre-existing Mg crystallites within the MgH2 matrix, present due to the difficulty of fully transforming all Mg during a hydrogenation cycle whereas, in thin samples analogous to nano-powders, dehydriding occurs by a ‘shrinking core' mechanism. PMID:25677421

  9. Putting HR outsourcing into practice.

    PubMed

    Berger, Michael

    2007-01-01

    Faced with the time-consuming responsibility of human resources (HR) management, a growing number of medical practices are outsourcing their HR to professional employer organizations (PEOs) so they can concentrate on their core business. A PEO functions as an HR department-minus the high overhead-managing daily administrative tasks such as payroll processing and related tax filings, employee benefits, and workers' compensation coverage and claims resolution. PEOs help physicians' offices keep up with the piles of paperwork that never seem to shrink, freeing doctors to focus on patient care and building their practice. Because of their volume buying power, PEOs are able to offer employees of small medical practices big-company benefits-everything from health, dental, and vision coverage to long-term disability insurance and tuition assistance. A fledgling industry only a decade ago, HR outsourcing has morphed into a blossoming industry. Enlisting the services of a PEO is now considered de rigueur in many small business circles.

  10. Dynamics of heat-pipe reactors

    NASA Technical Reports Server (NTRS)

    Niederauer, G. F.

    1971-01-01

    A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.

  11. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  12. Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa

    2002-07-01

    A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled coremore » has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)« less

  13. Effect of surface treatments on physicomechanical, stain-resist, and UV protection properties of wool fabrics

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammad M.; Leighs, Samuel J.

    2017-10-01

    The surface of wool fabrics is frequently modified to make them shrink-resistant, water repellent and also to improve their handle properties. In this work, we investigated the effect of common surface modification treatments on fabric stain-resistance, hydrophilicity and UV absorption performance. The surface of wool fabrics was modified by chlorination and also by reacting the chlorinated wool fabrics with a polyamide, a fibre-reactive amino-functional siloxane and a fluorocarbon polymer. The surface of the various treated fabrics was characterised by ATR-FTIR, contact angle measurement and scanning electron microscopy. The effect of surface modification on the tensile strength, surface hydrophilicity, stain-resistance, and UV absorption capacity of the fabric was investigated. It was found that all the treatments except the treatment with the amino-functional siloxane polymer slightly improved the tensile strength of the fabric. The chlorination treatment and the treatment with the polyamide resin made the fabric hydrophilic, and fluorocarbon and silicone resin treatment made the fabric hydrophobic.

  14. Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors

    NASA Astrophysics Data System (ADS)

    Lanham, Steven J.; Kushner, Mark J.

    2017-08-01

    The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.

  15. Astrocyte activation and wound healing in intact-skull mouse after focal brain injury.

    PubMed

    Suzuki, Takayuki; Sakata, Honami; Kato, Chiaki; Connor, John A; Morita, Mitsuhiro

    2012-12-01

    Localised brain tissue damage activates surrounding astrocytes, which significantly influences subsequent long-term pathological processes. Most existing focal brain injury models in rodents employ craniotomy to localise mechanical insults. However, the craniotomy procedure itself induces gliosis. To investigate perilesional astrocyte activation under conditions in which the skull is intact, we created focal brain injuries using light exposure through a cranial window made by thinning the skull without inducing gliosis. The lesion size was maximal at ~ 12 h and showed substantial recovery over the subsequent 30 days. Two distinct types of perilesional reactive astrocyte, identified by GFAP upregulation and hypertrophy, were found. In proximal regions the reactive astrocytes proliferated and expressed nestin, whereas in regions distal to the injury core the astrocytes showed increased GFAP expression but did not proliferate, lacked nestin expression, and displayed different morphology. Simply making the window did not induce any of these changes. There were also significant numbers of neurons in the recovering cortical tissue. In the recovery region, reactive astrocytes radially extended processes which appeared to influence the shapes of neuronal nuclei. The proximal reactive astrocytes also formed a cell layer which appeared to serve as a protective barrier, blocking the spread of IgG deposition and migration of microglia from the lesion core to surrounding tissue. The recovery was preceded by perilesional accumulation of leukocytes expressing vascular endothelial growth factor. These results suggest that, under intact skull conditions, focal brain injury is followed by perilesional reactive astrocyte activities that foster cortical tissue protection and recovery. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Huang, Hai; Kweon, Hyukmin

    2016-03-28

    Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less

  17. Relative Reactivity of Benzothiophene-Fused Enediynes in the Bergman Cyclization.

    PubMed

    Lyapunova, Anna G; Danilkina, Natalia A; Rumyantsev, Andrey M; Khlebnikov, A F; Chislov, Mikhail V; Starova, Galina L; Sambuk, Elena V; Govdi, Anastasia I; Bräse, Stefan; Balova, Irina A

    2018-03-02

    To find promising analogues of naturally occurring enediyne antibiotics with a sufficient reactivity in the Bergman cyclization and moderately stable under isolation and storage, a scale of relative enediynes reactivity was created on the basis of calculated free activation energies for the Bergman cyclization within 12 known and new benozothiophene, benzene, and cinnoline annulated 9- and 10-membered enediynes. To verify the predicted reactivity/stability balance, three new carbocyclic enediynes fused to a benzothiophene core bearing 3,4,5-trimethoxybenzene, fluoroisopropyl, and isopropenyl substituents were synthesized using the Nicholas-type macrocyclization. It was confirmed that annulation of a 3,4,5-trimethoxybenzene moiety to a 10-membered enediyne macrocycle imparts high reactivity to an enediyne while also conferring instability under ambient temperature. Fluoroisopropyl-substituted 10-membered enediyne from the opposite end of the scale was found to be stable while moderately reactive in the Bergman cyclization. Along with the experimentally confirmed moderate reactivity (DSC kinetic studies), (fluoroisopropyl)enediyne showed a significant DNA damaging activity in plasmid cleavage assays comparable with the known anticancer drug Zeocin.

  18. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  19. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations

    USGS Publications Warehouse

    Lewis, Tyler; Lindberg, Mark S.; Heglund, Patricia J.; Schmutz, Joel A.; Schmidt, Joshua H.; Dubour, Adam J.; Rover, Jennifer R.; Bertram, Mark R.

    2016-01-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  20. Impact of Americium-241 (n,γ) Branching Ratio on SFR Core Reactivity and Spent Fuel Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiruta, Hikaru; Youinou, Gilles J.; Dixon, Brent W.

    An accurate prediction of core physics and fuel cycle parameters largely depends on the order of details and accuracy in nuclear data taken into account for actual calculations. 241Am is a major gateway nuclide for most of minor actinides and thus important nuclide for core physics and fuel-cycle calculations. The 241Am(n,?) branching ratio (BR) is in fact the energy dependent (see Fig. 1), therefore, it is necessary to taken into account the spectrum effect on the calculation of the average BR for the full-core depletion calculations. Moreover, the accuracy of the BR used in the depletion calculations could significantly influencemore » the core physics performance and post irradiated fuel compositions. The BR of 241Am(n,?) in ENDF/B-VII.0 library is relatively small and flat in thermal energy range, gradually increases within the intermediate energy range, and even becomes larger at the fast energy range. This indicates that the properly collapsed BR for fast reactors could be significantly different from that of thermal reactors. The evaluated BRs are also differ from one evaluation to another. As seen in Table I, average BRs for several evaluated libraries calculated by means of a fast spectrum are similar but have some differences. Most of currently available depletion codes use a pre-determined single value BR for each library. However, ideally it should be determined on-the-fly basis like that of one-group cross sections. These issues provide a strong incentive to investigate the effect of different 241Am(n,?) BRs on core and spent fuel parameters. This paper investigates the impact of the 241Am(n,?) BR on the results of SFR full-core based fuel-cycle calculations. The analysis is performed by gradually increasing the value of BR from 0.15 to 0.25 and studying its impact on the core reactivity and characteristics of SFR spent fuels over extended storage times (~10,000 years).« less

  1. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    NASA Astrophysics Data System (ADS)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  2. Measuring and partitioning soil respiration in sharkey shrink-swell clays under plantation grown short-rotation woody crops

    Treesearch

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger

    2015-01-01

    The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...

  3. Why Human Jawbones Shrink so Rapidly in Evolution Scale?

    PubMed

    Holowko, Beata

    2016-01-01

    Deliberations are presented on the cause of human jawbones shrinking. It is argued that an interplay of the geometry of the sphenoid bone and the MYH16 gene mutation is the likely reason of decreasing ofhuman faces. The basicranial-flexion angle distribution of the new sample of 337 Central European patients is analyzed and compared with existing data from other continents.

  4. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  5. Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way.

    PubMed

    Yang, Lingang; Cui, Chuanfeng; Wang, Lingzhi; Lei, Juying; Zhang, Jinlong

    2016-07-27

    The rational design and controlled synthesis of a smart device with flexibly tailored response ability is all along desirable for bioapplication but long remains a considerable challenge. Here, a pH-stimulated valve system with a visualized "on-off" mode is constructed through a dual-shell fluorescence resonance energy transfer (FRET) strategy. The dual shells refer to carbon dots and fluorescent molecules embedded polymethacrylic acid (F-PMAA) layers successively coating around a SiO2 core (ca. 120 nm), which play the roles as energy donor and acceptor, respectively. The total thickness of the dual-shell in the solid composite is ca. 10 nm. The priorities of this dual-shell FRET nanovalve stem from three facts: (1) the thin shell allows the formation of efficient FRET system without chemical bonding between energy donor and acceptor; (2) the maximum emission wavelength of CD layer is tunable in the range of 400-600 nm, thus providing a flexible energy donor for a wide variety of energy acceptors; (3) the outer F-PMAA shell with a pH-sensitive swelling-shrinking (on-off) behavior functions as a valve for regulating the FRET process. As such, a sensitive and stable pH ratiometric sensor with a working pH range of 3-6 has been built by simply encapsulating pH-responsive fluorescein isothiocyanate (FITC) into PMAA; a pH-dependent swelling-shrinking shuttle carrier with a finely controllable molecule-release behavior has been further fabricated using rhodamine B isothiocyanate (RBITC) as the energy donor and model guest molecule. Significantly, the controlled releasing process is visually self-monitorable.

  6. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores. (author)« less

  7. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  8. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia.

    PubMed

    Murta, Veronica; Schilrreff, Priscila; Rosciszewski, Gerardo; Morilla, Maria Jose; Ramos, Alberto Javier

    2018-03-01

    Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia. © 2017 International Society for Neurochemistry.

  9. 4D XMT of Reaction in Carbonates: Reactive Transport Dynamics at Multiples Scales

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Reynolds, C. A.; Andrew, M. G.; Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.

    2016-12-01

    Upscaling pore scale rock-fluid interaction processes for predictive modelling poses a challenge to underground carbon storage. We have completed experiments and flow modelling to investigate the impact of pore-space heterogeneity and scale on the dissolution of two limestones at both the mm and cm scales. Two samples were reacted with reservoir condition CO2-saturated brine at both scales and scanned dynamically as dissolution took place. First, 1-cm long 4-mm diameter micro cores were scanned during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using a laboratory μ-CT. Second, 3.8-cm diameter, 8-cm long macro cores were reacted at the same conditions inside a reservoir condition flow rig and imaged using a medical CT scanner. Each sample was imaged 10 times over the course of 1.5 hours at a 250 x 250 x 500-μm resolution. The reacted macro cores were then scanned inside a μ-CT at a 27-μm resolution to assess the alteration in pore-scale reaction-induced heterogeneity. It was found that both limestones showed channel formation at the pore-scale and progressive high porosity pathway dissolution at the core-scale with the more heterogeneous rock having dissolution progressing along direction of flow more quickly. Additionally, upon analysis of the high-resolution macro core images it was found that the dissolution pathways contained a distinct microstructure that was not visible at the resolution of the medical CT, where the reactive fluid had not completely dissolved the internal pore-structure. Flow was modelled in connected pathways, the flow streamlines were traced and streamline density for each voxel was calculated. It was found that the streamline density was highest in the most well-connected pathways and that density increased with increasing heterogeneity as the number of connected pathways decreased and flow was consolidated along fewer pathways. This work represents the first study of scale dependency using reservoir condition 4D X-ray tomography and provides insight into the mechanisms that control local reaction rates at multiple scales.

  10. 10 CFR 55.41 - Written examination: Operators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design..., and functions of reactivity control mechanisms and instrumentation. (7) Design, components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and...

  11. 10 CFR 55.41 - Written examination: Operators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design..., and functions of reactivity control mechanisms and instrumentation. (7) Design, components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and...

  12. Evaluation of concrete pavements with materials-related distress : appendix G.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  13. Evaluation of concrete pavements with materials-related distress : final report.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors : contributing to pavement distress observed in the field were determined, including expansive : alkali-silica reactivity and freeze-thaw deterioration related to poor ...

  14. Evaluation of concrete pavements with materials-related distress : appendix F.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  15. Evaluation of concrete pavements with materials-related distress : appendix E.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  16. Evaluation of concrete pavements with materials-related distress : appendix D.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  17. Evaluation of concrete pavements with materials-related distress : appendix B.

    DOT National Transportation Integrated Search

    2010-02-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  18. Evaluation of concrete pavements with materials-related distress : appendix C.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  19. The role of chemical reactions in the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishanin, E. I., E-mail: egrishanin@orexovo.net

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharplymore » increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.« less

  20. Variations in diameter measurements of Robusta Eucalyptus due to swelling and shrinking of bark

    Treesearch

    Robert E. Burgan

    1971-01-01

    Trunk diameters of Eucalyptus robusta trees shrink and swell as bark moisture content changes. Diameter variations from this cause as measured on six trees with a dial-gage dendrometer were less than 1 percent of trunk diameter. To compare this variation with the variation in d.b.h. measurements that can result from personal techiques of using a...

  1. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  2. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis.

    PubMed

    Reinhardt, Anika; Yang, You; Claus, Heike; Pereira, Claney L; Cox, Andrew D; Vogel, Ulrich; Anish, Chakkumkal; Seeberger, Peter H

    2015-01-22

    Neisseria meningitidis is a leading cause of bacterial meningitis worldwide. We studied the potential of synthetic lipopolysaccharide (LPS) inner core structures as broadly protective antigens against N. meningitidis. Based on the specific reactivity of human serum antibodies to synthetic LPS cores, we selected a highly conserved LPS core tetrasaccharide as a promising antigen. This LPS inner core tetrasaccharide induced a robust IgG response in mice when formulated as an immunogenic glycoconjugate. Binding of raised mouse serum to a broad collection of N. meningitidis strains demonstrated the accessibility of the LPS core on viable bacteria. The distal trisaccharide was identified as the crucial epitope, whereas the proximal Kdo moiety was immunodominant and induced mainly nonprotective antibodies that are responsible for lack of functional protection in polyclonal serum. Our results identified key antigenic determinants of LPS core glycan and, hence, may aid the design of a broadly protective immunization against N. meningitidis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP

    DOEpatents

    Puechl, K.H.

    1963-09-24

    A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

  4. Low-temperature nanosolders

    DOEpatents

    Boyle, Timothy J.; Lu, Ping; Vianco, Paul T.; Chandross, Michael E.

    2016-10-11

    A nanosolder comprises a first metal nanoparticle core coated with a second metal shell, wherein the first metal has a higher surface energy and smaller atomic size than the second metal. For example, a bimetallic nanosolder can comprise a protective Ag shell "glued" around a reactive Cu nanoparticle. As an example, a 3-D epitaxial Cu-core and Ag-shell structure was generated from a mixture of copper and silver nanoparticles in toluene at temperatures as low as 150.degree. C.

  5. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  6. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    PubMed

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.

  7. The rigid-plate and shrinking-plate hypotheses: Implications for the azimuths of transform faults

    NASA Astrophysics Data System (ADS)

    Mishra, Jay Kumar; Gordon, Richard G.

    2016-08-01

    The rigid-plate hypothesis implies that oceanic lithosphere does not contract horizontally as it cools (hereinafter "rigid plate"). An alternative hypothesis, that vertically averaged tensional thermal stress in the competent lithosphere is fully relieved by horizontal thermal contraction (hereinafter "shrinking plate"), predicts subtly different azimuths for transform faults. The size of the predicted difference is as large as 2.44° with a mean and median of 0.46° and 0.31°, respectively, and changes sign between right-lateral (RL)-slipping and left-lateral (LL)-slipping faults. For the MORVEL transform-fault data set, all six plate pairs with both RL- and LL-slipping faults differ in the predicted sense, with the observed difference averaging 1.4° ± 0.9° (95% confidence limits), which is consistent with the predicted difference of 0.9°. The sum-squared normalized misfit, r, to global transform-fault azimuths is minimized for γ = 0.8 ± 0.4 (95% confidence limits), where γ is the fractional multiple of the predicted difference in azimuth between the shrinking-plate (γ = 1) and rigid-plate (γ = 0) hypotheses. Thus, observed transform azimuths differ significantly between RL-slipping and LL-slipping faults, which is inconsistent with the rigid-plate hypothesis but consistent with the shrinking-plate hypothesis, which indicates horizontal shrinking rates of 2% Ma-1 for newly created lithosphere, 1% Ma-1 for 0.1 Ma old lithosphere, 0.2% Ma-1 for 1 Ma old lithosphere, and 0.02% Ma-1 for 10 Ma old lithosphere, which are orders of magnitude higher than the mean intraplate seismic strain rate of 10-6 Ma-1 (5 × 10-19 s-1).

  8. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport through aquitards over multi-decadal timescales can be achieved by accelerated core testing together with complimentary hydrogeological monitoring, analysis, and modelling.

  9. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  10. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  11. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.

  12. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O 2 fuel mockup of a potassium-cooledmore » space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO 2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO 2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario was also simulated by moving outward twenty fuel rods from the periphery of the core so they were touching the core tank. The change in the system reactivity when the fuel tube(s) were removed/moved compared with the base configuration was the worth of the fuel tubes or accident scenario. The worth of neutron absorbing and moderating materials was measured by inserting material rods into the core at regular intervals or placing lids at the top of the core tank. Stainless steel 347, tungsten, niobium, polyethylene, graphite, boron carbide, aluminum and cadmium rods and/or lid worths were all measured. The change in the system reactivity when a material was inserted into the core is the worth of the material.« less

  13. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    NASA Astrophysics Data System (ADS)

    Krása, Antonín; Kochetkov, Anatoly; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente

    2017-09-01

    VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector). Discrepancies between experiments and Monte Carlo calculations (MCNP5) of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler) depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2) are presented.

  14. VERA Core Simulator methodology for pressurized water reactor cycle depletion

    DOE PAGES

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...

    2017-01-12

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  15. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs)

    NASA Astrophysics Data System (ADS)

    Muchitsch, Nanna; Van Nooten, Thomas; Bastiaens, Leen; Kjeldsen, Peter

    2011-11-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (> 99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.

  16. Pinning transition in shrinking nanobubbles

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter

    Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.

  17. Evaluation of concrete pavements with materials-related distress : appendix A, part 1.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  18. Evaluation of concrete pavements with materials-related distress : appendix A, part 3.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  19. Evaluation of concrete pavements with materials-related distress : appendix A, part 2.

    DOT National Transportation Integrated Search

    2010-03-02

    An evaluation of cores sampled from six concrete pavements was performed. Factors contributing to pavement distress observed in the field were determined, including expansive alkali-silica reactivity and freeze-thaw deterioration related to poor entr...

  20. Investigation of the Performance of D 2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiruta, Hikaru; Youinou, Gilles

    2013-09-01

    This report presents FY13 activities for the analysis of D 2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relativemore » fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D 2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D 2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D 2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D 2O-HCPWR.« less

  1. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  2. Antibody-linked drug shrinks various types of tumors in preclinical study | Center for Cancer Research

    Cancer.gov

    A preclinical study by Center for Cancer Research investigators and colleagues shows that a drug guided by an attached target-seeking antibody can recognize cells infiltrating tumors, the tumor stroma, and cause various types of tumors to shrink, and in many cases, disappear. Their findings suggest that when stromal cells take up the ADC, they cleave the drug from the antibody

  3. Funnel for fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Steffen, J.M.; Brown, W.F.

    1984-01-01

    An enlarged funnel is described which is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.

  4. Funnel for fuel pin loading system

    DOEpatents

    Christiansen, David W.; Steffen, Jim M.; Brown, William F.

    1985-01-01

    An enlarged funnel is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.

  5. A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures.

    PubMed

    Wang, Ping; Xia, Zhiwei; Yan, Juan; Liu, Xunwei; Yao, Guangbao; Pei, Hao; Zuo, Xiaolei; Sun, Gang; He, Dannong

    2015-04-21

    We monitored the shrink and stretch of the tetrahedral DNA nanostructure (TDN) and the i-motif connected TDN structure at pH 8.5 and pH 4.5, and we found that not only the i-motif can change its structure when the pH changes, but also the TDN and the DNA double helix change their structures when the pH changes.

  6. Shrink-Fit Solderable Inserts Seal Hermetically

    NASA Technical Reports Server (NTRS)

    Croucher, William C.

    1992-01-01

    Shrink-fit stainless-steel insert in aluminum equipment housing allows electrical connectors to be replaced by soldering, without degrading hermeticity of housing or connector. Welding could destroy electrostatic-sensitive components and harm housing and internal cables. Steel insert avoids problems because connector soldered directly to it rather than welded to housing. Seals between flange and housing, and between connector and flange resistant to leaks, even after mechanical overloading and thermal shocking.

  7. Development of an Efficient Micro-Heat Exchanger: The Integration of Design Processing and Testing

    DTIC Science & Technology

    2005-11-01

    together at high temperatures and cooled to room temperature. Additionally, alumina and zirconia powders have a major difference in densification...efficient heat exchanger. The main problem that needed to be resolved was the fact that the zirconia powders shrink much more than alumina powder...been measured. Our measurement in dimensions verifies that zirconia powders shrink substantially more than alumina powder except CR-15 after final

  8. Profound seasonal shrinking and regrowth of the ossified braincase in phylogenetically distant mammals with similar life histories

    PubMed Central

    Dechmann, Dina K. N.; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R. E.; Zub, Karol; Wikelski, Martin

    2017-01-01

    Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs. PMID:28211896

  9. Do low-shrink composites reduce polymerization shrinkage effects?

    PubMed

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.

  10. Profound seasonal shrinking and regrowth of the ossified braincase in phylogenetically distant mammals with similar life histories.

    PubMed

    Dechmann, Dina K N; LaPoint, Scott; Dullin, Christian; Hertel, Moritz; Taylor, Jan R E; Zub, Karol; Wikelski, Martin

    2017-02-13

    Ontogenetic changes in skull shape and size are ubiquitous in altricial vertebrates, but typically unidirectional and minimal in full-grown animals. Red-toothed shrews exhibit a rare exception, where the shape, mass and size of the skull, brain, and several major organs, show significant bidirectional seasonal changes. We now show a similar but male-biased shrinking (16%) and regrowth (8%) in the standardized braincase depth of least weasels (Mustela nivalis). Juvenile weasels also exhibit a growth overshoot, followed by a shrinkage period lasting until the end of their first winter. Only male weasels then regrow during their second summer. High-resolution CT scans suggest areas of the skull are affected differently during shrinking and regrowth in both species. This suggests multiple evolutionary drivers: while the shrinking likely facilitates survival during seasonal low resource availability in these high-metabolic mammals with year-round activity, the regrowth may be most strongly influenced by high investment into reproduction and territories, which is male-biased in the weasels. Our data provide evidence for convergent evolution of skull and thus brain shrinkage and regrowth, with important implications for understanding adaptations to changing environments and for applied research on the correlated changes in bone structure, brain size and the many other affected organs.

  11. Decay-ratio calculation in the frequency domain with the LAPUR code using 1D-kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Cobo, J. L.; Escriva, A.; Garcia, C.

    This paper deals with the problem of computing the Decay Ratio in the frequency domain codes as the LAPUR code. First, it is explained how to calculate the feedback reactivity in the frequency domain using slab-geometry i.e. 1D kinetics, also we show how to perform the coupling of the 1D kinetics with the thermal-hydraulic part of the LAPUR code in order to obtain the reactivity feedback coefficients for the different channels. In addition, we show how to obtain the reactivity variation in the complex domain by solving the eigenvalue equation in the frequency domain and we compare this result withmore » the reactivity variation obtained in first order perturbation theory using the 1D neutron fluxes of the base case. Because LAPUR works in the linear regime, it is assumed that in general the perturbations are small. There is also a section devoted to the reactivity weighting factors used to couple the reactivity contribution from the different channels to the reactivity of the entire reactor core in point kinetics and 1D kinetics. Finally we analyze the effects of the different approaches on the DR value. (authors)« less

  12. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II).

    PubMed

    Dong, Jun; Li, Bowen; Bao, Qiburi

    2017-04-01

    Mg(OH) 2 dissolves slowly and can provide a long-term source of alkalinity, thus a promising alternative reagent for the in situ remediation of heavy metal polluted groundwater. However, the application of Mg(OH) 2 on in situ reactive zone (IRZ) for heavy metal polluted groundwater has never been investigated. In this study, the behaviors of heavy metals in a Mg(OH) 2 IRZ were monitored for 45d. The heavy metals show a sequential precipitation by modified Mg(OH) 2 due to the difference of K sp . Column tests were conducted to investigate the temporal and spatial distribution of heavy metals in Mg(OH) 2 IRZ and evaluate the stabilization effect for multi-heavy metal polluted groundwater. Experimental results indicate that there exist interactions between different heavy metals, and their zoning distribution is attributed either to the competitive adsorption onto porous media (control column) or to the sequential precipitation of heavy metal ions (IRZ column). In contrast with the control column, heavy metal contaminated area in Mg(OH) 2 IRZ significantly shrinks. According to the chemical speciation analysis, when water containing Pb(II), Cd(II) and Cr(III) flows through Mg(OH) 2 IRZ, exchangeable fraction of total concentration significantly reduce and the proportion of carbonate and Fe/Mn oxides fraction increase, indicating the decrease of their mobility and toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II)

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Li, Bowen; Bao, Qiburi

    2017-04-01

    Mg(OH)2 dissolves slowly and can provide a long-term source of alkalinity, thus a promising alternative reagent for the in situ remediation of heavy metal polluted groundwater. However, the application of Mg(OH)2 on in situ reactive zone (IRZ) for heavy metal polluted groundwater has never been investigated. In this study, the behaviors of heavy metals in a Mg(OH)2 IRZ were monitored for 45 d. The heavy metals show a sequential precipitation by modified Mg(OH)2 due to the difference of Ksp. Column tests were conducted to investigate the temporal and spatial distribution of heavy metals in Mg(OH)2 IRZ and evaluate the stabilization effect for multi-heavy metal polluted groundwater. Experimental results indicate that there exist interactions between different heavy metals, and their zoning distribution is attributed either to the competitive adsorption onto porous media (control column) or to the sequential precipitation of heavy metal ions (IRZ column). In contrast with the control column, heavy metal contaminated area in Mg(OH)2 IRZ significantly shrinks. According to the chemical speciation analysis, when water containing Pb(II), Cd(II) and Cr(III) flows through Mg(OH)2 IRZ, exchangeable fraction of total concentration significantly reduce and the proportion of carbonate and Fe/Mn oxides fraction increase, indicating the decrease of their mobility and toxicity.

  14. CCC7-119 Reactive Molecular Dynamics Simulations of Hot Spot Growth in Shocked Energetic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan P.

    2015-03-01

    The purpose of this work is to understand how defects control initiation in energetic materials used in stockpile components; Sequoia gives us the core-count to run very large-scale simulations of up to 10 million atoms and; Using an OpenMP threaded implementation of the ReaxFF package in LAMMPS, we have been able to get good parallel efficiency running on 16k nodes of Sequoia, with 1 hardware thread per core.

  15. Design criteria for a self-actuated shutdown system to ensure limitation of core damage. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times.

  16. A core-substituted naphthalene diimide fluoride sensor.

    PubMed

    Bhosale, Sheshanath V; Bhosale, Sidhanath V; Kalyankar, Mohan B; Langford, Steven J

    2009-12-03

    The synthesis and characterization of a highly fluorescent core-substituted naphthalene diimide sensor (varphi = 0.34) bearing a bis-sulfonamide group is described. The compound shows a unique selectivity and reactivity for the fluoride ion over other anions in CHCl(3) by a two-stage deprotonation process leading to a colorimetric response. In DMSO solution, the sensor is shown to be highly selective for fluoride (K(a) approximately 10(6) M(-1)) over other anions with more pronounced changes in absorption characteristics.

  17. The past, present, and future of hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Choi, E.-Joon

    2014-02-01

    Recently, the liquid crystalline materials with a bent-core mesogen have attracted attentions because their interesting properties such as polarity and biaxiality of the mesophase. There are several types of bent-core mesogenic structures have been reported, for instance, banana-shaped, V-shaped molecules, boomerang-shaped, hockey stick-shaped, and Yshaped molecules. In this study, the liquid crystals and the reactive mesogens with the hockey-stick shaped mesogens will be described concerning with the structure-property relationship.

  18. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  19. Targeting Destructive Narcissism: A New Approach for Identifying and Eliminating Toxic Senior Leaders in the U.S. Air Force

    DTIC Science & Technology

    2014-02-13

    three core values of Integrity First, Service before Self , and Excellence in All We Do. While a majority of senior Air Force officers enforce the ...uphold the service’s three core values of Integrity First, Service before Self , and Excellence in All We Do. In the words of General Ryan: “From...Vries highlights three major narcissistic paradigms: constructive, reactive and self -deceptive. The constructive narcissist exhibits the salutary

  20. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples

    PubMed Central

    D’Alfonso, Timothy M.; Ginter, Paula S.; Shin, Sandra J.

    2015-01-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed. PMID:26095437

  1. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples.

    PubMed

    D'Alfonso, Timothy M; Ginter, Paula S; Shin, Sandra J

    2015-07-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed.

  2. A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes.

    PubMed

    Vainauskas, Saulius; Kirk, Charlotte H; Petralia, Laudine; Guthrie, Ellen P; McLeod, Elizabeth; Bielik, Alicia; Luebbers, Alex; Foster, Jeremy M; Hokke, Cornelis H; Rudd, Pauline M; Shi, Xiaofeng; Taron, Christopher H

    2018-06-22

    Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.

  3. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  4. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  5. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less

  6. Reactivity to stress and the cognitive components of math disability in grade 1 children.

    PubMed

    MacKinnon McQuarrie, Maureen A; Siegel, Linda S; Perry, Nancy E; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children's reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. © Hammill Institute on Disabilities 2012.

  7. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    PubMed Central

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2016-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children’s reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. PMID:23124381

  8. Small Sample Reactivity Measurements in the RRR/SEG Facility: Reanalysis using TRIPOLI-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, Andrew; Palmiotti, Guiseppe

    2016-08-01

    This work involved reanalyzing the RRR/SEG integral experiments performed at the Rossendorf facility in Germany throughout the 1970s and 80s. These small sample reactivity worth measurements were carried out using the pile oscillator technique for many different fission products, structural materials, and standards. The coupled fast-thermal system was designed such that the measurements would provide insight into elemental data, specifically the competing effects between neutron capture and scatter. Comparing the measured to calculated reactivity values can then provide adjustment criteria to ultimately improve nuclear data for fast reactor designs. Due to the extremely small reactivity effects measured (typically less thanmore » 1 pcm) and the specific heterogeneity of the core, the tool chosen for this analysis was TRIPOLI-4. This code allows for high fidelity 3-dimensional geometric modeling, and the most recent, unreleased version, is capable of exact perturbation theory.« less

  9. Rituximab in the treatment of shrinking lung syndrome in systemic lupus erythematosus.

    PubMed

    Peñacoba Toribio, Patricia; Córica Albani, María Emilia; Mayos Pérez, Mercedes; Rodríguez de la Serna, Arturo

    2014-01-01

    Shrinking lung syndrome (SLS) is a rare manifestation of systemic lupus erythematosus. We report the case of a patient with non-responding SLS (neither to glucocorticoids nor immunosupresors), who showed remarkable improvement after the onset of treatment with rituximab. Although there is a little evidence, treatment with rituximab could be proposed in SLS when classical treatment fails. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  10. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    ERIC Educational Resources Information Center

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  11. A shrinking hypersphere PSO for engineering optimisation problems

    NASA Astrophysics Data System (ADS)

    Yadav, Anupam; Deep, Kusum

    2016-03-01

    Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.

  12. Elasticity of Relativistic Rigid Bodies?

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2013-10-01

    In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.

  13. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  14. Conceptual Designing of a Reduced Moderation Pressurized Water Reactor by Use of MVP and MVP-BURN

    NASA Astrophysics Data System (ADS)

    Kugo, T.

    A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer.

  15. Reactive Iron Delivery to the Central Gulf of Alaska via Two Mesoscale Eddies (Invited)

    NASA Astrophysics Data System (ADS)

    Lippiatt, S. M.; Brown, M. T.; Lohan, M. C.; Bruland, K. W.

    2010-12-01

    Coastal waters in the northern Gulf of Alaska (GoA) are considered Fe-rich and nitrate-poor, in contrast to the Fe-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. Mixing between these two regimes can lead to enhanced primary productivity. Mesoscale anticyclonic eddies are an important mechanism for cross-shelf exchange of coastal and HNLC waters. This presentation will discuss findings from a cruise in the GoA during late summer 2007, namely dissolved Fe, leachable particulate Fe (defined as the portion of the particulate Fe that is solubilized with a two hour, 25% acetic acid leach with a short heating step and a reducing agent), and nitrate. Leachable particulate Fe concentrations in coastal surface waters between Yakutat, AK and the Kenai Peninsula ranged from over 1 uM in the Alsek River plume to less than 5 nM at the base of Cook Inlet, and were more variable and at least an order of magnitude higher than dissolved Fe concentrations. Relatively low and consistent dissolved Fe (~2 nM) suggests that the system’s ability to solubilize this large concentration of leachable particulate Fe is overwhelmed by the massive input of glacial-derived particulate Fe. Suspended leachable particulate Fe is available for exchange to the dissolved phase and is suggested to maintain a relatively constant 2 nM concentration of dissolved Fe in the coastal GoA. Glacial meltwaters were not a significant source of nitrate compared to central GoA HNLC or upwelled waters. The work completed in the coastal GoA set the stage for assessing the delivery of this glacial-derived coastal Fe to HNLC waters via mesoscale eddies. Two mesoscale eddies were sampled during this study: a Sitka eddy located off Yakutat, Alaska and a Kenai eddy sampled off the shelf break near Kodiak Island. The temperature and salinity structures of the eddies reflected their coastal origin; core waters were warmer and fresher than surrounding basin waters, coincident with elevated dissolved and leachable particulate Fe. In the core of the Yakutat eddy at 50 - 100 m depth there was on average 0.8 nM reactive Fe (dissolved + leachable particulate Fe), approximately five times more reactive Fe compared to adjacent GoA basin waters (0.16 nM). At the same depths in the core of the Kenai eddy there was on average 1.9 nM reactive Fe, ten times more reactive Fe than the basin waters (0.19 nM). In addition, for a given density, core waters had elevated nitrate and silicate compared to outside the eddy. Storms can mix Fe-enriched eddy core waters to the surface. Furthermore, anticyclonic GoA eddies can be a significant source of Fe to HNLC waters when they propagate into the central GoA and eventually relax with the Fe and nutrient rich subsurface waters rebounding or upwelling towards the surface. The transport of coastal waters into central GoA waters via mesoscale eddies is shown to be an important mechanism for Fe delivery into this HNLC region.

  16. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  17. Purification and characterization of a human pancreatic adenocarcinoma mucin.

    PubMed

    Khorrami, Ali M; Choudhury, Amit; Andrianifahanana, Mahefatiana; Varshney, Grish C; Bhattacharyya, Sambhu N; Hollingsworth, Michael A; Kaufman, Bernard; Batra, Surinder K

    2002-01-01

    Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.

  18. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  19. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  20. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2017-09-01

    Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Aiming for the stomach and hitting the heart: Dissociable triggers and sources for disgust reactions

    PubMed Central

    Shenhav, Amitai; Mendes, Wendy Berry

    2014-01-01

    Disgust reactions can be elicited using stimuli that engender orogastric rejection (e.g., pus and vomit; Core Disgust stimuli), but also using images of bloody injuries or medical procedures (e.g., surgeries; Blood-[Body] Boundary Violation [B-BV] Disgust stimuli). These two types of disgust reaction are believed to be connected by a common evolutionary function of avoiding either food- or blood-borne contaminants. However, reactions to the category of bloody injuries are typically conflated with reactions to the potential pain being experienced by the victim. This may explain why the two forms of ‘disgust,’ though similarly communicated (through self-report and facial expressions) evince different patterns of physiological reactivity. We therefore tested whether the communicative similarities and physiological dissimilarities would hold when markers of potential contamination in the latter category are removed, leaving only painful injuries that lack blood or explicit body-envelope violations. Participants viewed films that depicted imagery associated with (1) core disgust, (2) painful injuries, or (3) neutral scenes while we measured facial, cardiovascular, and gastric reactivity, respectively. Whereas communicative measures (self-report and facial muscles) suggested that participants experienced increased disgust for both core disgust and painful injuries, peripheral physiology dissociated the two: core disgust decreased normal gastric activity and painful-injury disgust decelerated heart rate and increased heart rate variability. These findings suggest that expressions of disgust toward bodily injuries may reflect a fundamentally different affective response than those evoked by core disgust, and that this (cardiovascularly-mediated) response may in fact be more closely tied to pain-perceptions (or empathy) rather than contaminant-laden stimuli. PMID:24219399

  2. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    PubMed

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis. © 2017 The Authors.

  3. Effect of von Karman Vortex Shedding on Regular and Open-slit V-gutter Stabilized Turbulent Premixed Flames

    DTIC Science & Technology

    2012-04-01

    Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain

  4. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  5. Cracking up (and down): Linking multi-domain hydraulic properties with multi-scale hydrological processes in shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2017-12-01

    Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.

  6. Field Validation of Supercritical CO 2 Reactivity with Basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B. Peter; Schaef, Herbert T.; Spane, Frank A.

    2017-01-10

    Continued global use of fossil fuels places a premium on developing technology solutions to minimize increases in atmospheric CO 2 levels. CO 2 storage in reactive basalts might be one of these solutions by permanently converting injected gaseous CO 2 into solid carbonates. Herein we report results from a field demonstration where ~1000 MT of CO 2 was injected into a natural basalt formation in Eastern Washington State. Following two years of post-injection monitoring, cores were obtained from within the injection zone and subjected to detailed physical and chemical analysis. Nodules found in vesicles throughout the cores were identified asmore » the carbonate mineral, ankerite Ca[Fe, Mg, Mn](CO 3) 2. Carbon isotope analysis showed the nodules are chemically distinct as compared with natural carbonates present in the basalt and clear correlation with the isotopic signature of the injected CO 2. These findings provide field validation of rapid mineralization rates observed from years of laboratory testing with basalts.« less

  7. Core reactivity estimation in space reactors using recurrent dynamic networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  8. Design study of long-life PWR using thorium cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less

  9. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    PubMed

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  10. Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease

    PubMed Central

    Serrano-Pozo, Alberto; Muzikansky, Alona; Gómez-Isla, Teresa; Growdon, John H.; Betensky, Rebecca A.; Frosch, Matthew P.; Hyman, Bradley T.

    2013-01-01

    While it is clear that astrocytes and microglia cluster around dense-core amyloid plaques in Alzheimer disease (AD), whether they are primarily attracted to amyloid deposits or are just reacting to plaque-associated neuritic damage remains elusive. We postulate that astrocytes and microglia may differentially respond to fibrillar amyloid β (Aβ). Therefore, we quantified the size distribution of dense-core Thioflavin-S (ThioS)-positive plaques in the temporal neocortex of 40 AD patients and the microglial and astrocyte responses in their vicinity (≤50 μm), and performed correlations between both measures. As expected, both astrocytes and microglia were clearly spatially associated with ThioS-positive plaques (p = 0.0001, ≤50 μm vs. >50 μm from their edge), but their relationship to ThioS-positive plaque size differed; larger ThioS-positive plaques were associated with more surrounding activated microglia (p = 0.0026), but this effect was not observed with reactive astrocytes. Microglial response to dense-core plaques appears to be proportional to their size, which we postulate reflects a chemotactic effect of Aβ. By contrast, plaque-associated astrocytic response does not correlate with plaque size and seems to parallel the behavior of plaque-associated neuritic damage. PMID:23656989

  11. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  12. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  13. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  14. Does oxygen exposure time control the extent of organic matter decomposition in peatlands?

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.

  15. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium ismore » more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.« less

  16. Climate change: the evidence and our options.

    PubMed

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering.

  17. Climate Change: The Evidence and Our Options

    PubMed Central

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering. PMID:22532707

  18. Kink modes and surface currents associated with vertical displacement events

    NASA Astrophysics Data System (ADS)

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-01

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, qaxis, remains fixed and the qedge systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when qedge drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  19. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.

    PubMed

    Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun

    2014-08-01

    Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  1. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell.

    PubMed

    Happe, Manuel; Sugnaux, Marc; Cachelin, Christian Pierre; Stauffer, Marc; Zufferey, Géraldine; Kahoun, Thomas; Salamin, Paul-André; Egli, Thomas; Comninellis, Christos; Grogg, Alain-François; Fischer, Fabian

    2016-01-01

    Phosphate remobilization from digested sewage sludge containing iron phosphate was scaled-up in a microbial fuel cell (MFC). A 3litre triple chambered MFC was constructed. This reactor was operated as a microbial fuel cell and later as a microbial electrolysis cell to accelerate cathodic phosphate remobilization. Applying an additional voltage and exceeding native MFC power accelerated chemical base formation and the related phosphate remobilization rate. The electrolysis approach was extended using a platinum-RVC cathode. The pH rose to 12.6 and phosphate was recovered by 67% in 26h. This was significantly faster than using microbial fuel cell conditions. Shrinking core modelling particle fluid kinetics showed that the reaction resistance has to move inside the sewage sludge particle for considerable rate enhancement. Remobilized phosphate was subsequently precipitated as struvite and inductively coupled plasma mass spectrometry indicated low levels of cadmium, lead, and other metals as required by law for recycling fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stability and normal zone propagation in YBCO CORC cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; ...

    2016-03-11

    In this study, a two layer conductor on round core cable was tested for stability and normal zone propagation at 77 K in a liquid nitrogen bath. The cable was instrumented with voltage taps and wires on each strand over the cable’s central portion (i.e. excluding the end connections of the cable with the outside world). A heater was placed in the central zone on the surface of the cable, which allowed pulses of various powers and durations to be generated. Shrinking (recovering) and expanding (not recovering) normal zones have been detected, as well as stationary zones which were inmore » thermal equilibrium. Such stationary thermal equilibrium zones did not expand or contract, and hit a constant upper temperature while the heater current persisted; they are essentially a form of Stekly stability. Overall, the cable showed a high degree of stability. Notably, it was able to carry a current of 0.45I c cable with maximum temperature of 123 K for one minute without damage.« less

  3. Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB

    NASA Astrophysics Data System (ADS)

    Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham

    2017-04-01

    In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.

  4. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization.

    PubMed

    Motaghed, M; Mousavi, S M; Rastegar, S O; Shojaosadati, S A

    2014-11-01

    The present study evaluated the potential of Bacillus megaterium as a cyanogenic bacterium to produce cyanide for solubilization of platinum and rhenium from a spent refinery catalyst. Response surface methodology was applied to study the effects and interaction between two main effective parameters including initial glycine concentration and pulp density. Maximum Pt and Re recovery was obtained 15.7% and 98%, respectively, under optimum conditions of 12.8 g/l initial glycine concentration and 4% (w/v) pulp density after 7 days. Increasing the free cyanide concentration to 3.6 mg/l, varying the pH from 6.7 to 9, and increasing the dissolved oxygen from 2 to 5mg/l demonstrated the growth characteristics of B. megaterium during bioleaching process. The modified shrinking core model was used to determine the rate limiting step of the process. It was found that diffusion through the product layer is the rate controlling step. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  6. Oxidation-induced calcium-dependent dehydration of normal human red blood cells.

    PubMed

    Shcherbachenko, Irina M; Lisovskaya, Irina L; Tikhonov, Vladimir P

    2007-05-01

    Phenazine-methosulphate (PMS) is a strong oxidant that induces reactive oxygen species (ROS) formation in cells. Though it has been shown that PMS increases the red blood cell (RBC) membrane permeability to K(+), the hypotheses on the mechanism of PMS-induced effects are contradictory and there are no data on volume changes induced by this oxidant. Therefore, the influence of the PMS + ascorbate oxidative system on the volume of normal human RBCs was studied. In a Ca(2 + )-containing medium, PMS + ascorbate caused dehydration (shrinking) of RBCs judged by: (1) changes in the density and osmotic resistance distributions of RBCs, and (2) a decrease in their low-angle scattering assessed by FACS analysis. The dehydration resulted from activation of the Gardos channels, was PMS and ascorbate concentration-dependent, was associated with broadening of the density and osmotic resistance distributions of the RBCs, and decreased in the presence of the taxifolin and rutin antioxidants. These findings contribute to a better understanding of the physiology and pathology of oxidatively-modified RBCs and may be of practical significance in estimating the antioxidant activity of various substances.

  7. A sharp and flat section of the core-mantle boundary

    USGS Publications Warehouse

    Vidale, J.E.; Benz, H.M.

    1992-01-01

    THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.

  8. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2010-07-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  9. A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2011-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  10. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less

  11. Examining Hepatitis, A and B Vaccination, and HBV Reactivation Monitoring During Direct-Acting Antiviral Therapy for Hepatitis C.

    PubMed

    Davison, John; O'Shea, Amy; Waterbury, Nancee; Villalvazo, Yolanda

    2018-05-30

    The objective of this study was to examine Hepatitis A (HAV) and Hepatitis B (HBV) screening, and the risk of HBV reactivation during Hepatitis C (HCV) therapy with direct-acting antivirals (DAAs). A retrospective chart review was performed of patients treated with second generation DAA therapy from January 2014 to September 2016 at the Iowa City VA Healthcare System. In total 409 patients initiated HCV treatment, 308 (75%) and 241 (59%) were HAV and HBV vaccine eligible, respectively. Among those, 24 (8%) received a HAV vaccine, while only 20 (8%) received a HBV vaccine. Of these, 7 patients initiating an immunization in the clinic had record of completing the series. Further, 101 patients had a reactive Hepatitis B core Antibody indicating previous HBV infection, and 3 of these were tested for HBV reactivation during HCV therapy. Overall, the assessment found low rates of HAV and HBV vaccine administration, indicating missed opportunities for preventative care during HCV therapy. With the known risk of HBV reactivation with DAAs, the need for HAV and HBV screening is essential.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesun; Cho, Younho; Park, Jun-Pil

    Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.

  13. Investigation of Hydrophobic Radomes for Microwave Landing System.

    DTIC Science & Technology

    1982-11-01

    horizontal heating wires on the inside surface, and 2) a slotted waveguide unit (C-band waveguide, about 2 feet in length) covered with a Teflon shrink tube ...AZ) Fiberglass flat 1.5ft x 13ft NE sandwich (EL) Teflon shrink 1 in x 2 ft SW tubing (Field Mon.) 7 (8) Hydrophobic Coating for Antenna Weather...SURFACE PREPARATION 13 24 Mar 󈨖 Conolite Primer: Vellox S-048 Finish: Microfine FSD, 7 coats, sprayed 14 24 Mar 󈨖 Conolite Teflon film, C-TAPE-36

  14. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less

  15. Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.

    PubMed

    Sutyrin, Georgi G.

    1994-06-01

    Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.

  16. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Q.L.; Xiao, R.; Deng, Z.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. Themore » sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.« less

  17. Calculation and Experiment of Adding Top Beryllium Shims for Iran MNSR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadati, Javad; Rezvanifard, Mehdi; Shahabi, Iraj

    2006-07-01

    Miniature Neutron Source Reactor which is called MNSR were put into operation on June 1994 in Esfahan Nuclear Technology Center (ENTC). At that time the excess reactivity at the cold condition was 3.85 mk. After 7 years of operation and fuel consumption the reactivity was reduced to 2.90 mk. To compensate this reduction and upgrade the reactor, Beryllium Shim were used at the top of the core. This paper discusses the steps for this accurate and sensitive task. Finally a layer of 1.5 mm Beryllium were added to restore the reactor life. (authors)

  18. The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs

    NASA Astrophysics Data System (ADS)

    Aydin, Ali Orhan; Orgun, Mehmet Ali

    In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.

  19. Comparison of Phase Field Crystal and Molecular Dynamics Simulations for a Shrinking Grain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Nicholson, Don M

    2012-01-01

    The Phase-Field Crystal (PFC) model represents the atomic density as a continuous function, whose spatial distribution evolves at diffusional, rather than vibrational time scales. PFC provides a tool to study defect interactions at the atomistic level but over longer time scales than in molecular dynamics (MD). We examine the behavior of the PFC model with the goal of relating the PFC parameters to physical parameters of real systems, derived from MD simulations. For this purpose we model the phenomenon of the shrinking of a spherical grain situated in a matrix. By comparing the rate of shrinking of the central grainmore » using MD and PFC we obtain a relationship between PFC and MD time scales for processes driven by grain boundary diffusion. The morphological changes in the central grain including grain shape and grain rotation are also examined in order to assess the accuracy of the PFC in capturing the evolution path predicted by MD.« less

  20. Mixed convection flow of a nanofluid containing gyrotactic microorganisms over a stretching/shrinking sheet in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Aman, Fazlina; Mohamad Khazim, Wan Nor Hafizah Wan; Mansur, Syahira

    2017-09-01

    Interaction of motile microorganisms and nanoparticles along with buoyancy forces will produce nanofluid bioconvection. Bioconvection happened because of the microorganisms are imposed into the nanofluid to stabilize the nanoparticles to suspend. In this paper, we investigated the problem of mixed convection flow of a nanofluid combined with gyrotactic microorganisms over a stretching/shrinking sheet under the influence of magnetic field. The nonlinear partial differential equations are transformed into a set of five similarities nonlinear ordinary differential equations by using similarity transformation, before being solved numerically. Some of the governing parameters involve in this problem are magnetic parameter, stretching/shrinking parameter, Brownian motion parameter, thermophoresis parameter and Prandtl number. Using tables and graphs, the consequences of numerous parameters on the flow and heat transfer features are examined and discussed. The results indicate that the skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms are strongly affected by the governing parameters.

  1. Shrinking cities: urban challenges of globalization.

    PubMed

    Martinez-Fernandez, Cristina; Audirac, Ivonne; Fol, Sylvie; Cunningham-Sabot, Emmanuèle

    2012-01-01

    Urban shrinkage is not a new phenomenon. It has been documented in a large literature analyzing the social and economic issues that have led to population flight, resulting, in the worse cases, in the eventual abandonment of blocks of housing and neighbourhoods. Analysis of urban shrinkage should take into account the new realization that this phenomenon is now global and multidimensional — but also little understood in all its manifestations. Thus, as the world's population increasingly becomes urban, orthodox views of urban decline need redefinition. The symposium includes articles from 10 urban analysts working on 30 cities around the globe. These analysts belong to the Shrinking Cities International Research Network (SCIRN), whose collaborative work aims to understand different types of city shrinkage and the role that different approaches, policies and strategies have played in the regeneration of these cities. In this way the symposium will inform both a rich diversity of analytical perspectives and country-based studies of the challenges faced by shrinking cities. It will also disseminate SCIRN's research results from the last 3 years.

  2. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics

    PubMed Central

    Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M

    2015-01-01

    Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking. DOI: http://dx.doi.org/10.7554/eLife.10113.001 PMID:26439009

  3. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  4. Neutronics calculation of RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  5. A convergent approach to biocompatible polyglycerol "click" dendrons for the synthesis of modular core-shell architectures and their transport behavior.

    PubMed

    Wyszogrodzka, Monika; Haag, Rainer

    2008-01-01

    Dendrimers are an important class of polymeric materials for a broad range of applications in which monodispersity and multivalency are of interest. Here we report on a highly efficient synthetic route towards bifunctional polyglycerol dendrons on a multigram scale. Commercially available triglycerol (1), which is highly biocompatible, was used as starting material. By applying Williamson ether synthesis followed by an ozonolysis/reduction procedure, glycerol-based dendrons up to the fourth generation were prepared. The obtained products have a reactive core, which was further functionalized to the corresponding monoazido derivatives. By applying copper(I)-catalyzed 1,3-dipolar cycloaddition, so-called "click" coupling, a library of core-shell architectures was prepared. After removal of the 1,2-diol protecting groups, water-soluble core-shell architectures 24-27 of different generations were obtained in high yields. In the structure-transport relationship with Nile red we observe a clear dependence on core size and generation of the polyglycerol dendrons.

  6. Summary of the thermal evaluation of LWBR (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, S.; McWilliams, K.D.; Stout, J.W.

    1980-03-01

    This report describes the thermal evaluation of the core for the Shippingport Light Water Breeder Reactor. This core contains unique thermal-hydraulic features such as (1) close rod-to-rod proximity, (2) an open-lattice array of fuel rods with two different diameters and rod-to-rod spacings in the same flow region, (3) triplate orifices located at both the entrance and exit of fuel modules and (4) a hydraulically-balanced movable-fuel system coupled with (5) axial-and-radial fuel zoning for reactivity control. Performance studies used reactor thermal principles such as the hot-and-nominal channel concept and related nuclear/engineering design allowances. These were applied to models of three-dimensional roddedmore » arrays comprising the core fuel regions.« less

  7. Light-Water Breeder Reactor

    DOEpatents

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  8. Light-water breeder reactor (LWBR Development Program)

    DOEpatents

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  9. Preliminary Design of Critical Function Monitoring System of PGSFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less

  10. Transformation of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 Nanomolecules: Theoretical and Experimental Study.

    PubMed

    Nimmala, Praneeth Reddy; Theivendran, Shevanuja; Barcaro, Giovanni; Sementa, Luca; Kumara, Chanaka; Jupally, Vijay Reddy; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2015-06-04

    Ultrastable gold nanomolecule Au144(SCH2CH2Ph)60 upon etching with excess tert-butylbenzenethiol undergoes a core-size conversion and compositional change to form an entirely new core of Au133(SPh-tBu)52. This conversion was studied using high-resolution electrospray mass spectrometry which shows that the core size conversion is initiated after 22 ligand exchanges, suggesting a relatively high stability of the Au144(SCH2CH2Ph)38(SPh-tBu)22 intermediate. The Au144 → Au133 core size conversion is surprisingly different from the Au144 → Au99 core conversion reported in the case of thiophenol, -SPh. Theoretical analysis and ab initio molecular dynamics simulations show that rigid p-tBu groups play a crucial role by reducing the cluster structural freedom, and protecting the cluster from adsorption of exogenous and reactive species, thus rationalizing the kinetic factors that stabilize the Au133 core size. This 144-atom to 133-atom nanomolecule's compositional change is reflected in optical spectroscopy and electrochemistry.

  11. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.

  12. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedane, T.; Di Maio, L.; Scarfato, P.

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less

  13. Geosimulation of urban growth and demographic decline in the Ruhr: a case study for 2025 using the artificial intelligence of cells and agents

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Stenger, Dirk

    2014-07-01

    The Ruhr is an "old acquaintance" in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.

  14. Antigenic regions within the hepatitis C virus envelope 1 and non-structural proteins: identification of an IgG3-restricted recognition site with the envelope 1 protein.

    PubMed Central

    Sällberg, M; Rudén, U; Wahren, B; Magnius, L O

    1993-01-01

    Antibody binding to antigenic regions of hepatitis C virus (HCV) envelope 1 (E1; residues 183-380, E2/non-structural (NS) 1 (residues 380-437), NS1 (residues 643-690), and NS4 (1684-1751) proteins were assayed for 50 sera with antibodies to HCV (anti-HCV) and for 46 sera without anti-HCV. Thirty-four peptides, 18 residues long with an eight-amino acid overlap within each HCV region, were synthesized and tested with all 96 sera. Within the E region 183-380, the major binding site was located to residues 203-220, and was recognized by eight sera. Within the E2/NS1 region 380-437, the peptide covering residues 410-427 was recognized by two sera, and within the NS1 region 643-690, peptides covering residues 663-690 were recognized by four sera. Within the NS4 region 1684-1751, 27 sera were reactive to one or more of the NS4 peptides, and 21 out of these were reactive with peptide 1694-1711. One part of the major binding site could be located to residues 1701-1704, with the sequence Leu-Tyr-Arg-Glu. The IgG1, IgG3 and IgG4 subclasses were reactive with the five antigenic regions of HCV core, residues 1-18, 11-28, 21-38, 51-68 and 101-118. Reactivity to the major envelope site consisted almost exclusively of IgG3, and reactivity to the major site of NS4 consisted only of IgG1. Thus, a non-restricted IgG response to linear HCV-encoded binding sites was found to the core protein, whereas IgG subclass-restricted linear binding sites were found within the E1 protein, and within the NS4 protein. PMID:7680297

  15. Reactive Astrocytes: Phenotypic and Functional Characteristics and Astrocytes as Neural Stem Cells

    DTIC Science & Technology

    2006-01-01

    of sulforaphane , an isothiocyanate, attenuated AQP4 loss in the injury core and further increased AQP4 levels in the penumbra region compared with...glutamate transporters in traumatic brain injury. Neurochem Int 48:394-403. Zhao J, Moore AN, Clifton GL, Dash PK. 2005. Sulforaphane enhances

  16. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishkov, L. K., E-mail: slk@vver.kiae.ru; Zizin, M. N., E-mail: zizin_m@mail.ru

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the “new” prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of themore » kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.« less

  17. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9

    PubMed Central

    2017-01-01

    The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930

  18. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water.

    PubMed

    Yan, Weile; Herzing, Andrew A; Kiely, Christopher J; Zhang, Wei-Xian

    2010-11-25

    Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.

    PubMed

    Ding, Zeng-Bo; Wu, Ping; Luo, Yi-Xiao; Shi, Hai-Shui; Shen, Hao-Wei; Wang, Shen-Jun; Lu, Lin

    2013-08-01

    Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory. Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats. Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection. Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanan, N. A.; Matos, J. E.

    At The request of the Czech Technical University in Prague, ANL has performed independent verification calculations using the MCNP Monte Carlo code for three core configurations of the VR-1 reactor: a current core configuration B1 with HEU (36%) IRT-3M fuel assemblies and planned core configurations C1 and C2 with LEU (19.7%) IRT-4M fuel assemblies. Details of these configurations were provided to ANL by CTU. For core configuration B1, criticality calculations were performed for two sets of control rod positions provided to ANL by CTU. For core configurations C1 and C2, criticality calculations were done for cases with all control rodsmore » at the top positions, all control rods at the bottom positions, and two critical states of the reactor for different control rod positions. In addition, sensitivity studies for variation of the {sup 235}U mass in each fuel assembly and variation of the fuel meat and cladding thicknesses in each of the fuel tubes were done for the C1 core configuration. Finally the reactivity worth of the individual control rods was calculated for the B1, C1, and C2 core configurations.« less

  1. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE PAGES

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...

    2016-09-07

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  2. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  3. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future. Electronic supplementary information (ESI) available: Detailed information about the polytypic CCTSSe nanocrystals syntheses, measurement and characterization, additional TEM and HRTEM images, PXRD analysis, EDS spectra and UV-vis-NIR spectra. See DOI: 10.1039/c3nr04948e.

  4. Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain

    NASA Astrophysics Data System (ADS)

    Kecorius, Simonas; Ma, Nan; Teich, Monique; van Pinxteren, Dominik; Zhang, Shenglan; Gröβ, Johannes; Spindler, Gerald; Müller, Konrad; Iinuma, Yoshiteru; Hu, Min; Herrmann, Hartmut; Wiedensohler, Alfred

    2017-09-01

    Particulate emissions from crop residue burning decrease the air quality as well as influence aerosol radiative properties on a regional scale. The North China Plain (NCP) is known for the large scale biomass burning (BB) of field residues, which often results in heavy haze pollution episodes across the region. We have been able to capture a unique BB episode during the international CAREBeijing-NCP intensive field campaign in Wangdu in the NCP (38.6°N, 115.2°E) from June to July 2014. It was found that aerosol particles originating from this BB event showed a significantly different mixing state compared with clean and non-BB pollution episodes. BB originated particles showed a narrower probability density function (PDF) of shrink factor (SF). And the maximum was found at shrink factor of 0.6, which is higher than in other episodes. The non-volatile particle number fraction during the BB episode decreased to 3% and was the lowest measured value compared to all other predefined episodes. To evaluate the influence of particle mixing state on aerosol single scattering albedo (SSA), SSA at different RHs was simulated using the measured aerosol physical-chemical properties. The differences between the calculated SSA for biomass burning, clean and pollution episodes are significant, meaning that the variation of SSA in different pollution conditions needs to be considered in the evaluation of aerosol direct radiative effects in the NCP. And the calculated SSA was found to be quite sensitive on the mixing state of BC, especially at low-RH condition. The simulated SSA was also compared with the measured values. For all the three predefined episodes, the measured SSA are very close to the calculated ones with assumed mixing states of homogeneously internal and core-shell internal mixing, indicating that both of the conception models are appropriate for the calculation of ambient SSA in the NCP.

  5. Analytical analyses of startup measurements associated with the first use of LEU fuel in Romania`s 14-MW TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Snelgrove, J.L.; Ciocanescu, M.

    1992-12-01

    The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% 235U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, eachmore » containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration. In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and themocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.« less

  6. The activity of the acidic phosphoproteins from the 80 S rat liver ribosome.

    PubMed

    MacConnell, W P; Kaplan, N O

    1982-05-25

    The selective removal of acidic phosphoproteins from the 80 S rat liver ribosome was accomplished by successive alcohol extractions at low salt concentration. The resulting core ribosomes lost over 90% of their translation activity and were unable to support the elongation factor 2 GTPase reaction. Both activities were partially restored when the dialyzed extracts were added back to the core ribosome. The binding of labeled adenosine diphosphoribosyl-elongation factor 2 to ribosomes was also affected by extraction and could be reconstituted, although not to the same extent as the GTPase activity associated with elongation factor 2 in the presence of the ribosome. The alcohol extracts of the 80 S ribosome contained mostly phosphoproteins P1 and P2 which could be dephosphorylated and rephosphorylated in solution by alkaline phosphatase and protein kinase, respectively. Dephosphorylation of the P1/P2 mixture in the extracts caused a decrease in the ability of these proteins to reactivate the polyphenylalanine synthesis activity of the core ribosome. However, treatment of the dephosphorylated proteins with the catalytic subunit of 3':5'-cAMP-dependent protein kinase in the presence of ATP reactivated the proteins when compared to the activity of the native extracts. Rabbit antisera raised against the alcohol-extracted proteins were capable of impairing both the polyphenylalanine synthesis reaction and the elongation factor 2-dependent GTPase reaction in the intact ribosomes.

  7. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles.

    PubMed

    Zhu, Li-Jing; Zhu, Li-Ping; Zhang, Pei-Bin; Zhu, Bao-Ku; Xu, You-Yi

    2016-04-15

    We demonstrate the preparation and properties of poly(vinylidene fluoride) (PVDF) filtration membranes modified via surface zwitterionicalization mediated by reactive core-shell silica nanoparticles (SiO2 NPs). The organic/inorganic hybrid SiO2 NPs grafted with poly(methyl meth acrylate)-block-poly(2-dimethylaminoethyl methacrylate) copolymer (PMMA-b-PDMAEMA) shell were prepared by surface-initiated reversible addition fragmentation chain transfer (SI-RAFT) polymerization and then used as a membrane-making additive of PVDF membranes. The PDMAEMA exposed on membrane surface and pore walls were quaternized into zwitterionic poly(sulfobetaine methacrylate) (PSBMA) using 1,3-propane sultone (1,3-PS) as the quaternization agent. The membrane surface chemistry and morphology were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The hydrophilicity, permeability and antifouling ability of the investigated membranes were evaluated in detail. It was found that the PSBMA chains brought highly-hydrophilic and strong fouling resistant characteristics to PVDF membranes due to the powerful hydration of zwitterionic surface. The SiO2 cores and PMMA chains in the hybrid NPs play a role of anchors for the linking of PSBMA chains to membrane surface. Compared to the traditional strategies for membrane hydrophilic modification, the developed method in this work combined the advantages of both blending and surface reaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  9. Planned Destruction of Metal-Core Reactor: Simulation of Catastrophic Accidents and New Experimental Possibilities

    NASA Astrophysics Data System (ADS)

    Vorontsov, S. V.; Kuvshinov, M. I.; Narozhnyi, A. T.; Popov, V. A.; Solov'ev, V. P.; Yuferev, V. I.

    2017-12-01

    A reactor with a destructible core (RIR reactor) generating a pulse with an output of 1.5 × 1019 fissions and a full width at half maximum of 2.5 μs was developed and tested at VNIIEF. In the course of investigation, a computational-experimental method for laboratory calibration of the reactor was created and worked out. This method ensures a high accuracy of predicting the energy release in a real experiment with excess reactivity of 3βeff above prompt criticality. A transportable explosion-proof chamber was also developed, which ensures the safe localization of explosion products of the core of small-sized nuclear devices and charges of high explosives with equivalent mass of up to 100 kg of TNT.

  10. A modular synthesis of teraryl-based α-helix mimetics, part 1: Synthesis of core fragments with two electronically differentiated leaving groups.

    PubMed

    Peters, Martin; Trobe, Melanie; Tan, Hao; Kleineweischede, Rolf; Breinbauer, Rolf

    2013-02-11

    Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions.

    PubMed

    Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-12-02

    In this work, a computational study of a series of N -substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N -substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui ( f ⁺) and Parr ( P ⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  12. Electrodermal Reactivity to Emotion Processing in Adults with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Hubert, B. E.; Wicker, B.; Monfardini, E.; Deruelle, C.

    2009-01-01

    Although alterations of emotion processing are recognized as a core component of autism, the level at which alterations occur is still debated. Discrepant results suggest that overt assessment of emotion processing is not appropriate. In this study, skin conductance response (SCR) was used to examine covert emotional processes. Both behavioural…

  13. The Basolateral Amygdala and Nucleus Accumbens Core Mediate Dissociable Aspects of Drug Memory Reconsolidation

    ERIC Educational Resources Information Center

    Theberge, Florence R. M.; Milton, Amy L.; Belin, David; Lee, Jonathan L. C.; Everitt, Barry J.

    2010-01-01

    A distributed limbic-corticostriatal circuitry is implicated in cue-induced drug craving and relapse. Exposure to drug-paired cues not only precipitates relapse, but also triggers the reactivation and reconsolidation of the cue-drug memory. However, the limbic cortical-striatal circuitry underlying drug memory reconsolidation is unclear. The aim…

  14. Tretinoin-loaded lipid-core nanocapsules decrease reactive oxygen species levels and improve bovine embryonic development during in vitro oocyte maturation.

    PubMed

    Lucas, Caroline Gomes; Remião, Mariana Härter; Komninou, Eliza Rossi; Domingues, William Borges; Haas, Cristina; Leon, Priscila Marques Moura de; Campos, Vinicius Farias; Ourique, Aline; Guterres, Silvia S; Pohlmann, Adriana R; Basso, Andrea Cristina; Seixas, Fabiana Kömmling; Beck, Ruy Carlos Ruver; Collares, Tiago

    2015-12-01

    In vitro oocyte maturation (IVM) protocols can be improved by adding chemical supplements to the culture media. Tretinoin is considered an important retinoid in embryonic development and its association with lipid-core nanocapsules (TTN-LNC) represents an innovative way of improving its solubility, and chemical stability, and reducing its toxicity. The effects of supplementing IVM medium with TTN-LNC was evaluated by analyzing production of reactive oxygen species (ROS), S36-phosphorilated-p66Shc levels and caspase activity in early embryonic development, and expression of apoptosis and pluripotency genes in blastocysts. The lowest concentration tested (0.25μM) of TTN-LNC generated higher blastocyst rate, lower ROS production and S36-p66Shc amount. Additionally, expression of BAX and SHC1 were lower in both non-encapsulated tretinoin (TTN) and TTN-LNC-treated groups. Nanoencapsulation allowed the use of smaller concentrations of tretinoin to supplement IVM medium thus reducing toxic effects related with its use, decreasing ROS levels and apoptose frequency, and improving the blastocyst rates. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less

  16. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  17. Stress relaxation in pre-stressed aluminum core–shell particles: X-ray diffraction study, modeling, and improved reactivity

    DOE PAGES

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; ...

    2016-05-30

    Stress relaxation in aluminum micron-scale particles covered by alumina shell after pre-stressing by thermal treatment and storage was measured using X-ray diffraction with synchrotron radiation. Pre-stressing was produced by annealing Al particles at 573K followed by fast cooling. While averaged dilatational strain in Al core was negligible for untreated particles, it was measured at 4.40×10 -5 and 2.85×10 -5 after 2 and 48 days of storage. Consistently, such a treatment leads to increase in flame propagation speed for Al+CuO mixture by 37% and 25%, respectively. Analytical model for creep in alumna shell and stress relaxation in Al core-alumina shellmore » structure is developed and activation energy and pre-exponential multiplier are estimated. The effect of storage temperature and annealing temperature on the kinetics of stress relaxation was evaluated theoretically. These results provide estimates for optimizing Al reactivity with the holding time at annealing temperature and allowable time for storage of Al particles for various environmental temperatures.« less

  18. Modeling multidomain hydraulic properties of shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  19. Dual Salt- and Thermo-Responsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures.

    PubMed

    Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie

    2018-06-07

    Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.

  20. Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions

    PubMed Central

    Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.

    2013-01-01

    Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675

  1. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  2. A fluorescent immunoassay for the determination of procalcitonin and C-reactive protein

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Bolzoni, L.; Giannetti, A.; Porro, G.; Senesi, F.; Trono, C.

    2009-05-01

    The discrimination of viral and bacterial sepsis is an important issue in intensive care patients. For this purpose, the simultaneous measurements of different analytes such as C-reactive protein (CRP), procalcitonin (PCT), myeloperoxidase, interleukines and neopterin, are necessary. A novel optical platform was designed and realised for the implementation of fluorescence-based immunoassays. The core of the optical platform is a plastic biochip, formed by a series of microchannels each of them devoted to the determination of a single analyte. Sandwich assays for CRP and PCT spiked in serum were performed in order to demonstrate the reliability of a multi-array device.

  3. DYNAMIC AND STATIC PARAMETERS OF THE AQUEOUS HOMOGENEOUS ARMOUR RESEARCH REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrell, C.W.; McElroy, W.N.

    1959-06-01

    A brief description of the aqueous homogeneous Armour Research Reactor is given. The negative reactivity coefficient resulting from a temperature increase was determined over a fuel temperature range of 37 to 150 deg F. Possession of an accurately calibrated rod and temperature coefficient permitted a direct measurement of the void coefficient. The reactor was taken to different power levels, and from the calibrated rod the total reduction in excess reactivity was obtained. During the power increase program additional U/sup 235/ and water were added to the core to determine the worth of U/sup 235/ and water. (W.D.M.)

  4. Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)

    NASA Astrophysics Data System (ADS)

    Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.

    2017-12-01

    Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.

  5. Reduced Immunogenicity of Arabidopsis hgl1 Mutant N-Glycans Caused by Altered Accessibility of Xylose and core Fucose Epitopes*

    PubMed Central

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-01-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins. PMID:21478158

  6. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  7. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  8. Clinical and virological factors associated with hepatitis B virus reactivation in HBsAg-negative and anti-HBc antibodies-positive patients undergoing chemotherapy and/or autologous stem cell transplantation for cancer.

    PubMed

    Borentain, P; Colson, P; Coso, D; Bories, E; Charbonnier, A; Stoppa, A M; Auran, T; Loundou, A; Motte, A; Ressiot, E; Norguet, E; Chabannon, C; Bouabdallah, R; Tamalet, C; Gérolami, R

    2010-11-01

    We studied clinical outcome and clinico-virological factors associated with hepatitis B virus reactivation (HBV-R) following cancer treatment in hepatitis B virus surface antigen (HBsAg)-negative/anti-hepatitis B core antibodies (anti-HBcAb)-positive patients. Between 11/2003 and 12/2005, HBV-R occurred in 7/84 HBsAg-negative/anti-HBcAb-positive patients treated for haematological or solid cancer. Virological factors including HBV genotype, core promoter, precore, and HBsAg genotypic and amino acid (aa) patterns were studied. Patients presenting with reactivation were men, had an hepatitis B virus surface antibody (HBsAb) titre <100 IU/L and underwent >1 line of chemotherapy (CT) significantly more frequently than controls. All were treated for haematological cancer, 3/7 received haematopoietic stem cell transplantation (HSCT), and 4/7 received rituximab. Using multivariate analysis, receiving >1 line of CT was an independent risk factor for HBV-R. Fatal outcome occurred in 3/7 patients (despite lamivudine therapy in two), whereas 2/4 survivors had an HBsAg seroconversion. HBV-R involved non-A HBV genotypes and core promoter and/or precore HBV mutants in all cases. Mutations known to impair HBsAg antigenicity were detected in HBV DNA from all seven patients. HBV DNA could be retrospectively detected in two patients prior cancer treatment and despite HBsAg negativity. HBV-R is a concern in HBsAg-negative/anti-HBcAb-positive patients undergoing cancer therapy, especially in males presenting with haematological cancer, a low anti-HBsAb titre and more than one chemotherapeutic agent. HBV DNA testing is mandatory to improve diagnosis and management of HBV-R in these patients. The role of specific therapies such as rituximab or HSCT as well as of HBV aa variability deserves further studies. © 2009 Blackwell Publishing Ltd.

  9. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    NASA Astrophysics Data System (ADS)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  11. Electrical property sensing biopsy needle for prostate cancer detection.

    PubMed

    Mishra, V; Schned, A R; Hartov, A; Heaney, J A; Seigne, J; Halter, R J

    2013-11-01

    Significant electrical property differences have been demonstrated to exist between malignant and benign prostate tissues. We evaluated how well a custom designed clinically deployable electrical property sensing biopsy needle is able to discriminate between these tissue types in an ex vivo prostate model. An electrical impedance spectroscopy (EIS) sensing biopsy (Bx) needle was developed to record resistive (ρR) and reactive (ρX) components of electrical impedance from 100 Hz to 1 MHz. Standard twelve-core biopsy protocols were followed, in which the EIS-Bx device was used to gauge electrical properties prior to extracting tissue cores through biopsy needle firing from 36 ex vivo human prostates. Histopathological assessment of the cores was statistically compared to the impedance spectrum gauged from each core. The magnitudes of the mean resistive and reactive components were significantly higher in cancer tissues (P < 0.05). ROC curves showed that ρR at 63.09 kHz was optimal for discriminating cancer from benign tissues; this parameter had 75.4% specificity, 76.1% sensitivity, and ROC AUC of 0.779. Similarly, 251.1 kHz was optimal when using ρX to discriminate cancer from benign tissues; this parameter had a 77.9% specificity, 71.4% sensitivity, and ROC AUC of 0.79. Significant electrical property differences noted between benign and malignant prostate tissues suggest the potential efficacy an EIS-Bx device would provide for cancer detection in a clinical setting. By sensing a greater fraction of the prostate's volume in real-time, the EIS-Bx device has the potential to improve the accuracy of cancer grading and volume estimation made with current biopsy procedures. © 2013 Wiley Periodicals, Inc.

  12. Changing the chemical and physical properties of high valent heterobimetallic bis-(μ-oxido) Cu-Ni complexes by ligand effects.

    PubMed

    Kafentzi, Maria-Chrysanthi; Orio, Maylis; Réglier, Marius; Yao, Shenglai; Kuhlmann, Uwe; Hildebrandt, Peter; Driess, Matthias; Simaan, A Jalila; Ray, Kallol

    2016-10-12

    Two new heterobimetallic [LNiO 2 Cu(RPY2)] + (RPY2 = N-substituted bis 2-pyridyl(ethylamine) ligands with R = indane, 3a or R = Me, 3b) complexes have been spectroscopically trapped at low temperatures. They were prepared by reacting the mononuclear side-on LNi II superoxo precursor bearing a β-diketiminate ligand (L = [HC-(CMeNC 6 H 3 (iPr) 2 ) 2 ]) with the Cu(i) complexes. In contrast to the oxo groups in known high-valent [M 2 (μ-O) 2 ] n+ (M = Fe, Co, Ni, Cu) cores that display electrophilic reactivities, 3a and 3b display rather nucleophilic oxo cores active in aldehyde deformylation reactions. However, the spectroscopic and reactivity properties of 3a/3b are found to be distinct relative to that of the previously reported [LNiO 2 Cu(MeAN)] + complex containing a more basic (nucleophilic) N,N,N',N',N'-pentamethyl-dipropylenetriamine (MeAN) ligand at the copper centre. The geometry and electronic properties of the copper ligands affect the electron density of the oxygen atoms of the heterodinuclear {Ni(μ-O) 2 } core and 3a/3b undergo slower nucleophilic and faster electrophilic reactions than the previously reported [LNiO 2 Cu(MeAN)] + intermediate. The present study therefore demonstrates the tuning of the electrophilicity/nucleophilicity of the oxygen atoms of the heterobimetallic [Ni(μ-O) 2 Cu] 2+ cores by controlling the electron donation from the ancillary ligands, and underlines the significance of subtle electronic changes in the physical and chemical properties of the biologically relevant heterobimetallic metal-dioxygen intermediates.

  13. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  14. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina.

    PubMed

    Puls, R W; Blowes, D W; Gillham, R W

    1999-08-12

    A continuous hanging iron wall was installed in June, 1996, at the U. S. Coast Guard (USCG) Support Center near Elizabeth City, NC, United States, to treat overlapping plumes of chromate and chlorinated solvent compounds. The wall was emplaced using a continuous trenching machine whereby native soil and aquifer sediment was removed and the iron simultaneously emplaced in one continuous excavation and fill operation. To date, there have been seven rounds (November 1996, March 1997, June 1997, September 1997, December 1997, March 1998, and June 1998) of performance monitoring of the wall. At this time, this is the only full-scale continuous 'hanging' wall installed as a permeable reactive barrier to remediate both chlorinated solvent compounds and chromate in groundwater. Performance monitoring entails the following: sampling of 10-5 cm PVC compliance wells and 15 multi-level samplers for the following constituents: TCE, cis-dichloroethylene (c-DCE), vinyl chloride, ethane, ethene, acetylene, methane, major anions, metals, Cr(VI), Fe(II), total sulfides, dissolved H(2), Eh, pH, dissolved oxygen, specific conductance, alkalinity, and turbidity. Electrical conductivity profiles have been conducted using a Geoprobe to verify emplacement of the continuous wall as designed and to locate upgradient and downgradient wall interfaces for coring purposes. Coring has been conducted in November, 1996, in June and September, 1997, and March, 1998, to evaluate the rate of corrosion on the iron surfaces, precipitate buildup (particularly at the upgradient interface), and permeability changes due to wall emplacement. In addition to several continuous vertical cores, angled cores through the 0.6-m thick wall have been collected to capture upgradient and downgradient wall interfaces along approximate horizontal flow paths for mineralogic analyses.

  15. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  16. Template-Free Hydrothermal Synthesis, Mechanism, and Photocatalytic Properties of Core-Shell CeO2 Nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui

    2018-03-01

    CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.

  17. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  18. The Effects of Acute Stress on Core Executive Functions: A Meta-Analysis and Comparison with Cortisol

    PubMed Central

    Shields, Grant S.; Sazma, Matthew A.; Yonelinas, Andrew P.

    2016-01-01

    Core executive functions such as working memory, inhibition, and cognitive flexibility are integral to daily life. A growing body of research has suggested that acute stress may impair core executive functions. However, there are a number of inconsistencies in the literature, leading to uncertainty about how or even if acute stress influences core executive functions. We addressed this by conducting a meta-analysis of acute stress effects on working memory, inhibition, and cognitive flexibility. We found that stress impaired working memory and cognitive flexibility, whereas it had nuanced effects on inhibition. Many of these effects were moderated by other variables, such as sex. In addition, we compared effects of acute stress on core executive functions to effects of cortisol administration and found some striking differences. Our findings indicate that stress works through mechanisms aside from or in addition to cortisol to produce a state characterized by more reactive processing of salient stimuli but greater control over actions. We conclude by highlighting some important future directions for stress and executive function research. PMID:27371161

  19. Controlled Expansion of a Strong-Field Iron Nitride Cluster: Multi-Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity.

    PubMed

    Drance, Myles J; Mokhtarzadeh, Charles C; Melaimi, Mohand; Agnew, Douglas W; Moore, Curtis E; Rheingold, Arnold L; Figueroa, Joshua S

    2018-05-02

    Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the μ 4 -nitrido cluster [Fe 4 (μ 4 -N)(CO) 12 ] - , this analogy is limited owing to the electron-withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe 4 (μ 4 -N)(CO) 8 (CNAr Mes2 ) 4 ] - , an electron-rich analogue of [Fe 4 (μ 4 -N)(CO) 12 ] - , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main-group and transition-metal centers to yield unsaturated sites. The resulting clusters display surface-like reactivity through coordination-sphere-dependent atom rearrangement and metal-metal cooperativity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Future time orientation and temperament: exploration of their relationship to primary and secondary psychopathy.

    PubMed

    Bjørnebekk, Gunnar; Gjesme, Torgrim

    2009-08-01

    The present study combines Lykken's theory about the role of reward sensitivity and punishment insensitivity in the development of antisocial behavior with Gjesme's theory of future time orientation. 158 adolescents comprised a target group of 79 adolescents who had defined behavioral problems and a matched referential group of 79 adolescents who did not have notable behavioral problems. The results suggest that attributes related to primary psychopathy are associated with a relatively weak or hyporeactive behavioral inhibition system, behavioral approach reactivity, and low future time orientation. Moreover, attributes related to secondary psychopathy are related to an overly sensitive (hyper-reactive) behavioral approach system and low future time orientation. Robust positive associations for behavioral approach reactivity and low future time orientation with primary and secondary psychopathy suggest that high behavioral approach/low future time orientation may represent a core feature common to the two factors of psychopathy.

Top