Sample records for shutdown

  1. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  2. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  3. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  4. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  5. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  6. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  7. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  8. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  9. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  10. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  11. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  12. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  13. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  14. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  15. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  16. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  17. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  18. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  19. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  20. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  1. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction. 63.1111 Section 63.1111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and...

  2. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  3. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time.

    PubMed

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  4. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  5. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  6. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  7. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  8. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  9. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  10. Reactor shutdown experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cletcher, J.W.

    1995-10-01

    This is a regular report of summary statistics relating to recent reactor shutdown experience. The information includes both number of events and rates of occurence. It was compiled from data about operating events that were entered into the SCSS data system by the Nuclear Operations Analysis Center at the Oak ridge National Laboratory and covers the six mont period of July 1 to December 31, 1994. Cumulative information, starting from May 1, 1994, is also reported. Updates on shutdown events included in earlier reports is excluded. Information on shutdowns as a function of reactor power at the time of themore » shutdown for both BWR and PWR reactors is given. Data is also discerned by shutdown type and reactor age.« less

  11. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  12. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  13. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  14. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  15. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  16. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  17. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  18. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  19. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  20. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  1. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  2. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  3. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  4. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  5. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  6. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  7. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  8. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  9. Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting

    NASA Astrophysics Data System (ADS)

    Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.

    2002-01-01

    The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase took approximately 22 seconds, and the shutdown sputtering phase took approximately 32 seconds. Results from the experiment were correlated with the Boeing ISS vent plume model.

  10. Defense.gov Special Report: Government Shutdown

    Science.gov Websites

    reached. Government shutdown avoided. Business as usual for all DOD employees. Deal Averts Shutdown Continuing Resolution (PDF) Deputy Secretary Lynn Message OMB Director Memo to Agencies (PDF) DOD Contingency

  11. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor rectifier must have a high temperature alarm or shutdown, except as provided in § 111.33-11. ...

  12. The 2013 US Government Shutdown (#Shutdown) and health: an emerging role for social media.

    PubMed

    Merchant, Raina M; Ha, Yoonhee P; Wong, Charlene A; Schwartz, H Andrew; Sap, Maarten; Ungar, Lyle H; Asch, David A

    2014-12-01

    In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, "We're sorry, but we will not be tweeting or responding to @replies during the shutdown. We'll be back as soon as possible!" These "last tweets" and the millions of responses they generated revealed social media's role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health.

  13. 40 CFR 63.1354 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup, shutdown, and... report. Reports shall only be required if a startup, shutdown, or malfunction occurred during the...

  14. The 2013 US Government Shutdown (#Shutdown) and Health: An Emerging Role for Social Media

    PubMed Central

    Ha, Yoonhee P.; Wong, Charlene A.; Schwartz, H. Andrew; Sap, Maarten; Ungar, Lyle H.; Asch, David A.

    2014-01-01

    In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, “We’re sorry, but we will not be tweeting or responding to @replies during the shutdown. We’ll be back as soon as possible!” These “last tweets” and the millions of responses they generated revealed social media’s role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health. PMID:25322303

  15. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  16. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  17. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  18. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  19. 40 CFR 52.1183 - Visibility protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excess emissions that occurs during startups, shutdowns, and malfunctions of the unit, the nature and... that occurs during startups, shutdowns, and malfunctions of the unit, the nature and cause of any... startup, shutdown, and malfunction. (viii) All CEMS required by this section must meet the minimum data...

  20. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  1. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  2. 76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  3. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  4. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...

  5. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...

  6. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  7. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  8. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  9. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  10. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  11. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  12. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  13. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  14. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  15. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  16. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  17. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  18. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  19. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  20. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  1. 77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  2. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  3. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  4. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  5. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  6. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  7. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information... requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and malfunction report if...

  8. 78 FR 20855 - State Implementation Plans: Response to Petition for Rulemaking; Findings of Substantial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... SIP Calls To Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... SIP Calls to Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and Malfunction...

  9. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  10. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  11. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  12. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  13. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  14. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  15. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  16. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  17. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  18. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  19. 40 CFR 63.1367 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of subpart A of this part. (3) Startup, shutdown, and malfunction plan. The owner or operator of an affected source shall develop a written startup, shutdown, and malfunction plan as specified in § 63.6(e)(3... during periods of startup, shutdown, and malfunction and a program for corrective action for a...

  20. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  1. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  2. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...

  3. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  4. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  5. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  6. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...

  7. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  8. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  9. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  10. 76 FR 20707 - Notice of Possible Shutdown of Investigative Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... receives funding and the period of the shutdown ends, all schedules will resume starting with the day on... if the Commission resumes operations by April 14, 2011. Should the shutdown not end before April 14.... The Commission's World Wide Web site, at http://www.usitc.gov , will be updated to the extent...

  11. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...

  12. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  13. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  14. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  15. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...

  16. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  17. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...

  18. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...

  19. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...

  20. 40 CFR 63.9040 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to you. This includes periods of startup, shutdown, and malfunction. These instances are deviations... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations...

  1. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  2. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...

  3. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  4. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  5. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup...-Emission Limitations and Operating Limits § 60.2685 What happens during periods of startup, shutdown, and... startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3 hours. Effective Date...

  6. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  7. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  8. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include... you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and...

  9. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  10. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  11. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  12. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  13. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  14. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  15. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  16. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  17. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  18. 77 FR 69507 - Proposed Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...

  19. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  20. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  1. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  2. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  3. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...

  4. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  5. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  6. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  7. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  8. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  9. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  10. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  11. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  12. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  13. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  14. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  15. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  16. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...

  17. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  18. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  19. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  20. Defense.gov Special Report: Government Shutdown - What You Need to Know

    Science.gov Websites

    Department is taking to plan for a possible government shutdown. Document Plan for Agency Operations During agencies should plan for a potential shutdown. Document Guidance for Continuation of Operations in The Contingency Plan Guidance for Continuation of Essential Operations in the Absence of Available Appropriations

  1. 75 FR 48283 - Liability for Termination of Single-Employer Plans; Treatment of Substantial Cessation of Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... self- reporting of events that PBGC now learns of only through its own investigations and may enable... to retire sooner upon learning of a shutdown that would eliminate her job, the separation would be the result of the shutdown; whereas if (before learning of the shutdown) she had been planning to...

  2. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  3. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  4. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  5. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  6. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  7. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  8. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  9. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  10. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  11. 40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  12. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  13. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  14. 40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  15. 40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  16. 40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  17. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  18. 40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  19. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  20. Rigorous-two-Steps scheme of TRIPOLI-4® Monte Carlo code validation for shutdown dose rate calculation

    NASA Astrophysics Data System (ADS)

    Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime

    2017-09-01

    After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.

  1. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  2. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  3. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.

    PubMed

    Tejima, Hajime; Nishigaki, Masahide; Fujita, Yasuyuki; Matsumoto, Akihiro; Takeda, Nobuo; Takaoka, Masaki

    2007-01-01

    Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.

  4. CONTROL RODS FOR NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-01-16

    A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less

  5. Experiments in DIII-D Toward Achieving Rapid Shutdown with Runaway Electron Suppression

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.

    2009-11-01

    For safe discharge shutdown in future large tokamaks in the event of an unavoidable disruption, it is important to develop rapid (˜ several ms)shutdown methods to avoid large runaway electron currents, which pose a serious threat to plasma facing components. Prevention of runaway current formation has been proposed by either increasing electron-electron collisionality with massive particle injection, or magnetically by using externally applied non-axisymmetric fields to increase radial diffusive losses of a runaway seed population. Experiments studying both approaches have been pursued in the DIII-D tokamak. For collisional suppression, three different rapid shutdown methods are being investigated: massive gas injection, massive shattered cryogenic pellet injection, and polystyrene shell pellet injection. First-of-kind demonstrations of fast shutdowns were produced by 3000 Torr-l (0.8-g) shattered D2 pellets and large, 10-mm diameter, 0.3-g polystyrene shell pellets filled with boron powder. The application of external magnetic perturbations shows promising preliminary results in suppressing seed runaway electrons, although lack of repeatability in the runaway seed term made these results challenging to interpret. Experiments have been performed to help understand how runaways form and are transported during rapid shutdown. These experiments confirm that the commonly used 0D loop voltage + Dreicer evaporation picture of runaway seed formation is not applicable here, with relativistic E > 0.5,MeV electrons forming before any external loop voltage appears. Present applications of 0D, 1D, and 2D models to the rapid shutdown and runaway confinement experiments, as well as preliminary extrapolations to ITER, will be discussed.

  6. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sitesmore » An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 13 shutdown sites use designs from 4 different suppliers involving 11 different (horizontal and vertical) dry storage systems that would require the use of 9 different transportation cask designs to remove the SNF and GTCC waste from the shutdown sites. Although some changes to transportation certificates of compliance will be required, the SNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in dual purpose dry storage canisters that can be transported, including a small amount of high-burnup fuel. Most sites indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. Some sites could be ready in less time. As additional sites such as Fort Calhoun, Clinton, Quad Cities, Pilgrim, Oyster Creek, and Diablo Canyon shut down, these sites will be included in updates to the evaluation.« less

  7. Static Stress Transfers Causes Delayed Seismicity Shutdown

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.; Cochran, E. S.

    2015-12-01

    It has been long debated what role static stress changes play in the enhancement and suppression of seismicity in the near-field region of large earthquakes. While numerous observations have correlated earthquake triggering and elevated seismicity rates with regions of increased Coulomb failure stress (CFS), observations of seismic quiescence in stress shadow regions are more controversial. When observed, seismicity shutdowns are often delayed by days to months following a negative stress perturbation. Some studies propose that the delay in the seismic shutdown can be caused by rupture promoting failure on one fault type while suppressing activity on another; thus the observed seismicity reflects the weighted contribution of the two faulting populations. For example, it was noted that in the 75 years following the 1906 San Francisco earthquake, strike-slip faulting earthquakes were inhibited, while thrust faulting events were promoted. However, definitive observations supporting this delayed shutdown mechanism are rare. In this study, we report seismicity rate increases and decreases that correlate with regions of Coulomb stress transfer, and show observations of a delayed shutdown in the Yuha Desert, California. We use a Coulomb stress change model coupled with a rate-and state- earthquake model to show that the delay in the shutdown is due to the combined changes in the rates of normal and strike-slip faulting events following the 2010 M5.72 Ocotillo aftershock of the 2010 El Mayor-Cucapah earthquake.

  8. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks

    USGS Publications Warehouse

    Tiedeman, Claire; Lacombe, Pierre J.; Goode, Daniel J.

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  9. Startup, Shutdown, & Malfunction (SSM) Emissions

    EPA Pesticide Factsheets

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  10. NUMBER AND TYPE OF OPERATING CYCLES FOR THE FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, D. C.

    1969-05-15

    The choice of materials and other vessel design decisions necessary to provide the desired life expectancy for the FTR vessel are partially dependent upon estimates of the number and type of reactor shutdowns and startups which may be anticipated. Current estimates of these so-called "cycles" are given, including scram frequency, experimental outage frequency, standard shutdowns and startups, and rapid controlled shutdowns. Also discussed are abnormal heatup or cooldown, and tentative goals for temperature controls. MTR, ETR, and typical PRTR operating histories are tabulated.

  11. Task 4 completion report for 40 Kilowatt grid connected modification contract

    NASA Technical Reports Server (NTRS)

    Vogt, J. H.

    1983-01-01

    Startup, operation in grid connect mode, shutdown from grid connects, operation in isolated mode, shutdown from isolated mode, steady state operation, mode transfers, and voltage disconnects are addressed.

  12. 75 FR 33220 - Extension of Public Comment Period for Proposed Rule on the Approval and Promulgation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...; Excess Emissions During Startup, Shutdown, Maintenance, and Malfunction Activities AGENCY: Environmental...; Texas; Excess Emissions During Startup, Shutdown, Maintenance, and Malfunction Activities.'' As...

  13. Startup, Shutdown, & Malfunction (SSM) Emissions at Industrial Facilities

    EPA Pesticide Factsheets

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  14. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  15. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  16. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    NASA Astrophysics Data System (ADS)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  17. Dioxins from medical waste incineration: Normal operation and transient conditions.

    PubMed

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  18. Improved refractory performance through partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linck, F.E.; Peters, D.

    1995-12-31

    From the early designs and construction of Circulating Fluidized Bed (CFB) boilers, many improvements have been made based upon observations of performance. Included in these improvements have been the refractory linings. The early refractory linings were subjected to extreme fluctuations in temperatures as the units experienced up and down conditions. As the designs were improved refractory failures were mostly due to the operating conditions and other mechanical stresses rather than continual shutdowns and startups. More recent problems observed with refractory linings are localized areas of high erosion, corrosion and cracking which result in hot spots and eventual shutdowns for repair.more » Today the objective of refractory suppliers and installers is to strive towards planned shutdowns rather than emergency shutdowns. This can be accomplished through partnerships between operations, material suppliers and installers. In essence, the concept is a cooperative effort between these groups to solve the variety of refractory problems in order to achieve longer refractory lining performance and less chance for emergency shutdowns. The reliability of the refractory lining is dependent on the successful combination of the material selected, proper design and the installation of the refractory material. Where these three elements combine, the lining has the best chance of performing its intended purpose.« less

  19. 40 CFR 63.6105 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to you at all times except during startup, shutdown, and malfunctions. (b) If you must comply with... times including during startup, shutdown, and malfunction. Testing and Initial Compliance Requirements ...

  20. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  1. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  2. 40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...

  3. 40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...

  4. 40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...

  5. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  6. 78 FR 18564 - Reserve Forces Policy Board (RFPB); Notice of Cancellation and Rescheduling of Federal Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ....m. in the Pentagon. Due to weather conditions and a federal government shutdown, the scheduled March... weather conditions and a federal government shutdown, the scheduled March 6, 2013 Board meeting is...

  7. 40 CFR 63.6105 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...

  8. 40 CFR 63.6105 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...

  9. 40 CFR 63.6105 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...

  10. 40 CFR 63.11496 - What are the standards and compliance requirements for process vents?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...

  11. 40 CFR 63.11496 - What are the standards and compliance requirements for process vents?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...

  12. 40 CFR 63.11496 - What are the standards and compliance requirements for process vents?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...

  13. 40 CFR 63.9610 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section at all times, except during periods of startup, shutdown, and malfunction. The terms startup... develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). [68...

  14. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  15. Confirmation of shutdown cooling effects

    NASA Astrophysics Data System (ADS)

    Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-01

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  16. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less

  17. Study on regional air quality impact from a chemical plant emergency shutdown.

    PubMed

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-06-01

    Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  19. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  20. Despite the Shutdown, Rescheduled NIH Research Festival Brings Science to the Forefront | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer Although it was delayed by almost a month because of the federal shutdown, the NIH Research Festival still took place at the NIH Clinical Center in Bethesda, Md., and attendance was high.

  1. Effect of the Online Game Shutdown Policy on Internet Use, Internet Addiction, and Sleeping Hours in Korean Adolescents.

    PubMed

    Choi, Jiyun; Cho, Hyunseok; Lee, Seungmin; Kim, Juyeong; Park, Eun-Cheol

    2018-05-01

    Internet addiction has emerged as a major public health problem worldwide. In November 2011, the South Korean government implemented an online game shutdown policy, lasting from 12:00 to 6:00 am, as a means of preventing Internet addiction in adolescents aged 15 or below. This study analyzed the effect of this shutdown policy on adolescent Internet use, addiction, and sleeping hours. We analyzed data collected from the Korea Youth Risk Behavior Web-based Survey from 2011 to 2015. Respondents were divided into two groups by age: aged 15 or below (male = 76,048, female = 66,281) and aged 16 or above (male = 52,568, female = 49,060). A difference-in-difference analysis was used to evaluate the effect of this shutdown policy. In 2012, which is immediately following policy enforcement, daily amount of Internet use (in minutes) decreased more in adolescents affected by the policy (i.e., the aged 15 or below group). However, it steadily increased in 2013, 2014, 2015, and showed no meaningful long-term improvements 4 years after policy implementation (-3.648 minutes in 2012 [p = .001], -3.204 minutes in 2013 [p = .011], -1.140 minutes in 2014 [p = .384], and 2.190 minutes in 2015 [p = .107]). The shutdown policy did not alter Internet addiction or sleeping hours. Interestingly, female adolescents, adolescents with low academic performance, and adolescents with low exercise levels exhibited comparatively stronger and longer lasting initial declines in Internet usage. The shutdown policy had practically insignificant effects in reducing Internet use for target adolescents. Thus, policymakers aiming to reduce or prevent Internet addiction should use different strategies. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  3. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  4. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  5. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  6. 46 CFR 63.15-7 - Alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...

  7. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  8. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  9. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  10. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  11. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  12. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  13. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  14. Fermilab | Science

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter

  15. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  16. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  17. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  18. 40 CFR 63.1354 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owner or operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup... information in a semiannual report. Reports shall only be required if a startup, shutdown, or malfunction...

  19. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excluded from the calculation of average emission rates because of startup, shutdown, malfunction (NOX only... than startup, shutdown, malfunction, or emergency conditions. (6) Identification of “F” factor used for calculations, method of determination, and type of fuel combusted. (7) Identification of times when hourly...

  20. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  1. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  2. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila.

    PubMed

    Olivieri, Daniel; Senti, Kirsten-André; Subramanian, Sailakshmi; Sachidanandam, Ravi; Brennecke, Julius

    2012-09-28

    In animal gonads, PIWI proteins and their bound 23-30 nt piRNAs guard genome integrity by the sequence specific silencing of transposons. Two branches of piRNA biogenesis, namely primary processing and ping-pong amplification, have been proposed. Despite an overall conceptual understanding of piRNA biogenesis, identity and/or function of the involved players are largely unknown. Here, we demonstrate an essential role for the female sterility gene shutdown in piRNA biology. Shutdown, an evolutionarily conserved cochaperone collaborates with Hsp90 during piRNA biogenesis, potentially at the loading step of RNAs into PIWI proteins. We demonstrate that Shutdown is essential for both primary and secondary piRNA populations in Drosophila. An extension of our study to previously described piRNA pathway members revealed three distinct groups of biogenesis factors. Together with data on how PIWI proteins are wired into primary and secondary processing, we propose a unified model for piRNA biogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Antarctic Projects Stymied by the Shutdown

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-10-01

    The U.S. federal government shutdown coincided with the beginning of the Antarctic austral summer research window, and many scientists told Eos they are deeply concerned about the impacts on research there. John Priscu, a lead principal investigator with the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project in West Antarctica, said the government shutdown "threw us a curve that I did not anticipate or plan for." Pricsu, who has spent 30 seasons working in Antarctica under federal funding, said that a hole in the project's long-term data set "will have a major impact on the models we are developing to examine climate-induced changes" in Antarctic ecosystems.

  4. Safety shutdown separators

    DOEpatents

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  5. 10 CFR 50.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...

  6. 10 CFR 50.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...

  7. 10 CFR 50.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...

  8. 10 CFR 50.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...

  9. 47 CFR 95.628 - MedRadio transmitters in the 413-419 MHz, 426-432 MHz, 438-444 MHz, and 451-457 MHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transmitters shall incorporate a programmable means to implement a system shutdown process in the event of... transmitters shall incorporate a programmable means to implement a system shutdown process in the event of...

  10. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  11. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  12. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  13. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  14. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  15. Fermilab | Contact Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter

  16. Fermilab | About Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram

  17. Fermilab | About Fermilab

    Science.gov Websites

    news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark energy ADMX discoveries Questions for the universe Ask a scientist Tevatron Tevatron Timeline Tevatron accelerator Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book

  18. Fermilab | Tevatron | Interactive Timeline

    Science.gov Websites

    Process Looking Ahead For the Media Video of Shutdown Event Guest Book TevatronImpact June 11, 2012 About the Symposium Symposium Agenda Travel & Lodging List of Registrants Organizing Committee Follow in the News Quantum Diaries Tevatron Home Looking Ahead For the Media Shutdown Event Previous Next

  19. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES National Emission Standards for Coke Oven Batteries § 63.310 Requirements for startups, shutdowns... or operator shall operate and maintain the coke oven battery and its pollution control equipment... operator of a coke oven battery shall develop, according to paragraph (c) of this section, a written...

  20. 46 CFR 153.296 - Emergency shutdown stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...

  1. Fermilab | Visit Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book check on holiday hours or check the Lederman Science Center website. Groups of six or more must book a

  2. Fermilab | Resources for

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For

  3. Fermilab | Contact Fermilab | Email Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book , Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact

  4. Fermilab | Tevatron | Shutdown Process

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For

  5. 40 CFR 63.1590 - What reports must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...

  6. 40 CFR 60.11 - Compliance with standards and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (meaning those fugitive-type emission sources subject only to an opacity standard). (c) The opacity standards set forth in this part shall apply at all times except during periods of startup, shutdown... startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and...

  7. 40 CFR 63.7555 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...

  8. 40 CFR 63.7555 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...

  9. 40 CFR 63.9050 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...

  10. 40 CFR 63.7555 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...

  11. 40 CFR 63.1590 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...

  12. 40 CFR 63.9050 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...

  13. 40 CFR 63.9050 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...

  14. 40 CFR 63.9050 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...

  15. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...

  16. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...

  17. 40 CFR 63.102 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... subpart G of this part apply. However, if a start-up, shutdown, malfunction or period of non-operation of... part during the start-up, shutdown, malfunction or period of non-operation. For example, if there is an...

  18. Combustion stability analysis of preburners in liquid propellant rocket engines during shutdown

    NASA Technical Reports Server (NTRS)

    Lim, Kair-Chuan; George, Paul E., II

    1987-01-01

    A linearized one-dimensional lumped-parameter model capable of predicting the occurrence of the low frequency combustion instability (chugging) experienced during preburner shutdown in the Space Shuttle Main Engines is discussed, and predictions are compared with NASA experimental results. Results from a parametric study of parameters including chamber pressure, fuel and oxygen temperatures, and the effective bulk modulus of the liquid oxidizer suggest that chugging is probably affected by conditions at shutdown through the fuel and oxidizer temperatures. It is suggested that chugging is initiated when the fuel, oxidizer, and helium temperature and flow rates pass into an unstable region, and that chugging may be terminated by decaying pressures.

  19. 78 FR 23696 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... longitudinal main rotor actuator piston after shut-down of the external pump drive, during rigging of the main... rotor controls, of movement of the longitudinal main rotor actuator piston after shut-down of the external pump drive. Such movement could cause incorrect rigging results. The proposed actions are intended...

  20. 40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...

  1. 25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... production of oil and/or gas has been demonstrated to the satisfaction of the Superintendent. Lessee shall... the means by which the well bore is to be protected, and the contemplated eventual disposition of the...

  2. A 100 kW experimental wind turbine: Simulation of starting, overspeed, and shutdown characteristics

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.

    1976-01-01

    The ERDA/NASA 100 kW experimental wind turbine is modeled on a digital computer in order to study the performance of a wind turbine under operating conditions. Simulation studies of starting, overspeed, and shutdown performance were made. From these studies operating procedures, precautions, and limitations are prescribed.

  3. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  4. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  5. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...On June 28, 2013, the GPU Nuclear Inc. (GPUN) submitted its Post Shutdown Decommissioning Activity Report (PSDAR) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's proposed decommissioning activities, schedule, and costs for TMI-2. The NRC is requesting public comments on the PSDAR.

  6. Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germer, J.H.; Peterson, L.F.; Kluck, A.L.

    1980-09-01

    The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.

  7. 78 FR 19540 - Dominion Energy Kewaunee, Inc., Kewaunee Power Station Post-Shutdown Decommissioning Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... (KPS) Post-Shutdown Decommissioning Activities Report (PSDAR), Revision 0, on Wednesday, April 24, 2013... Management System (ADAMS) Accession No. ML13058A065. In a prior communication on November 2, 2012 (ADAMS... at KPS pending completion of a grid stability review by the Midwest Independent Transmission System...

  8. Impact of Government Shutdown on Child Care and Early Education Programs

    ERIC Educational Resources Information Center

    Center for Law and Social Policy, Inc. (CLASP), 2013

    2013-01-01

    Congress did not enact a continuing resolution bill by midnight September 30, 2013, thereby triggering a partial government shutdown effective October 1, 2013. October 1 began the federal fiscal year 2014. Most discretionary programs, those that are subject to the annual Congressional appropriations process, will not receive 2014 funding. Most,…

  9. 76 FR 57900 - Airworthiness Directives; WYTWORNIA SPRZETU KOMUNIKACYJNEGO (WSK) “PZL-RZESZOW”-SPOLKA AKCYJNA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for... describes the unsafe condition as: An uncommanded engine in-flight shutdown of a PZL-10W has been recently reported. The investigation has shown that the uncommanded engine in-flight shutdown was due to excessive...

  10. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Science.gov Websites

    Navbar Toggle Search Search Home About Science Jobs Contact Phone Book Newsroom Newsroom News and Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram Google

  11. 40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...

  12. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting in § 63.6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report....6010(b), unless you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup...

  13. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  14. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  15. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  16. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...

  17. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  18. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting in § 63.6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report....6010(b), unless you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup...

  19. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  20. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  1. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  2. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  3. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...

  4. 40 CFR 63.1211 - What are the recordkeeping and reporting requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...

  5. 40 CFR 63.1211 - What are the recordkeeping and reporting requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...

  6. 40 CFR 63.1211 - What are the recordkeeping and reporting requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...

  7. 40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable emission limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  8. 40 CFR 63.1211 - What are the recordkeeping and reporting requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...

  9. 40 CFR 63.1211 - What are the recordkeeping and reporting requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...

  10. 40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments within a... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  11. 40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable emission limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  12. 40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments within a... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  13. Preventing the Shut-Down: Embodied Critical Care in a Teacher Educator's Practice

    ERIC Educational Resources Information Center

    Trout, Muffet; Basford, Letitia

    2016-01-01

    This article explores the practice of one teacher educator to understand how she mitigates student resistance to prevent what we call "the shut-down" when teaching mostly White students about systemic forms of oppression. Engaging students in conversations about oppression does not in itself disrupt systems of power and privilege in…

  14. 46 CFR 38.15-20 - Remote shutdowns-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...

  15. 46 CFR 38.15-20 - Remote shutdowns-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...

  16. 46 CFR 38.15-20 - Remote shutdowns-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...

  17. 46 CFR 38.15-20 - Remote shutdowns-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...

  18. 46 CFR 38.15-20 - Remote shutdowns-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...

  19. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    NASA Astrophysics Data System (ADS)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  20. Self-actuated shutdown system for a commercial size LMFBR. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility andmore » reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power.« less

  1. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  2. Emission characteristics and vapour/particulate phase distributions of PCDD/F in a hazardous waste incinerator under transient conditions

    PubMed Central

    Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2018-01-01

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821

  3. Type and timing of childhood maltreatment and severity of shutdown dissociation in patients with schizophrenia spectrum disorder.

    PubMed

    Schalinski, Inga; Teicher, Martin H

    2015-01-01

    Dissociation, particularly the shutting down of sensory, motor and speech systems, has been proposed to emerge in susceptible individuals as a defensive response to traumatic stress. In contrast, other individuals show signs of hyperarousal to acute threat. A key question is whether exposure to particular types of stressful events during specific stages of development can program an individual to have a strong dissociative response to subsequent stressors. Vulnerability to ongoing shutdown dissociation was assessed in 75 inpatients (46 M/29 F, M = 31 ± 10 years old) with schizophrenia spectrum disorder and related to number of traumatic events experienced or witnessed during childhood or adulthood. The Maltreatment and Abuse Chronology of Exposure (MACE) scale was used to collect retrospective recall of exposure to ten types of maltreatment during each year of childhood. Severity of shutdown dissociation was related to number of childhood but not adult traumatic events. Random forest regression with conditional trees indicated that type and timing of childhood maltreatment could predictably account for 31% of the variance (p < 0.003) in shutdown dissociation, with peak vulnerability occurring at 13-14 years of age and with exposure to emotional neglect followed by various forms of emotional abuse. These findings suggest that there may be windows of vulnerability to the development of shutdown dissociation. Results support the hypothesis that experienced events are more important than witnessed events, but challenge the hypothesis that "life-threatening" events are a critical determinant.

  4. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    USGS Publications Warehouse

    Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  5. COS FUV Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 19 Proposal 12718.

  6. COS FUV Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a safe and conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 20 Proposal 13129.

  7. 40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  8. 40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  9. 40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  10. 40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  11. 40 CFR Table 10 to Subpart Ddddd... - Applicability of General Provisions to Subpart DDDDD

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for SSM and startup, shutdown, malfunction plan; and content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM Comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based on...

  12. 40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  13. 40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  14. 40 CFR Table 10 to Subpart Ddddd... - Applicability of General Provisions to Subpart DDDDD

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for SSM and startup, shutdown, malfunction plan; and content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM Comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based on...

  15. 40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  16. 40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...

  17. 40 CFR 63.3930 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... record of whether the deviation occurred during a period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records... part 51 for a PTE and has a capture efficiency of 100 percent, as specified in § 63.3965(a). (5) For...

  18. 40 CFR 63.4130 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records required to show continuous compliance with each... of 100 percent, as specified in § 63.4165(a). (5) For each capture system that is not a PTE, the data...

  19. 40 CFR 63.4930 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... record of whether the deviation occurred during a period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records... part 51 for a PTE and has a capture efficiency of 100 percent, as specified in § 63.4964(a). (5) For...

  20. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  1. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  2. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  3. Fermilab | Tritium at Fermilab | Tritium released into the air and disposed

    Science.gov Websites

    Science Jobs Contact Phone Book Newsroom Newsroom News and features Press releases Photo gallery Fact Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry

  4. 40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...

  5. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  6. 40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...

  7. 40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...

  8. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  9. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  10. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  11. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  12. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  13. 40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...

  14. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  15. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  16. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet each emission limitation in § 63.8190 that applies to you. This includes periods of startup... standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and malfunction. (3... range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1...

  17. 40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...

  18. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  19. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  20. 40 CFR 63.10032 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...

  1. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pewitt, E.G.

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  3. 40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  4. 40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  5. 40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  6. 40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  7. 40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  8. 40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  9. 40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  10. 40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  11. 40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  12. 40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...

  13. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  14. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  15. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  16. Are Bad Schools Immortal? The Scarcity of Turnarounds and Shutdowns in Both Charter and District Sectors

    ERIC Educational Resources Information Center

    Stuit, David A.

    2010-01-01

    This study investigates the successes of the charter and district sectors in eliminating bad schools via dramatic turnarounds in performance and/or shutdowns. It identified 2,025 low-performing charter and district schools across ten states, each of which is home to a sizable number of charter schools. These particular schools were tracked from…

  17. 76 FR 74832 - Entergy Nuclear Indian Point Unit 2, LLC; Entergy Nuclear Indian Point Unit 3, LLC; Entergy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... hot shutdown for fire areas in which both trains of safe-shutdown cables or equipment are located in... proposed action. The staff has concluded that such actions would not adversely affect the environment. The... case. This exemption request will not have a significant effect on the environment, as the largest...

  18. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOEpatents

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  19. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, B.; Stern, W.; Colley, J.

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less

  20. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.J.

    1997-05-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less

  1. Design of automatic startup and shutdown logic for a Brayton-cycle 2- to 15-kilowatt engine

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.; Bainbridge, R. C.

    1975-01-01

    The NASA Lewis Research Center is conducting a closed-Brayton-cycle power conversion system technology program in which a complete power system (engine) has been designed and demonstrated. This report discusses the design of automatic startup and shutdown logic circuits as a modification to the control system presently used in this demonstration engine. This modification was primarily intended to make starting the engine as simple and safe as possible and to allow the engine to be run unattended. In the modified configuration the engine is started by turning the control console power on and pushing the start button after preheating the gas loop. No other operator action is required to effect a complete startup. Shutdown, if one is required, is also effected by a simple stop button. The automatic startup and shutdown of the engine have been successfully and purposefully demonstrated more than 50 times at the Lewis Research Center during 10,000 hours of unattended operation. The net effect of this modification is an engine that can be safely started and stopped by relatively untrained personnel. The approach lends itself directly to remote unattended operation.

  2. Government Shutdown: Operations of Department of Defense During a Lapse in Appropriations

    DTIC Science & Technology

    2011-04-01

    proactive in working with creditors to reschedule debt repayments under these circumstances… c. Military personnel: During a shutdown of DoD activities due...creditors to reschedule debt repayments under these circumstances. The key point that both the creditor and the soldier should remember is that the...including Uniformed Services Treatment Facilities) including doctors, nurses , medical technicians, dentists, and essential support personnel (cooks

  3. Smart Shutdown Guidebook: Considerations for a Successful Shutdown

    DTIC Science & Technology

    2014-01-01

    multiple countries, multiple contractors) or in number of subsystems and interfaces • State of the contract (is the procuring contract officer ( PCO ...assigned tasks. • Includes the procuring, administrative, and terminating contracting officers ( PCOs , ACOs, and TCOs). 6 • Assigns full authority and...assist the PCO and TCO with their correspondence requirements with contractors and to assist higher leadership in its communication with external

  4. Shutdown of the Federal Government: Causes, Processes, and Effects

    DTIC Science & Technology

    2013-09-25

    has an ability to borrow to finance its obligations. As a result, the federal government would need to rely solely on incoming revenues to finance...loss of tourism revenues to local communities; and closure of national museums and monuments (reportedly with an estimated loss of 2 million...Shutdown of the Federal Government : Causes, Processes, and Effects Congressional Research Service 16 revenues and “carryover” funds from

  5. 40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...

  6. 40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...

  7. 40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...

  8. 40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...

  9. 40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...

  10. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs of § 63.5 as listed below. § 63.5(c) [Reserved] § 63.5(d)(1)(ii)(H) Application for approval Type... maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f)-(g) Compliance with nonopacity...

  11. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paragraphs of § 63.5 as listed below. § 63.5(c) [Reserved] § 63.5(d)(1)(ii)(H) Application for approval Type... maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f)-(g) Compliance with nonopacity...

  12. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient.

    PubMed

    Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2016-04-01

    Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. The mechanisms responsible for dysregulated fibrinolysis following injury remain uncertain. Animal work suggests hypoperfusion promotes fibrinolysis, while tissue injury inhibits fibrinolysis. Clinical experience is consistent with these observations. The predominant mediator of postinjury hyperfibrinolysis appears to be tissue plasminogen activator (tPA) released from ischemic endothelium. The effects of tPA are accentuated by impaired hepatic clearance. Fibrinolysis shutdown, on the other hand, may occur from inhibition of circulating tPA, enhanced clot strength impairing the binding of tPA and plasminogen to fibrin, or the inhibition of plasmin. Plasminogen activator inhibitor -1 (PAI-1) binding of circulating tPA appears to be a major mechanism for postinjury shutdown. The sources of PAI-1 include endothelium, platelets, and organ parenchyma. The laboratory identification of fibrinolysis phenotype, at this moment, is best determined with viscoelastic hemostatic assays (TEG, ROTEM). While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or ROTEM. © 2016 AABB.

  13. Method for conducting electroless metal-plating processes

    DOEpatents

    Petit, George S.; Wright, Ralph R.

    1978-01-01

    This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.

  14. Past Government Shutdowns: Key Resources

    DTIC Science & Technology

    2013-11-25

    R41759 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour ...effects of a hypothetical three-day shutdown during a nonholiday workweek . House and Senate Committee Prints and Hearings Committee Prints The ...Attorney General from 1979 to 1981. 4 The opinions stated that, with some exceptions, the head of an agency could avoid violating the Antideficiency Act

  15. Controlled shutdown of a fuel cell

    DOEpatents

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  16. The FY2014 Government Shutdown: Economic Effects

    DTIC Science & Technology

    2013-11-01

    caused a decline in consumer, business, or investor confidence, it could have led consumers and businesses to postpone or cancel spending decisions...Even if lawmakers come to terms roughly as expected , political vitriol and repeated threats to shut government or not pay its bills have weighed...growth.14 Most forecasts taken before the shutdown expected a moderate pace of growth in the fourth quarter, and forecasters projected a slightly more

  17. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    DTIC Science & Technology

    2014-10-09

    material. • Hi-Fog and emergency shutdowns – the Pilot House (SCC) has been designated as the main fire control station per ACCU. For this reason, the...decision. In addition, because of the ACCU designation , other required emergency shutdowns will also be located at the SCC. These include remote...3 • Foc’sle Deck Joiner & HVAC – Additional joiner work taking place and several large HVAC duct runs installed

  18. Identification of a Hyphantria cunea nucleopolyhedrovirus (NPV) gene that is involved in global protein synthesis shutdown and restricted Bombyx mori NPV multiplication in a B. mori cell line.

    PubMed

    Shirata, Noriko; Ikeda, Motoko; Kobayashi, Michihiro

    2010-03-15

    We previously demonstrated that Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication is restricted in permissive BmN-4 cells upon coinfection with Hyphantria cunea NPV (HycuNPV). Here, we show that HycuNPV-encoded hycu-ep32 gene is responsible for the restricted BmNPV multiplication in HycuNPV-coinfected BmN-4 cells. The only homologue for hycu-ep32 is in Orgyia pseudotsugata NPV. hycu-ep32 could encode a polypeptide of 312 amino acids, and it contains no characteristic domains or motifs to suggest its possible functions. hycu-ep32 is an early gene, and Hycu-EP32 expression reaches a maximum by 6 h postinfection. hycu-ep32-defective HycuNPV, vHycuDeltaep32, was generated, indicating that hycu-ep32 is nonessential in permissive SpIm cells. In BmN-4 cells, HycuNPV infection resulted in a severe global protein synthesis shutdown, while vHycuDeltaep32 did not cause any specific protein synthesis shutdown. These results indicate that the restriction of BmNPV multiplication by HycuNPV is caused by a global protein synthesis shutdown induced by hycu-ep32 upon coinfection with HycuNPV. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Comparing shut-down strategies for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Oyarce, Alejandro; Zakrisson, Erik; Ivity, Matthew; Lagergren, Carina; Ofstad, Axel Baumann; Bodén, Andreas; Lindbergh, Göran

    2014-05-01

    Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 °C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.

  20. PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.

    PubMed

    Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2017-08-01

    Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm -3 and 1.09-3.36 ng I-TEQ Nm -3 , respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.

  1. Transesophageal echocardiography probe shutdown in a patient with hyperthermia.

    PubMed

    Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant

    2016-01-01

    The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever.

  2. Transesophageal echocardiography probe shutdown in a patient with hyperthermia

    PubMed Central

    Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant

    2016-01-01

    The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever. PMID:26952152

  3. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  4. Gas-injection-start and shutdown characteristics of a 2-kilowatt to 15-kilowatt Brayton power system

    NASA Technical Reports Server (NTRS)

    Cantoni, D. A.

    1972-01-01

    Two methods of starting the Brayton power system have been considered: (1) using the alternator as a motor to spin the Brayton rotating unit (BRU), and (2) spinning the BRU by forced gas injection. The first method requires the use of an auxiliary electrical power source. An alternating voltage is applied to the terminals of the alternator to drive it as an induction motor. Only gas-injection starts are discussed in this report. The gas-injection starting method requires high-pressure gas storage and valves to route the gas flow to provide correct BRU rotation. An analog computer simulation was used to size hardware and to determine safe start and shutdown procedures. The simulation was also used to define the range of conditions for successful startups. Experimental data were also obtained under various test conditions. These data verify the validity of the start and shutdown procedures.

  5. Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.

    2017-09-01

    KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.

  6. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  7. System Study: Residual Heat Removal 1998-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in themore » RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.« less

  8. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  9. Advanced radiator concepts feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.

    1991-01-01

    An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.

  10. Advanced radiator concepts feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportationmore » of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less

  12. The shutdown reactor: Optimizing spent fuel storage cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, C.W.

    1995-12-31

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wetmore » and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.« less

  13. Trending Fibrinolytic Dysregulation: Fibrinolysis Shutdown in the Days After Injury Is Associated With Poor Outcome in Severely Injured Children.

    PubMed

    Leeper, Christine M; Neal, Matthew D; McKenna, Christine J; Gaines, Barbara A

    2017-09-01

    To trend fibrinolysis after injury and determine the influence of traumatic brain injury (TBI) and massive transfusion on fibrinolysis status. Admission fibrinolytic derangement is common in injured children and adults, and is associated with poor outcome. No studies examine fibrinolysis days after injury. Prospective study of severely injured children at a level 1 pediatric trauma center. Rapid thromboelastography was obtained on admission and daily for up to 7 days. Standard definitions of hyperfibrinolysis (HF; LY30 ≥3), fibrinolysis shutdown (SD; LY30 ≤0.8), and normal (LY30 = 0.9-2.9) were applied. Antifibrinolytic use was documented. Outcomes were death, disability, and thromboembolic complications. Wilcoxon rank-sum and Fisher exact tests were performed. Exploratory subgroups included massively transfused and severe TBI patients. In all, 83 patients were analyzed with median (interquartile ranges) age 8 (4-12) and Injury Severity Score 22 (13-34), 73.5% blunt mechanism, 47% severe TBI, 20.5% massively transfused. Outcomes were 14.5% mortality, 43.7% disability, and 9.8% deep vein thrombosis. Remaining in or trending to SD was associated with death (P = 0.007), disability (P = 0.012), and deep vein thrombosis (P = 0.048). Median LY30 was lower on post-trauma day (PTD)1 to PTD4 in patients with poor compared with good outcome; median LY30 was lower on PTD1 to PTD3 in TBI patients compared with non-TBI patients. HF without associated shutdown was not related to poor outcome, but extreme HF (LY30 >30%, n = 3) was lethal. Also, 50% of massively transfused patients in hemorrhagic shock demonstrated SD physiology on admission. All with HF (fc31.2%) corrected after hemostatic resuscitation without tranexamic acid. Fibrinolysis shutdown is common postinjury and predicts poor outcomes. Severe TBI is associated with sustained shutdown. Empiric antifibrinolytics for children should be questioned; thromboelastography-directed selective use should be considered for documented HF.

  14. Device-tax repeal surfaces as key in budget stalemate. White House says it's unwilling to compromise until shutdown ends.

    PubMed

    Lee, Jaimy; Zigmond, Jessica

    2013-10-14

    As lawmakers in D.C. continue to wrangle over how to solve the government shutdown and debt ceiling impasse, the Affordable Care Act's medical device tax is emerging as a likely bargaining chip. But many wonder how the tax's $29.1 billion in funding for coverage expansion will be replaced. Minnesota GOP Rep. Erik Paulsen, says he's encouraged that there is a strong chance the device tax could be overturned.

  15. Investigation into the High Voltage Shutdown of the Oxygen Generator System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.; hide

    2012-01-01

    The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.

  16. Design criteria for a self-actuated shutdown system to ensure limitation of core damage. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times.

  17. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Hood, Texas Site. Project Description,

    DTIC Science & Technology

    1985-07-01

    and Operation 132 6.7.5 Safety 135 6.7.6 System Control Description 136 6.7.6.1 Coal Gasification 136 6.7.6.2 Gas Cooling, Cleaning and Compression...the hydrogen content. The gas is then desulfurized and heated before final polishing and feeding to the fuel cell. Receiving compressed fuel gas and...4 CO Shift 1 Stretford Desulfurizer 3 Gas Compressors 3 Material Handling(3) 3 Subtotal 39 Scheduled Shutdown 14 Total Annual Shutdown 53

  18. Health status of copper refinery workers with specific reference to selenium exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holness, D.L.; Taraschuk, I.G.; Nethercott, J.R.

    1989-09-01

    Copper refinery workers exposed to selenium were studied before, during, and after a shutdown period. Urine selenium levels were 83 {plus minus} 30 mumol/mol creatinine and 69 {plus minus} 27 mumol/mol creatinine when measured on two occasions during exposure compared with 56 {plus minus} 17 mumol/mol creatinine when the workers had been free of exposure for 10 wk during a shutdown. The refinery workers reported more nose and eye irritation, indigestion, stomach pain, and fatigue than controls. Garlic-like breath odor was reported to be personally and socially offensive by many of the workers. Reporting of symptoms, pulmonary function indices, andmore » laboratory test results did not change with exposure except for hemoglobin level, which rose during the shutdown. Hemoglobin levels were found to be inversely correlated with the urine selenium level, and there was a positive correlation noted for the interactive effect of urine selenium and urine arsenic levels on hemoglobin.49 references.« less

  19. Evaluation of respiratory variables in smelter and control workers before and during a shutdown period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holness, D.L.; Batten, B.; Broder, I.

    1985-05-01

    Thirty-six smelter workers examined in this pilot study were found to have a higher prevalence of cough and dyspnea and lower baseline lung function than did 31 controls. They also experienced decreases in forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) over the workweek while the controls did not. Baseline airflow rates and change in FVC and FEV1 over the workweek varied with levels of sulfur dioxide and particulates. Twenty-three smelter workers and 21 controls were seen on a second occasion, six months into an extended shutdown. The smelter workers continued to have a higher prevalence ofmore » cough and dyspnea and lower baseline lung function than the controls. There was, however, a slight increase in lung function in both the exposed workers and the controls during the shutdown. The results suggest that smelter workers may develop both acute and chronic work-related pulmonary effects and that the chronic effects may be nonreversible.« less

  20. Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less

  1. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  2. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less

  4. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  5. Reactor shutdown delays medical procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  6. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    NASA Technical Reports Server (NTRS)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  7. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  8. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  9. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less

  10. Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.

    1997-02-01

    A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injection (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation.

  11. Electricity-market price and nuclear power plant shutdown: Evidence from California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C. K.; Ho, T.; Zarnikau, J.

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market pricemore » data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010-December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation.« less

  12. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  13. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE PAGES

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael; ...

    2015-09-14

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.

  14. Optimization of Treatment to Conserve Water at the US Naval Academy

    DTIC Science & Technology

    2009-05-06

    Established 1845 • 1,160 Acres • 3.46 MGD Iron Removal WTP : • Constructed 1971 • Modifications in 1998 & 2004 5/6/2009 Source Water: • 3 wells...5/6/2009 5/6/2009 Title 5/6/2009 WTP Operations: • Manned 24/7 but operated 14 hrs/day • 1.8 MGD average production • 50,000 g/hr blow-down from...experience for future on-site facility 16 Title/Group/Section,etc. 5/6/2009 5/6/2009 Minimize Plant Shutdowns: • Most WTPs operate best 24/7 • Ea. shut-down

  15. Design, Simulation, and Preliminary Testing of a 20 Ampere Energy Management System

    DTIC Science & Technology

    2015-06-01

    Vre f 0.5 V 0.58 V Vil 0.8 V 1.1 V Vih 1.9 V 2.25 V An important feature of this power module is the smart shutdown feature [15]. A simpli- fied...protection is removed when the pin voltage reaches the high-logic level Vih [15]. Values for Rshunt , RSD, and CSD had to be selected to implement this over...0.58 V Vil 0.8 V Vih 2.25 V Table 3.3. Truth table for H-bridge IGBTs, from [16]. Logic Input Output Shutdown Pin Lower IGBT Upper IGBT Lower IGBT

  16. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.

  17. Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS

    NASA Astrophysics Data System (ADS)

    Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.

    2017-02-01

    The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.

  18. Experimental results with fuel cell start-up and shut-down. Impact of type of carbon for cathode catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottin, Olivier; Dillet, Jerome; Maranzana, Gael

    Separate testing protocols for fuel cell startups and shutdowns were developed to distinguish between their effects on reverse currents and CO 2 evolution. The internal currents and the local potentials were measured with different membrane-electrode assemblies (MEAs): we examined the influence of the type of carbon for cathode catalyst support as well as the mitigating effect of low anode Pt loading. In conclusion, significant differences were observed and the experiments also confirmed previous results that the evolved CO 2 accounts for less than 25% of the total exchanged charge.

  19. Radiation Protection Considerations

    NASA Astrophysics Data System (ADS)

    Adorisio, C.; Roesler, S.; Urscheler, C.; Vincke, H.

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  20. Simultaneously firing two cylinders of an even firing camless engine

    DOEpatents

    Brennan, Daniel G

    2014-03-11

    A valve control system includes an engine speed control module that determines an engine speed and a desired engine stop position. A piston position module determines a desired stopping position of a first piston based on the desired engine stop position. A valve control module receives the desired stopping position, commands a set of valves to close at the desired stopping position if the engine speed is less than a predetermined shutdown threshold, and commands the set of valves to reduce the engine speed if the engine speed is greater than the predetermined shutdown threshold.

  1. Coagulofibrinolytic changes in patients with disseminated intravascular coagulation associated with post-cardiac arrest syndrome--fibrinolytic shutdown and insufficient activation of fibrinolysis lead to organ dysfunction.

    PubMed

    Wada, Takeshi; Gando, Satoshi; Mizugaki, Asumi; Yanagida, Yuichiro; Jesmin, Subrina; Yokota, Hiroyuki; Ieko, Masahiro

    2013-07-01

    Post-cardiac arrest syndrome (PCAS) is often associated with disseminated intravascular coagulation (DIC), thus leading to the development of multiple organ dysfunction syndrome (MODS). The aim of this study was to examine the pathophysiological relationships between coagulation, fibrinolysis and fibrinolytic shutdown by evaluating the levels of coagulofibrinolytic markers, including soluble fibrin, thrombin-activatable fibrinolysis inhibitor (TAFI), tissue plasminogen activator-plasminogen activator inhibitor-1 complex (tPAIC), plasmin-alpha2 plasmin inhibitor complex (PPIC), neutrophil elastase and fibrin degradation product by neutrophil elastase (EXDP). Fifty-two resuscitated patients were divided into two groups: 22 DIC and 30 non-DIC patients. The levels of soluble fibrin, PPIC, tPAIC, EXDP and neutrophil elastase in the DIC patients with PCAS were significantly higher than those observed in the non-DIC patients. The values of the tPAIC and JAAM DIC scores were found to be independent predictors of increased SOFA scores in the DIC patients. The MODS patients demonstrated significantly higher levels of soluble fibrin and tPAIC; however, the levels of TAFI and EXDP were identical between the patients with and without MODS. In addition, positive correlations were observed between the levels of tPAIC and EXDP in the patients with non-MODS; however, no correlations were observed between these markers in the MODS patients. Thrombin activation and fibrinolytic shutdown play important roles in the development of organ dysfunction in PCAS patients. Neutrophil elastase-mediated fibrinolysis cannot overcome the fibrinolytic shutdown that occurs in DIC patients with PCAS, thus resulting in the development of MODS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine

    NASA Astrophysics Data System (ADS)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2017-01-01

    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  3. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. Thismore » report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10{sup {minus}6}/year.« less

  5. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. Thismore » report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.« less

  6. The analysis of ballistic capabilities for countering disturbances associated with temporary emergency electric propulsion shutdown

    NASA Astrophysics Data System (ADS)

    Konstantinov, M. S.; Nguyen, D. N.

    2016-12-01

    The paper analyzes the possibility for countering ballistic perturbations of the interplanetary transfer trajectory of the spacecraft with electric propulsion (EP) associated with the temporary impossibility of the normal use of the EP in phases of the heliocentric transfer. The main result of the present study is the method for the determination of a new nominal trajectory, at any point of which the allowed duration of the emergency shutdown of electric propulsion is large enough. The numerical analysis is given for one of the possible scenarios of spacecraft injection into the operational heliocentric orbit for solar research.

  7. Production and integration of the ATLAS Insertable B-Layer

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-01

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  8. Nuclear reactor shutdown control rod assembly

    DOEpatents

    Bilibin, Konstantin

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  9. Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test

    NASA Technical Reports Server (NTRS)

    Reed, Darren; Hidalgo, Homero

    1996-01-01

    To better understand the Space Shuttle Main Engine (SSME) startup/shutdown tansients, an airflow test of a two dimensional nozzle was conducted at Marshall Space Flight Center's trisonic wind tunnel. Photographic and other instrumentation show during an SSME start large nozzle shell distortions occur as the Mach disk is passing through the nozzle. During earlier develop of the SSME, this startup transient resulted in low cycle fatigue failure of one of the LH2 feedlines. The two dimensional SSME nozzle test was designed to measure the static and fluctuating pressure environment and color Schlieren video during the startup and shutdown phases of the run profile.

  10. Legionella and non-Legionella bacteria in a biological treatment plant.

    PubMed

    Fykse, Else Marie; Aarskaug, Tone; Thrane, Ingjerd; Blatny, Janet Martha

    2013-02-01

    Legionella pneumophila were previously identified in the aeration ponds (up to 10(10) CFU/L) of a biological wastewater treatment plant at Borregaard Ind. Ltd., Sarpsborg, Norway, and in air samples (up to 3300 CFU/m(3)) collected above the aeration ponds. After 3 outbreaks of Legionnaires' disease reported in this area in 2005 and 2008, the aeration ponds of the plant were shut down by the Norwegian authorities in September 2008. The aim of the present work was to analyze the Legionella and non-Legionella bacterial communities in the aeration ponds before and during the shutdown process and to identify potential human pathogens. The non-Legionella bacterial community was investigated in selected samples during the shutdown process by 16S rDNA sequencing of clone libraries (400 clones) and growth analysis. The concentration of L. pneumophila and Pseudomonas spp. DNA were monitored by quantitative PCR. Results showed a decrease in the concentration of L. pneumophila and Pseudomonas spp. during the shutdown. This was accompanied by a significant change in the composition of the bacterial community in the aeration ponds. This study demonstrated that several advanced analytical methods are necessary to characterize the bacterial population in complex environments, such as the industrial aeration ponds.

  11. Catchment-wide survival of wild- and hatchery-reared Atlantic salmon smolts in a changing system

    USGS Publications Warehouse

    Stich, Daniel S.; Bailey, Michael M.; Holbrook, Christopher M.; Kinnison, Michael T.; Zydlewski, Joseph D.

    2015-01-01

    We developed a hierarchical multistate model to estimate survival of Atlantic salmon (Salmo salar) smolts in the Penobscot River, USA, over a decade during which two mainstem dams were removed from the catchment. We investigated effects of (i) environmental factors, (ii) rearing history, and (iii) management actions, including dam removal, turbine shutdown, and installation of new powerhouses. Mean ± SD smolt survival per kilometre was higher through free-flowing reaches of the catchment (0.995 ± 0.004·km−1) than through reaches containing dams that remain in the system (0.970 ± 0.019·km−1). We observed maximum survival between 12 and 17 °C and at intermediate discharges (1200 m3·s−1). Smolt survival increased concurrent with dam removal and decreased following increases in hydropower generation. The greatest increase in smolt survival followed seasonal turbine shutdowns at a dam located on the largest tributary to the Penobscot River, while other shutdowns had little influence. Our model provides a useful tool for assessing changes to survival of migratory species and will be useful for informing stocking plans to maximize numbers of smolts leaving coastal systems.

  12. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.

  13. Evaluation of Water-Chemistry and Water-Level Data at the Henderson Road Superfund Site, Upper Merion Township, Montgomery County, Pennsylvania, 1991-2008

    USGS Publications Warehouse

    Sloto, Ronald A.

    2009-01-01

    Several shutdown-rebound tests have been conducted at the Henderson Road Superfund Site, which has been on the U.S. Environmental Protection Agency's National Priorities List since 1984. For a given test, the extraction wells are turned off, and water samples are collected from selected monitor wells at regular intervals before and during cessation of pumping to monitor for changes in chemical concentrations. A long-term shutdown-rebound test began on July 17, 2006. In support of this test, the U.S. Geological Survey conducted this study to determine the effects of shutting down on-site extraction wells on concentrations of selected contaminants and water levels. Concentrations were compared to ARARs (applicable relevant and appropriate requirements), which were set as remediation goals in the Henderson Road Site Record of Decision. Water from 10 wells in and near the source area and to the north, northeast, and northwest of the source area sampled in 2008 exceeded the 5.52 ug/L (micrograms per liter) ARAR for benzene. The greatest changes in benzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 (19 months after the shutdown) were for wells in and north of the source area; increases in benzene concentration ranged from 1.5 to 164 ug/L. Water from five wells in the source area and to the north and northwest of the source area sampled in 2008 exceeded the 60 ug/L ARAR for chlorobenzene. The greatest changes in chlorobenzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 were for wells north of the source area; increases in chlorobenzene concentration ranged from 6.9 to 99 ug/L. The highest concentrations of chlorobenzene were near or outside the northern site boundary, indicating chlorobenzene may have moved north away from the source area; however, no monitor well clusters are on the northern side of the Pennsylvania Turnpike, which is about 190 feet north of the source area. A much larger area was affected by chlorobenzene than benzene. Chlorobenzene concentrations decreased in the source area and increased at and beyond the site boundary. Water from four wells in and northeast of the source area sampled in 2008 exceeded the 5.06 ug/L ARAR for 1,1-dichloroethane (1,1-DCA). Increases in 1,1-DCA concentration between pre-shutdown samples collected in July 2006 and samples collected in February 2008 ranged from 0.4 to 20 ug/L. Water from two wells in the source area sampled in 2008 exceeded the 175 ug/L ARAR for total xylene. The 1,1-DCA and xylene plumes appear to extend in an east-northeast direction from the source area. Large drawdowns in the Upper Merion Reservoir during droughts in 1998 and 2001 affected water levels in the Chester Valley and at the Henderson Road Site, except for well HR-17-170. After the drought of 2001, water levels in the Chester Valley showed a protracted recovery lasting from September 2001 until June 2005 (46 months). Water-level data were evaluated temporally for 1997-2008 and spatially for (1) June 16, 2003, when the extraction wells were pumping at the full rate prior to the start of the June 2003 shutdown test; (2) July 10, 2006, during the period of reduced pumping after the June 2003 shutdown test; and (3) February 25-29, 2008, when the extraction wells were not pumping. Except for well HR-5-195, wells were categorized as shallow, intermediate-depth, and deep wells. The potentiometric surface for shallow wells did not appear to be affected by pumping of the extraction wells. The general direction of ground-water flow was to the north. The potentiometric surface for intermediate-depth wells showed a cone of depression when the extraction wells were pumping at the full rate but did not show a cone of depression when the extraction wells were pumping at the reduced rate. The ground-water-flow direction was toward the north and northeast, similar to

  14. Self-actuated shutdown-system development: system response-analysis status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, N.A.; Gregoire, K.E.; Tatsumi, J.T.

    1980-09-01

    This report provides a preliminary evaluation of the SASS response time requirements for the safe shutdown earthquake (SSE), the flow coastdown (FCD), and two transient overpower (TOP) events. The driving functions for the SSE are a 20 cent step reactivity insertion with a +- 60 cent oscillation super imposed for 10 seconds combined with a flow coastdown defined by F/F/sub (0)/ = 1/(1+.2788t). The driving function of the FCD is just the relative flow curve defined above for the SSE. The TOP event driving function represents a control rod runout to a total of 60 cents at ramp rates ofmore » .76 cents/s and 6.1 cents/s. 3 figures.« less

  15. Two-dimensional simulation of a two-phase, regenerative pumped radiator loop utilizing direct contact heat transfer with phase change

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.

  16. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Average-day carbon monoxide, total hydrocarbon, and NO/sub x/ aircraft emissions and fuel use estimates (apportioned to takeoff, taxi, idle, and landing) for departure and arrival at Los Angeles and San Francisco International Airports were compared with emissions level and fuel use estimates for four emission reduction strategies (tow aircraft between runways and gates, shutdown one engine during taxiing, control departure time, and assign runways to minimize taxiing distance). The best strategy, the shutdown of one engine while taxiing, produces substantial emission reductions, cost benefits owing to fuel savings, and no apparent safety problems; aircraft towing reduced emissions significantly, but introducedmore » a number of safety problems.« less

  17. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  18. Isomer pattern and elimination of dioxins in workers exposed at a municipal waste incineration plant

    PubMed Central

    YAMAMOTO, Kenya; KUDO, Mitsuhiro; ARITO, Heihachiro; OGAWA, Yasutaka; TAKATA, Tsutomu

    2015-01-01

    The aim of this study was to clarify patterns of serum concentrations of dioxins in the employees of a waste incineration plant and to estimate elimination rates and half-lives of serum dioxin isomers, and the maximum serum concentrations of dioxin isomers at the time of plant shutdown. Sixteen subjects participating 3 times or more in annual health examinations during an 8-yr period from 2000 to 2007 were recruited for this study. Serum concentrations of dioxins expressed as TEQ/g lipid decreased gradually after plant shutdown with the highest decrease observed in polychlorinated dibenzofurans (PCDFs) followed by polychlorinated deibenzo-p-dioxins (PCDDs) and then coplanar PCBs. The serum toxic equivalency (TEQ) concentrations of PCDF and PCDD congeners in the employees were higher than those in the general population survey by the Ministry of the Environment, Japan, whereas the serum concentrations of coplanar PCBs were similar to those in the general population. The estimated half-lives and elimination rates of PCDDs and PCDFs in the highly exposed workers increased compared with the moderately exposed workers. The estimated geometric mean serum concentrations of PCDDs, PCDFs and total dioxins at the time of plant shutdown were 35, 53 and 107 pg TEQ/g lipid, respectively. PMID:26118856

  19. Control assembly for controlling a fuel cell system during shutdown and restart

    DOEpatents

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  20. Using dew points to estimate savings during a planned cooling shutdown

    NASA Astrophysics Data System (ADS)

    Friedlein, Matthew T.; Changnon, David; Musselman, Eric; Zielinski, Jeff

    2005-12-01

    In an effort to save money during the summer of 2003, Northern Illinois University (NIU) administrators instituted a four-day working week and stopped air conditioning buildings for the three-day weekends (Friday through Sunday). Shutting down the air conditioning systems caused a noticeable drop in electricity usage for that part of the campus that features in our study, with estimated total electricity savings of 1,268,492 kilowatt-hours or 17% of the average usage during that eight-week period. NIU's air conditioning systems, which relied on evaporative cooling to function, were sensitive to dew point levels. Greatest savings during the shutdown period occurred on days with higher dew points. An examination of the regional dew point climatology (1959 2003) indicated that the average summer daily dew point for 2003 was 14.9°C (58.8°F), which fell in the lowest 20% of the distribution. Based on the relationship between daily average dew points and electrical usage, a predictive model that could estimate electrical daily savings was created. This model suggests that electrical savings related to any future three-day shutdowns over summer could be much greater in more humid summers. Studies like this demonstrate the potential value of applying climatological information and of integrating this information into practical decision-making.

  1. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    PubMed

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full-scale data highlighted how the lower the rate of fluff in the mixture was, the greater the number of plant shutdown due to sand bed de-fluidization was. Finally, the aspects in terms of the energy, environmental protection and raw material consumption have been discussed with reference to similar WtE plants such as Robbins (Chicago, USA), Lidköping (Sweden), Toshima (Tokyo, Japan), Madrid (Spain), Dundee (Scotland, UK) and Valene (Mantes la Jolie, France). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Abnormalities in fibrinolysis at the time of admission are associated with deep vein thrombosis, mortality, and disability in a pediatric trauma population.

    PubMed

    Leeper, Christine M; Neal, Matthew D; McKenna, Christine; Sperry, Jason L; Gaines, Barbara A

    2017-01-01

    Abnormalities in fibrinolysis are common and associated with increased mortality in injured adults. While hyperfibrinolysis (HF) and fibrinolysis shutdown (SD) are potential prognostic indicators and treatment targets in adults, these derangements are not well described in a pediatric trauma cohort. This was a prospective analysis of highest level trauma activations in subjects aged 0 to 18 years presenting to our academic center between June 1, 2015, and July 31, 2016, with admission rapid thrombelastograph. Shutdown was defined as LY30 (lysis 30 minutes after the maximum amplitude has been reached) of 0.8% or less and HF defined as LY30 of 3.0% or greater. Variables of interest included demographics, admission vital signs and laboratory values, injuries, incidence of venous thromboembolism under our screening protocol, death, and functional disability (discharge to facility or dependence in functional independence measure category). Youden index determined optimal definition of SD, then Wilcoxon rank-sum, Kruskal-Wallis, and Fisher exact tests were performed. One hundred thirty-three patients are included with median age of 10 years (interquartile range [IQR], 5-13 years); male sex, 5.4%; median Injury Severity Score, 17 (IQR, 10-26); blunt mechanism, 68.4%. Youden analysis defined SD as LY30 of 0.8 or less. In total, 38.3% (n = 51) had SD on admission; 19.6% (n = 26) had HF, and 42.1% (n = 56) were normal. Mortality rate was 9.0% (n = 12), and deep vein thrombosis incidence was 10.7% (n = 13/121 surviving). Shutdown and HF were both associated with mortality (p = 0.014 and p = 0.021) and blood transfusion (p = 0.001 and p < 0.001); SD was also associated with disability (p < 0.001) and deep vein thrombosis (p = 0.002). Blunt mechanism was associated with SD, and penetrating mechanism was associated with HF (p = 0.011). Both SD (p = 0.001) and HF (p = 0.036) were associated with elevated international normalized ratio. LY30 did not differ significantly across age groups. Children demonstrate high rates of inhibition (SD) and overactivation (HF) of fibrinolysis after injury. Shutdown and HF are both associated with poor outcomes. Shutdown is a particularly poor prognostic indicator, accounting for the greatest percentage of death, disability, and patients requiring transfusion, as well as later development of hypercoagulable state. The addition of thrombelastograph to pediatric trauma care protocols should be considered as it contributes important prognostic and clinical information. Prognostic and epidemiologic study, level III.

  3. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.

  4. 10 CFR 100.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... input at the oscillators' supports. Safe Shutdown Earthquake Ground Motion is the vibratory ground... forces. Tectonic surface deformation is associated with earthquake processes. Testing reactor means a...

  5. 10 CFR 100.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... input at the oscillators' supports. Safe Shutdown Earthquake Ground Motion is the vibratory ground... forces. Tectonic surface deformation is associated with earthquake processes. Testing reactor means a...

  6. CALCULATIONS OF SHUTDOWN DOSE RATE FOR THE TPR SPECTROMETER OF THE HIGH-RESOLUTION NEUTRON SPECTROMETER FOR ITER.

    PubMed

    Wójcik-Gargula, A; Tracz, G; Scholz, M

    2017-12-13

    This work presents results of the calculations performed in order to predict the neutron-induced activity in structural materials that are considered to be using at the TPR spectrometer-one of the detection system of the High-Resolution Neutron Spectrometer for ITER. An attempt has been made to estimate the shutdown dose rates in a Cuboid #1 and to check if they satisfy ICRP regulatory requirements for occupational exposure to radiation and ITER nuclear safety regulations for areas with personal access. The results were obtained by the MCNP and FISPACT-II calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEVINS, R.R.

    This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operationsmore » input or engineering judgment.« less

  8. @Astro_Wheels Tweetup

    NASA Image and Video Library

    2011-03-16

    Astronaut Doug Wheelock discusses his experiences while living on the International Space Station during a tweetup at NASA Headquarters in Washington, Wednesday, March 16, 2011. Wheelock, who has accumulated a total of 178 days in space, assumed command of the International Space Station and the Expedition 25 crew. During Expedition 25, there were more than 120 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences. Wheelock also responded to an emergency shutdown of half of the station's external cooling system and supported three unplanned spacewalks to replace the faulty pump module that caused the shutdown. His efforts restored the station's critical cooling system to full function. The mission duration was 163 days. Photo Credit: (NASA/Paul E. Alers)

  9. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOEpatents

    Schmidt, Mark Christopher

    2000-01-01

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  10. Microwave system performance for a solar power satellite during startup/shutdown operations

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Berlin, L. A.

    1979-01-01

    The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.

  11. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  12. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  13. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  14. 40 CFR 63.781 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with hand-held, nonrefillable, aerosol containers or to unsaturated polyester resin (i.e., fiberglass... startups, shutdowns, and malfunctions and continuous monitoring do not apply to this source category unless...

  15. 40 CFR 63.781 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with hand-held, nonrefillable, aerosol containers or to unsaturated polyester resin (i.e., fiberglass... startups, shutdowns, and malfunctions and continuous monitoring do not apply to this source category unless...

  16. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods.

    PubMed

    Wang, Hou Chuan; Hwang, Jyh Feng; Chi, Kai Hsien; Chang, Moo Been

    2007-04-01

    The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).

  17. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva, J. F.; Carlos, S.; Martorell, S.

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less

  18. Purification of liquid metal systems with sodium coolant from oxygen using getters

    NASA Astrophysics Data System (ADS)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  19. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEVINS, R.R.

    This study is a requirements document that presents analysis for the functional description for the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment. The requirements in this study apply to the first phase of the W314 Project. This document has been updated during the definitive design portion of the first phase of the W314 Project to capture additional software requirements and is planned to be updated duringmore » the second phase of the W314 Project to cover the second phase of the project's scope.« less

  20. Claus sulfur recovery unit startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parnell, D.C.

    1973-08-01

    Because of the recent emphasis on reducing sulfur emissions to the atmosphere, Claus-type sulfur recovery units are becoming more prevalent throughout the industry. Many plants, including refinery, chemical, and natural gasoline units, are being required to install Claus sulfur recovery facilities to meet pollution requirements. Although Claus units in some cases cannot alone meet the most rigid air pollution codes currently being enforced, they are still the most economical and practical method for recovering about 94 to 97% of the sulfur from hydrogen sulfide rich gases. For best operation and longer service life, proper startup and shutdown procedures for thesemore » sulfur recovery units should be followed. On all startups and shutdowns, these units require considerable operator attention; improper operation during these critical phases can affect overall plant efficiency.« less

  1. @Astro_Wheels Tweetup

    NASA Image and Video Library

    2011-03-16

    A tweetuup participant videotapes with her iPhone and tweets as astronaut Doug Wheelock discusses his experiences while living on the International Space Station during a tweetup at NASA Headquarters in Washington, Wednesday, March 16, 2011. Wheelock, who has accumulated a total of 178 days in space, assumed command of the International Space Station and the Expedition 25 crew. During Expedition 25, there were more than 120 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences. Wheelock also responded to an emergency shutdown of half of the station's external cooling system and supported three unplanned spacewalks to replace the faulty pump module that caused the shutdown. His efforts restored the station's critical cooling system to full function. The mission duration was 163 days. Photo Credit: (NASA/Paul E. Alers)

  2. 40 CFR 62.14610 - How do I maintain my operator qualification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... startup and shutdown procedures, waste charging, and ash handling. (c) Inspection and maintenance. (d...

  3. 40 CFR 63.5910 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production Notifications, Reports, and... period into those that are due to startup, shutdown, control equipment problems, process problems, other...

  4. 40 CFR 63.5910 - What reports must I submit and when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production Notifications, Reports, and... period into those that are due to startup, shutdown, control equipment problems, process problems, other...

  5. 40 CFR 62.14610 - How do I maintain my operator qualification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... startup and shutdown procedures, waste charging, and ash handling. (c) Inspection and maintenance. (d...

  6. 33 CFR 154.810 - Vapor line connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... valve must: (1) Close within thirty (30) seconds after detection of a shutdown condition by a component... material, not allow appreciable leakage when the resilient material is damaged or destroyed. (b) Except...

  7. 78 FR 76102 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... this meeting in person, unless the partial government shutdown persists, at the address listed above as... https://bbgboardmeetingdecember2013.eventbrite.com by 12:00 p.m. (EST) on December 17. For more...

  8. Government Shutdown Fairness Act

    THOMAS, 112th Congress

    Rep. Moran, James P. [D-VA-8

    2011-02-18

    House - 08/20/2012 Referred to the Subcommittee on Federal Workforce, U.S. Postal Service, and Labor Policy. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. 50 CFR 218.173 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and south of University Point in southern Port Orchard Reach. If Southern Resident killer whales are... active acoustic sources must be shutdown if killer whales are confirmed to approach at 1,000 yards from...

  10. 50 CFR 218.173 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and south of University Point in southern Port Orchard Reach. If Southern Resident killer whales are... active acoustic sources must be shutdown if killer whales are confirmed to approach at 1,000 yards from...

  11. 50 CFR 218.173 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and south of University Point in southern Port Orchard Reach. If Southern Resident killer whales are... active acoustic sources must be shutdown if killer whales are confirmed to approach at 1,000 yards from...

  12. 40 CFR 62.1500 - Identification of Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mercury emission standards, and shutdown provisions for mass burn refractory MWC units. (3) Revision to... FR 63313, Dec. 6, 2001; 70 FR 9229, Feb. 25, 2005] Metals, Acid Gases, Organic Compounds and Nitrogen...

  13. 40 CFR 60.165 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to 100 percent opacity. (2) A continuous monitoring system to monitor and record sulfur dioxide... startup, shutdown, and malfunction are not to be included within the 1.5 percent. [41 FR 2338, Jan. 15...

  14. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...

  15. 49 CFR 571.124 - Standard No. 124; Accelerator control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...

  16. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...

  17. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...

  18. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...

  19. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...

  20. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... an error in the time division multiplex synchronization of a particular elevation function such that... within the time allowed, radiation shall cease. After shutdown, no attempt must be made to restore...

Top