Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Definition To Address Advanced Fuel Designs,'' Using the Consolidated Line Item Improvement Process AGENCY...-specific adoption using the Consolidated Line Item Improvement Process (CLIIP). Additionally, the NRC staff..., which may be more reactive at shutdown temperatures above 68[emsp14][deg]F. This STS improvement is part...
Impacts of flare emissions from an ethylene plant shutdown to regional air quality
NASA Astrophysics Data System (ADS)
Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas
2016-08-01
Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankamo, T.; Kim, I.S.; Yang, Ji Wu
Failures in the auxiliary feedwater (AFW) system of pressurized water reactors (PWRs) are considered to involve substantial risk whether a decision is made to either continue power operation while repair is being done, or to shut down the plant to undertake repairs. Technical specification action requirements usually require immediate plant shutdown in the case of multiple failures in the system (in some cases, immediate repair of one train is required when all AFW trains fail). This paper presents a probabilistic risk assessment-based method to quantitatively evaluate and compare both the risks of continued power operation and of shutting the plantmore » down, given known failures in the system. The method is applied to the AFW system for four different PWRs. Results show that the risk of continued power operation and plant shutdown both are substantial, but the latter is larger than the former over the usual repair time. This was proven for four plants with different designs: two operating Westinghouse plants, one operating Asea-Brown Boveri Combustion Engineering Plant, and one of evolutionary design. The method can be used to analyze individual plant design and to improve AFW action requirements using risk-informed evaluations.« less
40 CFR 265.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
...., Monday through Friday, except Federal Holidays. Instructions: All submissions must include the agency... recent government shutdown prevented communication with DOT staff for review of the technical proposals... written communications and comments received into any of our dockets by the name of the individual...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Maldonado, G Ivan; Primm, Trent
2010-01-01
The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positionsmore » since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.« less
Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Maldonado, G Ivan; Primm, Trent
2009-12-01
The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positionsmore » since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.« less
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
78 FR 36135 - Heavy-Duty Engine and Vehicle, and Nonroad Technical Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... derived CO 2 emission rates (ADCs). Air Conditioning (A/C) Leakage Provisions: The MY2017-2025 Light-Duty GHG and Fuel Economy Rule separated 40 CFR 86.1866 into four sections for clarity. The A/C leakage... to revise Sec. 1037.660 related to the automatic engine shutdown (AES) provisions. Sec. 1037.660(c...
Analysis of activation and shutdown contact dose rate for EAST neutral beam port
NASA Astrophysics Data System (ADS)
Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong
2017-12-01
For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.
Technical information report: Plasma melter operation, reliability, and maintenance analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, D.W.
1995-03-14
This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.
The management of large cabling campaigns during the Long Shutdown 1 of LHC
NASA Astrophysics Data System (ADS)
Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.
2014-03-01
The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.
Olivieri, Daniel; Senti, Kirsten-André; Subramanian, Sailakshmi; Sachidanandam, Ravi; Brennecke, Julius
2012-09-28
In animal gonads, PIWI proteins and their bound 23-30 nt piRNAs guard genome integrity by the sequence specific silencing of transposons. Two branches of piRNA biogenesis, namely primary processing and ping-pong amplification, have been proposed. Despite an overall conceptual understanding of piRNA biogenesis, identity and/or function of the involved players are largely unknown. Here, we demonstrate an essential role for the female sterility gene shutdown in piRNA biology. Shutdown, an evolutionarily conserved cochaperone collaborates with Hsp90 during piRNA biogenesis, potentially at the loading step of RNAs into PIWI proteins. We demonstrate that Shutdown is essential for both primary and secondary piRNA populations in Drosophila. An extension of our study to previously described piRNA pathway members revealed three distinct groups of biogenesis factors. Together with data on how PIWI proteins are wired into primary and secondary processing, we propose a unified model for piRNA biogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Space station tracking requirements feasibility study, volume 2
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.
Space station tracking requirements feasibility study, volume 1
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.
Fuel cell system logic for differentiating between rapid and normal shutdown commands
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2000-01-01
A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, R.D.
1997-01-21
The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functionalmore » requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).« less
40 CFR 63.1111 - Startup, shutdown, and malfunction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...
40 CFR 63.1111 - Startup, shutdown, and malfunction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...
40 CFR 63.1111 - Startup, shutdown, and malfunction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...
40 CFR 63.1111 - Startup, shutdown, and malfunction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...
Schalinski, Inga; Teicher, Martin H
2015-01-01
Dissociation, particularly the shutting down of sensory, motor and speech systems, has been proposed to emerge in susceptible individuals as a defensive response to traumatic stress. In contrast, other individuals show signs of hyperarousal to acute threat. A key question is whether exposure to particular types of stressful events during specific stages of development can program an individual to have a strong dissociative response to subsequent stressors. Vulnerability to ongoing shutdown dissociation was assessed in 75 inpatients (46 M/29 F, M = 31 ± 10 years old) with schizophrenia spectrum disorder and related to number of traumatic events experienced or witnessed during childhood or adulthood. The Maltreatment and Abuse Chronology of Exposure (MACE) scale was used to collect retrospective recall of exposure to ten types of maltreatment during each year of childhood. Severity of shutdown dissociation was related to number of childhood but not adult traumatic events. Random forest regression with conditional trees indicated that type and timing of childhood maltreatment could predictably account for 31% of the variance (p < 0.003) in shutdown dissociation, with peak vulnerability occurring at 13-14 years of age and with exposure to emotional neglect followed by various forms of emotional abuse. These findings suggest that there may be windows of vulnerability to the development of shutdown dissociation. Results support the hypothesis that experienced events are more important than witnessed events, but challenge the hypothesis that "life-threatening" events are a critical determinant.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...
Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A. L.; Diamond, D.
2013-10-31
The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less
Shirata, Noriko; Ikeda, Motoko; Kobayashi, Michihiro
2010-03-15
We previously demonstrated that Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication is restricted in permissive BmN-4 cells upon coinfection with Hyphantria cunea NPV (HycuNPV). Here, we show that HycuNPV-encoded hycu-ep32 gene is responsible for the restricted BmNPV multiplication in HycuNPV-coinfected BmN-4 cells. The only homologue for hycu-ep32 is in Orgyia pseudotsugata NPV. hycu-ep32 could encode a polypeptide of 312 amino acids, and it contains no characteristic domains or motifs to suggest its possible functions. hycu-ep32 is an early gene, and Hycu-EP32 expression reaches a maximum by 6 h postinfection. hycu-ep32-defective HycuNPV, vHycuDeltaep32, was generated, indicating that hycu-ep32 is nonessential in permissive SpIm cells. In BmN-4 cells, HycuNPV infection resulted in a severe global protein synthesis shutdown, while vHycuDeltaep32 did not cause any specific protein synthesis shutdown. These results indicate that the restriction of BmNPV multiplication by HycuNPV is caused by a global protein synthesis shutdown induced by hycu-ep32 upon coinfection with HycuNPV. Copyright 2009 Elsevier Inc. All rights reserved.
Status of the Consolidation of the LHC Superconducting Magnets and Circuits
NASA Astrophysics Data System (ADS)
Tock, J. Ph; Atieh, S.; Bodart, D.; Bordry, F.; Bourcey, N.; Cruikshank, P.; Dahlerup-Petersen, K.; Dalin, J. M.; Garion, C.; Musso, A.; Ostojic, R.; Perin, A.; Pojer, M.; Savary, F.; Scheuerlein, C.
2014-05-01
The first LHC long shutdown (LS1) started in February 2013. It was triggered by the need to consolidate the 13 kA splices between the superconducting magnets to allow the LHC to reach safely its design energy of 14 TeV center of mass. The final design of the consolidated splices is recalled. 1695 interconnections containing 10 170 splices have to be opened. In addition to the work on the 13 kA splices, the other interventions performed during the first long shut-down on all the superconducting circuits are described. All this work has been structured in a project, gathering about 280 persons. The opening of the interconnections started in April 2013 and consolidation works are planned to be completed by August 2014. This paper describes first the preparation phase with the building of the teams and the detailed planning of the operation. Then, it gives feedback from the worksite, namely lessons learnt and adaptations that were implemented, both from the technical and organizational points of view. Finally, perspectives for the completion of this consolidation campaign are given.
Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary
2016-01-01
Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.
Health status of copper refinery workers with specific reference to selenium exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holness, D.L.; Taraschuk, I.G.; Nethercott, J.R.
1989-09-01
Copper refinery workers exposed to selenium were studied before, during, and after a shutdown period. Urine selenium levels were 83 {plus minus} 30 mumol/mol creatinine and 69 {plus minus} 27 mumol/mol creatinine when measured on two occasions during exposure compared with 56 {plus minus} 17 mumol/mol creatinine when the workers had been free of exposure for 10 wk during a shutdown. The refinery workers reported more nose and eye irritation, indigestion, stomach pain, and fatigue than controls. Garlic-like breath odor was reported to be personally and socially offensive by many of the workers. Reporting of symptoms, pulmonary function indices, andmore » laboratory test results did not change with exposure except for hemoglobin level, which rose during the shutdown. Hemoglobin levels were found to be inversely correlated with the urine selenium level, and there was a positive correlation noted for the interactive effect of urine selenium and urine arsenic levels on hemoglobin.49 references.« less
Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.
Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas
2011-06-24
This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 63.1111 - Startup, shutdown, and malfunction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction. 63.1111 Section 63.1111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and...
NASA Astrophysics Data System (ADS)
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
40 CFR 63.762 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...
40 CFR 63.762 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...
40 CFR 63.1272 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...
40 CFR 63.1272 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...
40 CFR 63.762 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...
40 CFR 63.1272 - Startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cletcher, J.W.
1995-10-01
This is a regular report of summary statistics relating to recent reactor shutdown experience. The information includes both number of events and rates of occurence. It was compiled from data about operating events that were entered into the SCSS data system by the Nuclear Operations Analysis Center at the Oak ridge National Laboratory and covers the six mont period of July 1 to December 31, 1994. Cumulative information, starting from May 1, 1994, is also reported. Updates on shutdown events included in earlier reports is excluded. Information on shutdowns as a function of reactor power at the time of themore » shutdown for both BWR and PWR reactors is given. Data is also discerned by shutdown type and reactor age.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA
Code of Federal Regulations, 2012 CFR
2012-07-01
... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA
Code of Federal Regulations, 2014 CFR
2014-07-01
... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA
Code of Federal Regulations, 2013 CFR
2013-07-01
... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting
NASA Astrophysics Data System (ADS)
Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.
2002-01-01
The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase took approximately 22 seconds, and the shutdown sputtering phase took approximately 32 seconds. Results from the experiment were correlated with the Boeing ISS vent plume model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov
In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of themore » physicochemical properties of the coke.« less
Commissioning of the first chambers of the CMS GE1/1 muon station
NASA Astrophysics Data System (ADS)
Ressegotti, Martina; CMS Muon Group
2017-12-01
The upgrades of the LHC planned in the next years will increase the instantaneous luminosity up to 5 × 1034 cm -2 s -1 after Long Shutdown 3, a value about five times higher than the nominal one for which the CMS experiment was designed. The resulting larger rate of interactions will produce a higher pileup environment that will challenge the trigger system of the CMS experiment in its original configuration, in particular in the endcap region. As part of the upgrade program of the CMS muon endcaps, additional muon detectors based on Gas Electron Multiplier (GEM) technology will be installed, in order to be able to sustain a physics program during high-luminosity operation without performance losses. The installation of the GE1/1 station is scheduled for Long Shutdown 2 in 2019-2020 already a demonstrator composed of five superchambers has been installed during the Extended Year-End Technical Stop at the beginning of 2017. Its goal is to test the system’s operational conditions and also to demonstrate the integration of the GE1/1 chambers into the CMS online system. The status of the installation and commissioning of the GE1/1 demonstrator is presented.
40 CFR 62.14620 - What site-specific documentation is required?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the incinerator and associated air pollution control systems within the standards established under... required? 62.14620 Section 62.14620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction...
Defense.gov Special Report: Government Shutdown
reached. Government shutdown avoided. Business as usual for all DOD employees. Deal Averts Shutdown Continuing Resolution (PDF) Deputy Secretary Lynn Message OMB Director Memo to Agencies (PDF) DOD Contingency
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor rectifier must have a high temperature alarm or shutdown, except as provided in § 111.33-11. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less
40 CFR 60.2910 - What site-specific documentation is required?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the incinerator and associated air pollution control systems within the standards established under... required? 60.2910 Section 60.2910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction...
40 CFR 60.2660 - What site-specific documentation is required?
Code of Federal Regulations, 2010 CFR
2010-07-01
... required? 60.2660 Section 60.2660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR..., handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction procedures. (4) Procedures for maintaining proper combustion air supply levels. (5) Procedures for operating the incinerator and...
40 CFR 60.3019 - What site-specific documentation is required?
Code of Federal Regulations, 2010 CFR
2010-07-01
... required? 60.3019 Section 60.3019 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) Incinerator startup, shutdown, and malfunction procedures. (4) Procedures for maintaining proper combustion air supply levels. (5) Procedures for operating the incinerator and associated air pollution control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
BEVINS, R.R.
This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operationsmore » input or engineering judgment.« less
The 2013 US Government Shutdown (#Shutdown) and health: an emerging role for social media.
Merchant, Raina M; Ha, Yoonhee P; Wong, Charlene A; Schwartz, H Andrew; Sap, Maarten; Ungar, Lyle H; Asch, David A
2014-12-01
In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, "We're sorry, but we will not be tweeting or responding to @replies during the shutdown. We'll be back as soon as possible!" These "last tweets" and the millions of responses they generated revealed social media's role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health.
40 CFR 62.14620 - What site-specific documentation is required?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction... limits. (7) Reporting and recordkeeping procedures. (8) The waste management plan required under §§ 62...
40 CFR 62.14620 - What site-specific documentation is required?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Operator Training and Qualification § 62.14620 What...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomar, J.; Wyman, R.
This document provides recommendations to guide reviewers in the application of Programmable Logic Controllers (PLCS) to the control, monitoring and protection of nuclear reactors. The first topics addressed are system-level design issues, specifically including safety. The document then discusses concerns about the PLC manufacturing organization and the protection system engineering organization. Supplementing this document are two appendices. Appendix A summarizes PLC characteristics. Specifically addressed are those characteristics that make the PLC more suitable for emergency shutdown systems than other electrical/electronic-based systems, as well as characteristics that improve reliability of a system. Also covered are PLC characteristics that may create anmore » unsafe operating environment. Appendix B provides an overview of the use of programmable logic controllers in emergency shutdown systems. The intent is to familiarize the reader with the design, development, test, and maintenance phases of applying a PLC to an ESD system. Each phase is described in detail and information pertinent to the application of a PLC is pointed out.« less
NASA Astrophysics Data System (ADS)
Mimura, Hitoshi; Yamagishi, Isao
In an action for the convergence of the Fukushima Daiichi Nuclear Power Plant accident, the completion of Step 2 was declared in last December, 2011. As for the circulating cooling system supporting the cold shutdown of nuclear reactor, the temporary treatment equipment operation maintains stability. On the other hand, the establishment of permanent equipments, safety storage, treatment and disposal for the secondary solid wastes are urgent subjects. This special issue deals with the development of highly functional composite adsorbents and the evaluation of selective adsorption properties. The technical issues for the stable treatment and disposal of solid wastes are further discussed.
40 CFR 63.1354 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup, shutdown, and... report. Reports shall only be required if a startup, shutdown, or malfunction occurred during the...
The 2013 US Government Shutdown (#Shutdown) and Health: An Emerging Role for Social Media
Ha, Yoonhee P.; Wong, Charlene A.; Schwartz, H. Andrew; Sap, Maarten; Ungar, Lyle H.; Asch, David A.
2014-01-01
In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, “We’re sorry, but we will not be tweeting or responding to @replies during the shutdown. We’ll be back as soon as possible!” These “last tweets” and the millions of responses they generated revealed social media’s role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health. PMID:25322303
40 CFR 60.2635 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...
40 CFR 60.4810 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(1)(x) of this section. (i) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, sewage sludge feeding, and shutdown procedures...
40 CFR 60.2635 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) through (xi) of this section. (i) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv...
40 CFR 60.2070 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...
40 CFR 68.52 - Operating procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...
40 CFR 68.52 - Operating procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...
40 CFR 68.52 - Operating procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...
40 CFR 68.52 - Operating procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...
40 CFR 52.1183 - Visibility protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... excess emissions that occurs during startups, shutdowns, and malfunctions of the unit, the nature and... that occurs during startups, shutdowns, and malfunctions of the unit, the nature and cause of any... startup, shutdown, and malfunction. (viii) All CEMS required by this section must meet the minimum data...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.L.; Musicki, Z.; Kohut, P.
1994-06-01
During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less
33 CFR 127.1205 - Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...
33 CFR 127.1205 - Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...
76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...
40 CFR 63.1164 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...
40 CFR 63.2250 - What are the general requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...
40 CFR 63.2250 - What are the general requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...
40 CFR 63.1164 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...
40 CFR 63.1164 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
BEVINS, R.R.
This study is a requirements document that presents analysis for the functional description for the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment. The requirements in this study apply to the first phase of the W314 Project. This document has been updated during the definitive design portion of the first phase of the W314 Project to capture additional software requirements and is planned to be updated duringmore » the second phase of the W314 Project to cover the second phase of the project's scope.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...
Code of Federal Regulations, 2012 CFR
2012-07-01
... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...
Code of Federal Regulations, 2011 CFR
2011-07-01
... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...
Code of Federal Regulations, 2013 CFR
2013-07-01
... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
40 CFR 52.271 - Malfunction, startup, and shutdown regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...
40 CFR 52.271 - Malfunction, startup, and shutdown regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...
40 CFR 52.271 - Malfunction, startup, and shutdown regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...
40 CFR 52.271 - Malfunction, startup, and shutdown regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...
40 CFR 52.271 - Malfunction, startup, and shutdown regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...
77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...
40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...
40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...
40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...
40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...
40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...
40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports
Code of Federal Regulations, 2011 CFR
2011-07-01
... had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information... requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and malfunction report if...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
... SIP Calls To Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... SIP Calls to Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and Malfunction...
40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...
40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...
40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...
40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...
40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...
40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...
40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...
40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...
40 CFR 63.8635 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...
40 CFR 63.10 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...
40 CFR 63.1367 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of subpart A of this part. (3) Startup, shutdown, and malfunction plan. The owner or operator of an affected source shall develop a written startup, shutdown, and malfunction plan as specified in § 63.6(e)(3... during periods of startup, shutdown, and malfunction and a program for corrective action for a...
40 CFR 63.10 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...
40 CFR 63.8635 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...
40 CFR 63.1346 - Operating limits for kilns.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...
40 CFR 63.10 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...
40 CFR 63.10 - Recordkeeping and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...
40 CFR 63.8635 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...
40 CFR 63.1346 - Operating limits for kilns.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...
40 CFR 63.8635 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...
50 CFR 216.171 - Effective dates and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... concern listed in next bullet) found dead or live on shore within a two day period and occurring on same... distress. (2) Shutdown (this definition specifically applies only to the word as used in § 216.174(a)(1... live, in the water animal involved in a USE. ...
40 CFR 60.1665 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
40 CFR 62.15120 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
Burnable absorber arrangement for fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Townsend, D.B.
1986-12-16
This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less
30 CFR 57.8534 - Shutdown or failure of auxiliary fans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...
76 FR 20707 - Notice of Possible Shutdown of Investigative Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... receives funding and the period of the shutdown ends, all schedules will resume starting with the day on... if the Commission resumes operations by April 14, 2011. Should the shutdown not end before April 14.... The Commission's World Wide Web site, at http://www.usitc.gov , will be updated to the extent...
40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports
Code of Federal Regulations, 2010 CFR
2010-07-01
....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...
40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports
Code of Federal Regulations, 2011 CFR
2011-07-01
.... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...
40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports
Code of Federal Regulations, 2012 CFR
2012-07-01
.... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...
40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports
Code of Federal Regulations, 2010 CFR
2010-07-01
.... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...
40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...
40 CFR 63.1570 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...
Code of Federal Regulations, 2011 CFR
2011-07-01
... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...
40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports
Code of Federal Regulations, 2011 CFR
2011-07-01
....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... to you. This includes periods of startup, shutdown, and malfunction. These instances are deviations... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations...
40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports
Code of Federal Regulations, 2013 CFR
2013-07-01
.... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...
40 CFR 63.1570 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.1570 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup...-Emission Limitations and Operating Limits § 60.2685 What happens during periods of startup, shutdown, and... startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3 hours. Effective Date...
40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports
Code of Federal Regulations, 2014 CFR
2014-07-01
.... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...
40 CFR 63.1570 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports
Code of Federal Regulations, 2013 CFR
2013-07-01
....6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include... you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and...
40 CFR 63.1570 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.9641 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...
40 CFR 63.9814 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...
40 CFR 63.9814 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...
40 CFR 63.9641 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...
40 CFR 63.9814 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...
40 CFR 63.9641 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...
40 CFR 63.9641 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...
40 CFR 63.9814 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...
Discussion-preliminary review of the safety aspects of the crossunder line, Project CG-884. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.S.
1960-12-19
In order to reduce both charge-discharge shutdown time and the number of manhours of radiation exposure, Project CGI-884 is being completed at the B, D, DR, F and R Reactors. This consists essentially of installing a large drain line at the bottom of one rear reactor riser. This drain line passes to a control valve and then to the effluent line beyond the downcomer. This system by-passes the crossover downcomer part of the effluent system and eliminates the need for intermittent rear crossheader valving during reactor charge-discharge procedures. Two aspects of this system have been considered, its basic design requirements,more » and operating restrictions to ensure adequate process tube cooling. Because of the complexity of the reactor flow system approximate solutions were used to compare different methods or degrees of operation and establish limits. Despite these approximations, there was sufficient difference in the case results to justify the specific conclusions presented in this report. This report should serve the dual purpose of providing design requirements for the crossunder and also providing the technical criteria necessary for the operating standards for the use of this new system.« less
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...
Code of Federal Regulations, 2013 CFR
2013-07-01
... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA
Code of Federal Regulations, 2010 CFR
2010-07-01
... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...
40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...
40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...
40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...
40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...
40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...
40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...
40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...
40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...
40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...
40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...
40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...
40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA
Code of Federal Regulations, 2011 CFR
2011-07-01
... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...
40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...
Defense.gov Special Report: Government Shutdown - What You Need to Know
Department is taking to plan for a possible government shutdown. Document Plan for Agency Operations During agencies should plan for a potential shutdown. Document Guidance for Continuation of Operations in The Contingency Plan Guidance for Continuation of Essential Operations in the Absence of Available Appropriations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... self- reporting of events that PBGC now learns of only through its own investigations and may enable... to retire sooner upon learning of a shutdown that would eliminate her job, the separation would be the result of the shutdown; whereas if (before learning of the shutdown) she had been planning to...
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
...The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).
77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...
40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...
40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...
40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...
40 CFR 63.9925 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes periods of startup, shutdown, and malfunction. You must also report each instance in which you did... § 63.9931. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...
40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...
NASA Astrophysics Data System (ADS)
Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime
2017-09-01
After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.
NASA Astrophysics Data System (ADS)
Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.
2015-07-01
A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.
Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.
Tejima, Hajime; Nishigaki, Masahide; Fujita, Yasuyuki; Matsumoto, Akihiro; Takeda, Nobuo; Takaoka, Masaki
2007-01-01
Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.
CONTROL RODS FOR NUCLEAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-01-16
A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less
Experiments in DIII-D Toward Achieving Rapid Shutdown with Runaway Electron Suppression
NASA Astrophysics Data System (ADS)
Hollmann, E. M.
2009-11-01
For safe discharge shutdown in future large tokamaks in the event of an unavoidable disruption, it is important to develop rapid (˜ several ms)shutdown methods to avoid large runaway electron currents, which pose a serious threat to plasma facing components. Prevention of runaway current formation has been proposed by either increasing electron-electron collisionality with massive particle injection, or magnetically by using externally applied non-axisymmetric fields to increase radial diffusive losses of a runaway seed population. Experiments studying both approaches have been pursued in the DIII-D tokamak. For collisional suppression, three different rapid shutdown methods are being investigated: massive gas injection, massive shattered cryogenic pellet injection, and polystyrene shell pellet injection. First-of-kind demonstrations of fast shutdowns were produced by 3000 Torr-l (0.8-g) shattered D2 pellets and large, 10-mm diameter, 0.3-g polystyrene shell pellets filled with boron powder. The application of external magnetic perturbations shows promising preliminary results in suppressing seed runaway electrons, although lack of repeatability in the runaway seed term made these results challenging to interpret. Experiments have been performed to help understand how runaways form and are transported during rapid shutdown. These experiments confirm that the commonly used 0D loop voltage + Dreicer evaporation picture of runaway seed formation is not applicable here, with relativistic E > 0.5,MeV electrons forming before any external loop voltage appears. Present applications of 0D, 1D, and 2D models to the rapid shutdown and runaway confinement experiments, as well as preliminary extrapolations to ITER, will be discussed.
Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.
A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sitesmore » An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 13 shutdown sites use designs from 4 different suppliers involving 11 different (horizontal and vertical) dry storage systems that would require the use of 9 different transportation cask designs to remove the SNF and GTCC waste from the shutdown sites. Although some changes to transportation certificates of compliance will be required, the SNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in dual purpose dry storage canisters that can be transported, including a small amount of high-burnup fuel. Most sites indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. Some sites could be ready in less time. As additional sites such as Fort Calhoun, Clinton, Quad Cities, Pilgrim, Oyster Creek, and Diablo Canyon shut down, these sites will be included in updates to the evaluation.« less
Specification of Fenix MPI Fault Tolerance library version 1.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Marc; Van Der Wijngaart, Rob; Teranishi, Keita
This document provides a specification of Fenix, a software library compatible with the Message Passing Interface (MPI) to support fault recovery without application shutdown. The library consists of two modules. The first, termed process recovery , restores an application to a consistent state after it has suffered a loss of one or more MPI processes (ranks). The second specifies functions the user can invoke to store application data in Fenix managed redundant storage, and to retrieve it from that storage after process recovery.
Static Stress Transfers Causes Delayed Seismicity Shutdown
NASA Astrophysics Data System (ADS)
Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.; Cochran, E. S.
2015-12-01
It has been long debated what role static stress changes play in the enhancement and suppression of seismicity in the near-field region of large earthquakes. While numerous observations have correlated earthquake triggering and elevated seismicity rates with regions of increased Coulomb failure stress (CFS), observations of seismic quiescence in stress shadow regions are more controversial. When observed, seismicity shutdowns are often delayed by days to months following a negative stress perturbation. Some studies propose that the delay in the seismic shutdown can be caused by rupture promoting failure on one fault type while suppressing activity on another; thus the observed seismicity reflects the weighted contribution of the two faulting populations. For example, it was noted that in the 75 years following the 1906 San Francisco earthquake, strike-slip faulting earthquakes were inhibited, while thrust faulting events were promoted. However, definitive observations supporting this delayed shutdown mechanism are rare. In this study, we report seismicity rate increases and decreases that correlate with regions of Coulomb stress transfer, and show observations of a delayed shutdown in the Yuha Desert, California. We use a Coulomb stress change model coupled with a rate-and state- earthquake model to show that the delay in the shutdown is due to the combined changes in the rates of normal and strike-slip faulting events following the 2010 M5.72 Ocotillo aftershock of the 2010 El Mayor-Cucapah earthquake.
Multiple well-shutdown tests and site-scale flow simulation in fractured rocks
Tiedeman, Claire; Lacombe, Pierre J.; Goode, Daniel J.
2010-01-01
A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.
Strategic plan for infrastructure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donley, C.D.
This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructuremore » and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.« less
PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the reportmore » covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.« less
Startup, Shutdown, & Malfunction (SSM) Emissions
EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.
NUMBER AND TYPE OF OPERATING CYCLES FOR THE FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, D. C.
1969-05-15
The choice of materials and other vessel design decisions necessary to provide the desired life expectancy for the FTR vessel are partially dependent upon estimates of the number and type of reactor shutdowns and startups which may be anticipated. Current estimates of these so-called "cycles" are given, including scram frequency, experimental outage frequency, standard shutdowns and startups, and rapid controlled shutdowns. Also discussed are abnormal heatup or cooldown, and tentative goals for temperature controls. MTR, ETR, and typical PRTR operating histories are tabulated.
Task 4 completion report for 40 Kilowatt grid connected modification contract
NASA Technical Reports Server (NTRS)
Vogt, J. H.
1983-01-01
Startup, operation in grid connect mode, shutdown from grid connects, operation in isolated mode, shutdown from isolated mode, steady state operation, mode transfers, and voltage disconnects are addressed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
...; Excess Emissions During Startup, Shutdown, Maintenance, and Malfunction Activities AGENCY: Environmental...; Texas; Excess Emissions During Startup, Shutdown, Maintenance, and Malfunction Activities.'' As...
Startup, Shutdown, & Malfunction (SSM) Emissions at Industrial Facilities
EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.
Staged venting of fuel cell system during rapid shutdown
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
Staged venting of fuel cell system during rapid shutdown
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-09-14
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
Dioxins from medical waste incineration: Normal operation and transient conditions.
Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons
2015-07-01
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.
Improved refractory performance through partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linck, F.E.; Peters, D.
1995-12-31
From the early designs and construction of Circulating Fluidized Bed (CFB) boilers, many improvements have been made based upon observations of performance. Included in these improvements have been the refractory linings. The early refractory linings were subjected to extreme fluctuations in temperatures as the units experienced up and down conditions. As the designs were improved refractory failures were mostly due to the operating conditions and other mechanical stresses rather than continual shutdowns and startups. More recent problems observed with refractory linings are localized areas of high erosion, corrosion and cracking which result in hot spots and eventual shutdowns for repair.more » Today the objective of refractory suppliers and installers is to strive towards planned shutdowns rather than emergency shutdowns. This can be accomplished through partnerships between operations, material suppliers and installers. In essence, the concept is a cooperative effort between these groups to solve the variety of refractory problems in order to achieve longer refractory lining performance and less chance for emergency shutdowns. The reliability of the refractory lining is dependent on the successful combination of the material selected, proper design and the installation of the refractory material. Where these three elements combine, the lining has the best chance of performing its intended purpose.« less
40 CFR 63.6105 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to you at all times except during startup, shutdown, and malfunctions. (b) If you must comply with... times including during startup, shutdown, and malfunction. Testing and Initial Compliance Requirements ...
Shutdown system for a nuclear reactor
Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.
1984-06-05
An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.
Shutdown system for a nuclear reactor
Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.
1984-01-01
An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uto, N.; Niwa, H.; Ieda, Y.
1996-08-01
Passive prevention of core disruptive accidents (CDAs) is desired in terms of enhancement of safety for future fast breeder reactors. In addition, mitigation of CDA`s consequences should be required because mitigation measures have a potential of applying to all accidents, while prevention measures are prepared for specific accident initiators. In this paper, the Intra-Subassembly-equipped Self-Actuated Shutdown System (IS-SASS) , which is considered effective on passive prevention and mitigation of CDAs, is described. The IS-SASS is introduced in a fuel subassembly and consists of absorber materials at the top of the active core and an inner duct through which molten fuelmore » can be excluded out of the core. The determination of the appropriate number of the IS-SASS units, their arrangement in the core and their suitable structure are found to be suited to prevention and mitigation of CDAs for liquid metal-cooled large fast breeder reactors.« less
40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?
Code of Federal Regulations, 2011 CFR
2011-07-01
... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...
40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?
Code of Federal Regulations, 2012 CFR
2012-07-01
... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...
40 CFR 62.14413 - When do the emission limits and stack opacity requirements apply?
Code of Federal Regulations, 2010 CFR
2010-07-01
... all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to your HMIWI during periods of startup, shutdown, or...
Display-And-Alarm Circuit For Accelerometer
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
....m. in the Pentagon. Due to weather conditions and a federal government shutdown, the scheduled March... weather conditions and a federal government shutdown, the scheduled March 6, 2013 Board meeting is...
40 CFR 63.6105 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...
40 CFR 63.6105 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...
40 CFR 63.6105 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitations which apply to you at all times except during startup, shutdown, and malfunctions. (b) If you must... emissions at all times including during startup, shutdown, and malfunction. Testing and Initial Compliance...
40 CFR 63.11496 - What are the standards and compliance requirements for process vents?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...
40 CFR 63.11496 - What are the standards and compliance requirements for process vents?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...
40 CFR 63.11496 - What are the standards and compliance requirements for process vents?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Startup, shutdown, malfunction (SSM). Section 63.998(b)(2)(iii),(b)(6)(i)(A), and (d)(3) do not apply for.... (i) Startup, shutdown, and malfunction (SSM). References to SSM provisions in subparts that are...
40 CFR 63.9610 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... section at all times, except during periods of startup, shutdown, and malfunction. The terms startup... develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). [68...
Buffer thermal energy storage for a solar Brayton engine
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Barr, K. P.
1981-01-01
A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.
Confirmation of shutdown cooling effects
NASA Astrophysics Data System (ADS)
Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro
2015-12-01
After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady
2014-04-01
Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less
Study on regional air quality impact from a chemical plant emergency shutdown.
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-06-01
Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
33 CFR 127.205 - Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...
33 CFR 127.205 - Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...
Despite the Shutdown, Rescheduled NIH Research Festival Brings Science to the Forefront | Poster
By Andrea Frydl, Contributing Writer Although it was delayed by almost a month because of the federal shutdown, the NIH Research Festival still took place at the NIH Clinical Center in Bethesda, Md., and attendance was high.
Choi, Jiyun; Cho, Hyunseok; Lee, Seungmin; Kim, Juyeong; Park, Eun-Cheol
2018-05-01
Internet addiction has emerged as a major public health problem worldwide. In November 2011, the South Korean government implemented an online game shutdown policy, lasting from 12:00 to 6:00 am, as a means of preventing Internet addiction in adolescents aged 15 or below. This study analyzed the effect of this shutdown policy on adolescent Internet use, addiction, and sleeping hours. We analyzed data collected from the Korea Youth Risk Behavior Web-based Survey from 2011 to 2015. Respondents were divided into two groups by age: aged 15 or below (male = 76,048, female = 66,281) and aged 16 or above (male = 52,568, female = 49,060). A difference-in-difference analysis was used to evaluate the effect of this shutdown policy. In 2012, which is immediately following policy enforcement, daily amount of Internet use (in minutes) decreased more in adolescents affected by the policy (i.e., the aged 15 or below group). However, it steadily increased in 2013, 2014, 2015, and showed no meaningful long-term improvements 4 years after policy implementation (-3.648 minutes in 2012 [p = .001], -3.204 minutes in 2013 [p = .011], -1.140 minutes in 2014 [p = .384], and 2.190 minutes in 2015 [p = .107]). The shutdown policy did not alter Internet addiction or sleeping hours. Interestingly, female adolescents, adolescents with low academic performance, and adolescents with low exercise levels exhibited comparatively stronger and longer lasting initial declines in Internet usage. The shutdown policy had practically insignificant effects in reducing Internet use for target adolescents. Thus, policymakers aiming to reduce or prevent Internet addiction should use different strategies. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS General Requirements § 63.15-7 Alarms. (a) An audible alarm must automatically sound when a flame safety system shutdown occurs. A visible indicator must indicate that the shutdown was caused by the flame safety system...
30 CFR 7.103 - Safety system control test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...
30 CFR 7.103 - Safety system control test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...
30 CFR 7.103 - Safety system control test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...
40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter
40 CFR 63.2250 - What are the general requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...
40 CFR 63.2250 - What are the general requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...
40 CFR 63.2250 - What are the general requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...
40 CFR 63.1354 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... owner or operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup... information in a semiannual report. Reports shall only be required if a startup, shutdown, or malfunction...
40 CFR 60.51Da - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... excluded from the calculation of average emission rates because of startup, shutdown, malfunction (NOX only... than startup, shutdown, malfunction, or emergency conditions. (6) Identification of “F” factor used for calculations, method of determination, and type of fuel combusted. (7) Identification of times when hourly...
49 CFR 192.167 - Compressor stations: Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...
49 CFR 192.167 - Compressor stations: Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...
The ATLAS Data Acquisition System: from Run 1 to Run 2
NASA Astrophysics Data System (ADS)
Panduro Vazquez, William; ATLAS Collaboration
2016-04-01
The experience gained during the first period of very successful data taking of the ATLAS experiment (Run 1) has inspired a number of ideas for improvement of the Data Acquisition (DAQ) system that are being put in place during the so-called Long Shutdown 1 of the Large Hadron Collider (LHC), in 2013/14. We have updated the data-flow architecture, rewritten an important fraction of the software and replaced hardware, profiting from state of the art technologies. This paper summarizes the main changes that have been applied to the ATLAS DAQ system and highlights the expected performance and functional improvements that will be available for the LHC Run 2. Particular emphasis will be put on explaining the reasons for our architectural and technical choices, as well as on the simulation and testing approach used to validate this system.
Optimized dispatch in a first-principles concentrating solar power production model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less
Consortium Requirements Engineering Guidebook
1993-12-01
re- quirements among developers or contractors, acquisition managers, and users. A CoRE specification serves as both the test -to and design-to...that are used for the following purposes: (1) the button labeled SELF TEST allows the operator to check the FLMS’s output hardware while the system is...shut down; and (2) the button labeled RESET allows the system to be brought back into normal operation following a shutdown or testing as long as the
Antarctic Projects Stymied by the Shutdown
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
The U.S. federal government shutdown coincided with the beginning of the Antarctic austral summer research window, and many scientists told Eos they are deeply concerned about the impacts on research there. John Priscu, a lead principal investigator with the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project in West Antarctica, said the government shutdown "threw us a curve that I did not anticipate or plan for." Pricsu, who has spent 30 seasons working in Antarctica under federal funding, said that a hole in the project's long-term data set "will have a major impact on the models we are developing to examine climate-induced changes" in Antarctic ecosystems.
Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert
2015-06-30
The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...
Code of Federal Regulations, 2012 CFR
2012-01-01
... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to bring and maintain the plant in safe shutdown (non-design basis accident). Applicant means a... Document Control Desk. Nuclear reactor means an apparatus, other than an atomic weapon, designed or used to... from the Restricted Data category pursuant to section 142 of the Act. Safe shutdown (non-design basis...
Code of Federal Regulations, 2012 CFR
2012-10-01
... transmitters shall incorporate a programmable means to implement a system shutdown process in the event of... transmitters shall incorporate a programmable means to implement a system shutdown process in the event of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram
news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark energy ADMX discoveries Questions for the universe Ask a scientist Tevatron Tevatron Timeline Tevatron accelerator Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book
Fermilab | Tevatron | Interactive Timeline
Process Looking Ahead For the Media Video of Shutdown Event Guest Book TevatronImpact June 11, 2012 About the Symposium Symposium Agenda Travel & Lodging List of Registrants Organizing Committee Follow in the News Quantum Diaries Tevatron Home Looking Ahead For the Media Shutdown Event Previous Next
40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES National Emission Standards for Coke Oven Batteries § 63.310 Requirements for startups, shutdowns... or operator shall operate and maintain the coke oven battery and its pollution control equipment... operator of a coke oven battery shall develop, according to paragraph (c) of this section, a written...
46 CFR 153.296 - Emergency shutdown stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book check on holiday hours or check the Lederman Science Center website. Groups of six or more must book a
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For
Fermilab | Contact Fermilab | Email Fermilab
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book , Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact
Fermilab | Tevatron | Shutdown Process
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...
40 CFR 60.11 - Compliance with standards and maintenance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (meaning those fugitive-type emission sources subject only to an opacity standard). (c) The opacity standards set forth in this part shall apply at all times except during periods of startup, shutdown... startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and...
40 CFR 63.7555 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...
40 CFR 63.7555 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...
40 CFR 63.9050 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...
40 CFR 63.7555 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (v) related to startup, shutdown, and malfunction. (3) Records of performance tests, fuel analyses... the deviation occurred during a period of startup, shutdown, or malfunction or during another period... monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used. (2...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...
40 CFR 63.9050 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...
40 CFR 63.9050 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...
40 CFR 63.9050 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance... period. This description shall include the type of maintenance performed and the total number of hours...
40 CFR 63.1346 - Operating limits for kilns.
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...
40 CFR 63.1346 - Operating limits for kilns.
Code of Federal Regulations, 2012 CFR
2012-07-01
... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...
40 CFR 63.102 - General standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... subpart G of this part apply. However, if a start-up, shutdown, malfunction or period of non-operation of... part during the start-up, shutdown, malfunction or period of non-operation. For example, if there is an...
Microcapsule-based techniques for improving the safety of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Baginska, Marta
Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.
Thermal modelling of cooling tool cutting when milling by electrical analogy
NASA Astrophysics Data System (ADS)
Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.
2010-06-01
Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.
Combustion stability analysis of preburners in liquid propellant rocket engines during shutdown
NASA Technical Reports Server (NTRS)
Lim, Kair-Chuan; George, Paul E., II
1987-01-01
A linearized one-dimensional lumped-parameter model capable of predicting the occurrence of the low frequency combustion instability (chugging) experienced during preburner shutdown in the Space Shuttle Main Engines is discussed, and predictions are compared with NASA experimental results. Results from a parametric study of parameters including chamber pressure, fuel and oxygen temperatures, and the effective bulk modulus of the liquid oxidizer suggest that chugging is probably affected by conditions at shutdown through the fuel and oxidizer temperatures. It is suggested that chugging is initiated when the fuel, oxidizer, and helium temperature and flow rates pass into an unstable region, and that chugging may be terminated by decaying pressures.
78 FR 23696 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... longitudinal main rotor actuator piston after shut-down of the external pump drive, during rigging of the main... rotor controls, of movement of the longitudinal main rotor actuator piston after shut-down of the external pump drive. Such movement could cause incorrect rigging results. The proposed actions are intended...
40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...
25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.
Code of Federal Regulations, 2010 CFR
2010-04-01
... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... production of oil and/or gas has been demonstrated to the satisfaction of the Superintendent. Lessee shall... the means by which the well bore is to be protected, and the contemplated eventual disposition of the...
A 100 kW experimental wind turbine: Simulation of starting, overspeed, and shutdown characteristics
NASA Technical Reports Server (NTRS)
Gilbert, L. J.
1976-01-01
The ERDA/NASA 100 kW experimental wind turbine is modeled on a digital computer in order to study the performance of a wind turbine under operating conditions. Simulation studies of starting, overspeed, and shutdown performance were made. From these studies operating procedures, precautions, and limitations are prescribed.
46 CFR 153.408 - Tank overflow control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...
46 CFR 153.408 - Tank overflow control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...
78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
...On June 28, 2013, the GPU Nuclear Inc. (GPUN) submitted its Post Shutdown Decommissioning Activity Report (PSDAR) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's proposed decommissioning activities, schedule, and costs for TMI-2. The NRC is requesting public comments on the PSDAR.
Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germer, J.H.; Peterson, L.F.; Kluck, A.L.
1980-09-01
The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... (KPS) Post-Shutdown Decommissioning Activities Report (PSDAR), Revision 0, on Wednesday, April 24, 2013... Management System (ADAMS) Accession No. ML13058A065. In a prior communication on November 2, 2012 (ADAMS... at KPS pending completion of a grid stability review by the Midwest Independent Transmission System...
Impact of Government Shutdown on Child Care and Early Education Programs
ERIC Educational Resources Information Center
Center for Law and Social Policy, Inc. (CLASP), 2013
2013-01-01
Congress did not enact a continuing resolution bill by midnight September 30, 2013, thereby triggering a partial government shutdown effective October 1, 2013. October 1 began the federal fiscal year 2014. Most discretionary programs, those that are subject to the annual Congressional appropriations process, will not receive 2014 funding. Most,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for... describes the unsafe condition as: An uncommanded engine in-flight shutdown of a PZL-10W has been recently reported. The investigation has shown that the uncommanded engine in-flight shutdown was due to excessive...
Fermilab | Science | Questions for the Universe | Einstein's Dream of
Navbar Toggle Search Search Home About Science Jobs Contact Phone Book Newsroom Newsroom News and Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram Google
40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...
40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports
Code of Federal Regulations, 2014 CFR
2014-07-01
... reporting in § 63.6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report....6010(b), unless you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports
Code of Federal Regulations, 2012 CFR
2012-07-01
... reporting in § 63.6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report....6010(b), unless you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...
40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...
40 CFR 63.1211 - What are the recordkeeping and reporting requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...
40 CFR 63.1211 - What are the recordkeeping and reporting requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...
40 CFR 63.1211 - What are the recordkeeping and reporting requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...
40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicable emission limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR 63.1211 - What are the recordkeeping and reporting requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...
40 CFR 63.1211 - What are the recordkeeping and reporting requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance date granted under § 63.6(i). 63.10(d)(5)(i) Periodic startup, shutdown, and malfunction reports. 63.10(d)(5)(ii) Immediate startup, shutdown, and malfunction reports. 63.10(e)(3) Excessive emissions and continuous monitoring system performance report and summary report. 63.1206(c)(2)(ii)(B) Startup...
40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments within a... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicable emission limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
40 CFR 63.3542 - How do I demonstrate continuous compliance with the emission limitations?
Code of Federal Regulations, 2011 CFR
2011-07-01
... limit in § 63.3490. Alternatively, if you calculate an OSEL for all coating type segments within a... of startup, shutdown, or malfunction of the emission capture system, add-on control device, or... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...
Preventing the Shut-Down: Embodied Critical Care in a Teacher Educator's Practice
ERIC Educational Resources Information Center
Trout, Muffet; Basford, Letitia
2016-01-01
This article explores the practice of one teacher educator to understand how she mitigates student resistance to prevent what we call "the shut-down" when teaching mostly White students about systemic forms of oppression. Engaging students in conversations about oppression does not in itself disrupt systems of power and privilege in…
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
Monitoring blood flow and photobleaching during topical ALA PDT treatment
NASA Astrophysics Data System (ADS)
Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.
2009-02-01
Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.
Self-actuated shutdown system for a commercial size LMFBR. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupen, C.F.G.
1978-08-01
A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility andmore » reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power.« less
Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres
Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...
2014-07-17
Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less
Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong
2018-01-01
Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2012-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 19 Proposal 12718.
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2013-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a safe and conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 20 Proposal 13129.
Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 2
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. This is the second book of volume four. Some of the items it contains are specs for the emergency shutdown panel, specs for the simulator software, simulator hardware specs, site operator terminal requirements, control data system requirements, software project management plan, elastomeric teeter bearing requirement specs, specs for the controls electronic cabinet, and specs for bolt pretensioning.
Schwartze, Jonas; Prekazi, Arianit; Schrom, Harald; Marschollek, Michael
2017-01-01
Ambient assisted living (AAL) may support ageing in place but is primarily driven by technology. The aim of this work is, to identifying reasons to move into assisted living institutions, their range of service and possible substitutability. We did semi-structured interviews with five experts from assisted living institutions and used results to design and implement assistive technologies in an AAL environment using BASIS, a cross domain bus system for smart buildings. Reasons for moving to assisted living institutions are expected benefits for chronic health problems, safety, social isolation and carefree living. We implemented six application systems for inactivity monitoring, stove shutdown, air quality monitoring, medication and appointment reminders, detection of unwanted situations before leaving and optical ringing of the doorbell. Substitution of selected assisted living services is feasible and has potential to delay necessity to move into assisted living institution if complement social services are installed.
Volcanic ash hazards and aviation risk: Chapter 4
Guffanti, Marianne C.; Tupper, Andrew C.
2015-01-01
The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.
77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
...,'' NUREG-1432, ``Standard Technical Specifications, Combustion Engineering Plants,'' NUREG-1433, ``Standard..., ``Standard Technical Specifications, Combustion Engineering Plants'' Revision 4, ADAMS Accession No..., Westinghouse Plants''.. NUREG-1432, ``Standard Technical ML12102A165 ML12102A169 Specifications, Combustion...
40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 10 to Subpart Ddddd... - Applicability of General Provisions to Subpart DDDDD
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for SSM and startup, shutdown, malfunction plan; and content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM Comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based on...
40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 10 to Subpart Ddddd... - Applicability of General Provisions to Subpart DDDDD
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for SSM and startup, shutdown, malfunction plan; and content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM Comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based on...
40 CFR Table 8 to Subpart Kkkkk of... - Applicability of General Provisions to Subpart KKKKK
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR Table 7 to Subpart Jjjjj of... - Applicability of General Provisions to Subpart JJJJJ
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Shutdown, and Malfunction Plan (SSMP) Requirement for startup, shutdown, and malfunction (SSM) and SSMP; content of SSMP Yes. § 63.6(f)(1) Compliance Except During SSM You must comply with emission standards at all times except during SSM Yes. § 63.6(f)(2)-(3) Methods for Determining Compliance Compliance based...
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... record of whether the deviation occurred during a period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records... part 51 for a PTE and has a capture efficiency of 100 percent, as specified in § 63.3965(a). (5) For...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records required to show continuous compliance with each... of 100 percent, as specified in § 63.4165(a). (5) For each capture system that is not a PTE, the data...
40 CFR 63.4930 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... record of whether the deviation occurred during a period of startup, shutdown, or malfunction. (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. (3) The records... part 51 for a PTE and has a capture efficiency of 100 percent, as specified in § 63.4964(a). (5) For...
46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...
46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...
Fermilab | Tritium at Fermilab | Tritium released into the air and disposed
Science Jobs Contact Phone Book Newsroom Newsroom News and features Press releases Photo gallery Fact Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry
40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...
40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...
40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...
40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet each emission limitation in § 63.8190 that applies to you. This includes periods of startup... standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and malfunction. (3... range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1...
40 CFR 63.9637 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitation in Table 1 to this subpart that applies to you. This includes periods of startup, shutdown, and... subpart. These deviations must be reported in accordance with the requirements in § 63.9641. (b) Startups... period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's...
40 CFR 63.10032 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...
40 CFR 63.10032 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...
40 CFR 63.10032 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... must keep records of the type(s) and amount(s) of fuel used during each startup or shutdown. (j) If you... whether the deviation occurred during a period of startup, shutdown, or malfunction or during another... must keep records of monthly fuel use by each EGU, including the type(s) of fuel and amount(s) used. (2...
Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades
NASA Technical Reports Server (NTRS)
Haloulakos, V. E.
1991-01-01
Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.
Data Center Energy Efficiency Measurement Assessment Kit Guide and Specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-26
A portable and temporary wireless mesh assessment kit can be used to speed up and reduce the costs of a data center energy use assessment and overcome the issues with respect to shutdowns. The assessment kit is comprised of temperature, relative humidity, and pressure sensors. Also included are power meters that can be installed on computer room air conditioners (CRACs) without intrusive interruption of data center operations. The assessment kit produces data required for a detailed energy assessment of the data center.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Adoption of Technical Specifications Task Force Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite... Technical Specifications Task Force (TSTF) Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite--Update to... Reactor Systems Engineer, Technical Specifications Branch, Mail Stop: O-7 C2A, Division of Inspection and...
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pewitt, E.G.
The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.
40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7746 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... periods of startup, shutdown, and malfunction. You also must report each instance in which you did not... according to the requirements of § 63.7751. (b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
40 CFR 63.7336 - What other requirements must I meet to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... periods of startup, shutdown, and malfunction. You must also report each instance in which you did not... must be reported according to the requirements in § 63.7341. (b) Startup, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup...
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
Code of Federal Regulations, 2014 CFR
2014-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
ERIC Educational Resources Information Center
Stuit, David A.
2010-01-01
This study investigates the successes of the charter and district sectors in eliminating bad schools via dramatic turnarounds in performance and/or shutdowns. It identified 2,025 low-performing charter and district schools across ten states, each of which is home to a sizable number of charter schools. These particular schools were tracked from…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... hot shutdown for fire areas in which both trains of safe-shutdown cables or equipment are located in... proposed action. The staff has concluded that such actions would not adversely affect the environment. The... case. This exemption request will not have a significant effect on the environment, as the largest...
EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS
Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.
1963-12-24
An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, B.; Stern, W.; Colley, J.
International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less
Impact induced response spectrum for the safety evaluation of the high flux isotope reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.J.
1997-05-01
The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less
Design of automatic startup and shutdown logic for a Brayton-cycle 2- to 15-kilowatt engine
NASA Technical Reports Server (NTRS)
Vrancik, J. E.; Bainbridge, R. C.
1975-01-01
The NASA Lewis Research Center is conducting a closed-Brayton-cycle power conversion system technology program in which a complete power system (engine) has been designed and demonstrated. This report discusses the design of automatic startup and shutdown logic circuits as a modification to the control system presently used in this demonstration engine. This modification was primarily intended to make starting the engine as simple and safe as possible and to allow the engine to be run unattended. In the modified configuration the engine is started by turning the control console power on and pushing the start button after preheating the gas loop. No other operator action is required to effect a complete startup. Shutdown, if one is required, is also effected by a simple stop button. The automatic startup and shutdown of the engine have been successfully and purposefully demonstrated more than 50 times at the Lewis Research Center during 10,000 hours of unattended operation. The net effect of this modification is an engine that can be safely started and stopped by relatively untrained personnel. The approach lends itself directly to remote unattended operation.
48 CFR 252.246-7001 - Warranty of data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... calibration procedures under MIL-T-31000, General Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data Packages, Supp 1, or drawings and associated... Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data...
48 CFR 252.246-7001 - Warranty of data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... calibration procedures under MIL-T-31000, General Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data Packages, Supp 1, or drawings and associated... Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data...
48 CFR 252.246-7001 - Warranty of data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... calibration procedures under MIL-T-31000, General Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data Packages, Supp 1, or drawings and associated... Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data...
48 CFR 252.246-7001 - Warranty of data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... calibration procedures under MIL-T-31000, General Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data Packages, Supp 1, or drawings and associated... Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data...
48 CFR 252.246-7001 - Warranty of data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... calibration procedures under MIL-T-31000, General Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data Packages, Supp 1, or drawings and associated... Specification for Technical Data Packages, Amendment 1, or MIL-T-47500, General Specification for Technical Data...
Government Shutdown: Operations of Department of Defense During a Lapse in Appropriations
2011-04-01
proactive in working with creditors to reschedule debt repayments under these circumstances… c. Military personnel: During a shutdown of DoD activities due...creditors to reschedule debt repayments under these circumstances. The key point that both the creditor and the soldier should remember is that the...including Uniformed Services Treatment Facilities) including doctors, nurses , medical technicians, dentists, and essential support personnel (cooks
Smart Shutdown Guidebook: Considerations for a Successful Shutdown
2014-01-01
multiple countries, multiple contractors) or in number of subsystems and interfaces • State of the contract (is the procuring contract officer ( PCO ...assigned tasks. • Includes the procuring, administrative, and terminating contracting officers ( PCOs , ACOs, and TCOs). 6 • Assigns full authority and...assist the PCO and TCO with their correspondence requirements with contractors and to assist higher leadership in its communication with external
Shutdown of the Federal Government: Causes, Processes, and Effects
2013-09-25
has an ability to borrow to finance its obligations. As a result, the federal government would need to rely solely on incoming revenues to finance...loss of tourism revenues to local communities; and closure of national museums and monuments (reportedly with an estimated loss of 2 million...Shutdown of the Federal Government : Causes, Processes, and Effects Congressional Research Service 16 revenues and “carryover” funds from
40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...
40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...
40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...
40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...
40 CFR Table 6 to Subpart Cccc of... - Applicability of General Provisions to Subpart CCCC
Code of Federal Regulations, 2010 CFR
2010-07-01
... Requirements 1. For § 63.6(e) and (f), requirements for startup, shutdown, and malfunctions apply only to.... 3. For § 63.8(c)(1), requirements for startup, shutdown, and malfunctions apply only to malfunctions, and no report pursuant to § 63.10(d)(5)(i) is required. 4. For § 63.8(d), requirements for startup...
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs of § 63.5 as listed below. § 63.5(c) [Reserved] § 63.5(d)(1)(ii)(H) Application for approval Type... maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f)-(g) Compliance with nonopacity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraphs of § 63.5 as listed below. § 63.5(c) [Reserved] § 63.5(d)(1)(ii)(H) Application for approval Type... maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f)-(g) Compliance with nonopacity...
Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew
Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... Standard Technical Specification (STS): NUREG-1432, ``Standard Technical Specifications Combustion..., Washington, DC 20555- 0001. SUPPLEMENTARY INFORMATION: TSTF-426, Revision 5, is applicable to all Combustion...
Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C
2016-04-01
Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. The mechanisms responsible for dysregulated fibrinolysis following injury remain uncertain. Animal work suggests hypoperfusion promotes fibrinolysis, while tissue injury inhibits fibrinolysis. Clinical experience is consistent with these observations. The predominant mediator of postinjury hyperfibrinolysis appears to be tissue plasminogen activator (tPA) released from ischemic endothelium. The effects of tPA are accentuated by impaired hepatic clearance. Fibrinolysis shutdown, on the other hand, may occur from inhibition of circulating tPA, enhanced clot strength impairing the binding of tPA and plasminogen to fibrin, or the inhibition of plasmin. Plasminogen activator inhibitor -1 (PAI-1) binding of circulating tPA appears to be a major mechanism for postinjury shutdown. The sources of PAI-1 include endothelium, platelets, and organ parenchyma. The laboratory identification of fibrinolysis phenotype, at this moment, is best determined with viscoelastic hemostatic assays (TEG, ROTEM). While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or ROTEM. © 2016 AABB.
Method for conducting electroless metal-plating processes
Petit, George S.; Wright, Ralph R.
1978-01-01
This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.
Edwin I. Hatch nuclear plant implementation of improved technical specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahler, S.R.; Pendry, D.
1994-12-31
Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency betweenmore » the two units, to the extent practicable.« less
Past Government Shutdowns: Key Resources
2013-11-25
R41759 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour ...effects of a hypothetical three-day shutdown during a nonholiday workweek . House and Senate Committee Prints and Hearings Committee Prints The ...Attorney General from 1979 to 1981. 4 The opinions stated that, with some exceptions, the head of an agency could avoid violating the Antideficiency Act
Controlled shutdown of a fuel cell
Clingerman, Bruce J.; Keskula, Donald H.
2002-01-01
A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.
The FY2014 Government Shutdown: Economic Effects
2013-11-01
caused a decline in consumer, business, or investor confidence, it could have led consumers and businesses to postpone or cancel spending decisions...Even if lawmakers come to terms roughly as expected , political vitriol and repeated threats to shut government or not pay its bills have weighed...growth.14 Most forecasts taken before the shutdown expected a moderate pace of growth in the fourth quarter, and forecasters projected a slightly more
AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report
2014-10-09
material. • Hi-Fog and emergency shutdowns – the Pilot House (SCC) has been designated as the main fire control station per ACCU. For this reason, the...decision. In addition, because of the ACCU designation , other required emergency shutdowns will also be located at the SCC. These include remote...3 • Foc’sle Deck Joiner & HVAC – Additional joiner work taking place and several large HVAC duct runs installed
Comparing shut-down strategies for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Oyarce, Alejandro; Zakrisson, Erik; Ivity, Matthew; Lagergren, Carina; Ofstad, Axel Baumann; Bodén, Andreas; Lindbergh, Göran
2014-05-01
Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 °C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.
PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.
Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong
2017-08-01
Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm -3 and 1.09-3.36 ng I-TEQ Nm -3 , respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.
Transesophageal echocardiography probe shutdown in a patient with hyperthermia.
Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant
2016-01-01
The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever.
Transesophageal echocardiography probe shutdown in a patient with hyperthermia
Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant
2016-01-01
The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever. PMID:26952152
Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system
NASA Technical Reports Server (NTRS)
Tew, R. C.; Jefferies, K. S.
1974-01-01
A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.
Gas-injection-start and shutdown characteristics of a 2-kilowatt to 15-kilowatt Brayton power system
NASA Technical Reports Server (NTRS)
Cantoni, D. A.
1972-01-01
Two methods of starting the Brayton power system have been considered: (1) using the alternator as a motor to spin the Brayton rotating unit (BRU), and (2) spinning the BRU by forced gas injection. The first method requires the use of an auxiliary electrical power source. An alternating voltage is applied to the terminals of the alternator to drive it as an induction motor. Only gas-injection starts are discussed in this report. The gas-injection starting method requires high-pressure gas storage and valves to route the gas flow to provide correct BRU rotation. An analog computer simulation was used to size hardware and to determine safe start and shutdown procedures. The simulation was also used to define the range of conditions for successful startups. Experimental data were also obtained under various test conditions. These data verify the validity of the start and shutdown procedures.
Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR
NASA Astrophysics Data System (ADS)
Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.
2017-09-01
KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.
Shutdown characteristics of the Mod-O wind turbine with aileron controls
NASA Technical Reports Server (NTRS)
Miller, D. R.; Corrigan, R. D.
1984-01-01
Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.
System Study: Residual Heat Removal 1998-2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2015-12-01
This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in themore » RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.« less
NASA Astrophysics Data System (ADS)
Severnini, Edson
2017-04-01
The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... Software Developers on the Technical Specifications for Common Formats for Patient Safety Data Collection... designed as an interactive forum where PSOs and software developers can provide input on these technical... updated event descriptions, forms, and technical specifications for software developers. As an update to...
Design analysis and risk assessment for a single stage to orbit nuclear thermal rocket
NASA Astrophysics Data System (ADS)
Labib, Satira I.
Recent advances in high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This thesis describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1-15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 700 seconds. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. At the same power level, the 40 cm reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels ~3.5 km from the launch site. After a one-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration, DAC, from the activation products decays to less than unity within two days, with only argon-41 remaining. After 10 minutes of full power operation the 120 cm core corresponding to a 15 MT payload contains 2.5 x 1013, 1.4 x 1012, 1.5 x 1012, and 7.8 x 10 7 Bq of 131I, 137Cs, 90Sr, and 239Pu respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... NUCLEAR REGULATORY COMMISSION [Project No. 753; NRC-2012-0019] Model Safety Evaluation for Plant... Regulatory Commission (NRC) is announcing the availability of the model safety evaluation (SE) for plant... the Improved Standard Technical Specification (ISTS), NUREG-1431, ``Standard Technical Specifications...
45 CFR 162.920 - Availability of implementation specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... implementation specifications and the Technical Reports Type 3 described in subparts I through S of this part... implementation specifications, which include the Technical Reports Type 3 described in this section, for... part 51. The implementation specifications and Technical Reports Type 3 described in this section are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Farmer, M. T.; Lomperski, S.
The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less
AMICA: The First camera for Near- and Mid-Infrared Astronomical Imaging at Dome C
NASA Astrophysics Data System (ADS)
Straniero, O.; Dolci, M.; Valentini, A.; Valentini, G.; di Rico, G.; Ragni, M.; Giuliani, C.; di Cianno, A.; di Varano, I.; Corcione, L.; Bortoletto, F.; D'Alessandro, M.; Magrin, D.; Bonoli, C.; Giro, E.; Fantinel, D.; Zerbi, F. M.; Riva, A.; de Caprio, V.; Molinari, E.; Conconi, P.; Busso, M.; Tosti, G.; Abia, C. A.
AMICA (Antarctic Multiband Infrared CAmera) is an instrument designed to perform astronomical imaging in the near- (1{-}5 μm) and mid- (5 27 μm) infrared wavelength regions. Equipped with two detectors, an InSb 2562 and a Si:As 1282 IBC, cooled at 35 and 7 K respectively, it will be the first instrument to investigate the potential of the Italian-French base Concordia for IR astronomy. The main technical challenge is represented by the extreme conditions of Dome C (T ˜ -90 °C, p ˜640 mbar). An environmental control system ensures the correct start-up, shut-down and housekeeping of the various components of the camera. AMICA will be mounted on the IRAIT telescope and will perform survey-mode observations in the Southern sky. The first task is to provide important site-quality data. Substantial contributions to the solution of fundamental astrophysical quests, such as those related to late phases of stellar evolution and to star formation processes, are also expected.
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen
1995-01-01
A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.
Shuttle avionics software trials, tribulations and success
NASA Technical Reports Server (NTRS)
Henderson, O. L.
1985-01-01
The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.
INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.
Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim
2017-04-01
CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Turflinger, T.; Schmeichel, W.; Krieg, J.; Titus, J.; Campbell, A.; Reeves, M.; Marshall (P.); Hardage, Donna (Technical Monitor)
2004-01-01
This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates <0.1 rd(Si)/s compared to similar transistors irradiated at dose rates >1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.
Advanced radiator concepts feasibility demonstration
NASA Astrophysics Data System (ADS)
Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.
1991-01-01
An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.
Advanced radiator concepts feasibility demonstration
NASA Astrophysics Data System (ADS)
Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.
An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.
Rhabdovirus evasion of the interferon system.
Rieder, Martina; Conzelmann, Karl-Klaus
2009-09-01
The family Rhabdoviridae contains important pathogens of humans, livestock, and crops, including the insect-transmitted vesicular stomatitis virus (VSV) and the neurotropic rabies virus (RV), which is directly transmitted between mammals. In spite of a highly similar organization of RNA genomes, proteins, and virus particles, cell biology of VSV and RV is divergent in several aspects, particularly with respect to their interplay with the cellular host defense. While infection with both rhabdoviruses is recognized via viral triphosphate RNAs by the cytoplasmic RNA helicase/translocase RIG-I, the viral counteractions to limit the response are contrasting. VSV infection is characterized by a rapid general shutdown of host gene expression and severe cytopathic effects, due to multiple activities of the matrix (M) protein affecting host polymerase functions and mRNA nuclear export, and by rapid and high-level virus replication. In contrast, RV spread and transmission relies on preserving the integrity of host cells, particularly of neurons. While a general cell shutdown by RV M is not observed, RV phosphoprotein (P) has developed independent functions to interfere with activation of IRFs and with STAT signaling. The molecular mechanisms employed are different from those of the paramyxovirus P gene products serving similar functions, and illustrate evolution of IFN antagonists to specifically support virus survival in the natural niches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.
This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportationmore » of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less
The shutdown reactor: Optimizing spent fuel storage cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, C.W.
1995-12-31
Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wetmore » and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.« less
Leeper, Christine M; Neal, Matthew D; McKenna, Christine J; Gaines, Barbara A
2017-09-01
To trend fibrinolysis after injury and determine the influence of traumatic brain injury (TBI) and massive transfusion on fibrinolysis status. Admission fibrinolytic derangement is common in injured children and adults, and is associated with poor outcome. No studies examine fibrinolysis days after injury. Prospective study of severely injured children at a level 1 pediatric trauma center. Rapid thromboelastography was obtained on admission and daily for up to 7 days. Standard definitions of hyperfibrinolysis (HF; LY30 ≥3), fibrinolysis shutdown (SD; LY30 ≤0.8), and normal (LY30 = 0.9-2.9) were applied. Antifibrinolytic use was documented. Outcomes were death, disability, and thromboembolic complications. Wilcoxon rank-sum and Fisher exact tests were performed. Exploratory subgroups included massively transfused and severe TBI patients. In all, 83 patients were analyzed with median (interquartile ranges) age 8 (4-12) and Injury Severity Score 22 (13-34), 73.5% blunt mechanism, 47% severe TBI, 20.5% massively transfused. Outcomes were 14.5% mortality, 43.7% disability, and 9.8% deep vein thrombosis. Remaining in or trending to SD was associated with death (P = 0.007), disability (P = 0.012), and deep vein thrombosis (P = 0.048). Median LY30 was lower on post-trauma day (PTD)1 to PTD4 in patients with poor compared with good outcome; median LY30 was lower on PTD1 to PTD3 in TBI patients compared with non-TBI patients. HF without associated shutdown was not related to poor outcome, but extreme HF (LY30 >30%, n = 3) was lethal. Also, 50% of massively transfused patients in hemorrhagic shock demonstrated SD physiology on admission. All with HF (fc31.2%) corrected after hemostatic resuscitation without tranexamic acid. Fibrinolysis shutdown is common postinjury and predicts poor outcomes. Severe TBI is associated with sustained shutdown. Empiric antifibrinolytics for children should be questioned; thromboelastography-directed selective use should be considered for documented HF.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... Software Developers on the Technical Specifications for Common Formats for Patient Safety Data Collection... software developers can provide input on these technical specifications for the Common Formats Version 1.1... specifications, which provide direction to software developers that plan to implement the Common Formats...
Lee, Jaimy; Zigmond, Jessica
2013-10-14
As lawmakers in D.C. continue to wrangle over how to solve the government shutdown and debt ceiling impasse, the Affordable Care Act's medical device tax is emerging as a likely bargaining chip. But many wonder how the tax's $29.1 billion in funding for coverage expansion will be replaced. Minnesota GOP Rep. Erik Paulsen, says he's encouraged that there is a strong chance the device tax could be overturned.
NASA Technical Reports Server (NTRS)
Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.;
2012-01-01
The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.
Design criteria for a self-actuated shutdown system to ensure limitation of core damage. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deane, N.A.; Atcheson, D.B.
1981-09-01
Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times.
1985-07-01
and Operation 132 6.7.5 Safety 135 6.7.6 System Control Description 136 6.7.6.1 Coal Gasification 136 6.7.6.2 Gas Cooling, Cleaning and Compression...the hydrogen content. The gas is then desulfurized and heated before final polishing and feeding to the fuel cell. Receiving compressed fuel gas and...4 CO Shift 1 Stretford Desulfurizer 3 Gas Compressors 3 Material Handling(3) 3 Subtotal 39 Scheduled Shutdown 14 Total Annual Shutdown 53
The neutronic basis for elemental substitution in martensitic steels
NASA Astrophysics Data System (ADS)
Sublet, J.-Ch.; Butterworth, G. J.
1994-09-01
A simple graphical approach has been developed to facilitate the design of low-activation steels by elemental tailoring. Noting that the iron base provides the best achievable target, the influence of candidate alloying elements becomes readily apparent when the contribution each makes to a particular activation parameter such as specific activity, dose rate or decay power, is expressed relative to the contribution from the iron base. This approach highlights the most critical activation parameters and times after shutdown with respect to safety and environmental objectives. Its application to the design of low activation martensitic stainless steels is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okrent, D.
1997-06-23
This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holness, D.L.; Batten, B.; Broder, I.
1985-05-01
Thirty-six smelter workers examined in this pilot study were found to have a higher prevalence of cough and dyspnea and lower baseline lung function than did 31 controls. They also experienced decreases in forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) over the workweek while the controls did not. Baseline airflow rates and change in FVC and FEV1 over the workweek varied with levels of sulfur dioxide and particulates. Twenty-three smelter workers and 21 controls were seen on a second occasion, six months into an extended shutdown. The smelter workers continued to have a higher prevalence ofmore » cough and dyspnea and lower baseline lung function than the controls. There was, however, a slight increase in lung function in both the exposed workers and the controls during the shutdown. The results suggest that smelter workers may develop both acute and chronic work-related pulmonary effects and that the chronic effects may be nonreversible.« less
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
Transient simulation of molten salt central receiver
NASA Astrophysics Data System (ADS)
Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael
2016-05-01
Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.
REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.; Beals, D.; Sternat, M.
2011-07-18
Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less
Maximizing sinter plant operating flexibility through emissions trading and air modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schewe, G.J.; Wagner, J.A.; Heron, T.
1998-12-31
This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less
Basis for Interim Operation for Fuel Supply Shutdown Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENECKE, M.W.
2003-02-03
This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less