STS-2: SAIL non-avionics subsystems math model requirements
NASA Technical Reports Server (NTRS)
Bennett, W. P.; Herold, R. W.
1980-01-01
Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.
Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan
NASA Technical Reports Server (NTRS)
1974-01-01
The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.
Space shuttle engineering and operations support. Avionics system engineering
NASA Technical Reports Server (NTRS)
Broome, P. A.; Neubaur, R. J.; Welsh, R. T.
1976-01-01
The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.
2011-07-12
JSC2011-E-067679 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-12
JSC2011-E-067680 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-12
JSC2011-E-067682 (12 July 2011) --- Chief engineer Frank Svrecek pauses in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility is referred to as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
NASA Technical Reports Server (NTRS)
Markos, H.
1978-01-01
Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.
2011-07-12
JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
NASA Technical Reports Server (NTRS)
Hanaway, John F.; Moorehead, Robert W.
1989-01-01
The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.
2011-07-12
JSC2011-E-067674 (12 July 2011) --- Chris St. Julian, left, a Prairie View A&M electrical engineering major who is interning at NASA for the summer, pilots the shuttle for a simulated landing in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility bears the orbiter designation of Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Spacecraft Avionics Software Development Then and Now: Different but the Same
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Garman, John (Jack); Vice, Jason
2012-01-01
NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.
Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis
NASA Technical Reports Server (NTRS)
Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.
2009-01-01
Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).
U.S. Space Shuttle GPS navigation capability for all mission phases
NASA Technical Reports Server (NTRS)
Kachmar, Peter; Chu, William; Montez, Moises
1993-01-01
Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.
Space Shuttle Technical Conference, part 1
NASA Technical Reports Server (NTRS)
Chaffee, N. (Compiler)
1985-01-01
Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
NASA Technical Reports Server (NTRS)
Orr, James K.; Peltier, Daryl
2010-01-01
Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.
Space Shuttle avionics upgrade - Issues and opportunities
NASA Astrophysics Data System (ADS)
Swaim, Richard A.; Wingert, William B.
An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.
NASA Technical Reports Server (NTRS)
1976-01-01
Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.
A Definition of STS Accommodations for Attached Payloads
NASA Technical Reports Server (NTRS)
Echols, F. L.; Broome, P. A.
1983-01-01
An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.
Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab
NASA Technical Reports Server (NTRS)
Strachan, Russell L.; Evans, James M.
1991-01-01
The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.
Avionics upgrade strategies for the Space Shuttle and derivatives
NASA Astrophysics Data System (ADS)
Swaim, Richard A.; Wingert, William B.
Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.
NASA Technical Reports Server (NTRS)
1978-01-01
The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.
Space transportation system payload interface verification
NASA Technical Reports Server (NTRS)
Everline, R. T.
1977-01-01
The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).
Space shuttle low cost/risk avionics study
NASA Technical Reports Server (NTRS)
1971-01-01
All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.
NASA Technical Reports Server (NTRS)
Curran, R. T.
1971-01-01
A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.
KU-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Griffin, J. W.
1980-01-01
The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
Space Shuttle Technical Conference, Part 2
NASA Technical Reports Server (NTRS)
Chaffee, Norman (Compiler)
1985-01-01
The retrospective presentation provides technical disciplinary focus in the following technical areas: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support, environmental control, and crew station; (6) ground operations; (7) propulsion and power; (8) communications and tracking; (9) mechanics and mechanical systems; and (10) thermal and contamination environments and protection systems.
Organizing Space Shuttle parametric data for maintainability
NASA Technical Reports Server (NTRS)
Angier, R. C.
1983-01-01
A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
Payload accommodations. Avionics payload support architecture
NASA Technical Reports Server (NTRS)
Creasy, Susan L.; Levy, C. D.
1990-01-01
Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.
Case Study of the Space Shuttle Cockpit Avionics Upgrade Software
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Thompson, Hiram C.
2005-01-01
The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.
Space Tug avionics definition study. Volume 2: Avionics functional requirements
NASA Technical Reports Server (NTRS)
1975-01-01
Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2011-01-01
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.
Head Up Displays. (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning the design, fabrication, and applications of head up displays (HUDs). Applications include military aircraft, helicopters, space shuttle, and commercial aircraft. Functions of the display include instrument approach, target tracking, and navigation. The head up display provides for an integrated avionics system with the pilot in the loop. (Contains 50-250 citations and includes a subject term index and title list.)
Head Up Displays. (Latest citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the design, fabrication, and applications of head up displays (HUDs). Applications include military aircraft, helicopters, space shuttle, and commercial aircraft. Functions of the display include instrument approach, target tracking, and navigation. The head up display provides for an integrated avionics system with the pilot in the loop. (Contains 50-250 citations and includes a subject term index and title list.)
NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview
NASA Technical Reports Server (NTRS)
Nola, Charles L.; Blue, Lisa
2008-01-01
Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.
Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis
NASA Technical Reports Server (NTRS)
Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor
2012-01-01
The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.
Recovery of the Space Shuttle Columbia Avionics
NASA Technical Reports Server (NTRS)
Hames, Kevin L.
2003-01-01
Lessons Learned: a) Avionics data can playa critical role in the investigation of a "close call" or accident. b) Avionics designers should think about the role their systems might play in an investigation. c) Know your data, down to the bit level. d) Know your spacecraft - follow the data. e) Internal placement of circuit cards can affect their survivability. f) Think about how to reconstruct nonvolatile memory (e.g. serialize IC's, etc.) g) Use of external assets can aid in extracting data from avionics.
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
NASA Technical Reports Server (NTRS)
Martin, F. H.
1972-01-01
An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.
Alternate avionics system study and phase B extension
NASA Technical Reports Server (NTRS)
1971-01-01
Results of alternate avionics system studies for the space shuttle are presented that reduce the cost of vehicle avionics without incurring major off-setting costs on the ground. A comprehensive summary is provided of all configurations defined since the completion of the basic Phase B contract and a complete description of the optimized avionics baseline is given. In the new baseline, inflight redundancy management is performed onboard without ground support; utilization of off-the-shelf hardware reduces the cost figure substantially less than for the Phase B baseline. The only functional capability sacrificed in the new approach is automatic landing.
NASA Technical Reports Server (NTRS)
Green, Jan
2009-01-01
This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.
Avionics Box Cold Plate Damage Prevention
NASA Technical Reports Server (NTRS)
Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald
2011-01-01
Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.
Space shuttle navigation analysis. Volume 1: GPS aided navigation
NASA Technical Reports Server (NTRS)
Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.
1980-01-01
Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.
An autonomous payload controller for the Space Shuttle
NASA Technical Reports Server (NTRS)
Hudgins, J. I.
1979-01-01
The Autonomous Payload Control (APC) system discussed in the present paper was designed on the basis of such criteria as minimal cost of implementation, minimal space required in the flight-deck area, simple operation with verification of the results, minimal additional weight, minimal impact on Orbiter design, and minimal impact on Orbiter payload integration. In its present configuration, the APC provides a means for the Orbiter crew to control as many as 31 autononous payloads. The avionics and human engineering aspects of the system are discussed.
Shuttle/GPSPAC experimentation study
NASA Technical Reports Server (NTRS)
Moses, J.; Flack, J. F.
1977-01-01
The utilization is discussed of the GPSPAC, which is presently being developed to be used on the low altitude host vehicle (LAHV), for possible use in the shuttle avionics system to evaluate shuttle/GPS navigation performance. Analysis and tradeoffs of the shuttle/GPS link, shuttle signal interface requirements, oscillator tradeoffs and GPSPAC mechanical modifications for shuttle are included. Only the on-orbit utilization of GPSPAC for the shuttle is discussed. Other phases are briefly touched upon. Recommendations are provided for using the present GPSPAC and the changes required to perform shuttle on-orbit navigation.
2011-05-09
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, Space Shuttle Program Launch Integration Manager Mike Moses briefs media about the launch status of space shuttle Endeavour's STS-134 mission and announces a new launch date. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
Replication of Space-Shuttle Computers in FPGAs and ASICs
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2008-01-01
A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.
2011-05-09
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Endeavour's STS-134 mission and announce a new launch date. From left are NASA News Chief Allard Beutel, Space Shuttle Program Launch Integration Manager, Mike Moses and Shuttle Launch Director Mike Leinbach. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
Space Shuttle GN and C Development History and Evolution
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don
2011-01-01
Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
Hardware survey for the avionics test bed
NASA Technical Reports Server (NTRS)
Cobb, J. M.
1981-01-01
A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.
NASA Technical Reports Server (NTRS)
1971-01-01
A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
NASA Technical Reports Server (NTRS)
1981-01-01
A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.
Avionics systems integration technology
NASA Technical Reports Server (NTRS)
Stech, George; Williams, James R.
1988-01-01
A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.
NASA Technical Reports Server (NTRS)
Pepe, J. T.
1972-01-01
A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.
Electronics Shielding and Reliability Design Tools
NASA Technical Reports Server (NTRS)
Wilson, John W.; ONeill, P. M.; Zang, Thomas A., Jr.; Pandolf, John E.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.
2006-01-01
It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements.
NASA Technical Reports Server (NTRS)
1978-01-01
The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.
A study of compositional verification based IMA integration method
NASA Astrophysics Data System (ADS)
Huang, Hui; Zhang, Guoquan; Xu, Wanmeng
2018-03-01
The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.
Avionics System Architecture for NASA Orion Vehicle
NASA Technical Reports Server (NTRS)
Baggerman, Clint
2010-01-01
This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.
Evolution of shuttle avionics redundancy management/fault tolerance
NASA Technical Reports Server (NTRS)
Boykin, J. C.; Thibodeau, J. R.; Schneider, H. E.
1985-01-01
The challenge of providing redundancy management (RM) and fault tolerance to meet the Shuttle Program requirements of fail operational/fail safe for the avionics systems was complicated by the critical program constraints of weight, cost, and schedule. The basic and sometimes false effectivity of less than pure RM designs is addressed. Evolution of the multiple input selection filter (the heart of the RM function) is discussed with emphasis on the subtle interactions of the flight control system that were found to be potentially catastrophic. Several other general RM development problems are discussed, with particular emphasis on the inertial measurement unit RM, indicative of the complexity of managing that three string system and its critical interfaces with the guidance and control systems.
NASA Technical Reports Server (NTRS)
Orr, James K.
2010-01-01
This presentation focuses on the Space Shuttle Primary Avionics Software System (PASS) and the people who developed and maintained this system. One theme is to provide quantitative data on software quality and reliability over a 30 year period. Consistent data relates to code break discrepancies. Requirements were supplied from external sources. Requirement inspections and measurements not implemented until later, beginning in 1985. Second theme is to focus on the people and organization of PASS. Many individuals have supported the PASS project over the entire period while transitioning from company to company and contract to contract. Major events and transitions have impacted morale (both positively and negatively) across the life of the project.
Shuttle payload S-band communications study
NASA Technical Reports Server (NTRS)
Springett, J. C.
1979-01-01
The work to identify, evaluate, and make recommendations concerning the functions and interfaces of those orbiter avionic subsystems which are dedicated to, or play some part in, handling communication signals (telemetry and command) to/from payloads (spacecraft) that will be carried into orbit by the shuttle is reported. Some principal directions of the research are: (1) analysis of the ability of the various avionic equipment to interface with and appropriately process payload signals; (2) development of criteria which will foster equipment compatibility with diverse types of payloads and signals; (3) study of operational procedures, especially those affecting signal acquisition; (4) trade-off analysis for end-to-end data link performance optimization; (5) identification of possible hardware design weakness which might degrade signal processing performance.
Space Tug avionics definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.
Shuttle Ku-band and S-band communications implementations study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.
1979-01-01
The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.
Miniature High-Let Radiation Spectrometer for Space and Avionics Applications
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.
1998-01-01
This paper reports on the design and characterization of a small, low power, and low weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HILRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HILRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) Platform on a shuttle mission.
Annual Report by Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1980-01-01
Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.
1993-01-01
Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.
NASA Technical Reports Server (NTRS)
Flanders, J. H.; Helmers, C. T.; Stanten, S. F.
1973-01-01
The relationship is examined between the space shuttle onboard avionics and the ground test computer language GOAL when used in the onboard computers. The study is aimed at providing system analysis support to the feasibility analysis of a GOAL to HAL translator, where HAL is the language used to program the onboard computers for flight. The subject is dealt with in three aspects. First, the system configuration at checkout, the general checkout and launch sequences, and the inventory of subsystems are described. Secondly, the hierarchic organization of onboard software and different ways of introducing GOAL-derived software onboard are described. Also the flow of commands and test data during checkout is diagrammed. Finally, possible impact of error detection and redundancy management on the GOAL language is discussed.
Avionics architecture studies for the entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.
1989-01-01
This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.
Demonstration Advanced Avionics System (DAAS)
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.
Space Shuttle Program Tin Whisker Mitigation
NASA Technical Reports Server (NTRS)
Nishimi, Keith
2007-01-01
The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.
2011-05-01
CAPE CANAVERAL, Fla. -- This diagram of a space shuttle orbiter shows the location of avionics bay 5. Space shuttle Endeavour was scheduled to launch on the STS-134 mission to the International Space Station on April 29, but that attempt was scrubbed to allow engineers to assess an issue associated with failed heaters on a fuel line for Endeavour's auxiliary power unit-1 (APU-1). STS-134 will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Image credit: NASA
Shuttle Hitchhiker Experiment Launcher System (SHELS)
NASA Technical Reports Server (NTRS)
Daelemans, Gerry
1999-01-01
NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.
Recent Projects in the KSC Applied Physics Lab
NASA Technical Reports Server (NTRS)
Starr, Stanley
2013-01-01
Topics include: Shuttle heritage; ISRU /RESOLVE: a) Payload for Lunar Lander/Rover on Polar Areas of Moon. b) Avionics/Software. New Technologies for Exploration: a) Radiation Shielding work. b) Cooperative Tractor Beams.
Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics
NASA Astrophysics Data System (ADS)
Beranek, Mark W.
2007-02-01
Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.
Guidelines for application of fluorescent lamps in high-performance avionic backlight systems
NASA Astrophysics Data System (ADS)
Syroid, Daniel D.
1997-07-01
Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.
Cockpit avionics integration and automation
NASA Technical Reports Server (NTRS)
Pischke, Keith M.
1990-01-01
Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.
Case Study of Using High Performance Commercial Processors in Space
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Olivas, Zulema
2009-01-01
The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.
Case Study of Using High Performance Commercial Processors in a Space Environment
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Olivas, Zulema
2009-01-01
The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.
NASA Astrophysics Data System (ADS)
Rogers, P. J.; Fischer, R. E.
1983-01-01
Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.
Rotorcraft digital advanced avionics system (RODAAS) functional description
NASA Technical Reports Server (NTRS)
Peterson, E. M.; Bailey, J.; Mcmanus, T. J.
1985-01-01
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.
Miniature high-let radiation spectrometer for space and avionics applications
NASA Astrophysics Data System (ADS)
Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.
This paper reports on the design and characterization of a small, low-power, and low-weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HiLRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HiLRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) platform on a shuttle mission.
The implementation of fail-operative functions in integrated digital avionics systems
NASA Technical Reports Server (NTRS)
Osoer, S. S.
1976-01-01
System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.
Color and Luminance Analysis of the Space Shuttle Multifunction Display Units(MDUs)
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.
2003-01-01
The purpose of this evaluation is to measure and analyze the colors that can be shown on the Multifunction Display Units (MDUs) of the Space Shuttle cockpit. The evaluation was conducted in the JSC Avionics Engineering Laboratory (JAEL) in building 16A at NASA Johnson Space Center. The JAEL contains a suite of 11 MDUs, each of which can be configured to show colors based on input values of the MDU red, green and blue (RGB) channels. Each of the channels has a range of 0 to 15. For example, bright green is produced by setting RGB to 0,15,0, and orange is produced by setting RGB to 15,4,0. The Cockpit Avionics Upgrade (CAU) program has specified the RGB settings for 14 different colors in the Display Design document (Rev A, 29 June 2001). The analysis in this report may help the CAU program determine better RGB settings for the colors.
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Lum, Ben T. F.; Pond, Charles; Dermott, William
1993-01-01
This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.
Advanced software integration: The case for ITV facilities
NASA Technical Reports Server (NTRS)
Garman, John R.
1990-01-01
The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.
Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Reflight of the First Microgravity Science Laboratory: Quick Turnaround of a Space Shuttle Mission
NASA Technical Reports Server (NTRS)
Simms, Yvonne
1998-01-01
Due to the short flight of Space Shuttle Columbia, STS-83, in April 1997, NASA chose to refly the same crew, shuttle, and payload on STS-94 in July 1997. This was the first reflight of an entire mission complement. The reflight of the First Microgravity Science Laboratory (MSL-1) on STS-94 required an innovative approach to Space Shuttle payload ground processing. Ground processing time for the Spacelab Module, which served as the laboratory for MSL-1 experiments, was reduced by seventy-five percent. The Spacelab Module is a pressurized facility with avionics and thermal cooling and heating accommodations. Boeing-Huntsville, formerly McDonnell Douglas Aerospace, has been the Spacelab Integration Contractor since 1977. The first Spacelab Module flight was in 1983. An experienced team determined what was required to refurbish the Spacelab Module for reflight. Team members had diverse knowledge, skills, and background. An engineering assessment of subsystems, including mechanical, electrical power distribution, command and data management, and environmental control and life support, was performed. Recommendations for resolution of STS-83 Spacelab in-flight anomalies were provided. Inspections and tests that must be done on critical Spacelab components were identified. This assessment contributed to the successful reflight of MSL-1, the fifteenth Spacelab Module mission.
The Aerospace Safety Advisory panel's report to Doctor Robert A. Frosch, 1977
NASA Technical Reports Server (NTRS)
1978-01-01
Risks attendant to NASA's operations are identified for the following: mission operations; orbiter readiness for orbital flight tests; space shuttle main engine; avionics; thermal projection system; hazard assessment; human error. Past and future projects are assessed.
Modular avionics packaging standardization
NASA Astrophysics Data System (ADS)
Austin, M.; McNichols, J. K.
The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.
HH-65A Dolphin digital integrated avionics
NASA Technical Reports Server (NTRS)
Huntoon, R. B.
1984-01-01
Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.
Crew Launch Vehicle (CLV) Avionics and Software Integration Overview
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny
2006-01-01
On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System
NASA Technical Reports Server (NTRS)
Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.
1972-01-01
A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.
Modular standards for emerging avionics technologies
NASA Astrophysics Data System (ADS)
Radcliffe, B.; Boaz, J.
The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.
Animal life support transporters for Shuttle/Spacelab
NASA Technical Reports Server (NTRS)
Berry, W. E.; Hunt, S. R.
1978-01-01
Two transporter devices have been developed by the NASA Ames Research Center, primarily for the purpose of stowing small vertebrates and primates in the mid-deck avionics bay of the Shuttle during launch and re-entry. These animals will be used in Life Science Spacelab experiments. Stowage in the mid-deck area will reduce animal exposure to the high noise levels existing in Spacelab during launch; further, the possible exposure of the animals to high temperatures in Spacelab during re-entry and post-landing will be eliminated. The transporters will provide experimenters more timely access to their animals during experiment-critical, pre-launch, and post-landing periods. Rechargeable batteries in the transporters will provide life support system functions for the animals during periods of transfer and during mission phases in which power is temporarily unavailable. The transporters have been successfully designed, fabricated, and tested. Integrated testing of the transporters was performed in the Space Mission Development III (SMD III) Simulation at the NASA Johnson Space Center.
Investigation and evaluation of shuttle/GPS navigation system
NASA Technical Reports Server (NTRS)
Nilsen, P. W.
1977-01-01
Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas.
An Ada Linear-Algebra Software Package Modeled After HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
NASA Technical Reports Server (NTRS)
Yen, H. W.; Morrison, R. J.
1984-01-01
Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.
State Machine Modeling of the Space Launch System Solid Rocket Boosters
NASA Technical Reports Server (NTRS)
Harris, Joshua A.; Patterson-Hine, Ann
2013-01-01
The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.
Avionics System Architecture for the NASA Orion Vehicle
NASA Technical Reports Server (NTRS)
Baggerman, Clint; McCabe, Mary; Verma, Dinesh
2009-01-01
It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.
Multiple IMU system development, volume 1
NASA Technical Reports Server (NTRS)
Landey, M.; Mckern, R.
1974-01-01
A redundant gimballed inertial system is described. System requirements and mechanization methods are defined and hardware and software development is described. Failure detection and isolation algorithms are presented and technology achievements described. Application of the system as a test tool for shuttle avionics concepts is outlined.
NASA Technical Reports Server (NTRS)
1976-01-01
Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Krishnakumar, Kalmaje
2005-01-01
The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.
A fault-tolerant avionics suite for an entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, Mark; Stone, Howard
1988-01-01
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
A fault-tolerant avionics suite for an entry research vehicle
NASA Astrophysics Data System (ADS)
Dzwonczyk, Mark; Stone, Howard
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
NASA Technical Reports Server (NTRS)
Bryant, W. H.; Morrell, F. R.
1981-01-01
Attention is given to a redundant strapdown inertial measurement unit for integrated avionics. The system consists of four two-degree-of-freedom turned rotor gyros and four two-degree-of-freedom accelerometers in a skewed and separable semi-octahedral array. The unit is coupled through instrument electronics to two flight computers which compensate sensor errors. The flight computers are interfaced to the microprocessors and process failure detection, isolation, redundancy management and flight control/navigation algorithms. The unit provides dual fail-operational performance and has data processing frequencies consistent with integrated avionics concepts presently planned.
Risetime distortion of Shuttle Ku-band payload 50 MBPS data due to coaxial cable skin effects
NASA Technical Reports Server (NTRS)
Schadelbauer, S.; Vang, H. A.
1980-01-01
This paper discusses distortion of digital signals generated in the Space Shuttle Ku-band communications systems. Specifically, the degradation considered is due to coaxial cables which interface data and clock from a source located in the payload bay to the KuSPA (Ku-Band Signal Processor Assembly) located in the avionics bay of the Shuttle. Due to the length (nearly 100 feet) and relatively narrow bandwidth of the cable, the clock and data waveforms are significantly affected by this transmission medium. This paper presents a closed form model that closely approximates the distortion of the waveforms measured in laboratory tests.
Space Transportation Avionics Technology Symposium. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.
Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.
NASA Astrophysics Data System (ADS)
Whaley, Gregory J.; Karnopp, Roger J.
2010-04-01
The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.
Sietzen, Frank
2002-01-01
NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.
NASA Technical Reports Server (NTRS)
Udalov, S.; Springett, J. C.
1978-01-01
The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required.
Orbiter CIU/IUS communications hardware evaluation
NASA Technical Reports Server (NTRS)
Huth, G. K.
1979-01-01
The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.
Transfer orbit stage mechanisms thermal vacuum test
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1990-01-01
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.
Integrated Avionics System (IAS)
NASA Technical Reports Server (NTRS)
Hunter, D. J.
2001-01-01
As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.
Avionics for a Small Satellite
NASA Technical Reports Server (NTRS)
Abbott, Larry; Jochim, David; Schuler, Robert
2001-01-01
This paper discusses a small. seven and a half (7.5) inch diameter. satellite that NASA-JSC is developing as a technology demonstrator for an astronaut assistant free flyer. The Free Flyer is designed to off load flight crew work load by performing inspections of the exterior of Space Shuttle or International Space Station. The Free Flyer is designed to be operated by the flight crew thereby reducing the number of Extra Vehicle Activities (EVA) or by an astronaut on the ground further reducing crew work load. The paper focuses on the design constraint of a small satellite and the technology approach used to achieve the set of high performance requirements specified for the Free Flyer. Particular attention is paid to the processor card as it is the heart and system integration point of the Free Flyer.
Space Shuttle RTOS Bayesian Network
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.
2011-07-20
LOUISVILLE, Colo. – During NASA's Commercial Crew Development Round 2 CCDev2) activities for the Commercial Crew Program CCP, Sierra Nevada Corp. SNC built a Simulator and Avionics Laboratory to help engineers evaluate the Dream Chaser's characteristics during the piloted phases of flight. Located at Sierra Nevada’s Space Systems facility in Louisville, Colo., it consists of a physical cockpit and integrated simulation hardware and software. The simulator is linked to the Vehicle Avionics Integration Laboratory, or VAIL, which serves as a platform for Dream Chaser avionics development, engineering testing and integration. VAIL also will also be used for verification and validation of avionics and software. Sierra Nevada is one of seven companies NASA entered into Space Act Agreements SAAs with during CCDev2 to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
1991-09-01
Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics
Shuttle/payload communications and data systems interface analysis
NASA Technical Reports Server (NTRS)
Huth, G. K.
1980-01-01
The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei
2015-10-01
In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.
Avionic Data Bus Integration Technology
1991-12-01
address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that
Investigation of an advanced fault tolerant integrated avionics system
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.
1986-01-01
Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians remove the cover on the Load Control Assembly-2 (LCA-2) to begin the testing process. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians begin the testing process on the Load Control Assembly-2 (LCA-2) after the cover has been removed. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, the Load Control Assembly-2 (LCA-2) is uncovered for testing. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, the Load Control Assembly-2 (LCA-2) is uncovered for testing. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, the Load Control Assembly-2 (LCA-2) is uncovered for testing. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians begin the testing process on the Load Control Assembly-2 (LCA-2) after the cover has been removed. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians remove the cover on the Load Control Assembly-2 (LCA-2) to begin the testing process. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians begin the testing process on the Load Control Assembly-2 (LCA-2) after the cover has been removed. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-03
CAPE CANAVERAL, Fla. -- At the NASA Shuttle Logistics Depot in Cape Canaveral, Florida, technicians carefully remove the Load Control Assembly-2 (LCA-2) from a cart for testing. Located in space shuttle Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission. The LCA-2 will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
Design of an Ada expert system shell for the VHSIC avionic modular flight processor
NASA Technical Reports Server (NTRS)
Fanning, F. Jesse
1992-01-01
The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics
NASA Technical Reports Server (NTRS)
Nelson, Kurt
1991-01-01
The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.
Automated Test Environment for a Real-Time Control System
NASA Technical Reports Server (NTRS)
Hall, Ronald O.
1994-01-01
An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.
1983-01-01
A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.
Transcription of the Workshop on General Aviation Advanced Avionics Systems
NASA Technical Reports Server (NTRS)
Tashker, M. (Editor)
1975-01-01
Papers are presented dealing with the design of reliable, low cost, advanced avionics systems applicable to general aviation in the 1980's and beyond. Sensors, displays, integrated circuits, microprocessors, and minicomputers are among the topics discussed.
Preliminary candidate advanced avionics system for general aviation
NASA Technical Reports Server (NTRS)
Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.
1977-01-01
An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.
Space Shuttle Software Development and Certification
NASA Technical Reports Server (NTRS)
Orr, James K.; Henderson, Johnnie A
2000-01-01
Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools
Avionics for a Small Robotic Inspection Spacecraft
NASA Technical Reports Server (NTRS)
Abbott, Larry; Shuler, Robert L., Jr.
2005-01-01
A report describes the tentative design of the avionics of the Mini-AERCam -- a proposed 7.5-in. (approximately 19-cm)-diameter spacecraft that would contain three digital video cameras to be used in visual inspection of the exterior of a larger spacecraft (a space shuttle or the International Space Station). The Mini-AERCam would maneuver by use of its own miniature thrusters under radio control by astronauts inside the larger spacecraft. The design of the Mini-AERCam avionics is subject to a number of constraints, most of which can be summarized as severely competing requirements to maximize radiation hardness and maneuvering, image-acquisition, and data-communication capabilities while minimizing cost, size, and power consumption. The report discusses the design constraints, the engineering approach to satisfying the constraints, and the resulting iterations of the design. The report places special emphasis on the design of a flight computer that would (1) acquire position and orientation data from a Global Positioning System receiver and a microelectromechanical gyroscope, respectively; (2) perform all flight-control (including thruster-control) computations in real time; and (3) control video, tracking, power, and illumination systems.
STS-74/Mir photogrammetric appendage structural dynamics experiment
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Gilbert, Michael G.
1996-01-01
The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology
1993-11-01
interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a
Automatic design of IMA systems
NASA Astrophysics Data System (ADS)
Salomon, U.; Reichel, R.
During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.
Software modifications to the Demonstration Advanced Avionics Systems (DAAS)
NASA Technical Reports Server (NTRS)
Nedell, B. F.; Hardy, G. H.
1984-01-01
Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.
AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.
1986-07-11
Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data
Time Triggered Protocol (TTP) for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard
2006-01-01
Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.
Formal methods demonstration project for space applications
NASA Technical Reports Server (NTRS)
Divito, Ben L.
1995-01-01
The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining activities of this task.
1984-03-01
Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19
Demonstration Advanced Avionics System (DAAS) function description
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1982-01-01
The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.
Avionics Reliability, Its Techniques and Related Disciplines.
1979-10-01
USAF F-16s. C.J.P.Haynes, UK You said that if one of the 5 nations consumes more than its fair share of the combined spares pool then the item manager ... MANAGEMENT OF THE AVIONIC SYSTEM OF A MILITARY STRIKE AIRCRAFT by A.P.White and J.D.Pavier 29 SESSION IV - SOFTWARE RELIABILITY’ INTRODUCTION TO...ASPECT by D.J.Harris 37 SESSION V - AVIONICS LOGISTICS SUPPORT ASPECTS INTEGRATED LOGISTICS SUPPORT ADDS ANOTHER DIMENSION TO MATRIX MANAGEMENT by
Design and systems analysis of a chemical interorbital shuttle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Nissim, W.
1972-01-01
An interorbital shuttle that can be utilized to carry payloads between low earth orbit (180 n mi, 37.6 deg) and lunar or geosynchronous orbits, and also to interplanetary trajectories is discussed. After each mission the stage returns to its earth parking orbit where it delivers the inbound payloads, and where it is maintained and refueled for the subsequent missions. The stage can also be utilized to carry large payloads (150 to 200 KLBS) to the Space Station orbit (270 n mi, 55 deg) when it is used as a second or parallel burn stage to the space shuttle booster. The mission and systems analysis, as well as the results of structural, mechanical and propulsion, and avionics subsystems analysis and design are described. A development plan and cost estimates are also included.
One Idea for a Next Generation Shuttle
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Cerro, Jeffrey A.
2004-01-01
In this configuration, the current Shuttle External Tank serves as core structure for a fully reusable second stage. This stage is equipped with wings, vertical fin, landing gear, and thermal protection. The stage is geometrically identical to (but smaller than) a single stage that has been tested hyper-sonically, super-sonically, and sub-sonically in the NASA Langley Research Center wind tunnels. The three LOX/LH engines that currently serve as main propulsion for the Shuttle Orbiter, serve as main propulsion on the new stage. The new stage is unmanned but is equipped with the avionics needed for automatic maneuvering on orbit and for landing on a runway. Three rails are installed along the top surface of the vehicle for attachment of various payloads. Pay- loads might include third stages with satellites attached, personnel pods, propellants, or other items.
Integrated Control Design Techniques
1981-08-01
Avionics and Electronic Systems, " Presented at NAECON , Dayton, Ohio, May 1980. 3 9 E. Louis Wienecke, III, Erasmus E. Feltus , and Daniel V. Ferens...34 Presented at NAECON , Dayton, Ohio, May 1980. 39. Wienecke, E. Louis, III; Feltus , Erasmus E.; and Ferens, Daniel V. "The Avionics Laboratory
National space transportation systems planning
NASA Technical Reports Server (NTRS)
Lucas, W. R.
1985-01-01
In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.
Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft
NASA Technical Reports Server (NTRS)
1980-01-01
A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.
The shuttle orbiter cabin atmospheric revitalization systems
NASA Technical Reports Server (NTRS)
Ward, C. F.; Owens, W. L.
1975-01-01
The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.
NASA Astrophysics Data System (ADS)
Breuer, Glynn E.
The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.
2011-05-09
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach briefs media about the launch status of space shuttle Endeavour's STS-134 mission and announces a new launch date. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
Shuttle orbiter S-band communications equipment design evaluation
NASA Technical Reports Server (NTRS)
Springett, J. C.
1979-01-01
An assessment of S-band communication equipment includes: (1) the review and analysis of the ability of the various subsystem avionic equipment designs to interface with, and operate on signals from/to adjoining equipment; (2) the performance peculiarities of the hardware against the overall specified system requirements; and (3) the evaluation of EMC EMI test results of the various equipment with respect to the possibility of mutual interferences.
A Human Factors Evaluation of the Space Shuttle Cockpit Avionics Upgrade
2012-09-01
cockpit design . This study assesses the CAU design employing human factors principles, evaluates baseline and CAU simulation data, and traces MW and SA...differences back to CAU design modifications. Significant improvements were found in all measures and across all conditions. These improvements were...found to be greater for ascent scenarios than for entry. From the findings, recommendations for the design and evaluation of future spacecraft
Mini AERCam: A Free-Flying Robot for Space Inspection
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2001-01-01
The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
Reference Avionics Architecture for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.
2010-01-01
Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.
NASA Technical Reports Server (NTRS)
Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.
Flight evaluation results from the general-aviation advanced avionics system program
NASA Technical Reports Server (NTRS)
Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.
1983-01-01
A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.
Solid Rocket Booster (SRB) Flight System Integration at Its Best
NASA Technical Reports Server (NTRS)
Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Developing Avionics Hardware and Software for Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Aberg, Bryce Robert
2014-01-01
My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.
Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview
NASA Technical Reports Server (NTRS)
McArthur, J. Craig
2008-01-01
The Ares I upper stage is an integral part of the Constellation Program transportation system. The upper stage provides guidance, navigation and control (GN and C) for the second stage of ascent flight for the Ares I vehicle. The Saturn-derived J-2X upper stage engine will provide thrust and propulsive impulse for the second stage of ascent flight for the Ares I launch vehicle. Additionally, the upper stage is responsible for the avionics system of the the entire Ares I. This brief presentation highlights the requirements, design, progress and production of the upper stage. Additionally, test facilities to support J-2X development are discussed and an overview of the operational and manufacturing flows are provided. Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I Us and USE teams are utilizing extensive lessons learned to place NASA and the US into another era of space exploration. The NASA, Boeing and PWR teams are integrated and working together to make progress designing and building the Ares I upper stage to minimize cost, technical and schedule risks.
State-of-the-art cockpit design for the HH-65A helicopters
NASA Technical Reports Server (NTRS)
Castleberry, D. E.; Mcelreath, M. Y.
1982-01-01
In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.
SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction.
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, the Load Control Assembly-2 (LCA-2) has been replaced inside of space shuttle Endeavour. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, the Load Control Assembly-2 (LCA-2) has been replaced inside of space shuttle Endeavour. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, the Load Control Assembly-2 (LCA-2) has been replaced inside of space shuttle Endeavour. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, the access door is open on space shuttle Endeavour for technicians to enter the aft area where the Load Control Assembly-2 (LCA-2) is located. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, space shuttle Endeavour sits poised for launch after technicians replaced the Load Control Assembly-2 (LCA-2) in its aft section. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
2011-05-04
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Launch Pad 39A, space shuttle Endeavour sits poised for launch after technicians replaced the Load Control Assembly-2 (LCA-2) in its aft section. Located in Endeavour's aft avionics bay 5, the LCA-2, which distributes power to nine shuttle systems, is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt for the STS-134 mission and has been replaced. Systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder
Development of Integrated Modular Avionics Application Based on Simulink and XtratuM
NASA Astrophysics Data System (ADS)
Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons
2013-08-01
This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.
On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks
NASA Technical Reports Server (NTRS)
Loveless, Andrew
2015-01-01
There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.
An overview of autonomous rendezvous and docking system technology development at General Dynamics
NASA Technical Reports Server (NTRS)
Kuenzel, Fred
1991-01-01
The Centaur avionics suite is undergoing a dramatic modernization for the commercial, DoD Atlas and Titan programs. The system has been upgraded to the current state-of-the-art in ring laser gyro inertial sensors and Mil-Std-1750A processor technology. The Cruise Missile avionic system has similarly been evolving for many years. Integration of GPS into both systems has been underway for over five years with a follow-on cruise missile system currently in flight test. Rendezvous and Docking related studies have been conducted for over five years in support of OMV, CTV, and Advanced Upper Stages, as well as several other internal IR&D's. The avionics system and AR&D simulator demonstrated to the SATWG in November 1990 has been upgraded considerably under two IR&D programs in 1991. The Centaur modern avionics system is being flown in block upgrades which started in July of 1990. The Inertial Navigation Unit will fly in November of 1991. The Cruise Missile avionics systems have been fully tested and operationally validated in combat. The integrated AR&D system for space vehicle applications has been under development and testing since 1990. A Joint NASA / GD ARD&L System Test Program is currently being planned to validate several aspects of system performance in three different NASA test facilities in 1992.
Demonstration Advanced Avionics System (DAAS). Phase 1 report
NASA Technical Reports Server (NTRS)
1981-01-01
An integrated avionics system which provides expanded functional capabilities that significantly enhance the utility and safety of general aviation at a cost commensurate with the general aviation market is discussed. Displays and control were designed so that the pilot can use the system after minimum training. Functional and hardware descriptions, operational evaluation and failure modes effects analysis are included.
Analyzing and Specifying Reusable Security Requirements
2003-09-01
avionics applications and ecommerce applications need to specify levels of identification, authentication, authorization, integrity, privacy , etc. At...sections specifying functional requirements. Thus, the functional requirements for an embedded avionics application and an ecommerce website may have... Privacy (a.k.a., confidentiality), which is the degree to which sensitive data and communications are kept private from unauthorized individuals and
Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin
NASA Technical Reports Server (NTRS)
Young, D. A.
1984-01-01
Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.
Systems engineering and integration: Advanced avionics laboratories
NASA Technical Reports Server (NTRS)
1990-01-01
In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.
Inertial upper stage - Upgrading a stopgap proves difficult
NASA Astrophysics Data System (ADS)
Geddes, J. P.
The technological and project management difficulties associated with the Inertial Upper Stage's (IUS) development and performance to date are assessed, with a view to future prospects for this system. The IUS was designed for use both on the interim Titan 34D booster and the Space Shuttle Orbiter. The IUS malfunctions and cost overruns reported are substantially due to the system's reliance on novel propulsion and avionics technology. Its two solid rocket motors, which were selected on the basis of their inherent safety for use on the Space Shuttle, have the longest burn time extant. A three-dimensional carbon/carbon nozzle throat had to be developed to sustain this long burn, as were lightweight composite wound cases and shirts, insulation, igniters, and electromechanical thrust vector control.
NASA Astrophysics Data System (ADS)
Among the topics discussed are: the PRAM approach to technology transfer; all-electric aircraft development; and electronic enhancements for the combat aircraft cockpit. Consideration is also given to application of AI systems to military aircraft; ECM and ECCM technology; and the history of monolithic ICs. Developments in the USAF Avionics Integrity Program (AVIP) are reviewed, with emphasis given to: preventive measures for electrostatic discharges; corrosion prevention to increase avionics integrity; and criteria for stress screening temperature levels.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
NASA Technical Reports Server (NTRS)
2000-01-01
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
2000-02-03
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
The single event upset environment for avionics at high latitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, A.J.; Dyer, C.S.; Peerless, C.L.
1994-12-01
Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end,more » it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.« less
Systems Engineering and Integration (SE and I)
NASA Technical Reports Server (NTRS)
Chevers, ED; Haley, Sam
1990-01-01
The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.
NASA Technical Reports Server (NTRS)
1977-01-01
The panel reviewed the following areas of major significance for the Approach and Landing Test program: mission planning and crew training, flight-readiness of the Carrier Aircraft and the Orbiter, including its flight control and avionics system, facilities, and communications and ground support equipment. The management system for risk assessment was investigated. The Orbital Flight Test Program was also reviewed. Observations and recommendations are presented.
NASA Technical Reports Server (NTRS)
Lawrence, Stella
1992-01-01
This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... under Sec. 21.17(b), to Day-VFR operations. Additionally, the FAA also published design criteria to allow expansion of the Aquila AT01-100 airplane to include Night-VFR as shown in NPRM 75 FR 32576. In conjunction with the expansion to Night-VFR operations integrated avionic displays are to be installed on the...
Space Shuttle Star Tracker Challenges
NASA Technical Reports Server (NTRS)
Herrera, Linda M.
2010-01-01
The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.
Next generation space interconnect research and development in space communications
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-11-01
Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.
An assessment of General Aviation utilization of advanced avionics technology
NASA Technical Reports Server (NTRS)
Quinby, G. F.
1980-01-01
Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.
Flexible Rover Architecture for Science Instrument Integration and Testing
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric
2006-01-01
At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.
Network Extender for MIL-STD-1553 Bus
NASA Technical Reports Server (NTRS)
Marcus, Julius; Hanson, T. David
2003-01-01
An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender
NASA Technical Reports Server (NTRS)
Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.
2001-01-01
To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.
Software-Defined Avionics and Mission Systems in Future Vertical Lift Aircraft
2015-03-01
military rotorcraft in the service of the United States Joint services have yet to benefit significantly from this technology. At long last, that may...Despite the demonstrated success of IMA systems in commercial airliners such as the Airbus A380 and the Boeing 787, military rotorcraft in the...8 4. Integrated Modular Avionics (IMA) – Generation One ..................9 5. Military IMA
Safe and Secure Partitioning with Pikeos: Towards Integrated Modular Avionics in Space
NASA Astrophysics Data System (ADS)
Almeida, J.; Prochazka, M.
2009-05-01
This paper presents our approach to logical partitioning of spacecraft onboard software. We present PikeOS, a separation micro-kernel which applies the state-of-the- art techniques and widely recognised standards such as ARINC 653 and MILS in order to guarantee safety and security properties of partitions executing software with different criticality and confidentiality. We provide an overview of our approach, also used in the Securely Partitioning Spacecraft Computing Resources project, an ESA TRP contract, which shifts spacecraft onboard software development towards the Integrated Modular Avionics concept with relevance for dual-use military and civil missions.
NASA Technical Reports Server (NTRS)
Roche, Rigoberto; Shalkhauser, Mary Jo Windmille
2017-01-01
The Integrated Power, Avionics and Software (IPAS) software defined radio (SDR) was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RAICS) platform, for radio development at NASA Johnson Space Center. Software and hardware description language (HDL) code were delivered by NASA Glenn Research Center for use in the IPAS test bed and for development of their own Space Telecommunications Radio System (STRS) waveforms on the RAICS platform. The purpose of this document is to describe how to setup and operate the IPAS STRS Radio platform with its delivered test waveform.
NASA Technical Reports Server (NTRS)
Dowden, Donald J.; Bessette, Denis E.
1987-01-01
The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.
1992-02-01
Designation with the CL-227 Sea Sentinel 31 byH SotadS.Joes SESSION V - LONGER TERM SYSTEMS Avionic System Improvement Proposal for the TORNADO...18’s fire control capability to deliver some types of smart munitions. Yet we also noted that while we lacked the target designators and control...source of lines came qystems designed to deny the information about the tactical enemy the use of height. Sophisticated situation they are facing. Enemy
NASA Technical Reports Server (NTRS)
Emmons, T. E.
1976-01-01
The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.
Avionics Box Cold Plate Damage Prevention
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim
2012-01-01
Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.
NASA Astrophysics Data System (ADS)
Donaldson, P.
1986-11-01
After defining the general operational principles of the 'HOTOL' horizontal takeoff and landing single-stage-to-orbit launch vehicle, a development status assessment is presented for the airframe structure, aerodynamic configuration, guidance and avionics, operational and market economics, and launch preparation/mission abort provisions that are currently envisaged by the HOTOL manufacturers. Attention is given to the competitiveness of HOTOL vis a vis the ESA Ariane V/Hermes and NASA 'Heavylift Shuttle' launch vehicles, which are expected to become operational in a similar time-frame.
Operational Concept Evaluation of Solid Oxide Fuel Cells for Space Vehicle Applications
NASA Technical Reports Server (NTRS)
Poast, Kenneth I.
2011-01-01
With the end of the Space Shuttle Program, NASA is evaluating many different technologies to support future missions. Green propellants, like liquid methane and liquid oxygen, have potential advantages for some applications. A Lander propelled with LOX/methane engines is one such application. When the total vehicle design and infrastructure are considered, the advantages of the integration of propulsion, heat rejection, life support and power generation become attractive for further evaluation. Scavenged residual propellants from the propulsion tanks could be used to generate needed electric power, heat and water with a Solid Oxide Fuel Cell(SOFC). In-Situ Resource Utilization(ISRU) technologies may also generate quantities of green propellants to refill these tanks and/or supply these fuel cells. Technology demonstration projects such as the Morpheus Lander are currently underway to evaluate the practicality of such designs and operational concepts. Tethered tests are currently in progress on this vertical test bed to evaluate the propulsion and avionics systems. Evaluation of the SOFC seeks to determine the feasibility of using these green propellants to supply power and identify the limits to the integration of this technology into a space vehicle prototype.
Human Exploration and Avionic Technology Challenges
NASA Technical Reports Server (NTRS)
Benjamin, Andrew L.
2005-01-01
For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.
Development and flight test experiences with a flight-crucial digital control system
NASA Technical Reports Server (NTRS)
Mackall, Dale A.
1988-01-01
Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.
Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.
2014-01-01
This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.
Addressing System Reconfiguration and Incremental Integration within IMA Systems
NASA Astrophysics Data System (ADS)
Ferrero, F.; Rodríques, A. I.
2009-05-01
Recently space industry is paying special attention to Integrated Modular Avionics (IMA) systems due to the benefits that modular concepts could bring to the development of space applications, especially in terms of interoperability, flexibility and software reuse. Two important IMA goals to be highlighted are system reconfiguration, and incremental integration of new functionalities into a pre-existing system. The purpose of this paper is to show how system reconfiguration is conducted based on Allied Standard Avionics Architecture Council (ASAAC) concepts for IMA Systems. Besides, it aims to provide a proposal for addressing the incremental integration concept supported by our experience gained during European Technology Acquisition Program (ETAP) TDP1.7 programme. All these topics will be discussed taking into account safety issues and showing the blueprint as an appropriate technique to support these concepts.
Alternative Suspension System for Space Shuttle Avionics Shelf
NASA Technical Reports Server (NTRS)
Biele, Frank H., III
2010-01-01
Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively.
Shuttle avionics software trials, tribulations and success
NASA Technical Reports Server (NTRS)
Henderson, O. L.
1985-01-01
The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.
NASA Astrophysics Data System (ADS)
Bao, Lin
In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics application was developed as a case study, in order to demonstrate the validation of the proposed design flows. The research presented in this paper is a continuation of project of the AVIO509 research team, and parallelly may be extended in the future work.
Ultra-Reliable Digital Avionics (URDA) processor
NASA Astrophysics Data System (ADS)
Branstetter, Reagan; Ruszczyk, William; Miville, Frank
1994-10-01
Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.
1983-07-01
will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration
NASA's Spaceliner Investment Area Technology Activities
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.
Liquid cooled approaches for high density avionics
NASA Astrophysics Data System (ADS)
Levasseur, Robert
Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).
Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Tuan, George C.
2007-01-01
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.
A Formal Model of Partitioning for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1998-01-01
The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.
The Next Great Ship: NASA's Space Launch System
NASA Technical Reports Server (NTRS)
May, Todd A.
2013-01-01
Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package requires 205K of main memory on a DEC VAX running VMS. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
NASA Technical Reports Server (NTRS)
Bryant, W. H.; Morrell, F. R.
1981-01-01
An experimental redundant strapdown inertial measurement unit (RSDIMU) is developed as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit includes four two degree-of-freedom tuned rotor gyros, and four accelerometers in a skewed and separable semioctahedral array. These sensors are coupled to four microprocessors which compensate sensor errors. These microprocessors are interfaced with two flight computers which process failure detection, isolation, redundancy management, and general flight control/navigation algorithms. Since the RSDIMU is a developmental unit, it is imperative that the flight computers provide special visibility and facility in algorithm modification.
NASA Astrophysics Data System (ADS)
Schulz, H.-W., , Dr.
2011-09-01
civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT), its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). It is integrated by ESG together with the industrial partner SWISS UAV.
Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)
NASA Astrophysics Data System (ADS)
Johnson, Einar; Souter, Keith
1996-05-01
The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.
An Open Avionics and Software Architecture to Support Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2017-01-01
The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.
IVHM Framework for Intelligent Integration for Vehicle Health Management
NASA Technical Reports Server (NTRS)
Paris, Deidre; Trevino, Luis C.; Watson, Michael D.
2005-01-01
Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations.
Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator
NASA Astrophysics Data System (ADS)
Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe
2013-08-01
Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.
Constellation's First Flight Test: Ares I-X
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce R.
2010-01-01
On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.
NASA Technical Reports Server (NTRS)
Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe
1990-01-01
The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.
Avionics Systems Laboratory/Building 16. Historical Documentation
NASA Technical Reports Server (NTRS)
Slovinac, Patricia; Deming, Joan
2011-01-01
As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are also provided
Radioactive waste disposal via electric propulsion
NASA Technical Reports Server (NTRS)
Burns, R. E.
1975-01-01
It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2009-01-01
This slide presentation is an overview of the Ares I and Ares V projects. It includes a comparison of the launch vehicles from the Saturn V, the Space Shuttle, and the planned Ares I and Ares V. In order to reduce operating cost, the Ares and V will use much of the same hardware. The elements of the Ares I and V. are reviewed and there is a view of the upper stage avionics. The elements of the J-2X engine to be used on both the Ares I and V are viewed.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Monica Hagley, an avionic test engineer, places a refurbished, spare orbiter point sensor chassis on the table. Faulty readings in the liquid hydrogen tank low-level fuel cut-off sensor are being investigated because one of the four sensors failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
New Technologies for Space Avionics, 1993
NASA Technical Reports Server (NTRS)
Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray
1993-01-01
The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.
Investigation of Integrated Vehicle Health Management Approaches
NASA Technical Reports Server (NTRS)
Paris, Deidre
2005-01-01
This report is to present the work that was performed during the summer in the Advance Computing Application office. The NFFP (NASA Faculty Fellow Program) had ten summer faculty members working on IVHM (Integrated Vehicle Health Management) technologies. The objective of this project was two-fold: 1) to become familiar with IVHM concepts and key demonstrated IVHM technologies; and 2) to integrate the research that has been performed by IVHM faculty members into the MASTLAB (Marshall Avionic Software Test Lab). IVHM is a NASA-wide effort to coordinate, integrate and apply advanced software, sensors and design technologies to increase the level of intelligence, autonomy, and health state of future vehicles. IVHM is an important concept because it is consistent with the current plan for NASA to go to the moon, mars, and beyond. In order for NASA to become more involved in deep exploration, avionic systems will need to be highly adaptable and autonomous.
The X-38 Spacecraft Fault-Tolerant Avionics System
NASA Technical Reports Server (NTRS)
Kouba,Coy; Buscher, Deborah; Busa, Joseph
2003-01-01
In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware implementation, as well as the system software and vehicle command & telemetry functions. Potential improvements and lessons learned on this program are also discussed.
CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed
NASA Astrophysics Data System (ADS)
Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto
2013-08-01
This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.
Non-functional Avionics Requirements
NASA Astrophysics Data System (ADS)
Paulitsch, Michael; Ruess, Harald; Sorea, Maria
Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.
Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space
NASA Astrophysics Data System (ADS)
Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin
2014-08-01
This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.
NASA Technical Reports Server (NTRS)
1979-01-01
Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.
Orion GN and C Mitigation Efforts for Van Allen Radiation
NASA Technical Reports Server (NTRS)
King, Ellis T.; Jackson, Mark
2013-01-01
The Orion Crew Module (CM) is NASA's next generation manned space vehicle, scheduled to return humans to lunar orbit in the coming decade. The Orion avionics and GN&C architectures have progressed through a number of project phases and are nearing completion of a major milestone. The first unmanned test mission, dubbed "Exploration Flight Test One" (EFT-1) is scheduled to launch from NASA Kennedy Space Center late next year and provides the first integrated test of all the vehicle systems, avionics and software.
1983-10-01
BIT A,, M 115V ACBB N 270V DC RETURN p 115V ACCA R IW DC POWER S INTERLOCK RETURN T STRUCTURE GROUND U FIBER OPTICS BUS V ADDRESS BIT A,, w...Ontario Kl A 0K2 Canada FGAN- FFM , D-5307 Wachtberg-Werthhoven Germany Concordia University, 7141 Sherbrooke St. W. Montreal, QueH4BlRG Canada
2005-12-01
weapon system evaluation as a high-level architecture and distributed interactive simulation 6 compliant, human-in-the-loop, virtual environment...Directorate to participate in the Limited Early User Evaluation (LEUE) of the Common Avionics Architecture System (CAAS) cockpit. ARL conducted a human...CAAS, the UH-60M PO conducted a limited early user evaluation (LEUE) to evaluate the integration of the CAAS in the UH-60M crew station. The
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.
A feasibility study for advanced technology integration for general aviation
NASA Technical Reports Server (NTRS)
Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.
1980-01-01
An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.
NASA Astrophysics Data System (ADS)
Piras, Annamaria; Malucchi, Giovanni
2012-08-01
In the design and development phase of a new program one of the critical aspects is the integration of all the functional requirements of the system and the control of the overall consistency between the identified needs on one side and the available resources on the other side, especially when both the required needs and available resources are not yet consolidated, but they are evolving as the program maturity increases.The Integrated Engineering Harness Avionics and Software database (IDEHAS) is a tool that has been developed to support this process in the frame of the Avionics and Software disciplines through the different phases of the program. The tool is in fact designed to allow an incremental build up of the avionics and software systems, from the description of the high level architectural data (available in the early stages of the program) to the definition of the pin to pin connectivity information (typically consolidated in the design finalization stages) and finally to the construction and validation of the detailed telemetry parameters and commands to be used in the test phases and in the Mission Control Centre. The key feature of this approach and of the associated tool is that it allows the definition and the maintenance / update of all these data in a single, consistent environment.On one side a system level and concurrent approach requires the feasibility to easily integrate and update the best data available since the early stages of a program in order to improve confidence in the consistency and to control the design information.On the other side, the amount of information of different typologies and the cross-relationships among the data imply highly consolidated structures requiring lot of checks to guarantee the data content consistency with negative effects on simplicity and flexibility and often limiting the attention to special needs and to the interfaces with other disciplines.
Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display
NASA Technical Reports Server (NTRS)
Moore, Charlotte
2010-01-01
The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.
Five-Segment Solid Rocket Motor Development Status
NASA Technical Reports Server (NTRS)
Priskos, Alex S.
2012-01-01
In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.
Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight
NASA Technical Reports Server (NTRS)
Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.
2014-01-01
The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES Program, we are encouraged to set aggressive goals and fall short if necessary, rather than to set our sights too low. We are also asked to emphasize providing our personnel with hands-on experience in development, integration, and testing. That we have embraced both of these philosophies will be evident in the descriptions below.
ARINC 818 specification revisions enable new avionics architectures
NASA Astrophysics Data System (ADS)
Grunwald, Paul
2014-06-01
The ARINC 818 Avionics Digital Video Bus is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits. The Boeing 787, A350XWB, A400M, KC-46A, and many other aircraft use it. The ARINC 818 specification, which was initially release in 2006, has recently undergone a major update to address new avionics architectures and capabilities. Over the seven years since its release, projects have gone beyond the specification due to the complexity of new architectures and desired capabilities, such as video switching, bi-directional communication, data-only paths, and camera and sensor control provisions. The ARINC 818 specification was revised in 2013, and ARINC 818-2 was approved in November 2013. The revisions to the ARINC 818-2 specification enable switching, stereo and 3-D provisions, color sequential implementations, regions of interest, bi-directional communication, higher link rates, data-only transmission, and synchronization signals. This paper discusses each of the new capabilities and the impact on avionics and display architectures, especially when integrating large area displays, stereoscopic displays, multiple displays, and systems that include a large number of sensors.
Integrated cockpit design for the Army helicopter improvement program
NASA Technical Reports Server (NTRS)
Drennen, T.; Bowen, B.
1984-01-01
The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
Orion FSW V and V and Kedalion Engineering Lab Insight
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.
2010-01-01
NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.
Space Shuttle crew compartment debris-contamination
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Villarreal, Leopoldo J.
1992-01-01
Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.
Reentry trajectories of a space glider, taking acceleration and heating constraints into account
NASA Astrophysics Data System (ADS)
Strauss, Adi
1988-03-01
Three-dimensional trajectories for aerodynamically controlled reentry of an unpowered Space Shuttle-type vehicle from equatorial orbit are investigated analytically, summarizing the results obtained in the author's thesis (Strauss, 1987). Computer programs constructed on the basis of the governing equations of Chern and Yang (1982) and Chern and Vinh (1980) in modified dimensionless Chapman variables are used to optimize the roll angle and lift coefficient of the trajectories. Typical results are presented in graphs and maps and shown to be in good agreement with AVION SPATIAL predictions for the ESA Hermes spacecraft.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Patricia Slinger (left), a test engineer, and Monica Hagley, an avionics test engineer, look at a replacement orbiter point sensor chassis. Components are being tested to determine why one of the four liquid hydrogen tank low- level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Vice, Jason
2011-01-01
NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.
Advanced integrated enhanced vision systems
NASA Astrophysics Data System (ADS)
Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha
2003-09-01
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
1982-11-01
Avionic Systems Integration Facilities, Mark van den Broek 1113 and Paul M. Vicen, AFLC/LOE Planning of Operational Software Implementation Tool...classified as software tools, including: * o" Operating System " Language Processors (compilers, assem’blers, link editors) o Source Editors " Debug Systems ...o Data Base Systems o Utilities o Etc . This talk addresses itself to the current set of tools provided JOVIAL iJ73 1750A application programmners by
Development of STOLAND, a versatile navigation, guidance and control system
NASA Technical Reports Server (NTRS)
Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.
1972-01-01
STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.
Space Shuttle UHF Communications Performance Evaluation
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.
2004-01-01
An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.
Validation of multiprocessor systems
NASA Technical Reports Server (NTRS)
Siewiorek, D. P.; Segall, Z.; Kong, T.
1982-01-01
Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.
2015-01-08
RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.
Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics
NASA Technical Reports Server (NTRS)
1975-01-01
The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.
1995-02-02
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
1995-02-02
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Koppen, Daniel M.
1997-01-01
During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.
NASA Technical Reports Server (NTRS)
1987-01-01
The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.
High-performance large-area AMLCD avionic display module
NASA Astrophysics Data System (ADS)
Syroid, Daniel D.; Hansen, Glenn A.
1995-06-01
There is a need for a reliable source of high performance large area sunlight readable active matrix liquid crystal displays (AMLCDs) for avionic and military land vehicle applications. Image Quest has developed an avionic display module (ADM) to demonstrate the capability to produce high performance avionic displays to satisfy this need. The ADM is a large area (6.24 X 8.32 inch) display with VGA compatible interface, 640 X 480 color pixels and 64 gray shades per primary color. The display features excellent color discrimination in full sunlight due to a saturated color gamut, very low specular reflectance (< 1%) and high output white luminance (200 fL). The ADM is designed from the glass up to fully meet the avionic and military application and environment. Control over all the display performance parameters including contrast, transmission, chroma, resolution, active size and packaging configuration is ensured because Image Quest produces all of the critical elements of the display. These elements include the a-Si TFT AMLCD glass, RGB color filter matrix, bonding of folded back driver TABs, anti-reflective cover glass, LC heater and integration of high luminance hot cathode backlight with thermal controls. The display features rugged compact packaging, 2000:1 luminance dimming range and wide operating temperature range (-40 to +71 $DRGC). In the immediate future Image Quest plans to expand the development efforts to other similar custom high resolution and high performance avionic display module configurations including 4 X 4 inch delta triad, 6.7 X 6.7 inch delta triad and 16.5 inch diagonal with 1280 X 1024 pixels. Image Quest can deliver up to 10,000 displays per year on a timely basis at a reasonable cost.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on digital avionics discusses vehicle-management systems, spacecraft avionics, special vehicle avionics, communication/navigation/identification systems, software qualification and quality assurance, launch-vehicle avionics, Ada applications, sensor and signal processing, general aviation avionics, automated software development, design-for-testability techniques, and avionics-software engineering. Also discussed are optical technology and systems, modular avionics, fault-tolerant avionics, commercial avionics, space systems, data buses, crew-station technology, embedded processors and operating systems, AI and expert systems, data links, and pilot/vehicle interfaces.
Man's role in integrated control and information management systems
NASA Technical Reports Server (NTRS)
Nevins, J. L.; Johnson, I. S.
1972-01-01
Display control considerations associated with avionics techniques are discussed. General purpose displays and a prototype interactive display/command design featuring a pushplate CRT overlay for command input are considered.
Intelligent Vehicle Health Management
NASA Technical Reports Server (NTRS)
Paris, Deidre E.; Trevino, Luis; Watson, Michael D.
2005-01-01
As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project and the integration of these technologies forms the framework for IIVM.
A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management
NASA Technical Reports Server (NTRS)
Paris, Deidre E.; Trevino, Luis; Watson, Mike
2005-01-01
As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for IIVH includes: 1) robust controllers for use in re-usable launch vehicles, 2) scaleable/flexible computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project. The integration of these IVHM technologies forms the framework for IIVM.
Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Kwong, David D.
1986-01-01
The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Astrophysics Data System (ADS)
Lewerenz, T.; Kosha, M.; Magazu, H.
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Technical Reports Server (NTRS)
Lewerenz, T.; Kosha, M.; Magazu, H.
1991-01-01
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
2010-11-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) will be rotated 180 degrees to provide better access for work to be performed on its avionics box. Technicians also will install a flight releasable grappling fixture to AMS while it is upside down. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2010-11-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) will be rotated 180 degrees to provide better access for work to be performed on its avionics box. Technicians also will install a flight releasable grappling fixture to AMS while it is upside down. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2010-11-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) rotates 180 degrees to provide better access for work to be performed on its avionics box. Technicians also will install a flight releasable grappling fixture to AMS while it is upside down. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2010-11-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) is positioned at a 180-degree angle to provide better access for work to be performed on its avionics box. Technicians also will install a flight releasable grappling fixture to AMS while it is upside down. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2010-11-01
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) rotates 180 degrees to provide better access for work to be performed on its avionics box. Technicians also will install a flight releasable grappling fixture to AMS while it is upside down. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
Upgrading the Space Shuttle Caution and Warning System
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.; McCann, Robert S.; Hilty, Bruce T.
2005-01-01
A report describes the history and the continuing evolution of an avionic system aboard the space shuttle, denoted the caution and warning system, that generates visual and auditory displays to alert astronauts to malfunctions. The report focuses mainly on planned human-factors-oriented upgrades of an alphanumeric fault-summary display generated by the system. Such upgrades are needed because the display often becomes cluttered with extraneous messages that contribute to the difficulty of diagnosing malfunctions. In the first of two planned upgrades, the fault-summary display will be rebuilt with a more logical task-oriented graphical layout and multiple text fields for malfunction messages. In the second upgrade, information displayed will be changed, such that text fields will indicate only the sources (that is, root causes) of malfunctions; messages that are not operationally useful will no longer appear on the displays. These and other aspects of the upgrades are based on extensive collaboration among astronauts, engineers, and human-factors scientists. The report describes the human-factors principles applied in the upgrades.
A Demonstration Advanced Avionics System for general aviation
NASA Technical Reports Server (NTRS)
Denery, D. G.; Callas, G. P.; Jackson, C. T.; Berkstresser, B. K.; Hardy, G. H.
1979-01-01
A program initiated within NASA has emphasized the use of a data bus, microprocessors, electronic displays and data entry devices for general aviation. A Demonstration Advanced Avionics System (DAAS) capable of evaluating critical and promising elements of an integrating system that will perform the functions of (1) automated guidance and navigation; (2) flight planning; (3) weight and balance performance computations; (4) monitoring and warning; and (5) storage of normal and emergency check lists and operational limitations is described. Consideration is given to two major parts of the DAAS instrument panel: the integrated data control center and an electronic horizontal situation indicator, and to the system architecture. The system is to be installed in the Ames Research Center's Cessna 402B in the latter part of 1980; engineering flight testing will begin in the first part of 1981.
Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite
2016-09-01
aerial platform for subsequent visual sensor integration. 14. SUBJECT TERMS autonomous system, quadrotors, direct method, inverse ...CONTROLLER ARCHITECTURE .....................................................43 B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN ......................45 1...control station GPS Global-Positioning System IDVD inverse dynamics in the virtual domain ILP integer linear program INS inertial-navigation system
Evaluation of Cable Harness Post-Installation Testing. Part B
NASA Technical Reports Server (NTRS)
King, M. S.; Iannello, C. J.
2011-01-01
The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.
Mini AERCam Inspection Robot for Human Space Missions
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.
2004-01-01
The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.
A Comprehension Based Analysis of Autoflight System Interfaces
NASA Technical Reports Server (NTRS)
Palmer, Everett (Technical Monitor); Polson, Peter G.
2003-01-01
This cooperative agreement supported Dr. Peter Polson's participation in two interrelated research programs. The first was the development of the Situation-Goal-Behavior (SGB) Model that is both a formal description of an avionics system's logic and behavior and a representation of a system that can be understood by avionics designers, pilots, and training developers. The second was the development of a usability inspection method based on an approximate model, RAFIV, of pilot interactions with the Flight Management System (FMS). The main purpose of this report is to integrate the two models and provide a context in order to better characterize the accomplishments of this research program. A major focus of both the previous and this Cooperative Agreement was the development of usability evaluation methods that can be effectively utilized during all phases of the design, development, and certification process of modern avionics systems. The current efforts to validate these methods have involved showing that they generate useful analyses of known operational and training problems with the current generation of avionics systems in modern commercial airliners. This report is organized into seven sections. Following the overview, the second section describes the Goal-Situation-Behavior model and its applications. The next section summarizes the foundations of the RAFIV model and describes the model in some detail. The contents of both these sections are derived from previous reports referenced in footnotes. The fourth section integrates these two models into a complete design evaluation and training development framework. The fifth section contains conclusions and possible future directions for research. References are in Section 6. Section 7 contains the titles and abstracts of the papers paper describing in more detail the results of this research program.
DFRC F-16 aircraft fleet and support crew
NASA Technical Reports Server (NTRS)
1995-01-01
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
NASA Technical Reports Server (NTRS)
Alverado, U.
1975-01-01
The use of the space shuttle for the Earth Resources Program is discussed. Several problems with respect to payload selection, integration, and mission planning were studied. Each of four shuttle roles in the sortie mode were examined and projected into an integrated shuttle program. Several representative Earth Resources missions were designed which would use the shuttle sortie as a platform and collectively include the four shuttle roles. An integrated flight program based on these missions was then developed for the first two years of shuttle flights. A set of broad implications concerning the uses of the shuttle for Earth Resources studies resulted.
An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test
NASA Technical Reports Server (NTRS)
Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.
Reliability and quality EEE parts issues
NASA Technical Reports Server (NTRS)
Barney, Dan; Feigenbaum, Irwin
1990-01-01
NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2003-01-01
This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.
Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Willsey, Mark; Bailey, Brad
2011-01-01
In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.
Command and data handling of science signals on Spacelab
NASA Technical Reports Server (NTRS)
Mccain, H. G.
1975-01-01
The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.
Integration of the B-52G Offensive Avionics System (OAS) with the Global Positioning System (GPS)
NASA Astrophysics Data System (ADS)
Foote, A. L.; Pluntze, S. C.
Integration of the B-52G OAS with the GPS has been accomplished by modification of existing OAS software. GPS derived position and velocity data are used to enhance the quality of the OAS inertial and dead reckoning navigation systems. The engineering design and the software development process used to implement this design are presented.
Annual Industrial Capabilities Report to Congress
2013-10-01
platform concepts for airframe, propulsion, sensors , weapons integration, avionics, and active and passive survivability features will all be explored...for full integration into the National Airspace System. Greater computing power, combined with developments in miniaturization, sensors , and...the design engineering skills for missile propulsion systems is at risk. The Department relies on the viability of a small number of SRM and turbine
A WDM/Optical-CDMA (WDM/O-CDMA) Concept for Avionics Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez, A J; Hernandez, V J; Gagliardi, R M
2005-06-02
We describe a concept where WDM and O-CDMA share a set of discrete wavelengths and components while using similar modulation formats. O-CDMA acts as a channel multiplier. Experiments show the feasibility of >2X channel multiplication.
Human-Rated Space Vehicle Backup Flight Systems
NASA Technical Reports Server (NTRS)
Davis, Jeffrey A.; Busa, Joseph L.
2004-01-01
Human rated space vehicles have historically employed a Backup Flight System (BFS) for the main purpose of mitigating the loss of the primary avionics control system. Throughout these projects, however, the underlying philosophy and technical implementation vary greatly. This paper attempts to coalesce each of the past space vehicle program's BFS design and implementation methodologies with the accompanying underlining philosophical arguments that drove each program to such decisions. The focus will be aimed at Mercury, Gemini, Apollo, and Space Shuttle However, the ideologies and implementation of several commercial and military aircraft are incorporated as well to complete the full breadth view of BFS development across the varying industries. In particular to the non-space based vehicles is the notion of deciding not to utilize a BFS. A diverse analysis of BFS to primary system benefits in terms of reliability against all aspects of project development are reviewed and traded. The risk of engaging the BFS during critical stages of flight (e.g. ascent and entry), the level of capability of the BFS (subset capability of main system vs. equivalent system), and the notion of dissimilar hardware and software design are all discussed. Finally, considerations for employing a BFS on future human-rated space missions are reviewed in light of modern avionics architectures and mission scenarios implicit in exploration beyond low Earth orbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-modelmore » approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.« less
Hitchhiker: Customer Accommodations and Requirements Specifications (CARS)
NASA Technical Reports Server (NTRS)
1992-01-01
In 1984, NASA Headquarters established projects at the Goddard Space Flight Center (GSFC) and the Marshall Space Flight Center (MSFC) to develop quick-reaction carrier systems for low-cost 'flight of opportunity' or secondary payloads on the Space Transportation System (STS). One of these projects is the Hitchhiker (HH) Program. GSFC has developed a family of carrier equipment known as the Shuttle Payload of Opportunity Carrier (SPOC) system for mounting small payloads such as HH to the side of the Orbiter payload bay. The side-mounted HHs are referred to as Hitchhiker-G (HH-G). MSFC developed a cross-bay 'bridge-type' carrier structure called the Hitchhiker-M (HH-M). In 1987, responsibility for the HH-M carrier was transferred to and is now managed by the HH Project Office at the GSFC. The HH-M carrier now uses the same interchangeable SPOC avionics unit and the same electrical interfaces and services developed for HH-G. National Aeronautics and Space Administration (NASA) has created this document to acquaint potential HH system customers with the facilities NASA provides and the requirements which customers must satisfy to use these facilities. This publication defines interface items required for integrating customer equipment with the HH carrier system. Those items such as mounting equipment and electrical inputs and outputs; configuration, environmental, command, telemetry, and operational constraints are described as well as weight, power, and communications. The purpose of this publication is to help the customer understand essential integration documentation requirements and to prepare a Customer Payload Requirements (CPR) document.
Design Description of the X-33 Avionics Architecture
NASA Technical Reports Server (NTRS)
Reichenfeld, Curtis J.; Jones, Paul G.
1999-01-01
In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2006-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2007-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Implementation of an optimum profile guidance system on STOLAND
NASA Technical Reports Server (NTRS)
Flanagan, P. F.
1978-01-01
The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.
NASA Technical Reports Server (NTRS)
Larson, Vickie L.; Rowe, Sean P.; Breininger, David R.
1997-01-01
Spatial and temporal patterns in bird abundance within the five-mile airspace at the Shuttle Landing Facility (SLF) on John F. Kennedy Space Center (KSC), Florida, USA were investigated for purposes of quantifying Bird Aircraft Strike Hazards (BASH). The airspace is surrounded by the Merritt Island National Wildlife Refuge (MINWR) which provides habitat for approximately 331 resident and migratory bird species. Potential bird strike hazards were greatest around sunrise and sunset for most avian taxonomic groups, including wading birds, most raptors, pelicans, gulls/terns, shorebirds, and passerines. Turkey Vultures and Black Vultures were identified as a primary threat to aircraft operations and were represented in 33% of the samples. Diurnal vulture activity varied seasonally with the development of air thermals in the airspace surrounding the SLF. Variation in the presence and abundance of migratory species was shown for American Robins, swallows, and several species of shorebirds. Analyses of bird activities provides for planning of avionics operations during periods of low-dsk and allows for risk minimization measures during periods of high-risk.
Design and Implementation of USAF Avionics Integration Support Facilities
1981-12-01
specification for taking the bbranch Vt -Routing indicator (No activity): Allocate Node: All’ocation of resources: R= Allocation rule. Res Resource type number...problems, and the integration and testing of the ECS. The purpose of this investigation is to establish a standard software development system...Corrections to equipment problems. -Compensation for equipment degradation. -New Developments . This approach is intended to centralize essential
Space Shuttle Main Engine - The Relentless Pursuit of Improvement
NASA Technical Reports Server (NTRS)
VanHooser, Katherine P.; Bradley, Douglas P.
2011-01-01
The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.
Digital avionics systems - Principles and practices (2nd revised and enlarged edition)
NASA Technical Reports Server (NTRS)
Spitzer, Cary R.
1993-01-01
The state of the art in digital avionics systems is surveyed. The general topics addressed include: establishing avionics system requirements; avionics systems essentials in data bases, crew interfaces, and power; fault tolerance, maintainability, and reliability; architectures; packaging and fitting the system into the aircraft; hardware assessment and validation; software design, assessment, and validation; determining the costs of avionics.
Integrating cockpit display and video recorder systems
NASA Astrophysics Data System (ADS)
Bailey, David C.; Jones, Romie; Testerman, David
1995-06-01
A pair of flight data recording and playback systems are described for the F-22 and F-15. These systems employ multiplexing techniques to expand the amount of data recorded and inherent benefit therefrom. Variations between the system accommodate the different avionics architecture of each aircraft.
DOT National Transportation Integrated Search
1993-03-17
The Flight Management System (FMS) is the principal means by which navigation and in-flight : performance optimization take place in most current aircarriers and many business jets. The : FMS integrates conventional airplane avionics capabilities wit...
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt;
2013-01-01
As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.
Reuse and Interoperability of Avionics for Space Systems
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
2007-01-01
The space environment presents unique challenges for avionics. Launch survivability, thermal management, radiation protection, and other factors are important for successful space designs. Many existing avionics designs use custom hardware and software to meet the requirements of space systems. Although some space vendors have moved more towards a standard product line approach to avionics, the space industry still lacks similar standards and common practices for avionics development. This lack of commonality manifests itself in limited reuse and a lack of interoperability. To address NASA s need for interoperable avionics that facilitate reuse, several hardware and software approaches are discussed. Experiences with existing space boards and the application of terrestrial standards is outlined. Enhancements and extensions to these standards are considered. A modular stack-based approach to space avionics is presented. Software and reconfigurable logic cores are considered for extending interoperability and reuse. Finally, some of the issues associated with the design of reusable interoperable avionics are discussed.
Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.
Power supply standardization and optimization study
NASA Technical Reports Server (NTRS)
Ware, C. L.; Ragusa, E. V.
1972-01-01
A comprehensive design study of a power supply for use in the space shuttle and other space flight applications is presented. The design specifications are established for a power supply capable of supplying over 90 percent of the anticipated voltage requirements for future spacecraft avionics systems. Analyses and tradeoff studies were performed on several alternative design approaches to assure that the selected design would provide near optimum performance of the planned applications. The selected design uses a dc-to-dc converter incorporating regenerative current feedback with a time-ratio controlled duty cycle to achieve high efficiency over a wide variation in input voltage and output loads. The packaging concept uses an expandable mainframe capable of accommodating up to six inverter/regulator modules with one common input filter module.
NASA Technical Reports Server (NTRS)
1993-01-01
The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.
1999-06-01
The Inertial Upper Stage (IUS) booster is lowered toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lowered onto the Inertial Upper Stage (IUS) beneath it. After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
The Inertial Upper Stage (IUS) booster is moved toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
NASA Technical Reports Server (NTRS)
Orr, James K.
2010-01-01
This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.
Pre-integrated structures for Space Station Freedom
NASA Technical Reports Server (NTRS)
Cruz, Jonathan N.; Monell, Donald W.; Mutton, Philip; Troutman, Patrick A.
1991-01-01
An in-space construction (erectable) approach to assembling Freedom is planned but the increasing complexity of the station design along with a decrease in shuttle capability over the past several years has led to an assembly sequence that requires more resources (EVA, lift, volume) than the shuttle can provide given a fixed number of flights. One way to address these issues is to adopt a pre-integrated approach to assembling Freedom. A pre-integrated approach combines station primary structure and distributed systems into discrete sections that are assembled and checked out on the ground. The section is then launched as a single structural entity on the shuttle and attached to the orbiting station is then launched as a single structural entity on the shuttle and attached to the orbiting station with a minimum of EVA. The feasibility of a pre-integrated approach to assembling Freedon is discussed. The structural configuration, packaging, and shuttle integration of discrete pre-integrated elements for Freedom assembly are discussed. It is shown that the pre-integrated approach to assembly reduces EVA and increases shuttle margin with respect to mass, volume, and center of gravity limits when compared to the baseline Freedom assembly sequence.
Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1
NASA Technical Reports Server (NTRS)
1976-01-01
The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.
Alternate concepts study extension. Volume 2: Part 4: Avionics
NASA Technical Reports Server (NTRS)
1971-01-01
A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.
NASA Astrophysics Data System (ADS)
Abraham, S. J.
While Avionics Intermediate Shops (AISs) have in the past been required for military aircraft, the emerging VLSI/VHSIC technology has given rise to the possibility of novel, well partitioned avionics system architectures that obviate the high spare parts costs that formerly prompted and justified the existence of an AIS. Future avionics may therefore be adequately and economically supported by a two-level maintenance system. Algebraic generalizations are presented for the analysis of the spares costs implications of alternative design partitioning schemes for future avionics.
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.
2006-01-01
The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
NASA Technical Reports Server (NTRS)
Stovall, John R.; Wray, Richard B.
1994-01-01
This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.
Avionics System Architecture Tool
NASA Technical Reports Server (NTRS)
Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian
2005-01-01
Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.
NASA Technical Reports Server (NTRS)
Smyth, R. K. (Editor)
1979-01-01
The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities.
SATWG networked quality function deployment
NASA Technical Reports Server (NTRS)
Brown, Don
1992-01-01
The initiative of this work is to develop a cooperative process for continual evolution of an integrated, time phased avionics technology plan that involves customers, technologists, developers, and managers. This will be accomplished by demonstrating a computer network technology to augment the Quality Function Deployment (QFD). All results are presented in viewgraph format.
1983-08-01
AD- R136 99 THE INTEGRATED MISSION-PLNNING STATION: FUNCTIONAL 1/3 REQUIREMENTS AVIATOR-..(U) RNACAPR SCIENCES INC SANTA BARBARA CA S P ROGERS RUG...Continue on reverse side o necess.ar and identify by btock number) Interactive Systems Aviation Control-Display Functional Require- Plan-Computer...Dialogue Avionics Systems ments Map Display Army Aviation Design Criteria Helicopters M4ission Planning Cartography Digital Map Human Factors Navigation
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler)
2005-01-01
Contents includes papers on the following: JPDO: Inter-Agency Cooperation for the Next Generation ATS; R&T Programs; Integrated CNS Systems and Architectures; Datalink Communication Systems; Navigation, System Demonstrations and Operations; Safety and Security Initiatives Impacting CNS; Global Communications Initiatives; Airborne Internet; Avionics for System-Level Enhancements; SWIM (System Wide Information Management); Weather Products and Data Dissemination Technologies; Airsapce Communication Networks; Surveillance Systems; Workshop Breakouts Sessions and ; ICNS Conference Information.
Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.
2017-01-01
The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.
Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.
2010-01-01
The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.
78 FR 65183 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Airworthiness Directives; ATR--GIE Avions de Transport R[eacute]gional Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain ATR--GIE Avions de Transport R[eacute]gional Model ATR72-101, -201... service information identified in this AD, contact ATR--GIE Avions de Transport R[eacute]gional, 1, All...
HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Harloff, Gary J.; Berkowitz, Brian M.
1988-01-01
A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.
ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation
NASA Technical Reports Server (NTRS)
Hughes, Ryan; Walker, David
2009-01-01
This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.
A Mars airplane. [for Mars environment surveys
NASA Technical Reports Server (NTRS)
Clarke, V. C.; Kerem, A.; Lewis, R.
1979-01-01
An airplane specifically designed for Mars flight is described, emphasizing its conceivable role as an aerial surveyor for visual imaging, gamma-ray and IR reflectance spectroscopy, studies of atmospheric composition and dynamics, and gravity-field, magnetic-field, and electromagnetic sounding. Possible imaging systems and surveying tasks are considered, along with a plausible mission scenario for a fleet of 12 airplanes, which would be taken to Mars in squadrons of four by three Shuttle/IUS Twin Stage/spacecraft carriers. A basic configuration closely resembling that of a competition glider is examined, and four types of airplane are discussed: hydrazine-powered cruisers and landers and electrically powered cruisers and landers. Attention is given to navigation, guidance, and control avionics, vehicle weight, the use of composite materials for the wing, and flight testing on earth.
1999-06-01
The Inertial Upper Stage (IUS) booster (right) is lifted out of its container after arriving at Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory (at left) and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is moved toward the Inertial Upper Stage (IUS) in a workstand at right. There it will be mated with the IUS and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is revealed with its protective cover removed. Chandra is ready for mating with the Inertial Upper Stage (IUS) beneath it, to be followed by testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lowered toward the Inertial Upper Stage (IUS) in a workstand beneath it. There it will be mated with the IUS and then undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-04
Workers in the Vertical Processing Facility observe the lower end of the Inertial Upper Stage (IUS) that will be mated with the Chandra X-ray Observatory (out of sight above it). After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lifted from its workstand in order to move it to the Inertial Upper Stage (IUS) nearby. After being mated, the two components will then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
Shuttle program. MCC Level C formulation requirements: Entry guidance and entry autopilot
NASA Technical Reports Server (NTRS)
Harpold, J. C.; Hill, O.
1980-01-01
A set of preliminary entry guidance and autopilot software formulations is presented for use in the Mission Control Center (MCC) entry processor. These software formulations meet all level B requirements. Revision 2 incorporates the modifications required to functionally simulate optimal TAEM targeting capability (OTT). Implementation of this logic in the MCC must be coordinated with flight software OTT implementation and MCC TAEM guidance OTT. The entry guidance logic is based on the Orbiter avionics entry guidance software. This MCC requirements document contains a definition of coordinate systems, a list of parameter definitions for the software formulations, a description of the entry guidance detailed formulation requirements, a description of the detailed autopilot formulation requirements, a description of the targeting routine, and a set of formulation flow charts.
Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.
Technical Workshop: Advanced Helicopter Cockpit Design
NASA Technical Reports Server (NTRS)
Hemingway, J. C. (Editor); Callas, G. P. (Editor)
1984-01-01
Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.
D-21B RBCC Modification Feasibility Study
NASA Technical Reports Server (NTRS)
1999-01-01
This report presents a feasibility study on the modifications required to re-engine the Lockheed D-21 Drone for use as a NASA RBCC engine. An introduction, background information, engine configuration and performance, propulsion system integration, loads/thermal analysis, avionics/systems, flight test results, costs and work schedule, and some conclusions are presented.
Integrated cockpit display and processor: the best solution for Link-16 applications
NASA Astrophysics Data System (ADS)
Smeyne, Alan L.; Savaya, John
2000-08-01
Link-16 Data Link systems are being added to current avionics systems to provide increased situational awareness and command data. By using a single intelligent display system, the impact to existing aircraft systems to implement Link-16 capabilities is minimized. Litton Guidance & Control Systems (G&CS), a military avionics supplier for more than forty years, provides Open System Architecture (OSA), large screen aircraft display systems. Based on a common set of plug-in modules, these Smart Multi-Function Displays (SMFD) are available in a variety of sizes and processing capabilities, any one of which can meet the Link-16 requirements. Using a single smart SMFD connected to a Link-16 subsystem has many advantages. With digital moving map capability, the SMFD can monitor and display air and ground tracks of both friendly and hostile forces while providing potential threat data to the operator. The SMFD can also monitor vehicle status and mission data to share between friendly air and surface forces. To support the integrated digital battlefield, Link-16 capability is required and the Litton G&CS SMFD provides the processing/display functionality to implement this capability.
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.
1985-01-01
This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
NASA Technical Reports Server (NTRS)
1982-01-01
The integrated application of active controls (IAAC) technology to an advanced subsonic transport is reported. Supplementary technical data on the following topics are included: (1) 1990's avionics technology assessment; (2) function criticality assessment; (3) flight deck system for total control and functional features list; (4) criticality and reliability assessment of units; (5) crew procedural function task analysis; and (6) recommendations for simulation mechanization.
2006-10-16
spawning sites, feeding sites, 20 seasonal wetlands or drylands, water quality or quantity, host species or plant pollinators , geological 21...rufus]). 12 These areas also contain relatively large areas of sensitive plants . 13 3.9.2.9 Significant Ecological Areas found within the R-2515 and...for complete aircraft, avionics systems, and integrated 21 airframe weapons support. Thus, HPM testing would continue the evolution of the primary
Autonomous, agile micro-satellites and supporting technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitfeller, E; Dittman, M D; Gaughan, R J
1999-07-19
This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less
NASA Technical Reports Server (NTRS)
Cockrell, James
2015-01-01
Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.
AMLCD cockpit: promise and payoffs
NASA Astrophysics Data System (ADS)
Snow, Michael P.; Jackson, Timothy W.; Meyer, Frederick M.; Reising, John M.; Hopper, Darrel G.
1999-08-01
The active matrix liquid crystal display (AMLCD) has become the preferred flight instrument technology in avionics multifunction display applications. Current bubble canopy fighter cockpit applications involve sizes up to 7.8 X 7.8 in. active display. Dual use avionics versions of AMLCD technology are now as large as 6.7 X 6.7 in. active display area in the ARINC D sized color multifunction display (MFD). This is the standard instrument in all new Boeing transport aircraft and is being retrofitted into the C-17A. A special design of the ARINC D instrument is used in the Space Shuttle cockpit upgrade. Larger sizes of AMLCD were desired when decisions were made in the early 1990s for the F-22. Commercial AMLCD technology has now produced monitors at 1280 X 1024 resolution (1.3 megapixels) in sizes of 16 to 21 in. diagonal. Each of these larger AMLCDs has more information carrying capacity than the entire F-22A cockpit instrument panel shipset, comprising six separate smaller AMLCDs (1.2 megapixels total). The larger AMLCDs are being integrated into airborne mission crewstations for use in dim ambient lighting conditions. It is now time to identify and address the technology challenges of upgrading these larger AMLCDs for sunlight readable application and of developing concepts for their integration into advanced bubble canopy fighter cockpits. The overall goals are to significantly increase the informational carrying capacity to bring both sensor and information fusion into the cockpit and, thereby, to enable a significant increase in warfighter situational awareness and effectiveness. A research cockpit was built using specialized versions of the IBM 16.1 in and two smaller 10 in. AMLCDs to examine human factors and display design issues associated with these next-generation AMLCD cockpit displays. This cockpit was later upgraded to allow greater reconfigurability and flexibility in the display hardware used to conduct part- task mission simulations. The objective optical characterization of the AMLCDs used in this simulator and the cockpit design are described. Display formats under consideration for test in this cockpit are described together with some of the basic human factors engineering issues involved. Studies conducted in this cockpit will be part of an ongoing joint effort of the hardware-focused aerospace displays team and the pilot-focused human factors team in the Air Force Research Laboratory's Crew System Interface Division. The objective of these studies is to ascertain the payoffs of the large AMLCD promise in combat cockpits.
General aviation avionics equipment maintenance
NASA Technical Reports Server (NTRS)
Parker, C. D.; Tommerdahl, J. B.
1978-01-01
Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.
Definition of avionics concepts for a heavy lift cargo vehicle, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.
Custom avionics-grade AM LCDs for high performance military and avionics applications
NASA Astrophysics Data System (ADS)
Niemczyk, James
2003-09-01
American Panel Corporation in Alpharetta Georgia and LG-Philips-LCD in Seoul South Korea have a strategic alliance for the design and manufacture of custom AMLCD products targeted for the military vehicle and avionics sector. As part of this relationship, new innovations in AMLCD technology specifically aimed at the rugged and avionics applications have been developed and are now brought to the marketplace
Ares I First Stage Propulsion System Status
NASA Technical Reports Server (NTRS)
Priskos, Alex S.
2010-01-01
With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares First Stage team to move forward, fine-tune the design, and advance to production of the second development motor (DM-2), which is now in fabrication. This paper will provide an overview of the design, development, challenges, and progress on the production of the new Ares First Stage propulsion system
Ares I-X Flight Test Development Challenges and Success Factors
NASA Technical Reports Server (NTRS)
Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James
2010-01-01
The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.
Space Shuttle Payload Information Source
NASA Technical Reports Server (NTRS)
Griswold, Tom
2000-01-01
The Space Shuttle Payload Information Source Compact Disk (CD) is a joint NASA and USA project to introduce Space Shuttle capabilities, payload services and accommodations, and the payload integration process. The CD will be given to new payload customers or to organizations outside of NASA considering using the Space Shuttle as a launch vehicle. The information is high-level in a visually attractive format with a voice over. The format is in a presentation style plus 360 degree views, videos, and animation. Hyperlinks are provided to connect to the Internet for updates and more detailed information on how payloads are integrated into the Space Shuttle.
General Aviation Avionics Statistics : 1975
DOT National Transportation Integrated Search
1978-06-01
This report presents avionics statistics for the 1975 general aviation (GA) aircraft fleet and updates a previous publication, General Aviation Avionics Statistics: 1974. The statistics are presented in a capability group framework which enables one ...
2008-11-07
CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, ssembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. Lined up left to right are the Stage 1 and Stage 2 motors, the boattail, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB
2000-04-01
the electronics manufacturers who have made avionics upgrades a profitable line-of- business . However, this observation is not in the best interest of...in encouraging communica- both the AH-lZ and UH-IY airframes, for example). tion between all IPT members. These TIMs were held Technical leaders from...aircraft operating in the maritime and placed strategically on the airframes to increase their environment experienced by the Navy and Marines are
Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Zook, J. David
1998-07-01
An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.
2008-11-07
CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, workers do a fit check on the mating of the Stage 1 to Stage 2 motors for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. At right can be seen the avionics shelf. The avionics skirt, a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB
1989-05-01
Faced with complaints about lengthy and costly developments , rapid obsolescence, and excessive costs of ownership, we have all heard the following...microwave integrated circuits raises similar system and sub-system issues. Microprocessor developments raise new questions regarding the trade-offs between...imply the need for and utilization of more specialists, but future avionics developments will also require systems-oriented engineess. By definition
Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses
NASA Technical Reports Server (NTRS)
1975-01-01
Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported.
2013-07-31
sensitive to fabrication imperfections and small temperature changes, therefore they are challenging to integrate into high yield mass production ... Cocoa Beach, Florida, September 2012. 15. Ali Wanis Elshaari, “Photon Manipulation in Silicon Nanophotonic Circuits,” Ph.D. Dissertation, Rochester...1.5-micron Light using Silicon Nanocrystals,” 2012 IEEE Avionics, Fiber Optics and Photonics Conference (AVFOP 2012), ThB3, Cocoa Beach, Florida
Advanced FIREFLY Assessment Generalized Mechanization Requirements Report
1979-06-01
Systems; Fire Control Computers ; Weapon Control 20. ABSTRACT (Continue on reverse side If necessary end tdentify by blockc number) -The requirements for...airborne digital computer which can be specialized to per- form successfully in a variety of tactical aircraft with differing avionics sensors, fire...AGG ........................................... 27 13 Time of Flight Computation Using a Modified (China Lake) Numerical Integration Algorithm
2016-01-01
development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating
Space shuttle operations integration plan
NASA Technical Reports Server (NTRS)
1975-01-01
The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.
Wireless avionics for space applications of fundamental physics
NASA Astrophysics Data System (ADS)
Wang, Linna; Zeng, Guiming
2016-07-01
Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.
The opportunities for and challenges of common integrated electronics
NASA Astrophysics Data System (ADS)
Nelson, J. R.; Retterer, Bernard L.; Cloud, Harley A.
1994-02-01
This document summarizes a portion of IDA's work concerning common integrated electronics and the potential cost savings of using common electronic hardware and software. It addresses trends in avionics costs and recent experiences in applying common electronic standards to weapon programs as a way to reduce costs. The following essential elements of a program to acquire common integrated electronics are explored: (1) integrated system architecture; (2) advanced technology programs; (3) open system standards; (4) standard common modules; and (5) associated management and policies. The principal recommendation is that OSD support and coordinate such a-program by taking a strong leadership role and setting standards policy.
Newly Enacted Intent Changes to ADS-B MASPS: Emphasis on Operations, Compatibility, and Integrity
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Warren, Anthony W.
2002-01-01
Significant changes to the intent reporting structure in the Minimum Aviation System Performance Standards (MASPS) for Automatic Dependent Surveillance Broadcast (ADS-B) have recently been approved by RTCA Special Committee 186. The re-structured intent formats incorporate two major changes to the current MASPS (DO-242): addition of a Target State (TS) report that provides information on the horizontal and vertical targets for the current flight segment and replacement of the current Trajectory Change Point (TCP) and TCP+1 reports with Trajectory Change (TC) reports. TC reports include expanded information about TCPs and their connecting flight segments, in addition to making provisions for trajectory conformance elements. New intent elements are designed to accommodate a greater range of intent information, better reflect operational use and capabilities of existing and future aircraft avionics, and aid trajectory synthesis and conformance monitoring systems. These elements are expected to benefit near-term and future Air Traffic Management (ATM) applications, including separation assurance, local traffic flow management, and conformance monitoring. The current MASPS revision (DO-242A) implements those intent elements that are supported by current avionics standards and data buses. Additional elements are provisioned for inclusion in future MASPS revisions (beyond DO-242A) as avionics systems are evolved.
General Aviation Avionics Statistics : 1976
DOT National Transportation Integrated Search
1979-11-01
This report presents avionics statistics for the 1976 general aviation (GA) aircraft fleet and is the third in a series titled "General Aviation Avionics Statistics." The statistics are presented in a capability group framework which enables one to r...
General aviation avionics statistics : 1977.
DOT National Transportation Integrated Search
1980-06-01
This report presents avionics statistics for the 1977 general aviation (GA) aircraft fleet and is the fourth in a series. The statistics are presented in a capability group framework which enables one to relate airborne avionics equipment to the capa...
General Aviation Avionics Statistics : 1979 Data
DOT National Transportation Integrated Search
1981-04-01
This report presents avionics statistics for the 1979 general aviation (GA) aircraft fleet and is the sixth in a series titled General Aviation Avionics Statistics. The statistics preseneted in a capability group framework which enables one to relate...
2008-11-07
CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, assembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. In the foreground at left is the boattail; behind it is the Stage 0 Castor 120 motor. At right near the wall (from left) are the Stage 1 and Stage 2 motors, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB
Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.
2014-01-01
The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.
1992-09-01
qui a POUr object d~cvaluer la pertinence du symposium ci Ia mesure dans laquelle il a repondu aux attentes de Ia communautti atirospatiale. a ýtit...testing have progressed steadily in the last 30 years. the context of military and civil engine/airframe integration This paper will focus attention on...events of the early 90s close to our collective and military designs require increased attention to be paid to consciousness, it is clear that a
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83
NASA Technical Reports Server (NTRS)
Lin, Jill D.; Katnik, Gregory N.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94
NASA Technical Reports Server (NTRS)
Bowen, Barry C.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-50
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley; Katnik, Gregory N.
1992-01-01
Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-50. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-50, and the resulting effect on the Space Shuttle Program are documented.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis for Shuttle Mission STS-49
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-49. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-49, and the resulting effect on the Space Shuttle Program are discussed.
Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-77
NASA Technical Reports Server (NTRS)
Katnik, GregoryN.; Lin, Jill D. (Compiler)
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-77. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-77 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-51
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1993-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-51. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-51 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-55
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle mission STS-55. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-55, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-69
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-69. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system condition and integrated photographic analysis of Shuttle Mission STS-69 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-52
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-52, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Kelley, J. David (Technical Monitor)
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis of shuttle mission STS-76
NASA Technical Reports Server (NTRS)
Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-76. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-76 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-53
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-53. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-53, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-54
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-54. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-54, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-61
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-58
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Rivera, Jorge E.; Katnik, Gregory N.; Bowen, Barry C.; Speece, Robert F.; Rosado, Pedro J.
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-58. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The ice/debris/TPS conditions and integrated photographic analysis of Shuttle mission STS-58, and the resulting effect on the Space Shuttle Program are documented.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-47
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-47, and the resulting effect on the Space Shuttle Program.
Conceptual design of liquid droplet radiator shuttle-attached experiment
NASA Technical Reports Server (NTRS)
Pfeiffer, Shlomo L.
1989-01-01
The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.
Determining Transmission Loss from Measured External and Internal Acoustic Environments
NASA Technical Reports Server (NTRS)
Scogin, Tyler; Smith, A. M.
2012-01-01
An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
1999-06-04
STS-93 Mission Specialists Catherine Coleman (left) and Michel Tognini of France (right), representing the Centre National d'Etudes Spatiales (CNES), look over material on the mission payload behind them, the Chandra X-ray Observatory. Chandra is being mated with the Inertial Upper Stage (IUS) before testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-04
STS-93 Mission Specialists Catherine Coleman (left) and Michel Tognini of France (right), who represents the Centre National d'Etudes Spatiales (CNES), look over the controls for the Chandra X-ray Observatory. Chandra is being mated with the Inertial Upper Stage (IUS) before testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)
NASA Technical Reports Server (NTRS)
1992-01-01
This overall front view shows the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.
Outlook at the Future of the Airline Avionics Industry
DOT National Transportation Integrated Search
1998-01-01
The aviation industry is slowly but surely changing its character. As airlines restructure, what they ask of, and how they relate to their suppliers (including avionics manufacturers) will greatly change as well. The avionics industry is currently fa...
Trends in transport aircraft avionics
NASA Technical Reports Server (NTRS)
Berkstresser, B. K.
1973-01-01
A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.
1977 General Aviation Activity and Avionics Survey
DOT National Transportation Integrated Search
1979-04-01
This report presents the results and a description of the 1977 General Aviation Activity and Avionics Survey. The survey was conducted during early 1978 by the FAA to obtain information on the activity and avionics of the United States registered gen...
NASA Astrophysics Data System (ADS)
Uijt de Haag, Maarten; Venable, Kyle; Bezawada, Rajesh; Adami, Tony; Vadlamani, Ananth K.
2009-05-01
This paper discusses a sensor simulator/synthesizer framework that can be used to test and evaluate various sensor integration strategies for the implementation of an External Hazard Monitor (EHM) and Integrated Alerting and Notification (IAN) function as part of NASA's Integrated Intelligent Flight Deck (IIFD) project. The IIFD project under the NASA's Aviation Safety program "pursues technologies related to the flight deck that ensure crew workload and situational awareness are both safely optimized and adapted to the future operational environment as envisioned by NextGen." Within the simulation framework, various inputs to the IIFD and its subsystems, the EHM and IAN, are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. Sensors and avionics included in this framework are TCAS, ADS-B, Forward-Looking Infrared, Vision cameras, GPS, Inertial navigators, EGPWS, Laser Detection and Ranging sensors, altimeters, communication links with ATC, and weather radar. The framework is implemented in Simulink, a modeling language developed by The Mathworks. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft. Specifically, this paper addresses the architecture of the simulator, the sensor model interfaces, the timing and database (environment) aspects of the sensor models, the user interface of the modeling environment, and the various avionics implementations.
Multigigabit optical transceivers for high-data rate military applications
NASA Astrophysics Data System (ADS)
Catanzaro, Brian E.; Kuznia, Charlie
2012-01-01
Avionics has experienced an ever increasing demand for processing power and communication bandwidth. Currently deployed avionics systems require gigabit communication using opto-electronic transceivers connected with parallel optical fiber. Ultra Communications has developed a series of transceiver solutions combining ASIC technology with flip-chip bonding and advanced opto-mechanical molded optics. Ultra Communications custom high speed ASIC chips are developed using an SoS (silicon on sapphire) process. These circuits are flip chip bonded with sources (VCSEL arrays) and detectors (PIN diodes) to create an Opto-Electronic Integrated Circuit (OEIC). These have been combined with micro-optics assemblies to create transceivers with interfaces to standard fiber array (MT) cabling technology. We present an overview of the demands for transceivers in military applications and how new generation transceivers leverage both previous generation military optical transceivers as well as commercial high performance computing optical transceivers.
NASA Astrophysics Data System (ADS)
Harkness, Linda L.; Sjoberg, Eric S.
1996-06-01
The Georgia Tech Research Institute, sponsored by the Warner Robins Air Logistics Center, has developed an approach for efficiently postulating and evaluating methods for extending the life of radars and other avionics systems. The technique identified specific assemblies for potential replacement and evaluates the system level impact, including performance, reliability and life-cycle cost of each action. The initial impetus for this research was the increasing obsolescence of integrated circuits contained in the AN/APG-63 system. The operational life of military electronics is typically in excess of twenty years, which encompasses several generations of IC technology. GTRI has developed a systems approach to inserting modern technology components into older systems based upon identification of those functions which limit the system's performance or reliability and which are cost drivers. The presentation will discuss the above methodology and a technique for evaluating and ranking the different potential system upgrade options.
Simulation/Emulation Techniques: Compressing Schedules With Parallel (HW/SW) Development
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Hoang, June
2014-01-01
NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA's Kedalion engineering analysis lab has been validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA's heritage culture. Kedalion has validated many of the Orion HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, inserting new techniques and skills into the Multi - Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, Commercial-off-the-shelf (COTS) products, early rapid prototyping, in-house expertise and tools, and extensive use of simulators and emulators, NASA has achieved cost effective paradigms that are currently serving the Orion program effectively. Elements of long lead custom hardware on the Orion program have necessitated early use of simulators and emulators in advance of deliverable hardware to achieve parallel design and development on a compressed schedule.
Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance
NASA Technical Reports Server (NTRS)
Rushby, John
1999-01-01
Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.
NASA Technical Reports Server (NTRS)
Trivedi, K. S.; Geist, R. M.
1981-01-01
The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically.
General Aviation Activity and Avionics Survey (Annual Summary Report - 1986 Data)
DOT National Transportation Integrated Search
1987-12-01
This report presents the results and description of the 1986 General Aviation Activity and Avionics Survey. The survey was conducted during 1987 by the FAA to obtain information on the activity and avionics of the United States registered general avi...
VCSEL optical subassembly for avionics fiber optic modules
NASA Astrophysics Data System (ADS)
Hager, Harold E.; Chan, Eric Y.; Beranek, Mark W.; Hong, Chi-Shain
1996-04-01
With the growing maturation of vertical cavity surface emitting laser (VCSEL) technology as a source of commercial off-the-shelf components, the question of VCSEL suitability for use in avionics-qualifiable fiber-optic systems naturally follows. This paper addresses avionics suitability from two perspectives. First, measured performance and burn-in reliability results, determined from characterization of Honeywell VCSELs, are compared with application-based military and commercial avionics environmental requirements. Second, design guidelines for developing a cost-effective VCSEL optical subassembly (VCSEL/OSA) are outlined.
An Introduction to Flight Software Development: FSW Today, FSW 2010
NASA Technical Reports Server (NTRS)
Gouvela, John
2004-01-01
Experience and knowledge gained from ongoing maintenance of Space Shuttle Flight Software and new development projects including Cockpit Avionics Upgrade are applied to projected needs of the National Space Exploration Vision through Spiral 2. Lessons learned from these current activities are applied to create a sustainable, reliable model for development of critical software to support Project Constellation. This presentation introduces the technologies, methodologies, and infrastructure needed to produce and sustain high quality software. It will propose what is needed to support a Vision for Space Exploration that places demands on the innovation and productivity needed to support future space exploration. The technologies in use today within FSW development include tools that provide requirements tracking, integrated change management, modeling and simulation software. Specific challenges that have been met include the introduction and integration of Commercial Off the Shelf (COTS) Real Time Operating System for critical functions. Though technology prediction has proved to be imprecise, Project Constellation requirements will need continued integration of new technology with evolving methodologies and changing project infrastructure. Targets for continued technology investment are integrated health monitoring and management, self healing software, standard payload interfaces, autonomous operation, and improvements in training. Emulation of the target hardware will also allow significant streamlining of development and testing. The methodologies in use today for FSW development are object oriented UML design, iterative development using independent components, as well as rapid prototyping . In addition, Lean Six Sigma and CMMI play a critical role in the quality and efficiency of the workforce processes. Over the next six years, we expect these methodologies to merge with other improvements into a consolidated office culture with all processes being guided by automated office assistants. The infrastructure in use today includes strict software development and configuration management procedures, including strong control of resource management and critical skills coverage. This will evolve to a fully integrated staff organization with efficient and effective communication throughout all levels guided by a Mission-Systems Architecture framework with focus on risk management and attention toward inevitable product obsolescence. This infrastructure of computing equipment, software and processes will itself be subject to technological change and need for management of change and improvement,
Air Data Report Improves Flight Safety
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112
NASA Technical Reports Server (NTRS)
Oliu, Armando
2002-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-74
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-74. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-74 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Bowen, Barry C.; Rivera, Jorge E.; Speece, Robert F.; Katnik, Gregory N.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-68
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-68. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report-documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-68, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98
NASA Technical Reports Server (NTRS)
Speece, Robert F.
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of shuttle mission STS-63
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-66
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-66. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer program nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-66, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100
NASA Technical Reports Server (NTRS)
Oliu, Armando
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
The Core Avionics System for the DLR Compact-Satellite Series
NASA Astrophysics Data System (ADS)
Montenegro, S.; Dittrich, L.
2008-08-01
The Standard Satellite Bus's core avionics system is a further step in the development line of the software and hardware architecture which was first used in the bispectral infrared detector mission (BIRD). The next step improves dependability, flexibility and simplicity of the whole core avionics system. Important aspects of this concept were already implemented, simulated and tested in other ESA and industrial projects. Therefore we can say the basic concept is proven. This paper deals with different aspects of core avionics development and proposes an extension to the existing core avionics system of BIRD to meet current and future requirements regarding flexibility, availability, reliability of small satellite and the continuous increasing demand of mass memory and computational power.
General Aviation Activity and Avionics Survey (Annual Summary Report - 1985 data)
DOT National Transportation Integrated Search
1987-03-01
This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general a...
General aviation activity and avionics survey : annual summary report 1983 data.
DOT National Transportation Integrated Search
1984-10-01
This report presents the results and a description of the 1983 General Aviation Activity and Avionics Survey. The survey was conducted during 1984 by the FAA to obtain information on the activity and avionics of the United States registered general a...
General Aviation Activity and Avionics Survey (Annual Summary Report - 1978 data)
DOT National Transportation Integrated Search
1980-03-01
This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered gen...
General Aviation Activity and Avionics Survey (Annual Summary Report - 1984 data)
DOT National Transportation Integrated Search
1985-10-01
This report presents the results and a description of the 1984 General Aviation Activity and Avionics Survey. The survey was conducted during 1985 by the FAA to obtain information on the activity and avionics of the United States registered general a...
General Aviation Activity and Avionics Survey (Annual Summary Report - 1987 data).
DOT National Transportation Integrated Search
1988-11-01
This report presents the results and a description of the 1987 General Aviation Activity and Avionics Survey. The survey was conducted during 1988 by the FAA to obtain information on the activity and avionics of the United States registered general a...
General Aviation Activity and Avionics Survey (Annual Summary Report - 1982 data).
DOT National Transportation Integrated Search
1983-12-01
This report presents the results and a description of the 1982 General Aviation Activity and Avionics Survey. The survey was conducted during 1983 by the FAA to obtain information on the activity and avionics of the United States registered general a...
Avionic architecture requirements for Space Exploration Initiative systems
NASA Technical Reports Server (NTRS)
Herbella, C. G.; Brown, D. C.
1991-01-01
The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.
Towards a distributed information architecture for avionics data
NASA Technical Reports Server (NTRS)
Mattmann, Chris; Freeborn, Dana; Crichton, Dan
2003-01-01
Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.; Roche, Rigoberto
2017-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.
Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design
NASA Technical Reports Server (NTRS)
Laughter, Sean A.
2012-01-01
The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.
Process Product Integrity Audits: A Hardware Auditing Technique for the '90s'
NASA Technical Reports Server (NTRS)
Taylor, Mike
1994-01-01
The Space Shuttle program has experienced hardware problems that have delayed several shuttle launches. A NASA review determined that the problems could have been prevented. NASA further concluded that a new kind of Quality emphasis at all Space Shuttle prime contractors and subcontractors was necessary to ensure mission success. To meet this challenge, NASA initiated an innovative review process called Process/Product Integrity (PPIA).
2004-02-01
also referred to as a Foucault pendulum gyroscope. Rate about the z-axis (i.e., about the vertical post) is detected by the Coriolis acceleration...paper, DGA/STTC/DTGN: Eric PLESKA MBDA F: Jacky GROSSET SAGEM SA: Jean Michel CARON THALES Avionics; Charles DUSSURGEY CEA-LETI...Gilles DELAPIERRE CEM2/Montpellier: André BOYER IEF: Alain BOSSEBOEUF LPMO: Michel de la BACHELERIE ONERA: Pierre TOUBOUL ²²²²²²²²²²²² RTO
Military display market segment: avionics (Invited Paper)
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Hopper, Darrel G.
2005-05-01
The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.
1993-08-06
JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary
Space Generic Open Avionics Architecture (SGOAA): Overview
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1992-01-01
A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.
Strategic avionics technology planning
NASA Technical Reports Server (NTRS)
Cox, Kenneth J.; Brown, Don C.
1991-01-01
NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.
Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling
NASA Technical Reports Server (NTRS)
Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam
2013-01-01
Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
Shuttle Abort Flight Management (SAFM) - Application Overview
NASA Technical Reports Server (NTRS)
Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike
2002-01-01
One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic Abort Landing (TAL), East Coast Abort Landing (ECAL) and Return to Launch Site (RTLS). Sequential and simultaneous engine failures are assessed and landing footprint information is provided during actual entry scenarios as well as hypothetical "loss of thrust now" scenarios during ascent.
NASA Technical Reports Server (NTRS)
Aquilina, Rudy
2017-01-01
Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just that-the ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA (Affordable Vehicle Avionics) solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single-use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costs-but can low-cost commercial inertial sensors work just as well? NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box (100 millimeters by 120 millimeters by 69 millimeters; 4 inches by 4.7 inches by 2.7 inches), with a mass of less than 0.84 kilogram (2 pounds. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with real-time GPS (Global Positioning Satellite) data. The goal of the AVA project is to produce and light-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nanolaunch vehicles at 1 percent of the cost of current state-of-the-art avionics.
NextGen Avionics Roadmap, Version 1.2
2010-09-21
Based Aviation Rulemaking Com- mittee ( PARC ). This document is aimed at bring- ing these different proposed changes together into one perspective so...In capabili- ties will allow greater throughput at non- radar , non-tow- ered airports, increasing safety and efficiencies for general aviation (GA...integrity and resolution terrain databases to reduce Controlled Flight into Terrain (CFIT). ADS-B increases surveillance areas beyond today’s radar
Software Master Plan. Volume 2. Background (Annexes A-G)
1990-02-09
AFLC is also responsible for the support of the Avionics Integration Support Facilities, the pilot training systems support and the Automatic Test ...Deputy Director of Defense Research and Engineering ( Test & Evaluation) ..... ............ A.1.1.3 Office of the Deputy Director of Defense Research and...Department of Defense .... ........ 3 A.3 Operational Test & Evaluation ........ ................. 4 A.4 Office of the Assistant Secretary of Defense
Advanced optical network architecture for integrated digital avionics
NASA Astrophysics Data System (ADS)
Morgan, D. Reed
1996-12-01
For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1990-01-01
An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.
Workers in the VPF observe the lower end of the IUS to be mated to the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Vertical Processing Facility observe the lower end of the Inertial Upper Stage (IUS) that will be mated with the Chandra X-ray Observatory (out of sight above it). After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
1998-11-04
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.
Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)
NASA Technical Reports Server (NTRS)
1992-01-01
This high angle overall view shows the top side components of the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.
System Engineering Issues for Avionics Survival in the Space Environment
NASA Technical Reports Server (NTRS)
Pavelitz, Steven
1999-01-01
This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.
Comparison of custom versus COTS AMLCDs for military and avionic applications
NASA Astrophysics Data System (ADS)
Angelo, Van
1997-07-01
AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.
Space Generic Open Avionics Architecture (SGOAA) standard specification
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1994-01-01
This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
Space Generic Open Avionics Architecture (SGOAA) reference model technical guide
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
Basic avionics module design for general aviation aircraft
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Smyth, D. E.
1978-01-01
The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.
Use of Field Programmable Gate Array Technology in Future Space Avionics
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Tate, Robert
2005-01-01
Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.
Ares I-X: On the Threshold of Exploration
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce
2009-01-01
Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.