STS-114: Discovery Day 13 Mission Status Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He reports that the vehicle is in good shape, consumable status is excellent, and the shuttle crew is in high spirits and preparing for de-orbit and landing. LeRoy and his team have completed the entry system check up, flight control check up, reactor control system check up, and noted that all are at nominal performance; weather forecast is very good, the Entry team is ready and looking forward to de-orbit and landing at the Kennedy Space Center on Monday, August 8th. Re-entry, personal feelings, Columbia accident, data gathering, consumable situation, back up sites, weather, communication block out, night and day landing, and Commander Collin's piloting skills during night flight are some of the topics covered with the News media.
Commander Rominger and Pilot Ashby prepare for re-entry on Endeavour during STS-100
2001-05-01
STS100-363-034 (19 April-1 May 2001) --- Astronauts Kent V. Rominger (left) and Jeffrey S. Ashby, STS-100 commander and pilot, respectively, are photographed on the flight deck of the Space Shuttle Endeavour during de-orbit preparations.
NASA Technical Reports Server (NTRS)
Markos, H.
1978-01-01
Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.
NASA Technical Reports Server (NTRS)
Treybig, J. H.
1975-01-01
Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.
STS-121: Discovery Entry Flight Director Post Landing Press Conference
NASA Technical Reports Server (NTRS)
2006-01-01
Steve Stitch, STS-121 Entry Flight Director, and Wayne Hale, Space Shuttle Program is shown in this post landing press conference. Steve Stitch begins with discussing the following topics: 1) Weather at Kennedy Space Center; 2) Gap filler protrusion; 3) De-orbit burn; 4) Space Shuttle Landing; 5) Global Position Satellite System (GPSS) performance; and 6) Post-landing rain showers. Wayne Hale discusses external tank observations at launch and the goals that were obtained by this flight, which are to deliver 4000 pounds of scientific equipment, increase the crew members to three on the International Space Station (ISS), and repair the ISS. Questions from the press on lessons learned from the Auxiliary Power Unit (APU) leak, and flight readiness reviews are addressed.
NASA Technical Reports Server (NTRS)
Powell, R. W.
1975-01-01
There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.
Radar cross section measurements of a scale model of the space shuttle orbiter vehicle
NASA Technical Reports Server (NTRS)
Yates, W. T.
1978-01-01
A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
NASA Technical Reports Server (NTRS)
Compton, H. R.; Blanchard, R. C.; Walberg, G. D.
1978-01-01
A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Berger, Karen; Anderson, Brian
2012-01-01
Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.
Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Maraia, R. J.
1980-01-01
A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.
STS-64 crew prepare to de-orbit and complete extended mission
1994-09-15
STS064-06-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's flight deck, two thirds of the crew prepare for one of four hard efforts (in a two-day period) to de-orbit and complete the extended spaceflight. Manning the commander's station and wearing one of the launch and entry suits is astronaut Richard N. Richards, STS-64 mission commander. At the pilot's station is astronaut Susan J. Helms, mission specialist. Astronaut L. Blaine Hammond, pilot, is at left foreground, and astronaut Carl J. Meade, mission specialist, is at left background in the hatch leading to the middeck. Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Hirasaki, P. N.
1971-01-01
Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models were developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS, and a re-radiative metallic skin TPS, were sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack, and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory considered.
STS-114: Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Paul Hill, STS-114 Lead Shuttle Flight Director, and Wayne Hill, Deputy Manager for the Space Shuttle Program and Chair of the Mission Management Team, discusses with the News media the complete operational success of the STS-114 Flight. Paul Hill mentioned the undocking and flight around did occur right on time that day, and checking out Discovery's entry system in preparation for de-orbit on Monday morning. He summarized the long list of flight operations and activities demonstrated like various forms of inspections on RCC and tile, gap fillers and blanket, imagery and photography, three space walks and re-supply. Wayne Hill talked about flight control check out, pre-entry plans, opportunity landing in Cape Carneval, Florida and back-up landing operations in Edwards Air Force Base, California. He emphasized the concern for crew and public safety during landing. News media focused their questions on public expectations and feelings about the return of the Shuttle to Earth, analysis of mechanical and technical failures, safety of dark or daylight landings.
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
Space shuttle navigation analysis
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.
1976-01-01
A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Troutman, P. A.
1984-01-01
The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments.
Space Shuttle development update
NASA Technical Reports Server (NTRS)
Brand, V.
1984-01-01
The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.
Support activities to maintain SUMS flight readiness, volume 2. Attachment A: Flight 61-C report
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation system (STS). The experiment mission operation begins about 1 hour to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume is the flight data report for flight 61-C.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of longitudinal static aerodynamic stability and control uncertainties on the performance of the space shuttle orbiter automatic (no manual inputs) entry guidance and control systems. To establish the acceptable boundaries, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. With either of two previously identified control system modifications included, the acceptable longitudinal aerodynamic boundaries were determined.
STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight
NASA Technical Reports Server (NTRS)
1981-01-01
The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.
Orbiter Entry Aerothermodynamics Practical Engineering and Applied Research
NASA Technical Reports Server (NTRS)
Campbell, Charles H.
2009-01-01
The contents include: 1) Organization of the Orbiter Entry Aeroheating Working Group; 2) Overview of the Principal RTF Aeroheating Tools Utilized for Tile Damage Assessment; 3) Description of the Integrated Tile Damage Assessment Team Analyses Process; 4) Space Shuttle Flight Support Process; and 5) JSC Applied Aerosciences and CFD Branch Applied Research Interests.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of the lateral-directional static aerodynamic stability and control uncertainties on the performance of the automatic (no manual inputs) entry-guidance and control systems of the space shuttle orbiter. To establish the acceptable boundaries of the uncertainties, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. Control-system modifications were identified that decrease the sensitivity to off-nominal aerodynamics. With these modifications, the acceptable aerodynamic boundaries were determined.
MS Garneau in his LES during re-entry preparations for STS-97
2000-12-11
STS097-310-026 (11 December 2000) --- Astronaut Marc Garneau, mission specialist representing the Canadian Space Agency (CSA), is photographed in the launch and entry suit on the middeck of the Earth-orbiting Space Shuttle Endeavour prior to re-entry.
Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing.
Perez, Sondra A; Charles, John B; Fortner, G William; Hurst, Victor; Meck, Janice V
2003-07-01
Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.
Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing
NASA Technical Reports Server (NTRS)
Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor 4th; Meck, Janice V.
2003-01-01
BACKGROUND: Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. METHODS: We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. RESULTS: Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). CONCLUSIONS: The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
NASA Technical Reports Server (NTRS)
Powell, R. W.; Stone, H. W.
1980-01-01
A six-degree-of-freedom simulation analysis was performed for the space shuttle orbiter entry from Mach 10 to Mach 2.5 with realistic off-nominal conditions using the flight control system referred to as the November 1976 Integrated Digital Autopilot. The off-nominal conditions included: (1) aerodynamic uncertainties in extrapolating from wind tunnel of flight characteristics, (2) error in deriving angle of attack from onboard instrumentation, (3) failure of two of the four reaction control-system thrusters on each side (design specification), and (4) lateral center-of-gravity offset. Many combinations of these off-nominal conditions resulted in a loss of the orbiter. Control-system modifications were identified to prevent this possibility.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents data from the reentry of flight STS-35 in tabular and graphical format.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents tabular and graphical spectral data of the reentry of flight STS-35.
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.
CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.
2007-01-01
A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.
Support activities to maintain SUMS flight readiness
NASA Technical Reports Server (NTRS)
Wright, Willie
1992-01-01
The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation began about one hour prior to shuttle de-orbit entry maneuver and continued until reaching 1.6 torr (about 86 km altitude). The SUMS mass spectrometer consists of the spare unit from the Viking mission to Mars. Bendix Aerospace under contract to NASA LaRC incorporated the Viking mass spectrometer, a microprocessor based logic card, a pressurized instrument case, and the University of Texas at Dallas provided a gas inlet system into a configuration suited to interface with the shuttle Columbia. The SUMS experiment underwent static and dynamic calibration as well as vacuum maintenance before and after STS 40 shuttle flight. The SUMS flew a total of 3 times on the space shuttle Columbia. Between flights the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399.
NASA Technical Reports Server (NTRS)
Gallegos, J. J.
1978-01-01
A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Conceptual design of an Orbital Debris Defense System
NASA Technical Reports Server (NTRS)
Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly
1994-01-01
Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.
NASA Technical Reports Server (NTRS)
Rowell, L. F.; Powell, R. W.; Stone, H. W., Jr.
1980-01-01
A nonlinear, six degree of freedom, digital computer simulation of a vehicle which has constant mass properties and whose attitudes are controlled by both aerodynamic surfaces and reaction control system thrusters was developed. A rotating, oblate Earth model was used to describe the gravitational forces which affect long duration Earth entry trajectories. The program is executed in a nonreal time mode or connected to a simulation cockpit to conduct piloted and autopilot studies. The program guidance and control software used by the space shuttle orbiter for its descent from approximately 121.9 km to touchdown on the runway.
Shuttle program. MCC level C formulation requirements: Shuttle TAEM guidance and flight control
NASA Technical Reports Server (NTRS)
Carman, G. L.
1980-01-01
The Level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are defined. This processor will be used for preentry evaluation of the entry through landing maneuvers, and will include a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1986-01-01
NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.
RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Rausch, J. R.; Roberge, A. M.
1973-01-01
A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.
A Review of Microgravity Levels on Ten OARE Shuttle Missions
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.
1998-01-01
The Orbital Acceleration Research Experiment (OARE) is an accelerometer package with nano-g sensitivity and on-orbit bias calibration capabilities. The OARE consists of a three axis miniature electrostatic accelerometer (MESA), a full in-flight bias and scale factor calibration station, and an on-board microprocessor for experiment control and data storage. Originally designed to measure and record the aerodynamic acceleration environment of the NASA Space Shuttles during re-entry, the OARE has been used on ten shuttle missions to measure the quasi-steady acceleration environment (<1 Hz) of the Orbiter while in low-Earth orbit. The effects on the quasi-steady acceleration environment from Orbiter systems, Orbiter attitude, Orbiter altitude, and crew activity are well understood as a result of these ten shuttle missions. This knowledge of the quasi-steady acceleration realm has direct application to understanding the quasi-steady acceleration environment expected for the International Space Station (ISS). This paper will summarize the more salient aspects of this quasi-steady acceleration knowledge base.
STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.
Space Shuttle guidance for multiple main engine failures during first stage
NASA Technical Reports Server (NTRS)
Sponaugle, Steven J.; Fernandes, Stanley T.
1987-01-01
This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.
2001-07-11
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is ready for final launch preparations. The orbiter access arm is extended to the orbiter to allow entry into Atlantis. The White Room at the end is the point of entry, and is an environmentally controlled room where the Shuttle crew have final adjustments made to their launch and entry suits. At the lower end of Atlantis are the tail service masts, in front of either wing. The masts support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Viewed in the background is the Atlantic Ocean. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload
NASA Technical Reports Server (NTRS)
1973-01-01
A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Carter, L. D.
1975-01-01
Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.
Official portrait of astronaut Stephen S. Oswald
NASA Technical Reports Server (NTRS)
1992-01-01
Official portrait of astronaut Stephen S. Oswald. Oswald, a member of Astronaut Class 11, wears launch and entry suit (LES) with launch and entry helmet (LEH) positioned at his side. In the background is the United States (U.S.) flag and a space shuttle orbiter model.
NASA Technical Reports Server (NTRS)
Walstad, D. G.
1974-01-01
Orbiter entry heating distributions were obtained, and phase change paint data was correlated with thermocouple data during a program of heat transfer testing on a 0.006 scale space shuttle orbiter vehicle. The orbiter was tested at 0, 30, and 35 degrees angle of attack at Reynolds numbers of 1, 2, 3, 4, and 6 million per foot. Temperature data were obtained from a total of 57 thermocouples.
MCC level C formulation requirements. Shuttle TAEM targeting
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are described. This processor is used for preentry evaluation of the entry through landing maneuvers, and includes a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.
NASA Technical Reports Server (NTRS)
1993-01-01
This report contains mission data for space shuttle flights and consists of three sections. The first section is a listing of shuttle flight data for flights STS-1 through STS-55 gathered during the mission evaluation process. The second section is a listing of all orbiter in-flight anomalies arranged in order by affected Work Unit Codes of the failed items from shuttle flights STS-1 through STS-50 and STS-52 through STS-56. The third section consists of data derived from the as-flown orbiter attitude timelines and crew activity plans for each mission. The data are presented in chart form and show the progression of the mission from launch to entry interface with the varying orbiter attitudes (roll, pitch, and yaw) and the time duration in each attitude. The chart also shows the orbiter's velocity vector, i.e., which of the orbiter's body axes is pointing forward along the orbital path. The Beta angle, the angle between the sun vector and the orbital plane, is also shown for each 12-hour period of the mission.
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
Shuttle orbiter flash evaporator operational flight test performance
NASA Technical Reports Server (NTRS)
Nason, J. R.; Behrend, A. F., Jr.
1982-01-01
The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.
NASA Technical Reports Server (NTRS)
Foster, T. F.; Grifall, W. J.; Martindale, W.
1975-01-01
Results of wind tunnel heat transfer tests of 0.0175-scale Rockwell International Space Shuttle Vehicle configurations for orbiter alone, tank alone, and orbiter plus external tank are presented. Body flap shielding of SSME's during simulated entry was investigated. The tests were conducted at Mach 8 for thirteen Reynolds number.
Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.
Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.
Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective
NASA Technical Reports Server (NTRS)
Martin, Fred W.
2011-01-01
The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.
Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry
NASA Technical Reports Server (NTRS)
Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.
2010-01-01
High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.
Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Anderson, Brian P.; King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.
2010-01-01
Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only certain correlations were selected for complete implementation to support the Shuttle Program. Historical Orbiter flight data on early boundary layer transition due to protruding gap fillers will be described in relation to the selected empirical correlations. In addition, Orbiter entry flight testing results from the BLT Flight Experiment will be discussed in relation to these correlations. Applicability of such correlations to the entry design problem will be reviewed, and finally a perspective on the desirable characteristics for a next generation capability based on high fidelity physical models will be provided.
Natural environment support guidelines for Space Shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Troutman, P. A.
1984-01-01
A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track.
Space Shuttle orbiter entry heating and TPS response: STS-1 predictions and flight data
NASA Technical Reports Server (NTRS)
Ried, R. C.; Goodrich, W. D.; Li, C. P.; Scott, C. D.; Derry, S. M.; Maraia, R. J.
1982-01-01
Aerothermodynamic development flight test data from the first orbital flight test of the Space Transportation System (STS) transmitted after entry blackout is given. Engineering predictions of boundary layer transition and numerical simulations of the orbiter flow field were confirmed. The data tended to substantiate preflight predictions of surface catalysis phenomena. The thermal response of the thermal protection system was as expected. The only exception is that internal free convection was found to be significant in limiting the peak temperature of the structure in areas which do not have internal insulation.
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1974-01-01
An S-band antenna system and a group of off-the-shelf aircraft antenna were exposed to temperatures simulating shuttle orbital cold soak and entry heating. Radiation pattern and impedance measurements before and after exposure to the thermal environments were used to evaluate the electrical performance. The results of the electrical and thermal testing are given. Test data showed minor changes in electrical performance and established the capability of these antenna to withstand both the low temperatures of space flight and the high temperatures of entry.
NASA Technical Reports Server (NTRS)
Siemers, P. M., III; Henry, M. W.
1986-01-01
Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
1994-06-23
S94-40074 (23 June 1994) --- Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Astronaut Ellen Ochoa in middeck during launch/entry training
1994-06-23
S94-40061 (23 June 1994) --- Secured in a collapsible seat on the middeck of a Shuttle trainer, astronaut Ellen Ochoa, payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November Ochoa will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Pilot Ken Ham is happy with the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. Building. Kelly and Ham will be practicing space shuttle landings. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ting, Paul C.; Rochelle, William C.; Curry, Donald M.
1988-01-01
Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.
ESOC activities during the MIR de-orbit
NASA Astrophysics Data System (ADS)
Klinkrad, H.; Flury, W.; Hernández, C.; Landgraf, M.; Jehn, R.; Christ, U.; Sintoni, F.
2002-11-01
On March 23, 2001, MIR was de-orbited in a controlled fashion, following a successful mission of 15 years. The de-orbiting operations were conducted by the TsUP Mission Control Center, who also consulted entities outside Russia, in order to consolidate their knowledge on the MIR orbit and attitude prior to the initiation of the de-orbit sequence. The European Space Agency ESA through their operations centre ESOC was tasked to support the pre-entry analysis of TsUP by own results, and by routing of Russian and European data via a dedicated communications network. Analysis results produced by ESOC, and details on the data exchange will be highlighted in this paper. The MIR de-orbit and its assessed risk potential will also be compared with the re-entries of Skylab and Salyut-7/Kosmos-1686.
NASA Technical Reports Server (NTRS)
Monta, W. J.; Rausch, J. R.
1973-01-01
The effects of the reaction control system (RCS) jet-flow field interactions on the space shuttle orbiter system during entry are discussed. The primary objective of the test program was to obtain data for the shuttle orbiter configuration to determine control amplification factors resulting from jet interaction between the RCS plumes and the external flow over the vehicle. A secondary objective was to provide data for comparison and improvement of analytic jet interaction prediction techniques. The test program was divided into two phases; (1) force and moment measurements were made with and without RCS blowing, investigating environment parameters (R sub e, Alpha, Beta), RCS plume parameters (Jet pressure ratio, momentum ratio and thrust level), and geometry parameters (RCS pod locations) on the orbiter model, (2) oil flow visualization tests were conducted on a dummy balance at the end of the test.
NASA Technical Reports Server (NTRS)
Ting, P. C.
1982-01-01
Thermodynamic energy balance equations are derived and applied to midsection Orbiter-payload atmospheric thermal math models (TMMs) to predict Orbiter component, element, compartment, internal insolation and structure temperatures in support of NASA/JSC mission planning, postflight thermal analysis and payload thermal integration planning. The equations are extended and applied to the forward section, midsection, and aft section of the TMMs for five Orbiter mission phases: prelaunch on pad with purge, lift-off to ascent, re-entry to touchdown, post landing without purge, and post-landing with purge. Predicted results from the 390 node/DFI atmospheric TMM are in good agreement with STS-1 flight measurement data.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman installs the gap filler between tiles on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies the Teflon-coated fabric to the gap filler before installation on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
Integrated Digital Flight Control System for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.
NASA Technical Reports Server (NTRS)
Foster, T. F.; Grifall, W. J.; Martindale, W.
1975-01-01
Results of wind tunnel heat transfer tests of 0.0175-scale Rockwell International Space Shuttle Vehicle configurations for orbiter alone, tank alone, and orbiter plus external tank are presented. Body flap shielding of SSME's during simulated entry was also investigated. The tests were conducted at Mach 8 for thirteen Reynolds number per foot values ranging from 0.5 million to 3.72 million.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.
1976-01-01
Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown.
2006-03-15
KENNEDY SPACE CENTER, FLA. - Inside the orbiter mockup at NASA Kennedy Space Center's Shuttle Landing Facility, volunteer "astronaut" Jeremy Garcia, with United Space Alliance (USA), is helped with his launch and entry suit by USA Insertion Tech George Brittingham before a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
Orbiter Return-To-Flight Entry Aeroheating
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Anderson, Brian; Bourland, Gary; Bouslog, Stan; Cassady, Amy; Horvath, Tom; Berry, Scott A.; Gnoffo, Peter; Wood, Bill; Reuther, James;
2006-01-01
The Columbia accident on February 1, 2003 began an unprecedented level of effort within the hypersonic aerothermodynamic community to support the Space Shuttle Program. During the approximately six month time frame of the primary Columbia Accident Investigation Board activity, many technical disciplines were involved in a concerted effort to reconstruct the last moments of the Columbia and her crew, and understand the critical events that led to that loss. Significant contributions to the CAIB activity were made by the hypersonic aerothermodynamic community(REF CAIB) in understanding the re-entry environments that led to the propagation of an ascent foam induced wing leading edge damage to a subsequent breech of the wing spar of Columbia, and the subsequent breakup of the vehicle. A core of the NASA hypersonic aerothermodynamics team that was involved in the CAIB investigation has been combined with the United Space Alliance and Boeing Orbiter engineering team in order to position the Space Shuttle Program with a process to perform in-flight Thermal Protection System damage assessments. This damage assessment process is now part of the baselined plan for Shuttle support, and is a direct out-growth of the Columbia accident and NASAs response. Multiple re-entry aeroheating tools are involved in this damage assessment process, many of which have been developed during the Return To Flight activity. In addition, because these aeroheating tools are part of an overall damage assessment process that also involves the thermal and stress analyses community, in addition to a much broader mission support team, an integrated process for performing the damage assessment activities has been developed by the Space Shuttle Program and the Orbiter engineering community. Several subsets of activity in the Orbiter aeroheating communities support to the Return To Flight effort have been described in previous publications (CFD?, Cavity Heating? Any BLT? Grid Generation?). This work will provide a description of the integrated process utilized to perform Orbiter tile damage assessment, and in particular will seek to provide a description of the integrated aeroheating tools utilized to perform these assessments. Individual aeroheating tools will be described which provide the nominal re-entry heating environment characterization for the Orbiter, the heating environments for tile damage, heating effects due to exposed Thermal Protection System substrates, the application of Computational Fluid Dynamics for the description of tile cavity heating, and boundary layer transition prediction. This paper is meant to provide an overall view of the integrated aeroheating assessment process for tile damage assessment as one of a sequence of papers on the development of the boundary layer transition prediction capability in support of Space Shuttle Return To Flight efforts.
Orbiter entry leeside heat-transfer data analysis
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Zoby, E. V.
1983-01-01
Heat-transfer data measured along the Space Shuttle Orbiter's leeward centerline and over the wing leeside surface during the STS-2 and STS-3 mission entries are presented. The flight data are compared with available wind-tunnel results. Flight heating levels are, in general, lower than those which are inferred from the wind-tunnel results. This result is apparently due to the flight leeside flowfield remaining laminar over a larger Reynolds number range than that of corresponding ground test results. The flight/wind-tunnel data comparisons confirm the adequacy of, and conservatism embodied in, the direct application of wind-tunnel data at flight conditions for the design of Orbiter leeside thermal protection.
Allowable Trajectory Variations for Space Shuttle Orbiter Entry-Aeroheating CFD
NASA Technical Reports Server (NTRS)
Wood, William A.; Alter, Stephen J.
2008-01-01
Reynolds-number criteria are developed for acceptable variations in Space Shuttle Orbiter entry trajectories for use in computational aeroheating analyses. The criteria determine if an existing computational fluid dynamics solution for a particular trajectory can be extrapolated to a different trajectory. The criteria development begins by estimating uncertainties for seventeen types of computational aeroheating data, such as boundary layer thickness, at exact trajectory conditions. For each type of datum, the allowable uncertainty contribution due to trajectory variation is set to be half of the value of the estimated exact-trajectory uncertainty. Then, for the twelve highest-priority datum types, Reynolds-number relations between trajectory variation and output uncertainty are determined. From these relations the criteria are established for the maximum allowable trajectory variations. The most restrictive criterion allows a 25% variation in Reynolds number at constant Mach number between trajectories.
Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.;
2012-01-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness
Astronaut Joseph Tanner checks gloves during during launch/entry training
1994-06-23
S94-40082 (23 June 1994) --- Astronaut Joseph R. Tanner, mission specialist, checks his glove during a rehearsal for launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Tanner will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Anatomy of an entry vehicle experiment
NASA Technical Reports Server (NTRS)
Eide, D. G.; Wurster, K. E.; Helms, V. T.; Ashby, G. C.
1981-01-01
The anatomy and evolution of a simple small-scale unmanned entry vehicle is described that is delivered to orbit by the shuttle and entered into the atmosphere from orbit to acquire flight data to improve our knowledge of boundary-layer behavior and evaluate advanced thermal protection systems. The anatomy of the experiment includes the justification for the experiments, instrumentation, configuration, material, and operational needs, and the translation of these needs into a configuration, weight statement, aerodynamics, program cost, and trajectory. Candidates for new instrumentation development are also identified for nonintrusive measurements of the boundary-layer properties.
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
1994-06-23
S94-40081 (23 June 1994) --- Wearing a training version of a partial pressure suit, Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
NASA Technical Reports Server (NTRS)
Henry, M. W.; Wolf, H.; Siemers, Paul M., III
1988-01-01
The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Shuttle S-band communications technical concepts
NASA Technical Reports Server (NTRS)
Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.
1985-01-01
Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.
Space shuttle navigation analysis. Volume 2: Baseline system navigation
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.
1980-01-01
Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies the glue (red) known as RTV, or room temperature vulcanization, to a strip of gap filler before installation on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies tape to hold the gap filler in place on the orbiter Discovery while the glue dries. Looking on is quality inspector Travis Schlingman. Discovery is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Commander Mark Kelly happily crosses the parking area after the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Valasek, John
2006-01-01
Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.
Shuttle Performance: Lessons Learned, part 1
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1985-01-01
A six degree of freedom simulation analysis was performed for the space shuttle orbiter during entry from Mach 8 to Mach 1.5 with realistic off nominal conditions by using the flight control systems defined by the shuttle contractor. The off nominal conditions included aerodynamic uncertainties in extrapolating from wind tunnel derived characteristics to full scale flight characteristics, uncertainties in the estimates of the reaction control system interaction with the orbiter aerodynamics, an error in deriving the angle of attack from onboard instrumentation, the failure of two of the four reaction control system thrusters on each side, and a lateral center of gravity offset coupled with vehicle and flow asymmetries. With combinations of these off nominal conditions, the flight control system performed satisfactorily. At low hypersonic speeds, a few cases exhibited unacceptable performances when errors in deriving the angle of attack from the onboard instrumentation were modeled. The orbiter was unable to maintain lateral trim for some cases between Mach 5 and Mach 2 and exhibited limit cycle tendencies or residual roll oscillations between Mach 3 and Mach 1. Piloting techniques and changes in some gains and switching times in the flight control system are suggested to help alleviate these problems.
Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.
2010-01-01
Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.
Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges
NASA Technical Reports Server (NTRS)
Ritzert, Frank; Nesbitt, James
2007-01-01
The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing environment, the SiC layer forms a protective SiO2 scale. However, CVD processing to form the SiC layer can result in the formation of small cracks in the outer surface. Hence, as a final fabrication step, a sodium silicate glass, known as "Type A," is applied as a sealant to fill any surface porosity and/or cracks in the coating and the outer portions of the RCC[1]. At relatively low temperatures, the Type A glass melts and flows into the cracks providing oxidation protection at the higher temperatures. In addition, the Type A coating, provides a "dark" coating with a high emissivity. This high emissivity allows the RCC to transfer heat by radiating outward to space as well as dispersing heat within the leading edge cavity. Lastly, the Type A possesses low catalycity which reduces surface temperatures by limiting oxygen recombination on the surface during re-entry.
A study of leeside flow field heat transfer on Shuttle Orbiter configuration
NASA Technical Reports Server (NTRS)
Baranowski, L. C.; Kipp, H. W.
1984-01-01
A coupled inviscid and viscous theoretical solution of the flow about the entire configuration is the desirable and comprehensive approach to defining thermal environments about the space shuttle orbiter. Simplified methods for predicting entry heating on leeside surfaces of the orbiter are considered. Wind tunnel heat transfer and oil flow data at Mach 6 and 10 and Reynolds numbers ranging from 500,000 to 73 million were used to develop correlations for the wing upper surface and the top surface of the fuselage. These correlations were extrapolated to flight Reynolds number and compared with heating data obtained during the shuttle STS-2 reentry. Efforts directed toward the wing leeside surface resulted in an approach which generally agreed with the flight data. Heating predictions for the upper fuselage were less successful due to the extreme complexity of local flow interactions and the associated heating environment.
STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
NASA's extended duration orbiter medical program
NASA Technical Reports Server (NTRS)
Pool, Sam Lee; Sawin, Charles F.
1992-01-01
The physiological issues involved in safely extending Shuttle flights from 10 to 16 days have been viewed by some as academic. After all, they reasoned, humans already have lived and worked in space for periods exceeding even 28 days in the United States Skylab Program and onboard the Russian space stations. The difference in the Shuttle program is in the physical position of the astronauts as they reenter the Earth's atmosphere. Crewmembers in the earlier Apollo, Skylab, and Russian programs were returned to Earth in the supine position. Space Shuttle crewmembers, in contrast, are seated upright during reentry and landing; reexperiencing the Earth's g forces in this position has far more pronounced effects on the crewmember's physiological functions. The goal of the Extended Duration Orbiter (EDO) Medical Project (EDOMP) has been to ensure that crewmembers maintain physiological reserves sufficient to perform entry, landing, and egress safely. Early in the Shuttle Program, it became clear that physiological deconditioning during space flight could produce significant symptoms upon return to Earth. The signs and symptoms observed during the entry, landing, and egress after Shuttle missions have included very high heart rates and low blood pressures upon standing. Dizziness, 'graying out,' and fainting have occurred on ambulation or shortly thereafter. Other symptoms at landing have included headache, light-headedness, nausea and vomitting, leg cramping, inability to stand for several minutes after wheel-stop, and unsteadiness of gait.
NASA Technical Reports Server (NTRS)
Herrera, B. J.
1976-01-01
Static pressure data and flow field surveys of the boundary layer and shock layer on the lower surface of a 0.0175 scale model of the space shuttle orbiter were obtained in a hypersonic wind tunnel. The tests were conducted at Mach number 7.9 and Reynolds number based on the model length of 1.3 x 1 million to simulate atmospheric entry. Twenty-six stations were surveyed at 30 and 35 degree angles of attack.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry
NASA Technical Reports Server (NTRS)
Joosten, Kent
1987-01-01
At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Space Shuttle stability and control test plan
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1982-01-01
The development of a completely automatic flight test program to test different aspects of the Shuttle flight capability during reentries is described. Data from each flight to date has been employed to devise a sequence of maneuvers which will be keyboard-punched into the Orbiter control system by the astronauts during entry phases of flight. Details of the interaction and cooperation of the Orbiter elevons and bodyflap to provide the vehicle with latitudinal and longitudinal directional control and trim are outlined. Uncertainties predicted for the control of the Orbiter during wind tunnel testing prior to actual flights have been adjusted to actual flight data, leading to the identification of actual flight regimes which need further investigation. Maneuvers scheduled for flights 5-9 are reviewed.
The microgravity environment of the Space Shuttle Columbia payload bay during STS-32
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Giesecke, Robert L.; Thomas, Donald A.
1991-01-01
Over 11 hours of three-axis microgravity accelerometer data were successfully measured in the payload bay of Space Shuttle Columbia as part of the Microgravity Disturbances Experiment on STS-32. These data were measured using the High Resolution Accelerometer Package and the Aerodynamic Coefficient Identification Package which were mounted on the Orbiter keel in the aft payload bay. Data were recorded during specific mission events such as Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine burns. Orbiter background levels were measured in the 10(exp -5) G range, treadmill operations in the 10(exp -3) G range, and the Orbiter engine burns in the 10(exp -2) G range. Induced acceleration levels resulting from the SYNCOM satellite deploy were in the 10 (exp -2) G range, and operations during the pre-entry Flight Control System checkout were in the 10(exp -2) to 10(exp -1) G range.
NASA Technical Reports Server (NTRS)
Macconochie, Ian O.; Kelly, H. Neale
1989-01-01
A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.
1986-01-01
Columbia, which opened the era of the Space Transportation System with four orbital flight tests, is featured in re-entry in the emblem designed by the STS-61C crew representing the seven team members who manned the vehicle for its seventh STS mission. Gold lettering against black background honors the astronaut crewmembers on the delta pattern surrounding colorful re-entry shock waves, and the payload specialists are honored similarly below the sphere
Testing the Shuttle heat-protection armor
NASA Technical Reports Server (NTRS)
Strouhal, G.; Tillian, D. J.
1976-01-01
The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.
Rationale for windshield glass system specification requirements for shuttle orbiter
NASA Technical Reports Server (NTRS)
Hayashida, K.; King, G. L.; Tesinsiky, J.; Wittenburg, D. R.
1972-01-01
A preliminary procurement specification for the space shuttle orbiter windshield pane, and some of the design considerations and rationale leading to its development are presented. The windshield designer is given the necessary methods and procedures for assuring glass pane structural integrity by proof test. These methods and procedures are fully developed for annealed and thermally tempered aluminosilicate, borosilicate, and soda lime glass and for annealed fused silica. Application of the method to chemically tempered glass is considered. Other considerations are vision requirements, protection against bird impact, hail, frost, rain, and meteoroids. The functional requirements of the windshield system during landing, ferrying, boost, space flight, and entry are included.
STS-93 crewmembers engage in water survival training at the NBL
1998-06-24
S98-09507 (6-24-98) --- Attired in a training version of the shuttle partial pressure launch and entry suit, astronaut Steven A. Hawley participates in a water survival/emergency egress training exercise in the Neutral Buoyancy Laboratory (NBL) at the Johnson Space Center's Sonny Carter Training Center. The mission specialist will join four other astronauts for a springtime 1999 mission in Earth orbit aboard the Space Shuttle Columbia.
Thermographic imaging of the space shuttle during re-entry using a near-infrared sensor
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.
2012-06-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter's hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA's next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness.
STS-47 Pilot Brown on OV-105's flight deck ten minutes after SSME cutoff
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Pilot Curtis L. Brown, Jr, is photographed at Endeavour's, Orbiter Vehicle (OV) 105's, pilot station about ten minutes after space shuttle main engine (SSME) cutoff on launch day. Brown smiles from inside the launch and entry suit (LES) and launch and entry helmet (LEH). In the background are the flight mirror assembly silhouetted against forward window W5, control panels, and a checklist.
Shuttle orbiter boundary layer transition at flight and wind tunnel conditions
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Bertin, J. J.
1983-01-01
Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.
MCC level C formulation requirements. Shuttle TAEM guidance and flight control, STS-1 baseline
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The TAEM guidance and body rotational dynamics models required for the MCC simulation of the TAEM mission phase are defined. This simulation begins at the end of the entry phase and terminates at TAEM autoland interface. The logic presented is the required configuration for the first shuttle orbital flight (STS-1). The TAEM guidance is simulated in detail. The rotational dynamics simulation is a simplified model that assumes that the commanded rotational rates can be achieved in the integration interval. Thus, the rotational dynamics simulation is essentially a simulation of the autopilot commanded rates and integration of these rates to determine orbiter attitude. The rotational dynamics simulation also includes a simulation of the speedbrake deflection. The body flap and elevon deflections are computed in the orbiter aerodynamic simulation.
2006-12-05
KENNEDY SPACE CENTER, FLA. -- Just at sunset, the shuttle training aircraft (STA), with STS-116 Pilot William Oefelein in the pilot's seat, waits on the Shuttle Landing Facility for the right moment to take off for orbiter landing practice. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- The shuttle training aircraft (STA), with STS-116 Commander Mark Polansky in the pilot's seat, taxis to the runway of the Shuttle Landing Facility. Polansky will be practicing landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.
1984-01-01
NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.
1997-01-12
STS-81 Mission Specialist Jerry Linenger waves to the camera in his launch/entry suit and helmet in the suitup room of the Operations and Checkout (O&C) Building. He is on his second Shuttle flight and has been an astronaut since 1992. Linenger will become a member of the Mir 22 crew and replace astronaut John Blaha on the Russian space station for a four-month stay after the Space Shuttle orbiter Atlantis docks with the orbital habitat on flight day 3. A medical doctor and an exercise buff, Linenger will conduct physiological experiments during his stay on Mir. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12
Gap heating with pressure gradients. [for Shuttle Orbiter thermal protection system tiles
NASA Technical Reports Server (NTRS)
Scott, C. D.; Maraia, R. J.
1979-01-01
The heating rate distribution and temperature response on the gap walls of insulating tiles is analyzed to determine significant phenomena and parameters in flows where there is an external surface pressure gradient. Convective heating due to gap flow, modeled as fully developed pipe flow, is coupled with a two-dimensional thermal model of the tiles that includes conduction and radiative heat transfer. To account for geometry and important environmental parameters, scale factors are obtained by curve-fitting measured temperatures to analytical solutions. These scale factors are then used to predict the time-dependent gap heat flux and temperature response of tile gaps on the Space Shuttle Orbiter during entry.
2007-07-19
KENNEDY SPACE CENTER, Fla. --In the White Room on Launch Pad 39A, STS-118 Mission Specialist Rick Mastracchio is eager to enter Space Shuttle Endeavour for a simulated launch countdown, the culmination of terminal countdown demonstration test activities. The White Room is situated at the end of the orbiter access arm and provides entry into the orbiter. TCDT activities also include M-113 training, payload familiarization and emergency egress training at the pad. The mission is the 22nd flight to the International Space Station and Space Shuttle Endeavour will carry a payload including the S5 truss, a SPACEHAB module and external stowage platform 3. STS-118 is targeted for launch on Aug. 7. Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Lee, W. Y.; Zhao, Z. G.
1989-01-01
The determination of optimal trajectories for the aero-assisted flight experiment (AFE) is investigated. The intent of this experiment is to simulate a GEO-to-LEO transfer, where GEO denotes a geosynchronous Earth orbit and LEO denotes a low Earth orbit. The trajectories of an AFE spacecraft are analyzed in a 3D-space, employing the full system of 6 ODEs describing the atmospheric pass. The atmospheric entry conditions are given, and the atmospheric exit conditions are adjusted in such a way that the following conditions are satisfied: (1) the atmospheric velocity depletion is such that, after exiting, the AFE spacecraft first ascends to a specified apogee and then descends to a specified perigee; and (2) the exit orbital plane is identical with the entry orbital plane. The final maneuver, not analyzed here, includes the rendezvous with and the capture by the space shuttle.
STS-56 Commander Cameron & Pilot Oswald at CCT hatch during JSC training
1992-12-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
STS-42 Commander Grabe in single person life raft during JSC egress exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.
STS-87 Commander Kregel holds the crew patch in front of Columbia's entry hatch at LC 39B during TCD
NASA Technical Reports Server (NTRS)
1997-01-01
STS-87 Commander Kevin Kregel holds the crew patch in front of Columbia's entry hatch at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.
STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF
NASA Technical Reports Server (NTRS)
1994-01-01
Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Shuttle program. MCC Level C formulation requirements: Entry guidance and entry autopilot
NASA Technical Reports Server (NTRS)
Harpold, J. C.; Hill, O.
1980-01-01
A set of preliminary entry guidance and autopilot software formulations is presented for use in the Mission Control Center (MCC) entry processor. These software formulations meet all level B requirements. Revision 2 incorporates the modifications required to functionally simulate optimal TAEM targeting capability (OTT). Implementation of this logic in the MCC must be coordinated with flight software OTT implementation and MCC TAEM guidance OTT. The entry guidance logic is based on the Orbiter avionics entry guidance software. This MCC requirements document contains a definition of coordinate systems, a list of parameter definitions for the software formulations, a description of the entry guidance detailed formulation requirements, a description of the detailed autopilot formulation requirements, a description of the targeting routine, and a set of formulation flow charts.
2003-03-25
KENNEDY SPACE CENTER, FLA. -- A T-38 jet aircraft carrying the Orbiter Experiment Support System (OEX) recorder from Columbia arrives at the Shuttle Landing Facility. Search teams near Hemphill, Texas, recovered the recorder, which stores sensor information about temperature, aerodynamic pressure, vibrations and other data from dozens of sensor locations on the orbiter, operating only during launch and re-entry. The OEX uses magnetic tape to record data that is not sent to the ground by telemetry.
2003-02-07
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, NASA Administrator Sean O'Keefe looks at a Dome Heat Shield blanket that is used for Shuttle engines. O'Keefe is visiting the site to learn more about the TPS products and process in protecting orbiters from the intense heat of launch and re-entry. TPS tiles have been discussed in the investigation into the Columbia tragedy that destroyed the orbiter and claimed the lives of seven astronauts.
NASA Technical Reports Server (NTRS)
Gorowitz, H.; White, R.; Derrico, A.
1973-01-01
Aerodynamic heating data were obtained on 0.006 scale models of four Rockwell International SSV double delta wing Orbiters in the Mach 8 variable density tunnel. A model of two previously tested Rockwell International Orbiters which are identified in the Configuration Description of this report were also tested. Orbiter surfaces were thermally mapped from the laminar through turbulent flight regimes during re-entry. Various modifications were made to model lower surfaces to determine the cause of transition in the vicinity of 3.0 million Reynolds number per foot. Re-entry data were acquired for angles of attack from 25 through 35 degrees at nominal Reynolds numbers per foot of 1.0, 2.0, 2.3, 2.5, 3.0, 3.5, 4.5 and 6.0 million utilizing the phase change paint technique. Launch data were acquired on the model upper surfaces for angles of attack of 0 and -5 degrees at nominal Reynolds numbers per foot of 3.0 and 6.0 million. A total of 70 orbiter heating runs and 6 material sample sphere runs were completed.
Archive data base and handling system for the Orbiter flying qualities experiment program
NASA Technical Reports Server (NTRS)
Myers, T. T.; Dimarco, R.; Magdaleno, R. E.; Aponso, B. L.
1986-01-01
The OFQ archives data base and handling system assembled as part of the Orbiter Flying Qualities (OFQ) research of the Orbiter Experiments Program (EOX) are described. The purpose of the OFQ archives is to preserve and document shuttle flight data relevant to vehicle dynamics, flight control, and flying qualities in a form that permits maximum use for qualified users. In their complete form, the OFQ archives contain descriptive text (general information about the flight, signal descriptions and units) as well as numerical time history data. Since the shuttle program is so complex, the official data base contains thousands of signals and very complex entries are required to obtain data. The OFQ archives are intended to provide flight phase oriented data subsets with relevant signals which are easily identified for flying qualities research.
Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System
NASA Technical Reports Server (NTRS)
Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.
1983-01-01
Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.
2011-07-08
CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle enjoy a light moment with a card game in their Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The veteran astronauts are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle enjoy a light moment with a card game in their Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The veteran astronauts are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Ellison, J. C.
1972-01-01
Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.
STS-56 Commander Cameron and Pilot Oswald at CCT hatch during JSC training
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
STS-65 Commander Cabana floats in life raft during WETF bailout exercise
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana, suited in his launch and entry suit (LES) and launch and entry helmet, deploys a single person life raft during launch emergency egress (bailout) training at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Cabana will be joined by five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Columbia: The first five flights entry heating data series. Volume 2: The OMS Pod
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the OMS Pod are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data are presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and normal shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve
2010-01-01
This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
Extrapolation From Wind Tunnel to Flight: Shuttle Orbiter Aerodynamics
NASA Technical Reports Server (NTRS)
Muylaert, J.; Walpot, L.; Rostand, P.; Rapuc, M.; Brauckmann, G.; Paulson, J.; Trockmorton, D.; Weilmuenster, K.
1998-01-01
The paper reviews a combined numerical and experimental activity on the Shuttle Orbiter, first performed at NASA Langley within the Orbiter Experiment (OEX) and subsequently at ESA, as part of the AGARD FDP WG 18 activities. The study at Langley was undertaken to resolve the pitch up anomaly observed during the entry of the first flight of the Shuttle Orbiter. The present paper will focus on real gas effects on aerodynamics and not on heating. The facilities used at NASA Langley were the 15-in. Mach 6, the 20-in, Mach 6, the 31-in. Mach 10 and the 20-in. Mach 6 CF4 facility. The paper focuses on the high Mach, high altitude portion of the first entry of the Shuttle where the vehicle exhibited a nose-up pitching moment relative to pre-flight prediction of (Delta C(sub m)) = 0.03. In order to study the relative contribution of compressibility, viscous interaction and real gas effects on basic body pitching moment and flap efficiency, an experimental study was undertaken to examine the effects of Mach, Reynolds and ratio of specific heats at NASA. At high Mach, a decrease of gamma occurs in the shock layer due to high temperature effects. The primary effect of this lower specific heat ratio is a decrease of the pressure on the aft windward expansion surface of the Orbiter causing the nose-up pitching moment. Testing in the heavy gas, Mach 6 CF4 tunnel, gave a good simulation of high temperature effects. The facilities used at ESA were the lm Mach 10 at ONERA Modane, the 0.7 m hot shot F4 at ONERA Le Fauga and the 0.88 m piston driven shock tube HEG at DLR Goettingen. Encouraging good force measurements were obtained in the F4 facility on the Orbiter configuration. Testing of the same model in the perfect gas Mach 10 S4 Modane facility was performed so as to have "reference" conditions. When one compares the F4 and S4 test results, the data suggests that the Orbiter "pitch up" is due to real gas effects. In addition, pressure measurements, performed on the aft portion of the windward side of the Halis configuration in HEG and F4, confirm that the pitch up is mainly attributed to a reduction of pressure due to a local decrease in gamma.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
Re-Entry Aeroheating Analysis of Tile-Repair Augers for the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Wood, William A.
2007-01-01
Computational re-entry aerothermodynamic analysis of the Space Shuttle Orbiter s tile overlay repair (TOR) sub-assembly is presented. Entry aeroheating analyses are conducted to characterize the aerothermodynamic environment of the TOR and to provide necessary inputs for future TOR thermal and structural analyses. The TOR sub-assembly consists of a thin plate and several augers and spacers that serve as the TOR fasteners. For the computational analysis, the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used. A 5-species non-equilibrium chemistry model with a finite rate catalytic recombination model and a radiation equilibrium wall condition are used. It is assumed that wall properties are the same as reaction cured glass (RCG) properties with a surface emissivity of epsilon = 0.89. Surface heat transfer rates for the TOR and tile repair augers (TRA) are computed at a STS-107 trajectory point corresponding to Mach 18 free stream conditions. Computational results show that the average heating bump factor (BF), which is a ratio of local heat transfer rate to a design reference point located at the damage site, for the auger head alone is about 1.9. It is also shown that the average BF for the combined auger and washer heads is about 2.0.
Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.
2000-01-01
This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.
NASA Technical Reports Server (NTRS)
Atchison, M. Kevin
1993-01-01
The Space Shuttle is an extremely weather sensitive vehicle with very restrictive constraints for both launches and landings. The most important difference between Shuttle and normal aircraft landings is that the Shuttle has no go-around capability once it begins its decent into the earth's atmosphere. The de-orbit burn decision is generally made approximately 90 minutes before landing requiring a forecast with little room for error. Because of the Shuttle's rapid re-entry to earth, the pilot must be able to see all runway and visual navigation aids from high altitude to land the Shuttle. In addition, the heat resistant tiles which are used to protect the Shuttle during its re-entry into the earth's atmosphere are extremely sensitive to any type of precipitation. Extensive damage to these tiles could occur if the Shuttle passes through any cloud that contains precipitation size particles. To help guard against changing weather conditions or any type of weather problems that might occur prior to landing, flight rules have been developed as guidelines for all landings. Although the rules vary depending on the location of the landing (Kennedy Space Center or Edwards AFB), length of mission, and weight of vehicle, most of the rules can be condensed into 4 major groupings. These are: (1) Cloud ceilings should not be less than 3048 m (10,000 feet), (2) Visibility should not be less than 13 km (7 nm), (3) Cross-wind no greater than 5-8 m/s (10-15 knots); and (4) No showers or thunderstorms at or within 56 km (30 nm) of the Shuttle Landing Facility. This study consisted of developing a climatological database of the Shuttle Landing Facility (SLF) surface observations and performing an analysis of observed conditions one and two hours subsequent to given conditions at the SLF to help analyze the 0.2 cloud cover rule. Particular emphasis was placed on Shuttle landing weather violations and the amounts of cloud cover below 3048 m (10,000 ft.). This analysis has helped to determine the best and worst times to land the Shuttle at KSC. In addition, nomograms have been developed to help forecasters make cloud cover forecasts for End of Mission (EOM) and Return to Launch Site (RTLS) at KSC. Results of categorizing this data by month, season, time of day, and surface and upper-air wind direction are presented.
Independent Orbiter Assessment (IOA): Analysis of the Orbiter Experiment (OEX) subsystem
NASA Technical Reports Server (NTRS)
Compton, J. M.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Experiments hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The Orbiter Experiments (OEX) Program consists of a multiple set of experiments for the purpose of gathering environmental and aerodynamic data to develop more accurate ground models for Shuttle performance and to facilitate the design of future spacecraft. This assessment only addresses currently manifested experiments and their support systems. Specifically this list consists of: Shuttle Entry Air Data System (SEADS); Shuttle Upper Atmosphere Mass Spectrometer (SUMS); Forward Fuselage Support System for OEX (FFSSO); Shuttle Infrared Laced Temperature Sensor (SILTS); Aerodynamic Coefficient Identification Package (ACIP); and Support System for OEX (SSO). There are only two potential critical items for the OEX, since the experiments only gather data for analysis post mission and are totally independent systems except for power. Failure of any experiment component usually only causes a loss of experiment data and in no way jeopardizes the crew or mission.
STS-87 Mission Specialist Chawla is assisted with her launch and entry spacesuit at LC 39B during TC
NASA Technical Reports Server (NTRS)
1997-01-01
STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her orange launch and entry spacesuit by NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.
Flutter Analysis of the Shuttle Tile Overlay Repair Concept
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Scott, Robert C.; Bartels, Robert E.; Waters, William A.; Chen, Roger
2007-01-01
The Space Shuttle tile overlay repair concept, developed at the NASA Johnson Space Center, is designed for on-orbit installation over an area of damaged tile to permit safe re-entry. The thin flexible plate is placed over the damaged area and secured to tile at discreet points around its perimeter. A series of flutter analyses were performed to determine if the onset of flutter met the required safety margins. Normal vibration modes of the panel, obtained from a simplified structural analysis of the installed concept, were combined with a series of aerodynamic analyses of increasing levels of fidelity in terms of modeling the flow physics to determine the onset of flutter. Results from these analyses indicate that it is unlikely that the overlay installed at body point 1800 will flutter during re-entry.
Task Analysis of Shuttle Entry and Landing Activities
NASA Technical Reports Server (NTRS)
Holland, Albert W.; Vanderark, Stephen T.
1993-01-01
The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.
NASA Astrophysics Data System (ADS)
Arellano, Brenda R.
Since the end of the space shuttle program, a new generation spacecraft has been developed to transport humans back into space. NASA's Orion will carry a crew beyond low-earth orbit and the exploration of Mars may be possible in the future. Space safety becomes significant with human spaceflight and the risks are high. However, aerospace materials may provide opportunities to prevent future disasters. When the space shuttle Columbia disintegrated during re-entry in 2001, thousands of debris were collected for analysis. In contrast, when the Challenger space shuttle broke apart in 1986, all shuttle debris were buried. These tragic disasters are reminders of the importance of proper material selection and the concern of their performance in service. This research focused on investigating the effects of the debris recovered from the Columbia space shuttle after re-entry and break-up. Many of the components encountered unforeseen extreme temperatures, vibrations, and high stresses. The Columbia debris contained unique characteristics that have yet to be examined and the components for this study are the thermal protection system (TPS) carrier panel tiles and the thermal pane glass from the starboard orbiter Window 7. The alterations endured by the debris was studied through forensic materials characterization to investigate material interactions, material degradation, and thermal consequences. These materials played an essential role in the operation of the orbiter as they protected the underlying structural materials of the shuttle and underwent extreme temperatures. The methods and procedures for analyzing the debris included non-destructive and destructive evaluations. Non-destructive evaluations involved visual inspection, photographic documentation, 3D modeling, and surface elemental composition. The destructive analysis consisted of sectioning, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results obtained revealed metallic and oxide formations, flow trajectory, and the presence of other space shuttle materials. Determining the conditions of the debris after break-up is valuable because new developments for future manned spacecraft will require TPS. These materials must be continued to be studied aggressively to provide risk assessment for future missions. The findings of this investigation will identify the alterations on the debris and determine if these TPS materials are reliable for future spacecraft.
2007-08-08
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, STS-118 Commander Scott Kelly dons his launch and entry suit for launch aboard Space Shuttle Endeavour. This is Kelly's second spaceflight. The STS-118 mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1973-01-01
Tests were conducted in unitary plan wind tunnels on an 0.030-scale replica of the space shuttle vehicle configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and tests on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from minus 8 deg to plus 8 deg. The isolated orbiter was tested at angles of attack from minus 15 deg to plus 40 deg and angles of sideslip from minus 10 deg to plus 10 deg are dictated by trajectory considerations. The effects of orbiter/external tank incidence and deflected control surfaces on aerodynamic loads were also investigated.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.
1974-01-01
An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1973-01-01
Tests were conducted in wind tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 deg. The isolated orbiter was tested at angles of attack from -15 deg to +40 deg and angles of sideslip from -10 deg to +10 deg as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.
Contamination control of the space shuttle Orbiter crew compartment
NASA Technical Reports Server (NTRS)
Bartelson, Donald W.
1986-01-01
Effective contamination control as applied to manned space flight environments is a discipline characterized and controlled by many parameters. An introduction is given to issues involving Orbiter crew compartment contamination control. An effective ground processing contamination control program is an essential building block to a successful shuttle mission. Personnel are required to don cleanroom-grade clothing ensembles before entering the crew compartment and follow cleanroom rules and regulations. Prior to crew compartment entry, materials and equipment must be checked by an orbiter integrity clerk stationed outside the white-room entrance for compliance to program requirements. Analysis and source identification of crew compartment debris studies have been going on for two years. The objective of these studies is to determine and identify particulate generating materials and activities in the crew compartment. Results show a wide spectrum of many different types of materials. When source identification is made, corrective action is implemented to minimize or curtail further contaminate generation.
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein settles in the cockpit of the shuttle training aircraft (STA) before taking off for orbiter landing practice. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein climbs toward the cockpit of the shuttle training aircraft (STA) to practice landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky gets ready to take off in the shuttle training aircraft (STA) to practice landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky climbs toward the cockpit of the shuttle training aircraft (STA) to practice landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein settles in the cockpit of the shuttle training aircraft (STA) before taking off for orbiter landing practice. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
Future exploration of Venus (post-Pioneer Venus 1978)
NASA Technical Reports Server (NTRS)
Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.
1976-01-01
A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.
NASA Technical Reports Server (NTRS)
Brauckman, Gregory J.; Scallion, William I.
2003-01-01
Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.
Implementing Recommendations of the Columbia Accident Investigation Board
NASA Technical Reports Server (NTRS)
Ottens, B.; La, A.; Brown, T.; Parker, B.; Jenings, D.; Townsend, J.
2004-01-01
As many are aware, a piece of insulating foam liberated itself from the external tank and impacted the leading edge of Columbia during ascent on STS-107. It is believed that this impact left a hole in the thermal protection system (TPS), which protects the shuttle from hot plasma generated during re-entry. Unfortunately, the orbiter did not have the margin to withstand this compromise, and it is believed that the result of these events caused the loss of crew and orbiter.
Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag
NASA Technical Reports Server (NTRS)
Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott
2016-01-01
Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.
In situ propellant production - A new potential for round-trip spacecraft
NASA Technical Reports Server (NTRS)
Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Ash, R. L.
1979-01-01
In situ propellant production (ISPP) greatly reduces the Earth escape requirements for some roundtrip missions, particularly Mars Sample Return. ISPP systems are described which produce oxygen or oxygen and methane from available atmospheric and surface materials. With ISPP, a 1 kg sample can be returned direct from Mars using a single Shuttle launch. Mars entry can be either direct or from orbit. Comet and asteroid sample return is also accomplished within a single Shuttle launch. Launch requirements for round-trip missions to Ganymede and Callisto are reduced by 15 to 40%.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 1: Summary
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests include plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 2: History
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Air Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests included plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
STS-103 MS Smith and MS Clervoy prepare to enter orbiter from White Room
NASA Technical Reports Server (NTRS)
1999-01-01
In the White Room, STS-103 Mission Specialists Steven L. Smith and Jean-Francois Clervoy, in their orange launch and entry suits, are getting ready to enter Space Shuttle Discovery. Assisting them are closeout crew members (from left) United Space Alliance (USA) Mechanical Technician Rene Arriens, NASA Quality Assurance Specialist Danny Wyatt, USA Orbiter Vehicle Closeout Chief Travis Thompson and USA Mechanical Technician Vinny Defranzo. The White Room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.
OFT-1 reference flight profile. Deorbit through landing
NASA Technical Reports Server (NTRS)
Heath, D.; Gonzales, L.; Montez, M.; Hiott, J. M.; Ruda, R.; Kyle, H.
1977-01-01
Changes made in the de-orbiting through landing reference flight profile because of increases in Orbiter weight during entry and in the circular orbital attitude prior to deorbit are discussed. The rationale for the shaping of each phase is also presented.
NASA Technical Reports Server (NTRS)
Siemers, P. M., III; Henry, M. W.
1986-01-01
Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.
Initial development of an ablative leading edge for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Daforno, G.; Rose, L.; Graham, J.; Roy, P.
1974-01-01
A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, boundary layer transition, or BLT, tile is being affixed to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2009-08-07
CAPE CANAVERAL, Fla. – STS-128 Mission Specialist Patrick Forrester is the White Room on NASA Kennedy Space Center's Launch Pad 39A getting ready to enter space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. Mission crew members are at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which culminates in a simulated launch countdown inside the shuttle. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jim Grossmann
2009-08-07
CAPE CANAVERAL, Fla. – STS-128 Pilot Kevin Ford is the White Room on NASA Kennedy Space Center's Launch Pad 39A getting ready to enter space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. Mission crew members are at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which culminates in a simulated launch countdown inside the shuttle. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jim Grossmann
Astronaut Curtis Brown on flight deck mockup during training
1994-06-23
S94-40091 (23 June 1994) --- Astronaut Curtis L. Brown mans the pilot's station of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
2004-02-18
KENNEDY SPACE CENTER, FLA. - Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
Sharp, John R.
1999-01-01
Thermal analyses of the Shuttle and Transfer Orbit of the Advanced X-Ray Astrophysics Facility Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS), one of two science instruments on the Chandra X-Ray Observatory, revealed a low-earth orbit (LEO) overheating problem on the goldized Kapton faces of two radiator shades. The shades were coated with the goldized Kapton to provide a low hemispherical emittance to minimize direct and backloaded heating from the sun and the observatory and high specularity to optimize the coupling to space on two passive radiators which cool the focal plane to -120 C +/- 1 C during on-orbit operations. Since the observatory has a highly elliptical final orbit of 10,000 kilometers by 140,000 kilometers and the ACIS radiators and shades are oriented anti-sun, the high solar absorptance to emittance ratio of the goldized Kapton was not an issue. However, during Shuttle bay-to-earth operations, the short duration solar heating occurring near the eclipse entry and exit resulted in shade temperatures in excess of the cure temperature of the adhesive used to bond the goldized Kapton and honeycomb face-sheets. The detailed thermal analysis demonstrating the LEO overheating as well as the redesign options and thermal testing of a redesigned development unit shade are presented.
Computer graphic visualization of orbiter lower surface boundary-layer transition
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Hartung, L. C.
1984-01-01
Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.
Avionics architecture studies for the entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.
1989-01-01
This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation
1992-02-19
S92-29406 (Feb 1992) --- Three mission specialists assigned to the STS-49 flight occupy temporary stations on the "middeck" of a Johnson Space Center (JSC) Shuttle trainer during a rehearsal of Endeavour's launch and entry phases. Left to right are astronauts Thomas D. Akers, Kathryn C. Thornton and Pierre J. Thuot. The three, along with four other NASA astronauts, will be aboard Endeavour in May for a week-long mission during which a satellite will be retrieved and boosted toward a higher orbit and extravehicular activity evaluations for Space Station Freedom assembly techniques will be conducted.
Infrared Imagery of Shuttle (IRIS). Task 1, summary report
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
The feasibility of remote, high-resolution infrared imagery of the Shuttle Orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer was demonstrated. Using available technology, such images can be taken from an existing aircraft/telescope system (the C141 AIRO) with minimum modification or addition of systems. Images with a spatial resolution of 1 m or better and a temperature resolution of 2.5% between temperatures of 800 and 1900 K can be obtained. Data reconstruction techniques can provide a geometrically and radiometrically corrected array on addressable magnetic tape ready for display by NASA.
2006-12-05
KENNEDY SPACE CENTER, FLA. -- Into the night flies the shuttle training aircraft (STA) with STS-116 Pilot William Oefelein in the pilot's seat, ready to start orbiter landing practice. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky is getting a suit fit-check after practicing landing the orbiter at the controls of the shuttle training aircraft. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky settles in the cockpit of the shuttle training aircraft (STA) before taking off to practice landing the orbiter. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky adjusts his helmet during a suit fit-check. Polansky has returned from practicing landing the orbiter at the controls of the shuttle training aircraft. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-05
KENNEDY SPACE CENTER, FLA. -- After the first practice orbiter landing, STS-116 Pilot William Oefelein heads the shuttle training aircraft (STA) back into the night sky to do it again. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Spencer, B., Jr.
1980-01-01
Tests were conducted in the 8 foot transonic pressure tunnel to obtain wind tunnel data for comparison with static stability and control parameters measured on the space shuttle orbiter approach and landing flight tests. The longitudinal stability, elevon effectiveness, lateral directional stability, and aileron effectiveness derivatives were determined from the wind tunnel data and compared with the flight test results. The comparison covers a range of angles of attack from approximately 2 deg to 10 deg at subsonic Mach numbers of 0.41 to 0.56. In general the wind tunnel results agreed well with the flight test results, indicating the wind tunnel data is applicable to the design of entry vehicles for subsonic speeds over the angle of attack range studied.
Integrated digital flight-control system for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.
2006-12-04
KENNEDY SPACE CENTER, FLA. -- STS-116 Commander Mark Polansky is ready to begin practice flights on the shuttle training aircraft (STA) three days before launch. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Spangler, R. H.
1974-01-01
Tests were conducted in wind tunnels during April and May 1973, on a 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated. Tabulated pressure data were obtained for upper and lower wing surfaces and left and right vertical tail surfaces.
NASA Technical Reports Server (NTRS)
Swenson, B. L.; Edsinger, L. E.
1977-01-01
The preliminary feasibility of remote high-resolution infrared imagery of the space shuttle orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer to that vehicle was examined. In general, it was determined that such such images can be taken from an existing aircraft/telescope system (the C-141 AIRO) with a minimum modification or addition of systems using available technology. These images will have a spatial resolution of about 0.3 m and a temperature resolution much better than 2.5 percent. The data from these images will be at conditions and at a scale not reproducible in ground based facilities and should aid in the reduction of the prudent factors of safety required to account for phenomenological uncertainties on the thermal protection system design. Principal phenomena to be observed include laminar heating, boundary-layer transition, turbulent heating, surface catalysis, and flow separation and reattachment.
NASA Technical Reports Server (NTRS)
Williams, S. D.
1983-01-01
Entry heating flight data and wind tunnel data on the lower wing 50% and 80% Semi-Spans are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data is presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and Normal Shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.
Columbia: The first 5 flights entry heating data series. Volume 1: An overview
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the lower windward and upper lee side centerline, lower wing 50% and 80% semi-spans, side fuselage and payload bay door, Z-400 and 440 trace aft of X/L=0.2, and OMS Pod trace 3, are presented for the first five flights of the space shuttle orbiter. Heating rate distributions are presented in terms of normalized shock Reynolds number to show the sensitivity of heating to these parameters. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program.
2012-01-18
CAPE CANAVERAL, Fla. -- The stylized shape of the new home for Atlantis at the Kennedy Space Center Visitor Complex incorporates hues of orange and gold to represent both the heat and the bright colors of re-entry. Special gray-colored tiling has been incorporated into the building's design to represent the space shuttle tiles that protected the orbiter from the heat of re-entry. A groundbreaking ceremony for the future home of Atlantis was held Jan. 18. For more information on this and other exhibits at the visitor complex, go to http://www.kennedyspacecenter.com. Artist rendering courtesy of PGAV Destinations for Delaware North Parks & Resorts
STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.
STS-56 MS1 Foale, in LES/LEH, floats during bailout exercises in JSC WETF
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist 1 (MS1) Michael Foale, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Foale's body is covered with the life raft tarp. His head and the space shuttle search and rescue satellite aided tracking (SARSAT) antenna protrude above the tarp. This simulation prepares the astronauts for the event of an emergency egress and subsequent water landing during launch.
STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 2 (MS2) Charles J. Precourt floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), operates the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLC) as SCUBA-equipped diver looks on. Precourt, along with other crewmembers, practiced launch emergency egress (bailout). STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
STS-96 crew members in the white room are prepared for entry into Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
STS-96 Mission Specialist Ellen Ochoa chats with white room closeout crew members while being checked out for entry into the orbiter Discovery. At left are Mechanical Technicians Al Schmidt and Chris meinert; at right is Quality Assurance Specialist James Davis and Closeout Chief Travis Thompson. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-96 is a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.
STS-114: Discovery Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.
Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA
NASA Technical Reports Server (NTRS)
Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2008-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
STS-89 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1998-01-01
The flight crew of the STS-89 Space Shuttle Orbiter Endeavour, Cmdr. Terrence W. Wilcutt, Pilot Frank Edwards, and Mission Specialists Michael P. Anderson, James F. Reilly, Bonnie J. Dunbar, Salizhan Shakirovich Sharipov, David A. Wolf, and Andrew S.W. Thomas, present an overview of their mission. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also included are various panoramic views of the shuttle on the pad. The crew is readied in the white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRBs). Once in orbit, there are various views of the Mir Space Station as the shuttle begins its approach and docks. After the docking the two crews open the entry hatch and greet each other. The astronauts and cosmonauts transfer supplies from the shuttle to Mir. The astronauts prepare for the reentry phase of their mission. Endeavour separates from the Russian Space Station with a gentle push from springs in the docking mechanism that attaches it to the Space Station. The final view shows the crews' preparations for reentry and landing.
Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.
2011-01-01
A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.
Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing newly designed launch and entry suit (LES), floats in single-occupant life raft during simulations in the JSC Weightless Environment Training Facility Bldg 29 pool. During the simulation of escape and rescue operations, the crew escape system (CES) pole mode of egress from the Space Shuttle was utilized.
Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal
NASA Astrophysics Data System (ADS)
Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana
2013-09-01
This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.
NASA Contingency Shuttle Crew Support (CSCS) Medical Operations
NASA Technical Reports Server (NTRS)
Adams, Adrien
2010-01-01
The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support
Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.
2017-01-01
Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.
Artist's Concept of X-37 Re-entry
NASA Technical Reports Server (NTRS)
1999-01-01
Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth`s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.
High temperature antenna development for space shuttle, volume 1
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.
2001-04-19
In the White Room, STS-100 Mission Specialist Yuri V. Lonchakov (center) is checked by closeout crew members (from left) Greg Johnson, Danny Wyatt and Rene Arriens before entering Space Shuttle Endeavour. The White Room is an environmental chamber at the end of the Orbiter Access Arm that provides entry into the orbiter on the launch pad. The mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Canadian-built Space Station Remote Manipulator System and the UHF Antenna. Two spacewalks are planned for installation of the SSRMS, which will be performed by Mission Specialists Scott E. Parazynski and Chris A. Hadfield, who is with the Canadian Space Agency. The mission is also the inaugural flight of Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff of Space Shuttle Endeavour on mission STS-100 is scheduled at 2:41 p.m. EDT April 19
STS-70 Post Flight Presentation
NASA Technical Reports Server (NTRS)
Peterson, Glen (Editor)
1995-01-01
In this post-flight overview, the flight crew of the STS-70 mission, Tom Henricks (Cmdr.), Kevin Kregel (Pilot), Major Nancy Currie (MS), Dr. Mary Ellen Weber (MS), and Dr. Don Thomas (MS), discuss their mission and accompanying experiments. Pre-flight, launch, and orbital footage is followed by the in-orbit deployment of the Tracking and Data Relay Satellite (TDRS) and a discussion of the following spaceborne experiments: a microgravity bioreactor experiment to grow 3D body-like tissue; pregnant rat muscular changes in microgravity; embryonic development in microgravity; Shuttle Amateur Radio Experiment (SAREX); terrain surface imagery using the HERCULES camera; and a range of other physiological tests, including an eye and vision test. Views of Earth include: tropical storm Chantal; the Nile River and Red Sea; lightning over Brazil. A three planet view (Earth, Mars, and Venus) was taken right before sunrise. The end footage shows shuttle pre-landing checkout, entry, and landing, along with a slide presentation of the flight.
1999-12-13
KENNEDY SPACE CENTER, Fla. -- Under partly cloudy skies and the Atlantic Ocean as a backdrop, Space Shuttle Endeavour, atop the mobile launcher platform, arrives at Launch Pad 39A for mission STS-99. The white cubicle at left is the environmental chamber, the White Room, that provides entry into the orbiter for the astronauts. It is at the outer end of the Orbiter Access Arm on the Fixed Service Structure. STS-99, named the Shuttle Radar Topography Mission (SRTM), involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000
NASA Technical Reports Server (NTRS)
Larson, T. J.; Siemers, P. M., III
1980-01-01
Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.
Pilot Fullerton dons anti-g and ejection escape suit (EES) on middeck
1982-03-31
S82-28922 (30 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, floats upside down in the zero-gravity environment of the middeck area of the Earth-orbiting space shuttle Columbia as he dons a modified USAF high altitude pressure garment. The brownish ejection/escape suit is used by the astronauts at launch and entry. Most of the remainder of their mission time, they are attired in a blue constant-wear garment. Astronaut Jack R. Lousma, crew commander, took this picture with a 35mm camera. The crew spent eight full days in the reusable spacecraft, a shuttle record. Photo credit: NASA
Astronaut Scott Parazynski during egress training
1994-06-23
S94-40083 (23 June 1994) --- Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during launch and entry phases of the their scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Parazynski and Tanner will join three other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
NASA Technical Reports Server (NTRS)
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
1988-07-08
S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Thermal boundaries analysis program document
NASA Technical Reports Server (NTRS)
Evans, M. E.
1975-01-01
The digital program TBAP has been developed to provide thermal boundaries in the DD/M-relative velocity (D-V), dynamic pressure-relative velocity (q-V), and altitude-relative velocity (h-V) planes. These thermal boundaries are used to design and/or analyze shuttle orbiter entry trajectories. The TBAP has been used extensively in supporting the Flight Performance Branch of NASA in evaluating candidate trajectories for the thermal protection system design trajectory.
1998-12-04
STS-88 Pilot Frederick W. "Rick" Sturckow is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. He is making his first spaceflight
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Thermostructural Evaluation of Joggle Region on the Shuttle Orbiter's Wing Leading Edge
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Warren, Jerry E.
2012-01-01
An investigation was initiated to determine the cause of coating spallation occurring on the Shuttle Orbiter's wing leading edge panels in the slip-side joggle region. The coating spallation events were observed, post flight, on differing panels on different missions. As part of the investigation, the high re-entry heating occurring on the joggles was considered here as a possible cause. Thus, a thermostructural evaluation was conducted to determine the detailed state-of-stress in the joggle region during re-entry and the feasibility of a laboratory test on a local joggle specimen to replicate this state-of-stress. A detailed three-dimensional finite element model of a panel slip-side joggle region was developed. Parametric and sensitivity studies revealed significant stresses occur in the joggle during peak heating. A critical interlaminar normal stress concentration was predicted in the substrate at the coating interface and was confined to the curved joggle region. Specifically, the high interlaminar normal stress is identified to be the cause for the occurrence of failure in the form of local subsurface material separation occurring in the slip-side joggle. The predicted critical stresses are coincident with material separations that had been observed with microscopy in joggle specimens obtained from flight panels.
NASA Technical Reports Server (NTRS)
Ottens, Brian; Parker, Brad; Stephen, Ryan
2005-01-01
One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.
2000-10-11
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
NASA Technical Reports Server (NTRS)
Williams, S. D.
1984-01-01
Entry heating flight data and wind tunnel data on the side fuselage and payload bay door, Z = 400 and 440 trace aft of X/L=0.2, for the first five flights of the Space Shuttle Orbiter are presented. The heating rate data are reviewed in terms of normalized film heat transfer coefficients as a function of angle of attack, Mach number, and normal shock Reynolds number. The surface heatings rates and temperatures were obtained by the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are outlined.
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin
2008-01-01
High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an assessment study focused on increasing the probability of returning spatially resolved scientific/engineering thermal imagery. This paper provides an overview of the assessment task and the systematic approach designed to establish confidence in the ability of existing assets to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. A discussion of capability demonstration in support of a potential Shuttle boundary layer transition flight test is presented. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the proposed Shuttle boundary layer transition flight test could lead to potential future applications with hypersonic flight test programs within the USAF and DARPA along with flight test opportunities supporting NASA s project Constellation.
MMOD Protection and Degradation Effects for Thermal Control Systems
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2014-01-01
Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.
Orbiter Window Hypervelocity Impact Strength Evaluation
NASA Technical Reports Server (NTRS)
Estes, Lynda R.
2011-01-01
When the Space Shuttle Orbiter incurs damage on its windowpane during flight from particles traveling at hypervelocity speeds, it produces a distinctive damage that reduces the overall strength of the pane. This damage has the potential to increase the risk associated with a safe return to Earth. Engineers at Boeing and NASA/JSC are called to Mission Control to evaluate the damage and provide an assessment on the risk to the crew. Historically, damages like these were categorized as "accepted risk" associated with manned spaceflight, and as long as the glass was intact, engineers gave a "go ahead" for entry for the Orbiter. Since the Columbia accident, managers have given more scrutiny to these assessments, and this has caused the Orbiter window engineers to capitalize on new methods of assessments for these damages. This presentation will describe the original methodology that was used to asses the damages, and introduce a philosophy new to the Shuttle program for assessing structural damage, reliability/risk-based engineering. The presentation will also present a new, recently adopted method for assessing the damage and providing management with a reasonable assessment on the realities of the risk to the crew and vehicle for return.
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein is suited and ready to begin practice flights on the shuttle training aircraft (STA) two days before launch. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
2006-12-05
KENNEDY SPACE CENTER, FLA. -- STS-116 Pilot William Oefelein (right) is suited and ready to begin practice flights on the shuttle training aircraft (STA) two days before launch. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Launch of Space Shuttle Discovery on mission STS-116 is scheduled for 9:35 p.m. Dec. 7. On the mission, the STS-116 crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.; Baranowski, L. C.
1977-01-01
The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements.
Modeling the Exo-Brake and the Development of Strategies for De-Orbit Drag Modulation
NASA Technical Reports Server (NTRS)
Murbach, M. S.; Papadopoulos, P.; Glass, C.; Dwyer-Cianciolo, A.; Powell, R. W.; Dutta, S.; Guarneros-Luna, A.; Tanner, F. A.; Dono, A.
2016-01-01
The Exo-Brake is a simple, non-propulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Two de-orbiting experiments with fixed surface area Exo-Brakes have been successfully conducted in the last two years on the TechEdSat-3 and -4 nano-satellite missions. The development of the free molecular flow aerodynamic data-base is presented in terms of angle of attack, projected front surface area variation, and altitude. Altitudes are considered ranging from the 400km ISS jettison altitude to 90km. Trajectory tools are then used to predict de-orbit/entry corridors with the inclusion of the key atmospheric and geomagnetic uncertainties. Control system strategies are discussed which will be applied to the next two planned TechEdSat-5 and -6 nano-satellite missions - thus increasing the targeting accuracy at the Von Karman altitude through the proposed drag modulation technique.
NASA Technical Reports Server (NTRS)
1990-01-01
Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.
2006-09-06
KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder
2006-09-06
KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder
Planetary/DOD entry technology flight experiments. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1975-01-01
Results are presented of heat transfer tests of a 147B configuration orbiter model (50-0) conducted in the NASA Langley Research Center Freon Tunnel (LRC/CF4). These tests were conducted at a nominal Mach number of 6, and at Reynolds numbers of 0.3 and 0.5 x 1,000,000 per foot. The objectives of the tests were to determine the effects of the low freon specific heat ratio, gamma, on the heating distributions and to determine the impingement of the orbiter bow shock on the wing. The data presented include thin skin heat transfer data (tabulated data and plotted data).
1997-11-19
STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her ascent and re-entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. Kneeing before Dr. Chawla to assist her is George Schram, USA mechanical technician, as Dr. Chawla prepares to enter the Space Shuttle orbiter Columbia on launch day. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201
2004-04-15
Pictured is an artist's concept of the X-37 Demonstrator re-entry. After being launched from the cargo bay of a Shuttle as a secondary payload, the X-37 remains on-orbit up to 21 days performing a variety of experiments before re-entering the Earth's atmosphere and landing. These vehicles supported the Agency's goal of dramatically reducing the cost of access to space in attempt to define the future of space transportation. The X-37 program was discontinued in 2003.
2011-02-24
S133-E-005034 (24 Feb. 2011) --- Astronaut Michael Barratt, STS-133 mission specialist, is seen on the middeck of the space shuttle Discovery soon after reaching Earth orbit on flight day one. Barratt is preparing to stow his launch and entry escape suit, which will be called upon again in a week and a half from now when Discovery comes back to Earth for the final time. Photo credit: NASA or National Aeronautics and Space Administration
STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
The Challenges and Achievements in 50 Years of Human Spaceflight
NASA Astrophysics Data System (ADS)
Hawley, Steven A.
2012-01-01
On April 12, 1961 the era of human spaceflight began with the orbital flight of Cosmonaut Yuri Gagarin. On May 5, 1961 The United States responded with the launch of Alan Shepard aboard Freedom 7 on the first flight of Project Mercury. The focus of the first 20 years of human spaceflight was developing the fundamental operational capabilities and technologies required for a human mission to the Moon. The Mercury and Gemini Projects demonstrated launch and entry guidance, on-orbit navigation, rendezvous, extravehicular activity, and flight durations equivalent to a round-trip to the Moon. Heroes of this epoch included flight directors Chris Kraft, Gene Kranz, and Glynn Lunney along with astronauts like John Young, Jim Lovell, Tom Stafford, and Neil Armstrong. The "Race to the Moon” was eventually won by the United States with the landing of Apollo 11 on July 20, 1969. The Apollo program was truncated at 11 missions and a new system, the Space Shuttle, was developed which became the focus of the subsequent 30 years. Although never able to meet the flight rate or cost promises made in the 1970s, the Shuttle nevertheless left a remarkable legacy of accomplishment. The Shuttle made possible the launch and servicing of the Hubble Space Telescope and diverse activities such as life science research and classified national security missions. The Shuttle launched more than half the mass ever put into orbit and its heavy-lift capability and large payload bay enabled the on-orbit construction of the International Space Station. The Shuttle also made possible spaceflight careers for scientists who were not military test pilots - people like me. In this talk I will review the early years of spaceflight and share my experiences, including two missions with HST, from the perspective of a five-time flown astronaut and a senior flight operations manager.
2009-08-07
CAPE CANAVERAL, Fla. – In the White Room on NASA Kennedy Space Center's Launch Pad 39A, STS-128 Commander Rick Sturckow is helped with his harness before entering space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. The crew is at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which includes equipment familiarization, emergency exit training and a simulated countdown. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Kim Shiflett
Study of critical defects in ablative heat shield systems for the space shuttle
NASA Technical Reports Server (NTRS)
Miller, C. C.; Rummel, W. D.
1974-01-01
Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.
Astronaut Scott Parazynski during egress training
1994-06-23
S94-40079 (23 June 1994) --- Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (partially visible in foreground) during a rehearsal of procedures to be followed during launch and entry phases of the their scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Parazynski and Tanner will join three other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Ruiz, Jose O,; Hart, Jeremy
2010-01-01
The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation architecture and contrast it with shuttle rendezvous techniques and circumstances. The shuttle rendezvous profile is timed to take approximately 3 days from orbit insertion to docking at the International Space Station (ISS). This process can be divided into 3 phases: far-field, mid-field and proximity operations. The far-field stage is characterized as the most quiescent phase. The spacecraft is usually too far to navigate using relative sensors and uses the Inertial Measurement Units (IMU s) to numerically solve for its position. The maneuvers are infrequent, roughly twice per day, and are larger than other burns in the profile. The shuttle uses this opportunity to take extensive ground based radar updates and keep high fidelity orbit states on the ground. This state is then periodically uplinked to the shuttle computers. The targeting solutions for burn maneuvers are also computed on the ground and uplinked. During the burn the crew is responsible for setting the shuttle attitude and configuring the propulsion system for ignition. Again this entire process is manually driven by both crew and ground activity. The only automatic processes that occur are associated with the real-time execution of the burn. The Orion automated functionality will seek to relieve the workload of both the crew and ground during this phase
Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission
NASA Astrophysics Data System (ADS)
Arnal, M.-H.; Laine, N.; Aussilhou, C.
2012-01-01
To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.
Study and Development of a Sub-Orbital Re-Entry Demonstrator
NASA Astrophysics Data System (ADS)
Savino, R.
The Italian and European Space Agencies are supporting a research programme, developed in Campania region by a cluster of industries, research institutes and universities, on a low-cost re-entry capsule, able to return payloads from the ISS to Earth and/or to perform short-duration scientific missions in Low Earth Orbit (LEO). The ballistic capsule is characterized by a deployable, disposable "umbrella-like" heat shield that allows relatively small dimensions at launch and a sufficient exposed surface area in re-entry conditions, reducing the ballistic coefficient and leading to acceptable heat fluxes, mechanical loads and final descent velocity. ESA is supporting a preliminary study to develop a flight demonstrator of the capsule to be embarked as a secondary payload onboard a sub-orbital sounding rocket. The deployable thermal protection system concept may be applied to future science and robotic exploration mission requiring planetary entry and, possibly also to missions in the framework of Human Space flight, requiring planetary entry or re-entry. The technology offers also an interesting potential for aerobraking, aerocapture and for de-orbiting. This paper summarizes the results of these activities, which are being more and more refined as the work proceeds, including the definition and analysis of the mission scenario, the aerodynamic, aerothermodynamic, mechanical and structural analyses and the technical definition of avionics, instrumentation and main subsystems.
Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny; Bevilacqua, Riccardo
2017-01-01
With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing a reduction of the risk associated with a hardware failure.
On-orbit flight control algorithm description
NASA Technical Reports Server (NTRS)
1975-01-01
Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.
STS-65 PLC Hieb at mockup side hatch prepares to egress via an inflated slide
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist and Payload Commander (PLC) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), sits at the top of the inflated slide at the crew compartment trainer (CCT) side hatch and listens to a crew training staffer's instructions. Hieb practiced post landing emergency escape procedures along with his six STS-65 crewmates. The CCT is located in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. Hieb will join five NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
STS-65 Pilot Halsell floats in a life raft during WETF bailout exercises
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Pilot James D. Halsell, Jr, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft while he is assisted by a SCUBA-equipped diver during an emergency egress bailout rehearsal. The STS-65 crew used the 25-feet deep pool in Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 to simulate a water landing during the launch emergency egress (bailout) exercise. Halsell will join five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Public Risk Assessment Program
NASA Technical Reports Server (NTRS)
Mendeck, Gavin
2010-01-01
The Public Entry Risk Assessment (PERA) program addresses risk to the public from shuttle or other spacecraft re-entry trajectories. Managing public risk to acceptable levels is a major component of safe spacecraft operation. PERA is given scenario inputs of vehicle trajectory, probability of failure along that trajectory, the resulting debris characteristics, and field size and distribution, and returns risk metrics that quantify the individual and collective risk posed by that scenario. Due to the large volume of data required to perform such a risk analysis, PERA was designed to streamline the analysis process by using innovative mathematical analysis of the risk assessment equations. Real-time analysis in the event of a shuttle contingency operation, such as damage to the Orbiter, is possible because PERA allows for a change to the probability of failure models, therefore providing a much quicker estimation of public risk. PERA also provides the ability to generate movie files showing how the entry risk changes as the entry develops. PERA was designed to streamline the computation of the enormous amounts of data needed for this type of risk assessment by using an average distribution of debris on the ground, rather than pinpointing the impact point of every piece of debris. This has reduced the amount of computational time significantly without reducing the accuracy of the results. PERA was written in MATLAB; a compiled version can run from a DOS or UNIX prompt.
Shuttle Entry Imaging Using Infrared Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve
2007-01-01
During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.
Labeled line drawing of launch and entry suit identifies various components
NASA Technical Reports Server (NTRS)
1988-01-01
Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.
A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.;
2017-01-01
Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.
Analytic Guidance for the First Entry in a Skip Atmospheric Entry
NASA Technical Reports Server (NTRS)
Garcia-Llama, Eduardo
2007-01-01
This paper presents an analytic method to generate a reference drag trajectory for the first entry portion of a skip atmospheric entry. The drag reference, expressed as a polynomial function of the velocity, will meet the conditions necessary to fit the requirements of the complete entry phase. The generic method proposed to generate the drag reference profile is further simplified by thinking of the drag and the velocity as density and cumulative distribution functions respectively. With this notion it will be shown that the reference drag profile can be obtained by solving a linear algebraic system of equations. The resulting drag profile is flown using the feedback linearization method of differential geometric control as guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. This approach was first proposed as a revisited version of the Space Shuttle Orbiter entry guidance. However, this paper will show that it can be used to fly the first entry in a skip entry trajectory. In doing so, the gains in the error dynamics will be changed at a certain point along the trajectory to improve the tracking performance.
Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Larin, Max E.; Marichalar, Jeremiah J.; Kinder, Gerald R.; Campbell, Charles H.; Riccio, Joseph R.; Nguyen, Tien Q.; Del Papa, Steven V.; Pulsonetti, Maria V.
2010-01-01
A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.
Advanced planning activity. [for interplanetary flight and space exploration
NASA Technical Reports Server (NTRS)
1974-01-01
Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.
1997-02-11
STS-82 Mission Specialist Joseph R. "Joe" Tanner dons his launch and entry suit in the Operations and Checkout Building with assistance from a suit technician. This is Tanner’s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Scallion, William I.
2004-01-01
Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter. Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parametrics included angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.3 x 10(exp 6) to 3.0 x 10(exp 6) per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), deformation of the wing windward surface, and main landing gear and/or door deployment. The measured aerodynamic increments for the damage scenarios examined were generally small in magnitude, as were the flight-derived values during most of the entry prior to loss of communication. A progressive damage scenario is presented that qualitatively matches the flight observations for the STS-107 entry.
NASA Technical Reports Server (NTRS)
Spangler, R. H.; Thornton, D. E.
1974-01-01
Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4.
2001-04-19
In the White Room, STS-100 Pilot Jeffrey S. Ashby chats with closeout crew members before he enters Space Shuttle Endeavour. With his back to the camera is Rick Welty; second from left is Rene Arriens. The White Room is an environmental chamber at the end of the Orbiter Access Arm that provides entry into the orbiter on the launch pad. The mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Canadian-built Space Station Remote Manipulator System and the UHF Antenna. Two spacewalks are planned for installation of the SSRMS, which will be performed by Mission Specialists Scott E. Parazynski and Chris A. Hadfield, who is with the Canadian Space Agency. The mission is also the inaugural flight of Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff of Space Shuttle Endeavour on mission STS-100 is scheduled at 2:41 p.m. EDT April 19
Gaseous Nitrogen Orifice Mass Flow Calculator
NASA Technical Reports Server (NTRS)
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
2001-07-11
KENNEDY SPACE CENTER, Fla. -- After RSS rollback, Space Shuttle Atlantis is ready for final launch preparations. The orbiter access arm, with the environmentally controlled White Room at the end, is extended to the orbiter to allow entry into Atlantis. Above it is the gaseous oxygen vent arm with its characteristic “beanie cap” or hood placed over the external tank. The retractable arm and vent hood assembly allows gaseous oxygen vapors to vent away from the Space Shuttle vehicle. The vapors are created as the liquid oxygen in the external tank boils off. At the lower end of Atlantis are the tail service masts, in front of either wing. The masts support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Launch on mission STS-104 is scheduled for 5:04 a.m. July 12. The launch is the 10th assembly flight to the International Space Station. Along with a crew of five, Atlantis will carry the joint airlock module as primary payload
Infrared Imagery of Shuttle (IRIS). Task 1
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
Assessment of available IR sensor technology showed that the four aerothermodynamic conditions of interest during the entry trajectory of space shuttle can be accommodated by an aircraft flying parallel to the orbiter reentry ground track. Thermal information from the sides of the vehicle can be obtained with degraded performance (temperatures below 800 K) by flying the C-141 aircraft on the opposite side of the shuttle ground track and in the direction opposite that which is optimum for lower surface viewing. An acquisition system using a 6.25-cm aperture telescope and a single indium antimonide detector were designed to meet the acquisition requirements and interface with the 91.5-cm telescope with minimum modification. An image plane system using 600 indium antimonide detectors in two arrays which requires no modification to the existing telescope was also designed. Currently available components were used in a data handling system with interfaces with the experimentors station and the HP2100 computer.
NASA Technical Reports Server (NTRS)
Bergmann, E.
1976-01-01
The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.
Space Debris Removal Using Multi-Mission Modular Spacecraft
NASA Astrophysics Data System (ADS)
Savioli, L.; Francesconi, A.; Maggi, F.; Olivieri, L.; Lorenzini, E.; Pardini, C.
2013-08-01
The study and development of ADR missions in LEO have become an issue of topical interest to the attention of the space community since the future space flight activities could be threatened by collisional cascade events. This paper presents the analysis of an ADR mission scenario where modular remover kits are employed to de-orbit some selected debris in SSO, while a distinct space tug performs the orbital transfers and rendezvous manoeuvres, and installs the remover kits on the client debris. Electro-dynamic tether and electric propulsion are considered as de-orbiting alternatives, while chemical propulsion is employed for the space tug. The total remover mass and de-orbiting time are identified as key parameters to compare the performances of the two de-orbiting options, while an optimization of the ΔV required to move between five selected objects is performed for a preliminary design at system level of the space tug. Final controlled re-entry is also considered and performed by means of a hybrid engine.
2006-09-06
KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. At right is the 300,000-gallon water tank that releases its contents onto the mobile launcher platform during liftoff to aid sound suppression. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder
2006-09-06
KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. At right is the 300,000-gallon water tank that releases its contents onto the mobile launcher platform during liftoff to aid sound suppression. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder
Shuttle launched flight tests - Supporting technology for planetary entry missions
NASA Technical Reports Server (NTRS)
Vetter, H. C.; Mcneilly, W. R.; Siemers, P. M., III; Nachtsheim, P. R.
1975-01-01
The feasibility of conducting Space Shuttle-launched earth entry flight tests to enhance the technology base for second generation planetary entry missions is examined. Outer planet entry environments are reviewed, translated into earth entry requirements and used to establish entry test system design and cost characteristics. Entry speeds up to those needed to simulate radiative heating levels of more than 30 kW/sq cm are shown to be possible. A standardized recoverable test bed concept is described that is capable of accommodating a wide range of entry technology experiments. The economic advantage of shared Shuttle launches are shown to be achievable through a test system configured to the volume constraints of a single Spacelab pallet using existing propulsion components.
The aerodynamic challenges of the design and development of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.
1985-01-01
The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.
NASA Technical Reports Server (NTRS)
Jones, R.; Creel, T. R., Jr.; Lawing, P.; Quan, M.; Dye, W.; Cummings, J.; Gorowitz, H.; Craig, C.; Rich, G.
1973-01-01
Phase change paint tests of a Rockwell International .00593-scale space shuttle orbiter were conducted in the Langley Research Center's Variable Density Wind Tunnel. The test objectives were to determine the effects of various wing/underbody configurations on the aerodynamic heating rates and boundary layer transition during simulated entry conditions. Several models were constructed. Each varied from the other in either wing cuff radius, airfoil thickness, or wing-fuselage underbody blending. Two ventral fins were glued to the fuselage underside of one model to test the interference heating effects. Simulated Mach 8 entry data were obtained for each configuration at angles of attack ranging from 25 to 40 deg, and a Reynolds number variation of one million to eight million. Elevon, bodyflap, and rudder flare deflections were tested. Oil flow visualization and Schlieren photographs were obtained to aid in reducing the phase change paint data as well as to observe the flow patterns peculiar to each configuration.
STS-92 MS Wakata gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-92 Pilot Melroy gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
STS-92 MS Lopez-Alegria gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
1997-11-05
STS-87 Payload Specialist Leonid Kadenyuk, at right, of the National Space Agency of Ukraine (NSAU) is assisted into his orange launch and entry spacesuit ensemble by NASA Suit Technician Al Rochford, at left, before participating in Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay
Thermal mathematical modeling and system simulation of Space Shuttle less subsystem
NASA Technical Reports Server (NTRS)
Chao, D. C.; Battley, H. H.; Gallegos, J. J.; Curry, D. M.
1984-01-01
Applications, validation tests, and upgrades of the two- and three-dimensional system level thermal mathematical system simulation models (TMSSM) used for thermal protection system (TPS) analyses are described. The TMSSM were developed as an aid to predicting the performance requirements and configurations of the Shuttle wing leading edge (WLE) and nose cone (NC) TPS tiles. The WLE and its structure were subjected to acoustic, thermal/vacuum, and air loads tests to simulate launch, on-orbit, and re-entry behavior. STS-1, -2 and -5 flight data led to recalibration of on-board instruments and raised estimates of the thermal shock at the NC and WLE. Baseline heating data are now available for the design of future TPS.
2012-04-05
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, shows a space shuttle low-temperature reusable surface insulation LRSI tile to Florida’s Lt. Gov. Jennifer Carroll during a tour of Kennedy’s Orbiter Processing Facility-1. The tile is part of the shuttle’s thermal protection system which covers the shuttle’s exterior and protects it from the heat of re-entry. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2012-04-05
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, shows a space shuttle felt reusable surface insulation FRSI blanket to Florida’s Lt. Gov. Jennifer Carroll during a tour of Kennedy’s Orbiter Processing Facility-1. The blanket is part of the shuttle’s thermal protection system which covers the shuttle’s exterior and protects it from the heat of re-entry. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2012-04-05
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, shows a space shuttle high-temperature reusable surface insulation HRSI tile to Florida’s Lt. Gov. Jennifer Carroll during a tour of Kennedy’s Orbiter Processing Facility-1. The tile is part of the shuttle’s thermal protection system which covers the shuttle’s exterior and protects it from the heat of re-entry. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Performance evaluation of the atmospheric phase of aeromaneuvering orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Powell, R. W.; Stone, H. W.; Naftel, J. C.
1984-01-01
Studies are underway to design reusable orbital transfer vehicles that would be used to transfer payloads from low-earth orbit to higher orbits and return. One promising concept is to use an atmospheric pass on the return leg to reduce the amount of fuel for the mission. This paper discusses a six-degree-of-freedom simulation analysis for two configurations, a low-lift-to-drag ratio configuration and a medium-lift-to-drag ratio configuration using both a predictive guidance technique and an adaptive guidance technique. Both guidance schemes were evaluated using the 1962 standard atmosphere and three atmospheres that had been derived from three entries of the Space Shuttle. The predictive technique requires less reaction control system activity for both configurations, but because of the limited number of updates and because each update used the 1962 standard atmosphere, the adaptive technique produces more accurate exit conditions.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1985-01-01
The Galileo mission and spacecraft, consisting of a Jupiter-orbiter and an atmospheric entry probe, are discussed. Components will include: magnetometers and plasma-wave antennas on a boom, high-gain antenna, probe vehicle, two different bus electronics packages, and a radioisotope thermoelectric generator. Instruments, investigators and objectives are tabulated for both probe science and orbiter science investigations. Requirements in the design of the attitude and articulation control system are very stringent because of the complex dynamics, flexible body effects, the need for autonomy, and the severe radiation environment in the Jupiter nighborhood. Galileo was intended to be ready for launch via Space Shuttle in May of 1986.
Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.
2010-01-01
Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon the framework of correlation techniques that have been in use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. The basic tenets that guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition prediction capability will be reviewed as a recommended format for future empirical correlation efforts. The validity of this approach has since been demonstrated by very favorable comparison of recent entry flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight data can provide a means to validate discrete protuberance engineering correlation approaches as well as high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight test activities only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information-related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, to illustrate how quantitative statistical evaluations of empirical correlations can and should be used to assess accuracy and to discuss what the authors' perceive as a recent heightened interest in the application of high fidelity numerical modeling of boundary layer transition. Concrete results will also be developed related to empirical boundary layer transition onset correlations. This will include assessment of the discrete protuberance boundary layer transition onset data assembled for the Orbiter configuration during post-Columbia Return To Flight. Assessment of these data will conclude that momentum thickness Reynolds number based correlations have superior coefficients and uncertainty in comparison to roughness height based Reynolds numbers, aka Re(sub k) or Re(sub kk). In addition, linear regression results from roughness height Reynolds number based correlations will be evaluated, leading to a hypothesis that non-continuum effects play a role in the processes associated with incipient boundary layer transition on discrete protuberances.
STS-48 Commander Creighton, in LES, stands at JSC FFT side hatch
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Discovery, Orbiter Vehicle (OV) 103, Commander John O. Creighton, wearing a launch and entry suit (LES), stands at the side hatch of JSC's full fuselage trainer (FFT). Creighton will enter the FFT shuttle mockup through the side hatch and take his assigned position on the forward flight deck. Creighton, along with the other crewmembers, is participating in a post-landing emergency egress exercise. The FFT is located in the Mockup and Integration Laboratory (MAIL) Bldg 9A.
1998-12-04
STS-88 Mission Specialist Jerry L. Ross is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. He is making his sixth spaceflight and is one of two extravehicular activity crew members on this mission
NASA Technical Reports Server (NTRS)
Dye, W. H.; Polek, T.
1975-01-01
Test results are presented of hypersonic pressure distributions at simulated atmospheric entry conditions. Pressure data were obtained at Mach numbers of 7.4 and 10.4 and Reynolds numbers of 3.0 and 6.5 million per foot. Data are presented in both plotted and tabulated data form. Photographs of wind tunnel apparatus and test configurations are provided.
STS-65 Japanese Payload Specialist Mukai prepares for MAIL egress training
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Japanese Payload Specialist Chiaki Mukai, wearing launch and entry suit (LES), prepares to participate in a training session in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. The entire STS-65 crew was on hand for egress training and countdown rehearsals. Representing Japan's National Space Development Agency (NASDA) Mukai will join six NASA astronauts for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Unity connecting module in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1998-01-01
Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.
STS-26 MS Hilmers floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-26 Commander Hauck floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
1998-08-27
KENNEDY SPACE CENTER, FLA. -- Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station
Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.
2011-01-01
The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.
A real-time digital computer program for the simulation of automatic spacecraft reentries
NASA Technical Reports Server (NTRS)
Kaylor, J. T.; Powell, L. F.; Powell, R. W.
1977-01-01
The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.
Sen. John C. Stennis celebrates a successful Space Shuttle Main Engine test
NASA Technical Reports Server (NTRS)
1978-01-01
Sen. John C. Stennis dances a jig on top of the Test Control Center at Stennis Space Center following the successful test of a Space Shuttle Main Engine in 1978. A staunch supporter of the National Aeronautics and Space Administration (NASA), the senior senator from DeKalb, Miss., supported the establishment of the space center in Hancock County and spoke personally with local residents who would relocate their homes to accommodate Mississippi's entry into the space age. Stennis Space Center was named for Sen. Stennis by Executive Order of President Ronald Reagan on May 20, 1988.
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1982-01-01
The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.
Oil-flow study of a Space Shuttle orbiter tip-fin controller
NASA Technical Reports Server (NTRS)
Helms, V. T., III
1983-01-01
Possible use of tip-fin controllers instead of a vertical tail on advanced winged entry vehicles was examined. Elimination of the vertical tail and using tip-fins offers the advantages of positive yaw control at high angles of attack and a potential weight savings. Oil-flow technique was used to obtain surface flow patterns on a tip-fin installed on a 0.01-scale Space Shuttle orbiter model for the purpose of assessing the extent of flow interference effects on the wing and tip-fin which might lead to serious heating problems. Tests were conducted in air at Mach 10 for a free-stream Reynolds numbers of .000113 at 20, 30, and 40 degree angle of attack and sideslip angles of 0 and 2 degree. Elevon deflections of -10, 0, and 10 degree and tip-fin control-surface deflections of 0, 20, and 40 degree were employed. Test results were also used to aid in the interpretation of heating data obtained on a Shuttle orbiter tip-fin on another model in a different facility. A limited comparison of oil-flow patterns and heat-transfer data is included. It was determined that elevon deflection angles from -10 to 10 degree and sideslip angles up to 2 degree have very little effect on tip-fin surface flow patterns. Also, there is a minimum of interference between the tip-fin and the wing. The most significant flow interactions occur on the tip-fin onboard surface as a result of its control-surface deflections.
Replacement Capability Options for the United States Space Shuttle
2013-09-01
extended periods, and to expand our knowledge of solar astronomy well beyond Earth-based observations.” During the Skylab missions, both the man...determined Skylab’s orbit was no longer stable due to higher than predicted solar activity. Therefore, Skylab had to be de-orbited earlier than...Module houses the oxygen, life support, power, communications, thermal control, and propulsions systems. The solar arrays for the Soyuz are also
Coronas-F Orbit Monitoring and Re-Entry Prediction
NASA Technical Reports Server (NTRS)
Ivanov, N. M.; Kolyuka, Yu. F.; Afanasieva, T. I.; Gridchina, T. A.
2007-01-01
Russian scientific satellite CORONAS-F was launched on July, 31, 2001. The object was inserted in near-circular orbit with the inclination 82.5deg and a mean altitude approx. 520 km. Due to the upper atmosphere drag CORONAS-F was permanently descended and as a result on December, 6, 2005 it has finished the earth-orbital flight, having lifetime in space approx. 4.5 years. The satellite structural features and its flight attitude control led to the significant variations of its ballistic coefficient during the flight. It was a cause of some specific difficulties in the fulfillment of the ballistic and navigation support of this space vehicle flight. Besides the main mission objective CORONAS-F also has been selected by the Inter-Agency Space Debris Coordination Committee (IADC) as a target object for the next regular international re-entry test campaign on a program of surveillance and re-entry prediction for the hazard space objects within their de-orbiting phases. Spacecraft (S/C) CORONAS-F kept its working state right up to the end of the flight - down to the atmosphere entry. This fact enabled to realization of the additional research experiments, concerning with an estimation of the atmospheric density within the low earth orbits (LEO) of the artificial satellites, and made possible to continue track the S/C during final phase of its flight by means of Russian regular command & tracking system, used for it control. Thus there appeared a unique possibility of using for tracking S/C at its de-orbiting phase not only passive radar facilities, belonging to the space surveillance systems and traditionally used for support of the IADC re-entry test campaigns, but also more precise active trajectory radio-tracking facilities from the ground control complex (GCC) applied for this object. Under the corresponding decision of the Russian side such capability of additional high-precise tracking control of the CORONAS-F flight in this period of time has been implemented. The organizing of the CORONAS-F ballistic and navigational support (BNS) and solving its main tasks (such as S/C orbit determination (OD) and its motion prediction and connected with them) both for regular mission stage and for additional flight program were realized by the group of specialists from the Mission Control Center (MCC). MCC was also assigned as a principal organization from the Russian side for participation in the 7th IADC re-entry test campaign on CORONAS-F. The CORONAS-F flight features and space environments circumstances during its flight as well as a methodology and technology of spacecraft ballistic and navigational support are given below. The BNS results for different phases of S/C flight, including the results of its re-entry predictions, obtained during the realization of the 7th IADC test campaign are submitted. The accuracy of space vehicle re-entry prediction and its dependence on various factors are analyzed in more details.
Flying the orbiter in the approach/landing phase
NASA Technical Reports Server (NTRS)
Nagel, S. R.
1983-01-01
The Columbia has completed a spectacularly successful four flight Orbital Flight Test program as well as the first operational mission in which two satellites were deployed. It is unprecedented that a vehicle so complex as the Shuttle could have reached such a state of maturity in so few missions. This maturity is reflected not only in terms of basic performance during dynamic flight phases, but also in the outstanding performance of individual spacecraft systems. Appreciably more CSS time has been logged during entry and particularly in the approach and landing phase than any other segment of the mission profile. The discussion that follows, therefore, will outline this phase in some detail including pilot comments, techniques, crew displays and landing aids. Some problem areas related to landing the Orbiter will be discussed, as well as possible solutions.
STS-93 M.S. Stephen Hawley in the White Room
NASA Technical Reports Server (NTRS)
1999-01-01
STS-93 Mission Specialist Stephen A. Hawley (Ph.D.) is checked out by white room closeout crew members before entering the orbiter Columbia. In the background is Mission Specialist Michel Tognini of France, waiting to enter Columbia. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. The target landing date is July 27 at 11:20 p.m. EDT.
Solid Propulsion De-Orbiting and Re-Orbiting
NASA Astrophysics Data System (ADS)
Schonenborg, R. A. C.; Schoyer, H. F. R.
2009-03-01
With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.
2001-02-12
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery sits on Launch Pad 39B after its approximately 5-hour rollout from the Vehicle Assembly Building. At center left can be seen the White Room, the environmentally controlled chamber that provides entry into the orbiter for the astronaut crews. The chamber is at the end of the Orbiter Access Arm, which has not been extended yet. At the bottom of Discovery’s left wing is the tail service mast, one of two belonging to the Mobile Launcher Platform on which the Shuttle rests. The tail service mast is 31 feet high, 15 feet long and 9 feet wide. A second TSM is on the other side. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Discovery will be flying on mission STS-102 to the International Space Station. Its payload is the Multi-Purpose Logistics Module Leonardo, a “moving van,” to carry laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The flight will also carry the Expedition Two crew up to the Space Station, replacing Expedition One, who will return to Earth on Discovery. Launch is scheduled for March 8 at 6:45 a.m. EST
2001-02-12
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery sits on Launch Pad 39B after its approximately 5-hour rollout from the Vehicle Assembly Building. At center left can be seen the White Room, the environmentally controlled chamber that provides entry into the orbiter for the astronaut crews. The chamber is at the end of the Orbiter Access Arm, which has not been extended yet. At the bottom of Discovery’s left wing is the tail service mast, one of two belonging to the Mobile Launcher Platform on which the Shuttle rests. The tail service mast is 31 feet high, 15 feet long and 9 feet wide. A second TSM is on the other side. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Discovery will be flying on mission STS-102 to the International Space Station. Its payload is the Multi-Purpose Logistics Module Leonardo, a “moving van,” to carry laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The flight will also carry the Expedition Two crew up to the Space Station, replacing Expedition One, who will return to Earth on Discovery. Launch is scheduled for March 8 at 6:45 a.m. EST
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
STS-50 Payload Specialist DeLucas floats in life raft during JSC WETF bailout
NASA Technical Reports Server (NTRS)
1992-01-01
STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Lawrence J. DeLucas, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises, the WETF's 25-foot deep pool was used to simulate the ocean. Crewmembers were dropped from their parachute harnesses into the pool, inflated their life rafts, and used survival equipment to protect themselves from the elements and signal for help.
Space shuttle post-entry and landing analysis. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
Four candidate navigation systems for the space shuttle orbiter approach and landing phase are evaluated in detail. These include three conventional navaid systems and a single-station one-way Doppler system. In each case, a Kalman filter is assumed to be mechanized in the onboard computer, blending the navaid data with IMU and altimeter data. Filter state dimensions ranging from 6 to 24 are involved in the candidate systems. Comprehensive truth models with state dimensions ranging from 63 to 82 are formulated and used to generate detailed error budgets and sensitivity curves illustrating the effect of variations in the size of individual error sources on touchdown accuracy. The projected overall performance of each system is shown in the form of time histories of position and velocity error components.
2012-04-05
CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, left, explains the placement of high-temperature reusable surface insulation HRSI tile on the underbelly of space shuttle Atlantis to Florida’s Lt. Gov. Jennifer Carroll during a tour of Kennedy’s Orbiter Processing Facility-1. The tile is part of the shuttle’s thermal protection system which covers the shuttle’s exterior and protects it from the heat of re-entry. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- A media event was held for the Multi-Purpose Crew Vehicle (MPCV) that was on display in a tent on the grounds of the Press Site at NASA's Kennedy Space Center in Florida during launch activities for space shuttle Atlantis' STS-135 mission to the International Space Station. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
Cygnus Orbital ATK OA-6 Final Hatch Closure
2016-03-06
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed for the upcoming flight of a Cygnus cargo vessel. The spacecraft is scheduled for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. When members of the ISS Expedition 47 crew open the hatch, they will be greeted with a sign noting the spacecraft was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.
Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
NASA Technical Reports Server (NTRS)
Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.
2012-01-01
The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).
2006-12-09
KENNEDY SPACE CENTER, FLA. -- While in the White Room to complete suiting up before climbing into Space Shuttle Discovery, STS-116 Mission Specialist Nicholas Patrick sends a message home. In the background is Mission Specialist Christer Fuglesang, who represents the European Space Agency. The White Room is at the end of the orbiter access arm that extends from the fixed service structure and provides entry into the orbiter. The first launch attempt of STS-116 on Dec. 7 was postponed due a low cloud ceiling over Kennedy Space Center. This second launch attempt is scheduled for 8:47 p.m. This is Discovery's 33rd mission and the first night launch since 2002. The 20th shuttle mission to the International Space Station, STS-116 carries another truss segment, P5. It will serve as a spacer, mated to the P4 truss that was attached in September. After installing the P5, the crew will reconfigure and redistribute the power generated by two pairs of U.S. solar arrays. Landing is expected Dec. 21 at KSC. Photo credit: NASA/Tony Gray & Don Kight
Mission safety evaluation report for STS-37, postflight edition
NASA Technical Reports Server (NTRS)
Hill, William C.; Finkel, Seymour I.
1991-01-01
STS-37/Atlantis was launched on April 5, 1991 from Kennedy Space Center launch complex 39B at 9:23 a.m. Eastern Standard Time (EST). Launch was delayed 4 minutes 45 seconds because of safety concerns about the low cloud ceiling and the wind direction in the potential blast area. Based on the limited number and type of inflight anomalies encountered, the Space Shuttle operated satisfactorily throughout the STS-37 mission. A contingency EVA was performed by the crew on Flight Day (FD) 3 to free a sticky Gamma Ray Observatory (GRO) high gain antenna, after which the GRO primary payload was successfully deployed by the Orbiter's Remote Manipulator System. The GRO, which weighed just over 35,000 lbs, was the heaviest NASA science satellite ever deployed by the Space Shuttle into low Earth orbit. The scheduled entry/landing on FD 6 was waved off for one day due to high wind conditions at Edwards Air Force Base. Atlantis landed on FD 7, 11 April 1991 on Edwards AFB lakebed runway 33 at 9:55 a.m. Eastern Daylight Time.
20 plus Years of Computational Fluid Dynamics for the Space Shuttle
NASA Technical Reports Server (NTRS)
Gomez, Reynaldo J., III
2011-01-01
This slide presentation reviews the use of computational fluid dynamics in performing analysis of the space shuttle with particular reference to the return to flight analysis and other shuttle problems. Slides show a comparison of pressure coefficient with the shuttle ascent configuration between the wind tunnel test and the computed values. the evolution of the grid system for the space shuttle launch vehicle (SSLv) from the early 80's to one in 2004, the grid configuration of the bipod ramp redesign from the original design to the current configuration, charts with the computations showing solid rocket booster surface pressures from wind tunnel data, calculated over two grid systems (i.e., the original 14 grid system, and the enhanced 113 grid system), and the computed flight orbiter wing loads are compared with strain gage data on STS-50 during flight. The loss of STS-107 initiated an unprecedented review of all external environments. The current SSLV grid system of 600+ grids, 1.8 Million surface points and 95+ million volume points is shown. The inflight entry analyses is shown, and the use of Overset CFD as a key part to many external tank redesign and debris assessments is discussed. The work that still remains to be accomplished for future shuttle flights is discussed.
Shuttle Abort Flight Management (SAFM) - Application Overview
NASA Technical Reports Server (NTRS)
Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike
2002-01-01
One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic Abort Landing (TAL), East Coast Abort Landing (ECAL) and Return to Launch Site (RTLS). Sequential and simultaneous engine failures are assessed and landing footprint information is provided during actual entry scenarios as well as hypothetical "loss of thrust now" scenarios during ascent.
Space shuttle orbiter reaction control system jet interaction study
NASA Technical Reports Server (NTRS)
Rausch, J. R.
1975-01-01
The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1984-01-01
A six-degree-of-freedom simulation analysis has been performed for the Space Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal conditions using the entry flight control system specified in May 1978. The off-nominal conditions included the following: (1) aerodynamic uncertainties, (2) an error in deriving the angle of attack from onboard instrumentation, (3) the failure of two of the four reaction control-system thrusters on each side, and (4) a lateral center-of-gravity offset. With combinations of the above off-nominal conditions, the control system performed satisfactorily with a few exceptions. The cases that did not exhibit satisfactory performance displayed the following main weaknesses. Marginal performance was exhibited at hypersonic speeds with a sensed angle-of-attack error of 4 deg. At supersonic speeds the system tended to be oscillatory, and the system diverged for several cases because of the inability to hold lateral trim. Several system modifications were suggested to help solve these problems and to maximize safety on the first flight: alter the elevon-trim and speed-brake schedules, delay switching to rudder trim until the rudder effectiveness is adequate, and reduce the overall rudder loop gain. These and other modifications were incorporated in a flight-control-system redesign in May 1979.
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Pilot Christopher Ferguson dons his launch and re-entry suit before heading to the launch pad. Ferguson is making his first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Commander Brent Jett dons his launch and re-entry suit before heading to the launch pad. Jett is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad. Tanner is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew arrived on the Shuttle Landing Facility runway at NASA's Kennedy Space Center in Florida aboard four T-38 jets. In the days leading up to their launch to the International Space Station, the crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASAFrank Michaux
STS-93 orbiter Columbia streaks across Houston sky
1999-07-27
S99-08357 (27 July 1999) --- The fly-over of Space Shuttle Columbia's STS-93 re-entry is seen above the Johnson Space Center's Rocket Park. The Saturn V is below the streak that was left by Columbia re-entering the atmosphere. The image was captured with a Hasselblad 503cx medium format camera with a 30mm Hasselblad lens using an 8-second exposure and an aperture setting of f/8. The film was Kodak PMZ 1000 color negative film. The photographer was Mark Sowa of the NASA Johnson Space Center's photography group.
STS-28 crewmembers don LESs prior to Columbia, OV-102, launch
1989-08-08
STS028-S-005 (8 Aug 1989) --- Three of five STS-28 astronaut crewmembers are pictured during their suiting up process in preparation for spending several days aboard space shuttle Columbia in earth orbit. Astronaut Brewster H. Shaw Jr., mission commander, is in the foreground. Others pictured in the orange suits used for ascent and entry are Richard N. Richards (center), pilot; and James C. Adamson, one of three mission specialists. Out of the frame are David C. Leestma and Mark N. Brown, mission specialists.
2006-03-15
KENNEDY SPACE CENTER, FLA. - Preparing for a simulated emergency landing of a shuttle crew, United Space Alliance (USA) Suit Tech Toni Costa-Davis helps volunteer "astronaut" Brian Bateman, also with USA, with his launch and entry suit. Many volunteers posed as astronauts during the simulation. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane swing the detached orbiter access arm, which ends in the White Room, away from the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
STS-82 Mission Specialist Steven L. Smith Suit Up
NASA Technical Reports Server (NTRS)
1997-01-01
STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.
1997-11-19
STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, is assisted with his ascent and re-entry flight suit by Dave Law, USA mechanical technician, in the white room at Launch Pad 39B as Dr. Doi prepares to enter the Space Shuttle orbiter Columbia on launch day. At right wearing glasses is Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include a spacewalk by Dr. Doi and Mission Specialist Winston Scott
STS-43 crewmembers egress Atlantis, OV-104, after landing at KSC runway 15
1991-08-11
STS043-S-145 (11 Aug 1991) --- STS-43 crewmembers, wearing launch and entry suits (LESs), egress Atlantis, Orbiter Vehicle (OV) 104, via mobile stairway after landing on runway 15 at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). Leading the crew and the first to step onto the red carpet is Pilot Michael A. Baker. He is followed by Mission Specialist (MS) Shannon W. Lucid, MS James C. Adamson, MS G. David Low, and Commander John E. Blaha. OV-104's fuselage is visible in the background.
STS-88 Mission Specialist Currie prepares to enter Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
STS-88 Mission Specialist Nancy Jane Currie is assisted with her ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. She is making her third spaceflight as the crew's flight engineer and prime operator of the Remote Manipulator System, the robotic arm.
Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan
2010-01-01
Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.
STS-92 MS Wisoff gets suit checked in the White Room before launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist Peter J.K. “Jeff” Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Payload/orbiter contamination control assessment support
NASA Technical Reports Server (NTRS)
Rantanen, R. O.; Ress, E. B.
1975-01-01
The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.
STS-65 crewmembers pose in front of OV-102 after landing at KSC's SLF
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana (right) and Mission Specialist Donald A. Thomas, wearing launch and entry suits (LESs), signal mission success with a 'thumbs up' gesture as they stand in front of Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are all smiles after OV-102's landing at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The two, along with four other NASA astronauts and a Japanese payload specialist, had just broken a Shuttle duration record as they ran almost 18 hours over two weeks in space in support of the International Microgravity Laboratory 2 (IML-2) mission. Landing occurred at 6:38 am (Eastern Daylight Time (EDT)). Mission duration was 14 days, 17 hours and 56 minutes. In the background, KSC personnel conduct postflight servicing of the vehicle.
Space Tug Aerobraking Study. Volume 2: Technical
NASA Technical Reports Server (NTRS)
Corso, C. J.; Eyer, C. L.
1972-01-01
The feasibility and practicality of employing an aerobraking trajectory for return of the reusable Space Tug from geosynchronous and other high energy missions was investigated. The aerobraking return trajectory modes from high orbits employ transfer ellipses which have low perigee altitudes wherein the earth's sensible atmosphere provides drag to reduce the Tug descent delta velocity requirements and thus decrease the required return trip propulsive energy. An aerobraked Space Tug, sized to the Space Shuttle payload capability and dimensional constraints, can accomplish 95 percent of the geosynchronous missions with a single Shuttle/Tug launch per mission. Aerodynamics, aerothermodynamics, trajectory, quidance and control, configuration concepts, materials, weights and performance parameters were identified. Sensitivities to trajectory uncertainties, atmospheric anomalies and re-entry environments were determined. New technology requirements and future studies required to further enhance the aerobraking potential were identified.
STS-65 crewmembers pose in front of OV-102 after landing at KSC's SLF
1994-07-23
STS-65 Commander Robert D. Cabana (right) and Mission Specialist Donald A. Thomas, wearing launch and entry suits (LESs), signal mission success with a "thumbs up" gesture as they stand in front of Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are all smiles after OV-102's landing at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The two, along with four other NASA astronauts and a Japanese payload specialist, had just broken a Shuttle duration record as they ran almost 18 hours over two weeks in space in support of the International Microgravity Laboratory 2 (IML-2) mission. Landing occurred at 6:38 am (Eastern Daylight Time (EDT)). Mission duration was 14 days, 17 hours and 56 minutes. In the background, KSC personnel conduct postflight servicing of the vehicle.
Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
2006-09-04
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Commander Brent Jett leaves the Shuttle Training Aircraft after a practice session of landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Pilot Christopher Ferguson boards the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Pilot Christopher Ferguson disembarks from the Shuttle Training Aircraft after a practice session of landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Commander Brent Jett boards the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles
2010-01-01
In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed thin-film resolution in both the span and chord direction in the area of peak heating. Additional objectives of this first study included: obtaining natural or tripped turbulent wing leading edge heating levels, assessing the effectiveness of protuberances and cavities placed at specified locations on the orbiter over a range of Mach numbers and Reynolds numbers to evaluate and compare to existing engineering and computational tools, obtaining cavity floor heating to aid in the verification of cavity heating correlations, acquiring control surface deflection heating data on both the main body flap and elevons, and obtain high speed schlieren videos of the interaction of the orbiter nose bow shock with the wing leading edge. To support these objectives, the stainless steel 1.8% scale orbiter model in addition to the sensors on the wing leading edge was instrumented down the windward centerline, over the wing acreage on the port side, and painted with temperature sensitive paint on the starboard side wing acreage. In all, the stainless steel 1.8% scale Orbiter model was instrumented with over three-hundred highly sensitive thin-film heating sensors, two-hundred of which were located in the wing leading edge shock interaction region. Further experimental studies will also be performed following the successful acquisition of flight data during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM on STS-119 at specific data points simulating flight conditions and geometries. Additional instrumentation and a protuberance matching the layout present during the STS-119 boundary layer transition flight experiment were added with testing performed at Mach number and Reynolds number conditions simulating conditions experienced in flight. In addition to the experimental studies, CUBRC also performed a large amount of CFD analysis to confirm and validate not only the tunnel freestream conditions, but also 3D flows over the orbiter acreage, wing leading edge, and controlurfaces to assess data quality, shock interaction locations, and control surface separation regions. This analysis is a standard part of any experimental program at CUBRC, and this information was of key importance for post-test data quality analysis and understanding particular phenomena seen in the data. All work during this effort was sponsored and paid for by the NASA Space Shuttle Program Office at the Johnson Space Center in Houston, Texas.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
2006-09-04
KENNEDY SPACE CENTER, FLA. - A Shuttle Training Aircraft (STA) is positioned in the parking area of KSC's Shuttle Landing Facility. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson practiced landing the shuttle this morning. The space shuttle's Mate-Demate Device is seen in the background. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
Space Shuttle orbiter modifications to support Space Station Freedom
NASA Technical Reports Server (NTRS)
Segert, Randall; Lichtenfels, Allyson
1992-01-01
The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.
1989-01-01
This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Enterprise - First Tailcone Off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-91 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1998-01-01
The crew STS-91 mission, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi, and Valery Victorovitch Ryumin can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once in orbit, there are various views of the Mir Space Station as the shuttle begins its approach and docks. After the docking the two crews open the entry hatch and greet each other. The astronauts and cosmonauts transfer supplies from the shuttle to Mir. The astronauts prepare for the reentry phase of their mission. The Shuttle separates from the Russian Space Station with a gentle push from springs in the docking mechanism that attaches it to the Space Station. The final view shows the crews' preparations for reentry and landing.
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey greets Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. Also on hand to greet the crew were Jerry Ross, chief of the Vehicle Integration Test Office, left, and Mike Leinbach, shuttle launch director. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
STS-57 Pilot Duffy uses TDS soldering tool in SPACEHAB-01 aboard OV-105
1993-07-01
STS057-30-021 (21 June-1 July 1993) --- Astronaut Brian Duffy, pilot, handles a soldering tool onboard the Earth-orbiting Space Shuttle Endeavour. The Soldering Experiment (SE) called for a crew member to solder on a printed circuit board containing 45 connection points, then de-solder 35 points on a similar board. The SE was part of a larger project called the Tools and Diagnostic Systems (TDS), sponsored by the Space and Life Sciences Directorate at Johnson Space Center (JSC). TDS represents a group of equipment selected from the tools and diagnostic hardware to be supported by the International Space Station program. TDS was designed to demonstrate the maintenance of experiment hardware on-orbit and to evaluate the adequacy of its design and the crew interface. Duffy and five other NASA astronauts spent almost ten days aboard the Space Shuttle Endeavour in Earth-orbit supporting the SpaceHab mission, retrieving the European Retrievable Carrier (EURECA) and conducting various experiments.
Application of the FADS system on the Re-entry Module
NASA Astrophysics Data System (ADS)
Zhen, Huang
2016-07-01
The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.
STS Challenger Mated to 747 SCA for Initial Delivery to Florida
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Safety in earth orbit study. Volume 1: Technical summary
NASA Technical Reports Server (NTRS)
1972-01-01
A summary of the technical results and conclusions is presented of the hazards analyses of earth orbital operations in conjunction with the space shuttle program. The space shuttle orbiter and a variety of manned and unmanned payloads delivered to orbit by the shuttle are considered. The specific safety areas examined are hazardous payloads, docking, on-orbit survivability, tumbling spacecraft, and escape and rescue.
Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Mated to 747 SCA
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Landing at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-87 Mission Specialist Doi in white room
NASA Technical Reports Server (NTRS)
1997-01-01
STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, is assisted with his ascent and re- entry flight suit by Dave Law, USA mechanical technician, in the white room at Launch Pad 39B as Dr. Doi prepares to enter the Space Shuttle orbiter Columbia on launch day. At right wearing glasses is Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include a spacewalk by Dr. Doi and Mission Specialist Winston Scott.
STS-26 MS Nelson during Crew escape system (CES) testing in JSC WETF Bldg 29
1988-07-08
S88-42409 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson participates in crew escape system (CES) testing in JSC Weightless Environment Training Facility (WETF) Bldg 29. Nelson, wearing the newly designed (navy blue) launch and entry suit (LES), floats in WETF pool with the aid of an underarm flotation device (modern version of Mas West floats). He awaits the assistance of SCUBA-equipped divers during a simulation of escape and rescue operations utilizing a new CES pole for emergency exit from the Space Shuttle.
STS-65 Payload Specialist Mukai dons LES and parachute with technicians' help
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Payload Specialist Chiaki Mukai adjusts the neck dam of her launch and entry suit (LES) as Boeing's Sharon Daley and Grady Due help her with the parachute pack prior to a launch emergency egress training (bailout) exercise at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Mukai will join six NASA astronauts later this year for two weeks aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in support of the second International Microgravity Laboratory 2 (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA).
STS-26 MS Lounge floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Lounge pulls cord on life raft and enlists the aid of a SCUBA-equipped diver. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle. Lounge is wearing gear like that each STS-26 crewmember and subsequent crews will carry onboard during launch.
STS-48 Pilot Reightler and MS Brown, in LESs, stand at JSC FFT side hatch
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Discovery, Orbiter Vehicle (OV) 103, Pilot Kenneth S. Reightler, Jr (left) and Mission Specialist (MS) Mark N. Brown, wearing launch and entry suits (LESs), stand at the side hatch of JSC's full fuselage trainer (FFT). The crewmembers will enter the FFT shuttle mockup through the side hatch and take their assigned descent (landing) positions in the crew cabin. Reightler and Brown, along with the other crewmembers, are participating in a post-landing emergency egress exercise. The FFT is located in the Mockup and Integration Laboratory (MAIL) Bldg 9A.
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Bussolari, Steven
1987-01-01
Four concepts for on-orbit spacesuit donning, doffing, servicing, check-out, egress and ingress are presented. These are: the Space Transportation System (STS) Type (shuttle system enlarged), the Transit Airlock (Shuttle Airlock with suit servicing removed from the pump-down chamber), the Suitport (a rear-entry suit mates to a port in the airlock wall), and the Crewlock (a small, individual, conformal airlock). Each of these four concepts is compared through a series of seven steps representing a typical Extra Vehicular Activity (EVA) mission: (1) Predonning suit preparation; (2) Portable Life Support System (PLSS) preparation; (3) Suit Donning and Final Check; (4) Egress/Ingress; (5) Mid-EVA rest period; (6) Post-EVA Securing; (7) Non-Routine Maintenance. The different characteristics of each concept are articulated through this step-by-step approach. Recommendations concerning an approach for further evaluations of airlock geometry, anthropometrics, ergonomics, and functional efficiency are made. The key recommendation is that before any particular airlock can be designed, the full range of spacesuit servicing functions must be considered, including timelines that are most supportive of EVA human productivity.
Experiment module concepts study. Volume 5 book 1, appendix A: Shuttle only task
NASA Technical Reports Server (NTRS)
1970-01-01
Results of a preliminary investigation of the effect on the candidate experiment program implementation of experiment module operations in the absence of an orbiting space station and with the availability of the space shuttle orbiter vehicle only are presented. The fundamental hardware elements for shuttle-only operation of the program are: (1) integrated common experiment modules CM-1, CM-3, and CM-4, together with the propulsion slice; (2) support modules capable of supplying on-orbit crew life support, power, data management, and other services normally provided by a space station; (3) dormancy kits to enable normally attached modules to remain in orbit while shuttle returns to earth; and (4) shuttle orbiter. Preliminary cost estimates for 30 day on-orbit and 5 day on-orbit capabilities for a four year implementation period are $4.2 billion and $2.1 billion, respectively.
Shuttle in Mate-Demate Device being Loaded onto SCA-747
NASA Technical Reports Server (NTRS)
1991-01-01
At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Parking Lot and Public Viewing Area for STS-4 Landing
NASA Technical Reports Server (NTRS)
1982-01-01
This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
1971-01-01
This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.
Shuttle Carrier Aircraft (SCA) Fleet Photo
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Heat addition to a subsonic boundary layer: A preliminary analytical study
NASA Technical Reports Server (NTRS)
Macha, J. M.; Norton, D. J.
1971-01-01
A preliminary analytical study of the effects of heat addition to the subsonic boundary layer flow over a typical airfoil shape is presented. This phenomenon becomes of interest in the space shuttle mission since heat absorbed by the wing structure during re-entry will be rejected to the boundary layer during the subsequent low speed maneuvering and landing phase. A survey of existing literature and analytical solutions for both laminar and turbulent flow indicate that a heated surface generally destabilizes the boundary layer. Specifically, the boundary layer thickness is increased, the skin friction at the surface is decreased and the point of flow separation is moved forward. In addition, limited analytical results predict that the angle of attack at which a heated airfoil will stall is significantly less than the stall angle of an unheated wing. These effects could adversely affect the lift and drag, and thus the maneuvering capabilities of booster and orbiter shuttle vehicles.
1997-04-04
STS-83 Mission Specialist Donald A. Thomas is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. He has flown on both STS-70 and STS-65. He holds a doctorate in materials science and has been the Principal Investigator for a Space Shuttle crystal growth experiment. Because of his background in materials science, Thomas will be concentrating his efforts during the Red shift on the five experiments in this discipline in the large Isothermal Furnace. He also will work on the ten materials science investigations in the Electromagnetic Containerless Processing Facility and four that will be measuring the effects of microgravity and motion in the orbiter on the experiments. Thomas and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 pm EST, April 4
STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center
NASA Technical Reports Server (NTRS)
1990-01-01
The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
NASA Technical Reports Server (NTRS)
Miele, A.; Zhao, Z. G.; Lee, W. Y.
1989-01-01
The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. The AFE refers to the study of the free flight of an autonomous spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric entry environmental data for use in designing aeroassisted orbital transfer vehicles (AOTV). It is assumed that: (1) the spacecraft is a particle of constant mass; (2) the Earth is rotating with constant angular velocity; (3) the Earth is an oblate planet, and the gravitational potential depends on both the radial distance and the latitude (harmonics of order higher than four are ignored); and (4) the atmosphere is at rest with respect to the Earth. Under these assumptions, the equations of motion for hypervelocity atmospheric flight (which can be used not only for AFE problems, but also for AOT problems and space shuttle problems) are derived in an inertial system. Transformation relations are supplied which allow one to pass from quantities computed in an inertial system to quantities computed in an Earth-fixed system and vice versa.
NASA Technical Reports Server (NTRS)
Miele, A.; Zhao, Z. G.; Lee, W. Y.
1989-01-01
The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. The AFE refers to the study of the free flight of an autonomous spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric entry environmental data for use in designing aeroassisted orbital transfer vehicles (AOTV). It is assumed that: (1) the spacecraft is a particle of constant mass; (2) the Earth is rotating with constant angular velocity; (3) the Earth is an oblate planet, and the gravitational potential depends on both the radial distance and the latitude (harmonics of order higher than four are ignored); and (4) the atmosphere is at rest with respect to the Earth. Under these assumptions, the equations of motion for hypervelocity atmospheric flight (which can be used not only for AFE problems, but also for AOT problems and space shuttle problems) are derived in an Earth-fixed system. Transformation relations are supplied which allow one to pass from quantities computed in an Earth-fixed system to quantities computed in an inertial system, and vice versa.
2009-08-04
CAPE CANAVERAL, Fla. –At NASA's Kennedy Space Center in Florida, the crawler-transporter delivers space shuttle Discovery atop the mobile launcher platform onto Launch Pad 39A. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. In the background is the blue water of the Atlantic Ocean. At left is the White Room at the end of the orbiter access arm. When in place against shuttle, the White Room provides entry into the cockpit. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Steven MacLean dons his launch and re-entry suit before heading to the launch pad. MacLean is with the Canadian Space Agency. MacLean is making his second shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper is helped with her launch and re-entry suit before heading to the launch pad. Stefanyshyn-Piper is making her first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Michael Barratt arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Barratt and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Nicole Stott arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Stott and her crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Michael Barratt greets NASA Administrator Charlie Bolden, left, and Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Barratt and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey talks with NASA Administrator Charlie Bolden and Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe chats with NASA Administrator Charlie Bolden on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe talks with Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Alvin Drew greets Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Drew and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Alvin Drew arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Drew and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2001-02-07
This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis’s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle’s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA’s Space Shuttle program
2001-02-06
KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis’s cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle’s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA’s Space Shuttle program
Shuttle Columbia Mated to 747 SCA with Crew
NASA Technical Reports Server (NTRS)
1981-01-01
The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
NASA Technical Reports Server (NTRS)
Merlin, Peter W.
2006-01-01
The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.
Flight Results of the Chandra X-ray Observatory Inertial Upper Stage Space Mission
NASA Technical Reports Server (NTRS)
Tillotson, R.; Walter, R.
2000-01-01
Under contract to NASA, a specially configured version of the Boeing developed Inertial Upper Stage (IUS) booster was provided by Boeing to deliver NASA's 1.5 billion dollar Chandra X-Ray Observatory satellite into a highly elliptical transfer orbit from a Shuttle provided circular park orbit. Subsequently, the final orbit of the Chandra satellite was to be achieved using the Chandra Integral Propulsion System (IPS) through a series of IPS burns. On 23 July 1999 the Shuttle Columbia (STS-93) was launched with the IUS/Chandra stack in the Shuttle payload bay. Unfortunately, the Shuttle Orbiter was unexpectantly inserted into an off-nominal park orbit due to a Shuttle propulsion anomaly occurring during ascent. Following the IUS/Chandra on-orbit deployment from the Shuttle, at seven hours from liftoff, the flight proven IUS GN&C system successfully injected Chandra into the targeted transfer orbit, in spite of the off-nominal park orbit. This paper describes the IUS GN&C system, discusses the specific IUS GN&C mission data load development, analyses and testing for the Chandra mission, and concludes with a summary of flight results for the IUS part of the Chandra mission.
NASA Technical Reports Server (NTRS)
Collette, J. G. R.
1984-01-01
A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.
1993-01-01
The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.
1985-04-01
In this photograph the SYNCOM IV-3, also known as LEASAT 3, satellite moves away from the Space Shuttle Orbiter Discovery. SYNCOM (Hughes Geosynchronous Communication Satellite) provides communication services from geosynchronous orbit, principally to the U.S. Government. The satellite was launched on April 12, 1985, aboard the Space Shuttle Orbiter Discovery.
Shuttle Columbia Post-landing Tow - with Reflection in Water
NASA Technical Reports Server (NTRS)
1982-01-01
A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Hypersonic Navier-Stokes Comparisons to Orbiter Flight Data
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Campbell, Charles H.
2010-01-01
During the STS-119 flight of Space Shuttle Discovery, two sets of surface temperature measurements were made. Under the HYTHIRM program3 quantitative thermal images of the windward side of the Orbiter with a were taken. In addition, the Boundary Layer Transition Flight Experiment 4 made thermocouple measurements at discrete locations on the Orbiter wind side. Most of these measurements were made downstream of a surface protuberance designed to trip the boundary layer to turbulent flow. In this paper, we use the US3D computational fluid dynamics code to simulate the Orbiter flow field at conditions corresponding to the STS-119 re-entry. We employ a standard two-temperature, five-species finite-rate model for high-temperature air, and the surface catalysis model of Stewart.1 This work is similar to the analysis of Wood et al . 2 except that we use a different approach for modeling turbulent flow. We use the one-equation Spalart-Allmaras turbulence model8 with compressibility corrections 9 and an approach for tripping the boundary layer at discrete locations. In general, the comparison between the simulations and flight data is remarkably good
NASA Technical Reports Server (NTRS)
Talay, T. A.; White, N. H.; Naftel, J. C.
1984-01-01
Simulations of aerobraking trajectories of aeroassisted orbital transfer vehicles (AOTV's) returning from geosynchronous orbit were analyzed to examine the effects of high-altitude viscous interactions and off-nominal atmospheres on AOTV return weight, heating, and loads performance. Viscous interaction effects encountered at high altitudes had little detrimental effect on the return weight capabilities for AOTV's representing a range of lift/drag ratios. Most of the AOTV return weight increase over an all-propulsive OTV occurred for a low lift/drag ratio. Smaller increases in return weight were observed for higher lift/drag ratios, at the expense of significantly higher heating and aerodynamic loads. Off-nominal atmospheres based on Shuttle-derived data and multipliers on a U.S. Standard Atmosphere were considered. AOTV's intended for entry under standard atmospheric conditions either deorbited during the pass through the off-nominal atmospheres or missed the target phasing orbit by wide margins. The AOTV's could successfully negotiate these atmospheres when new bank-angle histories were implemented with little loss and sometimes with a gain in return weight.
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
A fault-tolerant avionics suite for an entry research vehicle
NASA Technical Reports Server (NTRS)
Dzwonczyk, Mark; Stone, Howard
1988-01-01
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
A fault-tolerant avionics suite for an entry research vehicle
NASA Astrophysics Data System (ADS)
Dzwonczyk, Mark; Stone, Howard
A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.
Space shuttle orbiter test flight series
NASA Technical Reports Server (NTRS)
Garrett, D.; Gordon, R.; Jackson, R. B.
1977-01-01
The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.
STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Boeing 747 jet modified to carry shuttle flying over Rocky Mountains
NASA Technical Reports Server (NTRS)
1977-01-01
A Boeing 747 jet aircraft, modified for use by NASA for the Space Shuttle Orbiter Approach and Landing Tests (ALTs), is seen in flight over the Rocky Mountains. Note the added structural supports atop the huge aircraft. The Shuttle Orbiter will ride 'piggy-back' atop the NASA 747 for the ALTs. The NASA 747 will be used also to transport Orbiters to the Space Shuttle launch sites.
2011-04-12
CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - A Shuttle Training Aircraft (STA) taxis into the parking area of KSC's Shuttle Landing Facility. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson practiced landing the shuttle this morning. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - In the early morning hours on NASA Kennedy Space Center's Shuttle Landing Facility, the Shuttle Training Aircraft taxis onto the runway. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson are practicing landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - In the early morning hours on NASA Kennedy Space Center's Shuttle Landing Facility, the Shuttle Training Aircraft taxis onto the runway. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson are practicing landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
2006-09-04
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, the Shuttle Training Aircraft takes to the skies. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson are practicing landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett
STS-104 CDR Lindsey on forward flight deck prior to re-entry
2001-07-25
STS104-345-021 (25 July 2001) --- Attired in his shuttle launch and entry suit, astronaut Steven W. Lindsey, STS-104 commander, looks over a procedures checklist at the commanders station on the forward flight deck of the space shuttle Atlantis.
NASA Astrophysics Data System (ADS)
Kingston, J.; Hobbs, S.; Roberts, P.; Juanes-Vallejo, C.; Robinson, F.; Sewell, R.; Snapir, B.; Llop, J. Virgili; Patel, M.
2014-07-01
TechDemoSat-1 is a UK-funded technology demonstration satellite, carrying 8 payloads provided by UK organisations, which is due to be launched in the first quarter of 2014. Cranfield University has supplied a De-Orbit Sail (DOS) payload to allow the mission to comply with end-of-life debris mitigation guidelines. The payload provides a passive, simple, and low-cost means of mitigating debris proliferation in Low Earth Orbit, by enhancing spacecraft aerodynamic drag at end-of-life and reducing time to natural orbital decay and re-entry. This paper describes the use of small commercial electro-explosive devices (EEDs), produced for use as parachute tether-cutters in reserve chute deployment systems, as low-cost but high-reliability release mechanisms for space applications. A testing campaign, including thermal vacuum and mechanical vibration, is described, which demonstrates the suitability of these CYPRES™ cutters, with a flexible Kevlar clamp band, for use as a hold-down and release mechanism (HDRM) for a deployable de-orbit sail. The HDRM is designed to be three-failure-tolerant, highly reliable, yet simple and low-cost.
Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Space Shuttle Discovery overflies the Rogers Dry Lakebed, California, on 28 September 1995, at 12:50 p.m. Pacific Daylight Time (PDT) atop NASA's 747 Shuttle Carrier Aircraft (SCA). On its way to Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Enterprise Mated to 747 SCA in Flight
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, departed NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Carried by the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Enterprise Mated to 747 SCA on Ramp
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, before departing NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Seen here atop the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Eliminating Space Debris: Applied Technology and Policy Prescriptions, Fall 2007 - Project 07-02
2008-01-01
plan to transfer ownership of the constellation, Iridium satellites were (presume that there was more than one) scheduled to be sent out of orbit to...told the research team that administrators are “not shy” about saying, “We have a problem with your debris plan .” Usually, the licensee will work... planned maneuvers • End-of-life (EOL) support. Includes re-entry support and planned de-orbit operations • Anomaly re configuration • Emergency ser
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
NASA Technical Reports Server (NTRS)
Wingard, Charles D.
2004-01-01
NASA suffered the loss of the seven-member crew of the Space Shuttle Columbia on February 1, 2003 when the vehicle broke apart upon re-entry to the Earth's atmosphere. The final report of the Columbia Accident Investigation Board (CAIB) determined that the accident was caused by a launch ascent incident-a suitcase-sized chunk of insulating foam on the Shuttle's External Tank (ET) broke off, and moving at almost 500 mph, struck an area of the leading edge of the Shuttle s left wing. As a result, one or more of the protective Reinforced Carbon-Carbon (RCC) panels on the wing leading edge were damaged. Upon re-entry, superheated air approaching 3,000 F breached the wing damage and caused the vehicle breakup and loss of crew. The large chunk of insulating foam that broke off during the Columbia launch was determined to come from the so-called bipod ramp area where the Shuttle s orbiter (containing crew) is attached to the ET. Underneath the foam in the bipod ramp area is a layer of TPS that is a cork-filled silicone rubber composite. In March 2003, the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama received cured samples of the foam and composite for testing from the Michoud Assembly Facility (MAF) in New Orleans, Louisiana. The MAF is where the Shuttle's ET is manufactured. The foam and composite TPS materials for the ET have been well characterized for mechanical property data at the super-cold temperatures of the liquid oxygen and hydrogen fuels used in the ET. However, modulus data on these materials is not as well characterized. The TA Instruments 2980 Dynamic Mechanical Analyzer (DMA) was used to determine the modulus of the two TPS materials over a range of -145 to 95 C in the dual cantilever bending mode. Multi-strain, fixed frequency DMA tests were followed by multi-frequency, fixed strain tests to determine the approximate bounds of linear viscoelastic behavior for the two materials. Additional information is included in the original extended abstract.
2008-06-10
CAPE CANAVERAL, Fla. – Auxiliary power unit 3, or APU3, is ready for installation in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Goodwin, F. E.; Nussmeier, T. A.; Stokes, L. S.; Vourgourakis, E. J.
1976-01-01
The following topics were reviewed: (1) design options for shuttle terminal, (2) elliptical orbit satellite design options, (3) shuttle terminal details, (4) technology status and development requirements, (5) transmitter technology, and (6) carbon dioxide laser life studies.
STS-68 on Runway with 747 SCA/Columbia Ferry Flyby
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-68 on Runway with 747 SCA - Columbia Ferry Flyby
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View
NASA Technical Reports Server (NTRS)
1991-01-01
Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA 911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation is carried out at Dryden at the Mate-Demate Device, the large gantry-like structure that hoists the spacecraft to various levels during post-spaceflight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View
NASA Technical Reports Server (NTRS)
1991-01-01
Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Feasibility analysis of cislunar flight using the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Haynes, Davy A.
1991-01-01
A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.
1971-01-01
In this 1971 artist's concept, the Nuclear Shuttle is shown in various space-based applications. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to geosychronous Earth orbits or lunar orbits then return to low Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.
1970-01-01
This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.
1989-01-01
In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey greets NASA Administrator Charlie Bolden on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. Also on hand to greet the crew were Jerry Ross, chief of the Vehicle Integration Test Office, Mike Leinbach, shuttle launch director, center, and Kennedy Center Director Bob Cabana. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Two-IMU FDI performance of the sequential probability ratio test during shuttle entry
NASA Technical Reports Server (NTRS)
Rich, T. M.
1976-01-01
Performance data for the sequential probability ratio test (SPRT) during shuttle entry are presented. Current modeling constants and failure thresholds are included for the full mission 3B from entry through landing trajectory. Minimum 100 percent detection/isolation failure levels and a discussion of the effects of failure direction are presented. Finally, a limited comparison of failures introduced at trajectory initiation shows that the SPRT algorithm performs slightly worse than the data tracking test.
1998-04-17
KENNEDY SPACE CENTER, FLA. -- STS-90 Mission Specialist Dafydd (Dave) Williams, M.D., with the Canadian Space Agency is assisted by NASA and United Space Alliance closeout crew members immediately preceding launch for the nearly 17-day Neurolab mission. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Seen behind Williams also in an orange launch and re-entry suit is Mission Specialist Richard Linnehan, D.V.M. Williams and six fellow crew members will shortly enter the orbiter at KSC's Launch Pad 39B, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:19 p.m. EDT, April 17
NASA Technical Reports Server (NTRS)
1976-01-01
An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.
2000-09-08
STS-106 Pilot Scott D. Altman is helped with his launch and entry suit by suit technicians in the White Room before entering Space Shuttle Atlantis. The perfect on-time liftoff of Atlantis on mission STS-106 occurred at 8:45:47 a.m. EDT. On the 11-day mission to the International Space Station, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19
2000-09-08
Before entering Space Shuttle Atlantis, STS-106 Mission Specialist Yuri I. Malenchenko gets help with his launch and entry suit in the White Room. The perfect on-time liftoff of Atlantis on mission STS-106 occurred at 8:45:47 a.m. EDT. On the 11-day mission to the International Space Station, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19
2011-04-12
CAPE CANAVERAL, Fla. -- Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
Space Shuttle Glider. Educational Brief.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Space Shuttle Glider is a scale model of the U.S. Space Shuttle orbiter. The airplane-like orbiter usually remains in Earth orbit for up to two weeks at a time. It normally carries a six- to seven-person crew which includes the mission commander, pilot, and several mission and/or payload specialists who have specialized training associated with…
STS-49 Landing at Edwards with First Drag Chute Landing
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing 16 May on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards AFB with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-49 Landing at Edwards with First Drag Chute Landing
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing May 16 on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
On Orbit Osteobiology Experiments: from "STROMA" to "MDS" -from in vitro to in vivo
NASA Astrophysics Data System (ADS)
Liu, Yi; Cancedda, Ranieri
Spaceflight causes profound changes in the skeleton, in particular, in the weight-loading bones. Uncoupling of bone remodeling equilibrium between bone formation and resorption is con-sidered responsible for the microgravity-induced bone loss. These changes result in weak-ened and brittle bones prone to fracture on re-entry and in accelerated osteoporosis, making bone deterioration a major problem obstructing the prospects of long-duration manned space flight. Osteoblasts (bone forming cells) and osteocytes (bone resorption cells) are known to be mechano-sensors. Short-exposure of osteoblasts to simulated microgravity ensnarled cell adhe-sion and cytoskeleton. Also osteoblast precursors such as bone marrow stroma cells (BMSC) were shown to be sensitive to mechanical loading. We performed a series of STROMA space-flight experiments by culturing BMSC or co-culturing osteoblasts and osteoclast precursors in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation and an unexpected activation of nervous system development genes by spaceflight. To unravel effects of microgravity on genes governing bone mass, transgenic mice with a higher bone mass were flown to orbit inside the Mice Drawer System (MDS) payload. The MDS experiment was launched inside Shuttle Discovery in STS-128 on August 28 2009 at 23:58 EST, and returned to earth by Shuttle Atlantis in STS129 on November 27 2009 at 9:47 EST, marking it as the first long duration animal experiment on the International Space Station (ISS).
2008-06-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
2008-06-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
2008-06-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, auxiliary power unit 3, or APU3, is in place on space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
2008-06-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians install auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett
Shuttle Performance: Lessons Learned, Part 2
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.
Archambault wearing LES in the FD on STS-117 Space Shuttle Atlantis
2007-06-21
S117-E-09438 (21 June 2007) --- Attired in his launch and entry garment, astronaut Lee Archambault, STS-117 pilot, appears all ready for re-entry and landing of the Space Shuttle Atlantis, as he signals thumbs-up from the pilot's station on the starboard side of the shuttle's flight deck. Unfortunately, the weather in Florida was not ready, and the crew had to wait until the following day to land. They ultimately landed in California.
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid
NASA Technical Reports Server (NTRS)
1980-01-01
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID
NASA Technical Reports Server (NTRS)
1980-01-01
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
Boeing 747 jet modified to carry shuttle en route to Dryden
NASA Technical Reports Server (NTRS)
1977-01-01
A Boeing 747 jet aircraft, modified for use by NASA for the Space Shuttle Orbiter Approach and Landing Tests (ALTs), is seen en route from the Boeing facility at Seattle, Washington, to the Dryden Flight Research Center in Southern California. Note the added structural supports atop the huge aircraft. The Shuttle Orbiter will ride 'piggy-back' atop the NASA 747 for the ALTs. The NASA 747 will be used also to transport Orbiters to the Space Shuttle launch sites.
Shuttle/GPSPAC experimentation study
NASA Technical Reports Server (NTRS)
Moses, J.; Flack, J. F.
1977-01-01
The utilization is discussed of the GPSPAC, which is presently being developed to be used on the low altitude host vehicle (LAHV), for possible use in the shuttle avionics system to evaluate shuttle/GPS navigation performance. Analysis and tradeoffs of the shuttle/GPS link, shuttle signal interface requirements, oscillator tradeoffs and GPSPAC mechanical modifications for shuttle are included. Only the on-orbit utilization of GPSPAC for the shuttle is discussed. Other phases are briefly touched upon. Recommendations are provided for using the present GPSPAC and the changes required to perform shuttle on-orbit navigation.
Environmental Impact Statement for the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Malkin, M. S.
1978-01-01
Test firings and launches will release air pollutants causing a temporary localized small degradation in air quality near the tests or launch site. Areas adjacent to the site will also be subjected to moderate sound levels of predominantly low frequencies for short durations. During the launch phase, hydrogen chloride will be introduced into the stratosphere causing a small decrease in ozone. Temporary perturbations to the ionosphere will occur during orbital maneuvers and entry will have no significant effect on communication or radio wave propagation. As the Orbiter descends, a low magnitude sonic beam will be produced along the groundtrack with maximum overpressures occurring near the landing site. The overpressures will be infrequent, will vary in location and are of sufficiently low energy to be considered a momentary annoyance, if noticed at all. Major alternatives considered are discontinuation or postponement of the program, use of alternate propellants and neutralization of the ground cloud.
2000-10-11
STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
2000-10-11
STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Aerobrake concepts for NTP systems study
NASA Technical Reports Server (NTRS)
Cruz, Manuel I.
1992-01-01
Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft
NASA Technical Reports Server (NTRS)
1996-01-01
Moonrise over Atlantis: the space shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, 31 March 1996. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged, and the 747 with Atlantis atop was able to depart 11 April for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 - SCA 747 Aircraft Takeoff for Delivery to Kennedy Space Center
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's Boeing 747 Shuttle Carrier Aircraft leaves the runway with the Shuttle Atlantis on its back. Following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified 747's, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis aboard only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (SCA) during takeoff for a return ferry flight to the Kennedy Space Center from Edwards, California. The STS-66 mission was dedicated to the third flight of the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3), part of NASA's Mission to Planet Earth program. The astronauts also deployed and retrieved a free-flying satellite designed to study the middle and lower thermospheres and perform a series of experiments covering life sciences research and microgravity processing. The landing was at 7:34 a.m. (PST) 14 November 1994, after being waved off from the Kennedy Space Center, Florida, due to adverse weather. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Landing at Edwards
NASA Technical Reports Server (NTRS)
1989-01-01
The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
1991-08-01
The free-flying Tracking and Data Relay Satellite-E (TDRS-E), still attached to an Inertial Upper Stage (IUS), was photographed by one of the crewmembers during the STS-43 mission. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The Space Shuttle Orbiter Atlantis for the STS-43 mission was launched on August 2, 1991.
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana addresses the audience poised to hear which of the four institutions will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives,Kennedy employees and media applaud the announcement that revealed the four institutions receiving shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett
1970-01-01
In this 1970 artist's concept, the Nuclear Shuttle is shown in its lunar and geosynchronous orbit configuration and in its planetary mission configuration. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.
NASA Astrophysics Data System (ADS)
Treder, Alfred J.; Meldahl, Keith L.
The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media await the announcement that will reveal the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media stand to applaud the news that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media listen to the speakers after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Astronaut and Director of Flight Crew Operations, Janet Kavandi addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Administrator Charles Bolden and Kennedy Center Director Bob Cabana sit on the dias listening to other speakers prior to the announcement that will reveal the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Administrator Charles Bolden and Kennedy Center Director Bob Cabana sit on the dias listening to other speakers after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- STS-1 Pilot and former Kennedy Space Center Director Bob Crippen addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
1978-10-04
The Shuttle Orbiter Enterprise inside of Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement including Orbiter, external tank, and solid rocket boosters were vertically mated.
NASA Technical Reports Server (NTRS)
Chapman, A. J.
1973-01-01
Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.
Payload/orbiter contamination control requirement study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.
1974-01-01
A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.
Thermal environments for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Fu, J. H.; Graves, G. R.
1985-01-01
The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.
STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft
NASA Technical Reports Server (NTRS)
1996-01-01
Moonrise over Atlantis: following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996, NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA #905 returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft
NASA Technical Reports Server (NTRS)
1996-01-01
Moonrise over Atlantis following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft (SCA), was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis attached only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.