NASA Technical Reports Server (NTRS)
1978-01-01
The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045472 (17 May 2011) --- A scale model of HM Bark Endeavour, namesake for the space shuttle currently making its final flight, adorns a console in the space shuttle flight control room in Mission Control in Houston. This model was first displayed in 1992 in the old shuttle control room during STS-49, the inaugural flight of the shuttle Endeavour. It was built by Dan Willett of JSC's Information Resources Directorate. The original sailing ship Endeavour was commanded by Lt. James Cook on a scientific voyage to the South Pacific, Australia and New Zealand from 1768 to 1771. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
Lateral stability and control derivatives extracted from space shuttle Challenger flight data
NASA Technical Reports Server (NTRS)
Schiess, James R.
1988-01-01
Flight data taken from six flights of the Space Transportation System shuttle Challenger (STS-6, 7, 8, 11, 13 and 17) during atmospheric entry are analyzed to determine the shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The vehicle stability and control surface effectiveness are compared across the flights and to preflight predicted values.
NASA Technical Reports Server (NTRS)
Merlin, Peter W.
2006-01-01
The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.
Space shuttle flying qualities and criteria assessment
NASA Technical Reports Server (NTRS)
Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.
1987-01-01
Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1986-01-01
Flight data taken from the first five flights (STS-2, 3, 4, 5 and 9) of the Space Transportation System Shuttle Columbia during entry are analyzed to determine the Shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The estimated parameters are compared across the five flights and to preflight predicted values.
Enterprise Separates from 747 SCA for First Tailcone off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
The Vehicle Control Systems Branch at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Barret, Chris
1990-01-01
This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1986-01-01
NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21341 (12 July 2001) --- From a familiar setting near the rear of shuttle flight control room (WFCR) at Houston's Mission Control Center (MCC), Wayne Hale (second left), ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida. Several other flight controllers are visible in the wide shot.
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119745 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119746 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR)at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR) at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
NASA Technical Reports Server (NTRS)
1972-01-01
The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.
Space shuttle on-orbit flight control software requirements, preliminary version
NASA Technical Reports Server (NTRS)
1975-01-01
Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.
Extraction of stability and control derivatives from orbiter flight data
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1993-01-01
The Space Shuttle Orbiter has provided unique and important information on aircraft flight dynamics. This information has provided the opportunity to assess the flight-derived stability and control derivatives for maneuvering flight in the hypersonic regime. In the case of the Space Shuttle Orbiter, these derivatives are required to determine if certain configuration placards (limitations on the flight envelope) can be modified. These placards were determined on the basis of preflight predictions and the associated uncertainties. As flight-determined derivatives are obtained, the placards are reassessed, and some of them are removed or modified. Extraction of the stability and control derivatives was justified by operational considerations and not by research considerations. Using flight results to update the predicted database of the orbiter is one of the most completely documented processes for a flight vehicle. This process followed from the requirement for analysis of flight data for control system updates and for expansion of the operational flight envelope. These results show significant changes in many important stability and control derivatives from the preflight database. This paper presents some of the stability and control derivative results obtained from Space Shuttle flights. Some of the limitations of this information are also examined.
Application of Calspan pitch rate control system to the Space Shuttle for approach and landing
NASA Technical Reports Server (NTRS)
Weingarten, N. C.; Chalk, C. R.
1983-01-01
A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.
First Shuttle/747 Captive Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080460 (14 May 2010) --- Brent Jett, director, flight crew operations; and flight director Norm Knight (foreground) watch a monitor in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during the launch of space shuttle Atlantis a few hundred miles away in Florida. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
Space Shuttle stability and control flight test techniques
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.
NASA Technical Reports Server (NTRS)
Cox, K. J.
1971-01-01
A baseline set of equations which fulfill the computation requirements for guidance, navigation, and control of the space shuttle orbiter vehicle is presented. All shuttle mission phases are covered from prelaunch through landing/rollout. The spacecraft flight mode and the aircraft flight mode are addressed. The baseline equations may be implemented in a single guidance, navigation, and control computer or may be distributed among several subsystem computers.
The Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Greenwood, F. H.; Thompson, C. D.; Willis, N. C.
1974-01-01
The Representative Shuttle Environmental Control System (RSECS) program was conceived to provide NASA with a prototype system representative of the Shuttle Environmental Control System (ECS). Discussed are the RSECS program objectives, predicated on updating and adding to the early system as required to retain its usefulness during the Shuttle ECS development and qualification effort. Ultimately, RSECS will be replaced with a flight-designed system using either refurbished development or qualification equipment to provide NASA with a flight simulation capability during the Shuttle missions. The RSECS air revitalization subsystem and the waste management support subsystem are being tested. A water coolant subsystem and a freon coolant subsystem are in the development and planning phases.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080409 (14 May 2010) --- Brent Jett (left), director, flight crew operations; and flight director Norm Knight are pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
2009-02-20
CAPE CANAVERAL, Fla. – Mike Curie (far left), with NASA Public Affairs, moderates the flight readiness review news conference for space shuttle Discovery's STS-119 mission. On the panel are (from left) Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Manager John Shannon and Space Shuttle Launch Director Mike Leinbach. During a thorough review of Discovery's readiness for flight, NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. Photo credit: NASA/Glenn Benson
Seedling growth and development on space shuttle
NASA Astrophysics Data System (ADS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-11-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
Seedling growth and development on space shuttle
NASA Technical Reports Server (NTRS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-01-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
2010-04-05
JSC2010-E-046737 (5 April 2010) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
STS-116 Flight Controllers on console during mission - WFCR - Orbit 2
2006-12-20
JSC2006-E-54711 (21 Dec. 2006) --- Overall view of the Shuttle Flight Control Room in the Johnson Space Center's Mission Control Center during the final deployment of some small satellites from Space Shuttle Discovery's cargo bay. On a screen in the front of the control room, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers and viewed via live television on the ground.
Space Shuttle stability and control test plan
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1982-01-01
The development of a completely automatic flight test program to test different aspects of the Shuttle flight capability during reentries is described. Data from each flight to date has been employed to devise a sequence of maneuvers which will be keyboard-punched into the Orbiter control system by the astronauts during entry phases of flight. Details of the interaction and cooperation of the Orbiter elevons and bodyflap to provide the vehicle with latitudinal and longitudinal directional control and trim are outlined. Uncertainties predicted for the control of the Orbiter during wind tunnel testing prior to actual flights have been adjusted to actual flight data, leading to the identification of actual flight regimes which need further investigation. Maneuvers scheduled for flights 5-9 are reviewed.
NASA Technical Reports Server (NTRS)
Kirsten, P. W.; Richardson, D. F.; Wilson, C. M.
1983-01-01
Aerodynaic performance, stability and control data obtained from the first five reentries of the Space Shuttle orbiter are given. Flight results are compared to pedicted data from Mach 26.4 to Mach 0.4. Differences between flight and predicted data as well as probable causes for the discrepancies are given.
Subsonic stability and control flight test results of the Space Shuttle /tail cone off/
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
The subsonic stability and control testing of the Space Shuttle Orbiter in its two test flights in the tailcone-off configuration is discussed, and test results are presented. Flight test maneuvers were designed to maximize the quality and quantity of stability and control data in the minimal time allotted using the Space Shuttle Functional Simulator and the Modified Maximum Likelihood Estimator (MMLE) programs, and coefficients were determined from standard sensor data sets using the MMLE, despite problems encountered in timing due to the different measurement systems used. Results are included for lateral directional and longitudinal maneuvers as well as the Space Shuttle aerodynamic data base obtained using the results of wind tunnel tests. The flight test data are found to permit greater confidence in the data base since the differences found are well within control system capability. It is suggested that the areas of major differences, including lateral directional data with open speedbrake, roll due to rudder and normal force due to elevon, be investigated in any further subsonic flight testing. Improvements in sensor data and data handling techniques for future orbital test flights are indicated.
Analyses of shuttle orbiter approach and landing conditions
NASA Technical Reports Server (NTRS)
Teper, G. L.; Dimarco, R. J.; Ashkenas, I. L.; Hoh, R. H.
1981-01-01
A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system.
2010-04-05
JSC2010-E-046798 (5 April 2010) --- Flight director Bryan Lunney watches the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
STS-120 Flight Controllers on console during mission
2007-10-31
JSC2007-E-095788 (3 Nov. 2007) --- Flight directors Norm Knight (left) and Bryan Lunney, inside the shuttle flight control room of JSC's Mission Control Center, monitor the progress of the Nov. 3 spacewalk by two members of Discovery's crew, while the space shuttle is docked with the International Space Station in Earth orbit. Astronaut Scott Parazynski was busy at work on repairing a tear in a solar panel on the orbiting outpost.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080444 (14 May 2010) --- Flight director Richard Jones is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
In-flight testing of the space shuttle orbiter thermal control system
NASA Technical Reports Server (NTRS)
Taylor, J. T.
1985-01-01
In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.
CONSTELLATION Images from other centers - February 2010
2010-02-08
JSC2010-E-019040 (8 Feb. 2010) --- Brent Jett, director, flight crew operations, watches a monitor at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-130 launch. John McCullough (seated), chief of the flight director office, is at right.
2010-04-05
JSC2010-E-046805 (5 April 2010) --- John McCullough, chief of the Flight Director Office; and Janet Kavandi, deputy director, Flight Crew Operations, watch television screens at the Mission Operations Directorate (MOD) console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 liftoff.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118817 (11 May 2009) --- Flight controller Mark McDonald monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, the controller used during docking to the airlock of space shuttle Atlantis stands among the switches filling the control panel on the flight deck. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
STS-134 Flight Controllers on Console - Launch.
2011-05-16
JSC2011-E-044228 (16 May 2011) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-134 launch. Liftoff was at 8:56 a.m. (EDT) on May 16, 2011, from Launch Pad 39A at NASA's Kennedy Space Center. Photo credit: NASA
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080463 (14 May 2010) --- Brent Jett, director, flight crew operations, is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-122 flight controllers in WFCR during launch
2008-02-07
JSC2008-E-010344 (7 Feb. 2008) --- Flight directors Norm Knight (left), Bryan Lunney and Richard Jones monitor data at their consoles in the space shuttle flight control room of Johnson Space Center's Mission Control Center (MCC) during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis' scheduled STS-122 launch. Liftoff occurred at 2:45 p.m. (EST) on Feb. 7, 2008 from launch pad 39A at Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080441 (14 May 2010) --- Flight director Richard Jones is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080454 (14 May 2010) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
Analyses of Shuttle Orbiter approach and landing
NASA Technical Reports Server (NTRS)
Ashkenas, I. L.; Hoh, R. H.; Teper, G. L.
1982-01-01
A study of the Shuttle Orbiter approach and landing conditions is summarized. The causes of observed PIO-like flight deficiencies are listed, and possible corrective measures are examined. Closed-loop pilot/vehicle analyses are described, and a description is given of path-attitude stability boundaries. The latter novel approach is found to be of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. It is shown that the analytical results are consistent with flight test and fixed-base simulation. Conclusions are drawn concerning possible improvements in the Shuttle Orbiter/Digital Flight Control System.
Astronaut Susan Helms on aft flight deck with RMS controls
1994-09-12
STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Suit, W. T.
1986-01-01
Extensive wind tunnel tests were conducted to establish the preflight aerodynamics of the Shuttle vehicle. This paper presents the longitudinal, short-period aerodynamics of the space shuttle Columbia as determined from flight test data. These flight-determined results are compared with the preflight predictions, and areas of agreement or disagreement are noted. In addition to the short-period aerodynamics, the pitch RCS effectiveness was determined.
STS-97 flight control team in WFCR - JSC - MCC
2000-11-24
JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118888 (11 May 2009) --- Flight director Bryan Lunney monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118822 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118883 (11 May 2009) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080439 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118882 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080438 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
2010-04-05
JSC2010-E-046733 (5 April 2010) --- An overall view of the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch. In the foreground are flight directors Tony Ceccacci (left) and Bryan Lunney.
Shuttle program. MCC level C formulation requirements: Shuttle TAEM guidance and flight control
NASA Technical Reports Server (NTRS)
Carman, G. L.
1980-01-01
The Level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are defined. This processor will be used for preentry evaluation of the entry through landing maneuvers, and will include a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.
NASA Technical Reports Server (NTRS)
Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.
1984-01-01
A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1986-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21338 (12 July 2001) --- Robert Gest (left), with United Space Alliance (USA); Steven A. Hawley, deputy director of flight crew operations; and Alan L. (Lee) Briscoe, chief engineer for the Mission Operations Directorate, watch their monitors at the MOD console in the shuttle flight control room (WFCR) as the external tank oxygen vent hood is raised and retracted minutes prior to the launch of the Space Shuttle Atlantis.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
STS-114 Flight Day 13 and 14 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
On Flight Day 13, the crew of Space Shuttle Discovery on the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) hear a weather report from Mission Control on conditions at the shuttle's possible landing sites. The video includes a view of a storm at sea. Noguchi appears in front of a banner for the Japanese Space Agency JAXA, displaying a baseball signed by Japanese MLB players, demonstrating origami, displaying other crafts, and playing the keyboard. The primary event on the video is an interview of the whole crew, in which they discuss the importance of their mission, lessons learned, shuttle operations, shuttle safety and repair, extravehicular activities (EVAs), astronaut training, and shuttle landing. Mission Control dedicates the song "A Piece of Sky" to the Shuttle crew, while the Earth is visible below the orbiter. The video ends with a view of the Earth limb lit against a dark background.
2007-07-20
JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.
STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney
2009-03-24
JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.
STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci
2009-05-20
JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.
STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin
2010-04-14
JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.
STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick
2010-04-12
JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.
STS-120 Orbit 2 Flight Control Team Photo
2007-10-31
JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.
NASA Technical Reports Server (NTRS)
Nelson, T. E.; Peterson, J. R.
1982-01-01
The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.
Launching a dream: A teachers guide to a simulated space shuttle mission
NASA Technical Reports Server (NTRS)
1989-01-01
Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045475 (17 May 2011) --- Flight director Paul Dye monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084363 (17 May 2010) --- Flight director Chris Edelen monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 flight day four activities.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119397 (12 May 2009) --- Flight directors Rick LaBrode (left) and Chris Edelen monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.
First Integrated Flight Simulation For STS 114
2004-10-13
JSC2004-E-45138 (13 October 2004) --- Astronaut Stephen N. Frick monitors communications at the spacecraft communicator (CAPCOM) console in the Shuttle Flight Control Room (WFCR) in Johnson Space Centers (JSC) Mission Control Center (MCC) with the STS-114 crewmembers during a fully-integrated simulation on October 13. The seven member crew was in a JSC-based simulator during the sims. The dress rehearsal of Discovery's rendezvous and docking with the International Space Station (ISS) was the first flight-specific training for the Space Shuttle's return to flight.
STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south
2010-05-20
JSC2010-E-086375 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.
STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south
2010-05-20
JSC2010-E-086399 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.
Shuttle orbiter flash evaporator operational flight test performance
NASA Technical Reports Server (NTRS)
Nason, J. R.; Behrend, A. F., Jr.
1982-01-01
The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.
STS-125 Flight Control Team in WFCR - Orbit 2 - Flight Director Richard LaBrode
2009-05-20
JSC2009-E-120845 (20 May 2009) --- The members of the STS-125 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Rick LaBrode (right) is visible on the front row.
STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye
2009-05-20
JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.
STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones
2010-04-12
JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.
Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick
2008-01-01
Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle flight. A comprehensive evaluation of results is in progress.
Space Shuttle GN and C Development History and Evolution
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don
2011-01-01
Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.
STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci
2009-05-14
JSC2009-E-120480 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci
2009-05-14
JSC2009-E-120486 (14 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-125 Flight Controllers on Console - (Orbit Shift 1). Flight Director: Anthony Ceccacci
2009-05-14
JSC2009-E-120489 (14 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119632 (13 May 2009) --- Flight director Tony Ceccacci and astronaut Dan Burbank (background), STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.
Shuttle operations era planning for flight operations
NASA Technical Reports Server (NTRS)
Holt, J. D.; Beckman, D. A.
1984-01-01
The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.
The development and testing of a regenerable CO2 and humidity control system for Shuttle
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1977-01-01
A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a plethora of switches fills the control panel on the flight deck of space shuttle Atlantis. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
STS-132 Flight Control Team in WFCR - Orbit 1
2010-05-22
JSC2010-E-086698 (22 May 2010) --- The members of the STS-132 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin (center) is visible on the front row.
STS-132 Flight Control Team in WFCR - Orbit 2
2010-05-20
JSC2010-E-086451 (20 May 2010) --- The members of the STS-132 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Chris Edelen (second left) is visible on the front row.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119378 (12 May 2009) --- Tomas Gonzalez-Torres, STS-125 lead spacewalk officer, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119633 (13 May 2009) --- Astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities.
STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode
2009-05-12
JSC2009-E-119391 (12 May 2009) --- Astronaut Alan Poindexter, STS-125 spacecraft communicator (CAPCOM), monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day two activities.
STS-109 Flight Control Team Photo in WFCR - Orbit 2 with Flight Director Tony Ceccaci.
2002-03-05
JSC2002-00574 (5 March 2002) --- The members of the STS-109 Orbit 2 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC). Flight director Tony Ceccacci holds the STS-109 mission logo.
HAL/S programmer's guide. [for space shuttle program
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.
2010-04-05
JSC2010-E-046802 (5 April 2010) --- An overall view of the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch. Visible in the foreground (from the left) are flight directors Tony Ceccacci and Bryan Lunney; along with astronauts Rick Sturckow and George Zamka, both spacecraft communicators (CAPCOM).
The faulty Master Events Controller is removed from STS-99 Endeavour
NASA Technical Reports Server (NTRS)
2000-01-01
Technicians remove a faulty Enhanced Main Events Controller (E- MEC) from Shuttle Endeavour at Launch Pad 39A. The E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
The faulty Master Events Controller is carried away from STS-99 Endeavour
NASA Technical Reports Server (NTRS)
2000-01-01
Workers carry away the faulty Enhanced Main Events Controller (E- MEC) from Shuttle Endeavour at Launch Pad 39A. The E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
STS-109 Flight Control Room Photo
2002-03-05
JSC2002-00575 (5 March 2002) --- The members of the STS-109 Orbit 3 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). Flight director Jeff Hanley is visible in the center foreground.
STS-109 Flight Control Room Photo
2002-03-05
JSC2002-00576 (5 March 2002) --- The members of the STS-109 Orbit 3 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). Flight director Jeff Hanley is visible in the center foreground.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1974-01-01
An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.
STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.
STS-132 Flight Control Team in WFCR
2010-05-25
JSC2010-E-087358 (25 May 2010) --- The members of the STS-132 Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081909 (18 May 2010) --- Flight director Mike Sarafin (left) and NASA astronaut Chris Cassidy, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day five activities.
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084271 (17 May 2010) --- Flight director Chris Edelen (right) and NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
Shuttle Orbiter Active Thermal Control Subsystem design and flight experience
NASA Technical Reports Server (NTRS)
Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo
1991-01-01
The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.
STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight
2009-05-21
JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.
2005-08-11
The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-11
The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081929 (18 May 2010) --- Kyle Herring, Public Affairs Office (PAO) commentator, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day five activities.
2005-08-12
Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Messer, Bradley P.
2006-01-01
This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080432 (14 May 2010) --- Astronaut Charles Hobaugh, spacecraft communicator (CAPCOM) for the STS-132 mission, is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
NASA Technical Reports Server (NTRS)
2006-01-01
Just before the space shuttle reaches orbit, its three main engines shut down so that it can achieve separation from the massive external tank that provided the fuel required for liftoff and ascent. In jettisoning the external tank, which is completely devoid of fuel at this point in the flight, the space shuttle fires a series of thrusters, separate from its main engines, that gives the orbiter the maneuvering ability necessary to safely steer clear of the descending tank and maintain its intended flight path. These thrusters make up the space shuttle s Reaction Control System. While the space shuttle s main engines only provide thrust in one direction (albeit a very powerful thrust), the Reaction Control System engines allow the vehicle to maneuver in any desired direction (via small amounts of thrust). The resulting rotational maneuvers are known as pitch, roll, and yaw, and are very important in ensuring that the shuttle docks properly when it arrives at the International Space Station and safely reenters the Earth s atmosphere upon leaving. To prevent the highly complex Reaction Control System from malfunctioning during space shuttle flights, and to provide a diagnosis if such a mishap were to occur, NASA turned to a method of artificial intelligence that truly defied the traditional laws of computer science.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1985-01-01
A six degree of freedom simulation analysis was performed for the space shuttle orbiter during entry from Mach 8 to Mach 1.5 with realistic off nominal conditions by using the flight control systems defined by the shuttle contractor. The off nominal conditions included aerodynamic uncertainties in extrapolating from wind tunnel derived characteristics to full scale flight characteristics, uncertainties in the estimates of the reaction control system interaction with the orbiter aerodynamics, an error in deriving the angle of attack from onboard instrumentation, the failure of two of the four reaction control system thrusters on each side, and a lateral center of gravity offset coupled with vehicle and flow asymmetries. With combinations of these off nominal conditions, the flight control system performed satisfactorily. At low hypersonic speeds, a few cases exhibited unacceptable performances when errors in deriving the angle of attack from the onboard instrumentation were modeled. The orbiter was unable to maintain lateral trim for some cases between Mach 5 and Mach 2 and exhibited limit cycle tendencies or residual roll oscillations between Mach 3 and Mach 1. Piloting techniques and changes in some gains and switching times in the flight control system are suggested to help alleviate these problems.
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045468 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA
STS-134 Orbit 3 Flight Controllers on Console
2011-05-19
JSC2011-E-046428 (19 May 2011) --- NASA astronaut Shannon Lucid, STS-134 spacecraft communicator (CAPCOM), is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center during flight day four activities. Photo credit: NASA
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045467 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA
An active thermal control surfaces experiment. [spacecraft temperature determination
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Brown, M. J.
1979-01-01
An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.
Integrated digital flight-control system for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.
Space shuttle operations integration plan
NASA Technical Reports Server (NTRS)
1975-01-01
The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080410 (14 May 2010) --- Astronauts Steve Frick (standing) and Charles Hobaugh, both spacecraft communicators (CAPCOM) for the STS-132 mission, are pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
Transplantable tissue growth-a commercial space venture
NASA Astrophysics Data System (ADS)
Giuntini, Ronald E.; Vardaman, William K.
1997-01-01
Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.
Space Shuttle flying qualities and flight control system assessment study, phase 2
NASA Technical Reports Server (NTRS)
Myers, T. T.; Johnston, D. E.; Mcruer, D. T.
1983-01-01
A program of flying qualities experiments as part of the Orbiter Experiments Program (OEX) is defined. Phase 1, published as CR-170391, reviewed flying qualities criteria and shuttle data. The review of applicable experimental and shuttle data to further define the OEX plan is continued. An unconventional feature of this approach is the use of pilot strategy model identification to relate flight and simulator results. Instrumentation, software, and data analysis techniques for pilot model measurements are examined. The relationship between shuttle characteristics and superaugmented aircraft is established. STS flights 1 through 4 are reviewed from the point of view of flying qualities. A preliminary plan for a coordinated program of inflight and simulator research is presented.
NASA Technical Reports Server (NTRS)
Weil, J.
1981-01-01
Flight derived longitudinal and lateral-directional stability and control derivatives were compared to wind-tunnel derived values. As a result of these comparisons, boundaries representing the uncertainties that could be expected from wind-tunnel predictions were established. These boundaries provide a useful guide for control system sensitivity studies prior to flight. The primary application for this data was the space shuttle, and as a result the configurations included in the study were those most applicable to the space shuttle. The configurations included conventional delta wing aircraft as well as the X-15 and lifting body vehicles.
Integrated Digital Flight Control System for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.
STS-134 Orbit 1 flight controllers on console during AMS install
2011-05-19
JSC2011-E-046802 (19 May 2011) --- NASA astronaut Megan McArthur, STS-134 spacecraft communicator (CAPCOM), monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities. Photo credit: NASA
STS-134 Flight Controllers on Console - Landing
2011-06-01
JSC2011-E-050168 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Flight directors Richard Jones (left) and Tony Ceccacci are visible in the foreground. Photo credit: NASA
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084362 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084364 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-67 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1995-01-01
The STS-67 Space Shuttle Program Mission Report provides the results of the orbiter vehicle performance evaluation during this sixty-eighth flight of the Shuttle Program, the forty-third flight since the return to flight, and the eighth flight of the Orbiter vehicle Endeavour (OV-105). In addition, the report summarizes the payload activities and the performance of the External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engines (SSME). The serial numbers of the other elements of the flight vehicle were ET-69 for the ET; 2012, 2033, and 2031 for SSME's 1, 2, and 3, respectively; and Bl-071 for the SRB's. The left-hand RSRM was designated 360W043A, and the right-hand RSRM was designated 360L043B. The primary objective of this flight was to successfully perform the operations of the ultraviolet astronomy (ASTRO-2) payload. Secondary objectives of this flight were to complete the operations of the Protein Crystal Growth - Thermal Enclosure System (PCG-TES), the Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES), the Commercial Materials Dispersion Apparatus ITA Experiments (CMIX), the Shuttle Amateur Radio Experiment-2 (SAREX-2), the Middeck Active Control Experiment (MACE), and two Get-Away Special (GAS) payloads.
2005-08-12
Todd Viddle; APU advanced systems technician, Robert 'Skip' Garrett; main propulsion advanced systems technician, and Dan McGrath; main propulsion systems engineer technician, remove a servicing unit from the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1993-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.
2005-08-12
Flight Crew Systems Technicians Ray Smith and Raphael Rodriguez remove one of the Extravehicular Mobility Units, or EMUs, from the Space Shuttle Discovery after it's successful landing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14
Real time data acquisition for expert systems in Unix workstations at Space Shuttle Mission Control
NASA Technical Reports Server (NTRS)
Muratore, John F.; Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Gnabasik, Mark; Mcfarland, Robert Z.; Bailey, Samuel A.
1990-01-01
A distributed system of proprietary engineering-class workstations is incorporated into NASA's Space Shuttle Mission-Control Center to increase the automation of mission control. The Real-Time Data System (RTDS) allows the operator to utilize expert knowledge in the display program for system modeling and evaluation. RTDS applications are reviewed including: (1) telemetry-animated communications schematics; (2) workstation displays of systems such as the Space Shuttle remote manipulator; and (3) a workstation emulation of shuttle flight instrumentation. The hard and soft real-time constraints are described including computer data acquisition, and the support techniques for the real-time expert systems include major frame buffers for logging and distribution as well as noise filtering. The incorporation of the workstations allows smaller programming teams to implement real-time telemetry systems that can improve operations and flight testing.
2001-08-16
JSC2001-E-25466 (16 August 2001) --- Flight director Bryan Austin studies data at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC) during the STS-105 mission.
2005-08-14
Lightning strikes in the distance as the Space Shuttle Discovery receives post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-14
A technician leaves the 'white room', the access point for entering the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-14
The sun sets on the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
STS-99 workers carry new Master Events Controller to Endeavour
NASA Technical Reports Server (NTRS)
2000-01-01
Workers carry the replacement Enhanced Main Events Controller (E- MEC) to Shuttle Endeavour at Launch Pad 39A for installation in the aft compartment of the payload bay. The original E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
STS-99 workers move new Master Events Controller into aft compartment
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A, workers move the replacement Enhanced Main Events Controller (E-MEC) into Shuttle Endeavour's aft compartment in the payload bay. The original E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
Shuttle Entry Imaging Using Infrared Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve
2007-01-01
During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.
NASA Technical Reports Server (NTRS)
Newbold, P. M.
1974-01-01
A programming language for the flight software of the NASA space shuttle program was developed and identified as HAL/S. The language is intended to satisfy virtually all of the flight software requirements of the space shuttle. The language incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks.
Approach & Landing Test (ALT) - Shuttle Free-Flight (FF)-2 - New Release
1977-09-13
S77-28141 (13 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" makes a slight turn and bank maneuver during the second free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 13, 1977, at the Dryden Flight Research Center in Southern California. The "Enterprise" separated from the NASA 747 carrier aircraft and landed following a five-minute, 28-second unpowered flight. The Orbiter 101 crew was astronauts Joe H. Engle, commander, and Richard H. Truly, pilot. The ALT free flights are designed to verify orbiter subsonic airworthiness, integrated systems operations and pilot-guided approach and landing capability and satisfy prerequisites to automatic flight control and navigation mode. The orbiter soars above the dry California desert in this post-separation view. Photographer Bill Blunck of JSC's Photographic Technology Laboratory took this picture while riding in T-38 chase plane number two. He used a 70mm Hasselblad camera with an 80mm lens.
Approach & Landing Test (ALT) - Shuttle Free-Flight (FF)-2, News Release
1977-09-13
S77-28138 (13 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" makes a slight turn and bank maneuver during the second free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 13, 1977, at the Dryden Flight Research Center in Southern California. The "Enterprise" separated from the NASA 747 carrier aircraft and landed following a five-minute, 28-second unpowered flight. The Orbiter 101 crew was astronauts Joe H. Engle, commander, and Richard H. Truly, pilot. The ALT free flights are designed to verify orbiter subsonic airworthiness, integrated systems operations and pilot-guided approach and landing capability and satisfy prerequisites to automatic flight control and navigation mode. The orbiter soars above the dry California desert in this post-separation view. Astronaut C. Gordon Fullerton took this picture while riding in T-38 chase plane number one. He used a 35mm Nikon camera with a 50mm lens.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.
Documentation of White Flight Control Room (WFCR), Building 30 during STS-109.
2002-03-07
JSC2002-E-08460 (7 March 2002) --- Flight directors Jeff Hanley (standing) and Bryan P. Austin watch the large screens from their consoles in the shuttle flight control room (WFCR) in Houston;s Mission Control Center (MCC) during the STS-109 Hubble Space Telescope (HST) servicing mission.
STS-134 Flight Controllers on Console - Landing
2011-06-01
JSC2011-E-050134 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Photo credit: NASA
STS-134 Flight Controllers on Console - Landing
2011-06-01
JSC2011-E-050159 (1 June 2011) --- An overall view of the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center photographed during STS-134/ULF-6 landing day activities. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Applegate, Joseph L.
2014-01-01
This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Shuttle Flight Operations Contract Generator Maintenance Facility (SFOC; SWMU 081; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the SFOC, an institutional land use control (LUC) is necessary to prevent human health exposure to antimony-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.
STS-99 Shuttle Radar Topography Mission Stability and Control
NASA Technical Reports Server (NTRS)
Hamelin, Jennifer L.; Jackson, Mark C.; Kirchwey, Christopher B.; Pileggi, Roberto A.
2001-01-01
The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design.
STS-71 Shuttle/Mir mission report
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
1995-01-01
The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.
Brown, Rominger and Curbeam conduct flight control systems checkout
1997-08-29
STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.
Flight Director Portrait - Bryan Austin with Lead EVA Console OPS- for Texas A&M Alumni Magazine
2002-02-27
JSC2002-00546 (February 2002) --- Bryan P. Austin, lead flight director for STS-109, and Dana Weigel, lead EVA officer, pose near their respective consoles in the Shuttle Flight Control Room of the Johnson Space Center's Mission Control Center.
NASA Technical Reports Server (NTRS)
Powell, R. W.; Stone, H. W.
1980-01-01
A six-degree-of-freedom simulation analysis was performed for the space shuttle orbiter entry from Mach 10 to Mach 2.5 with realistic off-nominal conditions using the flight control system referred to as the November 1976 Integrated Digital Autopilot. The off-nominal conditions included: (1) aerodynamic uncertainties in extrapolating from wind tunnel of flight characteristics, (2) error in deriving angle of attack from onboard instrumentation, (3) failure of two of the four reaction control-system thrusters on each side (design specification), and (4) lateral center-of-gravity offset. Many combinations of these off-nominal conditions resulted in a loss of the orbiter. Control-system modifications were identified to prevent this possibility.
A new Master Events Controller is prepared for installation in STS-99 Endeavour
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in a Quality trailer in the Launch Pad 39B Area unwrap a new Enhanced Main Events Controller (E-MEC) to be installed in Shuttle Endeavour. The original E-MEC in Endeavour became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. The E-MECs are located in the orbiter's aft compartment and both are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. Before workers can begin E-MEC replacement efforts at the launch pad, cryogenic reactants must be offloaded from the orbiter and Space Shuttle ordnance disconnected. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
A new Master Events Controller is prepared for installation in STS-99 Endeavour
NASA Technical Reports Server (NTRS)
2000-01-01
A new Enhanced Main Events Controller (E-MEC) for Shuttle Endeavour sits on a table in a Quality trailer in the Launch Pad 39B area. The original E-MEC in Endeavour became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. The E-MECs are located in the orbiter's aft compartment and both are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. Before workers can begin E-MEC replacement efforts at the launch pad, cryogenic reactants must be offloaded from the orbiter and Space Shuttle ordnance disconnected. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
NASA Technical Reports Server (NTRS)
Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.
1974-01-01
Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.
2001-07-16
JSC2001-E-21584 (16 July 2001) --- STS-104 Orbit 1 flight director Paul Hill discusses mission related matters over the phone at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC).
Software for Engineering Simulations of a Spacecraft
NASA Technical Reports Server (NTRS)
Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis
2005-01-01
Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
2005-08-18
NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
Stability and control flight test results of the space transportation system's orbiter
NASA Technical Reports Server (NTRS)
Culp, M. A.; Cooke, D. R.
1982-01-01
Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.
2011-07-12
JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
2010-05-19
JSC2010-E-085363 (19 May 2010) --- The members of the STS-132 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (right) holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration
2006-09-09
KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, Robbie Ashley, STS-115 payload manager, and Pat Lesley, with United Space Alliance, receive a special award from (at left) Shuttle Launch Director Mike Leinbach and (at right) NASA Flow Director Angie Brewer. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-09
KENNEDY SPACE CENTER, FLA. - Inside the Launch Control Center, KSC officials turn from their computers to watch through the broad windows the launch of Space Shuttle Atlantis on mission STS-115. Second from left is NASA Test Director Pete Nickolenko. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. sts-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
Biochemical and hematologic changes after short-term space flight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.
1991-01-01
Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration = 28, 56, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights.
NASA Technical Reports Server (NTRS)
Reuter, William H.; Buning, Pieter G.; Hobson, Garth V.
1993-01-01
An effective control canard design to provide enhanced controllability throughout the flight regime is described which uses a 3D, Navier-Stokes computational solution. The use of canard by the Space Shuttle Orbiter in both hypersonic and subsonic flight regimes can enhance its usefullness by expanding its payload carrying capability and improving its static stability. The canard produces an additional nose-up pitching moment to relax center-of-gravity constraint and alleviates the need for large, lift-destroying elevon deflections required to maintain the high angles of attack for effective hypersonic flight.
Physiological Anatomical Rodent Experiment (PARE) .04 feasibility test 2
NASA Technical Reports Server (NTRS)
Burden, Hubert W.
1994-01-01
The objective of this feasibility study was to subject pregnant rats of the same age, strain, and size that will be utilized in a shuttle flight experiment to all flight conditions except the unique microgravity of space flight and determine the feasibility of the proposed experimental design to meet the experimental objectives. The study utilized facilities at NASA, Ames Research Center, Moffett Field, CA to subject the rats to the gravitational stresses of a simulated shuttle launch and simulated shuttle landing. One hundred pregnant rats were received on gestation day (G) 2 (day 1 = day of vaginal sperm) and on G7, eighty rats were laparotomized to determine the condition of pregnancy and allow assignment to test groups. The five test groups (N=10 each group) were as follows: Group 1, Nominal Flight; Group 2, Laparotomy Control; Group 3, Hysterectomy Control; Group 4, Vivarium Control; Group 5, Delayed Recovery. On G9, animals in groups 1,2,3, and 5 were subjected to a shuttle launch simulation. On G18, groups 1,2, and 3 were subjected to a shuttle landing simulation and on this same day groups 1 and 2 were subjected to unilateral hysterectomy to obtain fetuses and placentas for evaluation. Fetal crown-rump length and fetal weight of the Nominal Flight group was significantly less than the Laparotomy Control group, but placentas were similar. On G20, group 5 was subjected to a shuttle landing simulation and on this day this group received a unilateral hysterectomy and fetuses and placentas were weighed. Animals in all groups were allowed to go to term and all animals delivered between 06:00 hours G22 and 18:00 hours G23. After delivery, a blood sample was taken from each experimental dam, and they were euthanized and the thymus and adrenal glands weighed. The thymus weight from all experimental group dams was decreased relative to the Vivarium Control group but adrenal glands and hormone values in dam plasma was similar in all groups. Pups from experimental groups were tattooed for identification, the anogenital distance of male pups was measured, and all pups placed with foster dams and litter sizes were standardized to 10. There was no difference in anogenital distances between male pups from different test groups. Pups delivered from Delayed Recovery animals were smaller than pups delivered from Nominal Flight animals. On neonatal day 7, all pups were euthanized and pup adrenal glands and thymus weighed. There was no difference in weights of thymus and adrenal glands in pups euthanized at neonatal day 7. Collectively, these data confirm the feasibility of the experimental design to meet objectives of the studies proposed for shuttle flight.
STS-99 Technicians work in Endeavour's aft compartment of the payload bay
NASA Technical Reports Server (NTRS)
2000-01-01
Technicians work in the aft compartment of Shuttle Endeavour's payload bay, where a new Enhanced Main Events Controller (E-MEC) will be installed. The original E-MEC in Endeavour became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. Before workers can begin E-MEC replacement efforts at the launch pad, cryogenic reactants had to be offloaded from the orbiter and Space Shuttle ordnance disconnected. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.
Midodrine as a Countermeasure to Orthostatic Hypotension Immediately After Space Shuttle Landing
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Stenger, Michael B.; Ribeiro, L. Christine; Lee, Stuart M. C.
2010-01-01
Midodrine prevents post-space flight orthostatic intolerance when testing is conducted in a controlled laboratory setting within 2-4 hours after Space Shuttle landing. It is unknown if midodrine is as effective during re-entry and immediately following landing. METHODS: Cardiovascular responses to 10 minutes of 80 head-up tilt in five male astronauts were compared before and immediately after Space Shuttle missions. Preflight tests were conducted in the Johnson Space Center Cardiovascular Laboratory without midodrine. Post-flight testing was performed in the Crew Transport Vehicle on the Space Shuttle runway within 60 minutes of landing; midodrine was self-administered before re-entry. Survival analysis was performed (Gehan-Breslow test) to compare presyncope rates pre- to post-flight. Cardiovascular responses (last minute standing minus supine) to tilt before and after space flight were compared using paired t-tests. RESULTS: Midodrine did not prevent post-flight orthostatic hypotension in two of the five astronauts, but the rate of presyncope across the group did not increase (p=0.17) from pre- to post-flight. Also, although the change in heart rate from supine to the last minute of standing was not affected by space flight, systolic blood pressure decreased more (p=0.05) and diastolic blood pressure tended to decrease (p=0.08) after space flight. CONCLUSIONS: Accurate interpretation of the current results requires that similar data be collected in control subjects (without midodrine) on the CTV. However, drug interaction concerns with commonly used anti-emetics and potentiation of prolonged QTc intervals observed in long duration astronauts make the routine use of midodrine for immediate post-flight orthostatic hypotension unlikely. 2
STS Approach and Landing Test (ALT): Flight 5 - Slow Motion video of pilot-induced oscillation (PIO)
NASA Technical Reports Server (NTRS)
1977-01-01
During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.
STS Approach and Landing Test (ALT): Flight 5 - pilot-induced oscillation (PIO) on landing
NASA Technical Reports Server (NTRS)
1977-01-01
During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.
Physiological Anatomical Rodent Experiment (PARE): 04 Flight Support
NASA Technical Reports Server (NTRS)
Burden, Hubert W.
1997-01-01
Rats were shipped to Kennedy Space Center (KSC), Florida, on day 2 of gestation [(G2) (day 1 = morning on which spermatozoa are present in the vagina)] and laparotomized on G7 to determine the number of implantation sites in each uterine horn. On G8, ten pregnant rats meeting flight criteria (at least five implantation sites each horn) were placed into NASA flight cages (animal enclosure modules, AEMS, five rats per cage), loaded onto the mid-deck of the space shuttle Atlantis, and on G9 (November 3, 1994) they were launched into orbit. On gestation day 20, (November 14, 1994) the shuttle returned to Edwards Air Force Base, California and the flight animals were recovered from the shuttle and subjected to unilateral hysterectomy to provide fetal material from one horn to investigators identified by NASA to study selected fetal parameters. After unilateral hysterectomy, the animals were allowed to recover and deliver vaginally. There were three groups (n = 10 each group) of control animals housed at KSC in the study. A synchronous control group, delayed 24 hours with reference to the flight group, received the same surgeries and was housed five rats per AEM and exposed to all flight conditions (identical temperatures, lighting and humidity) except microgravity. Vivarium control group I did not receive any surgery and was housed in the vivarium in clear polycarbonate cages. Vivarium control group 2 received only a unilateral hysterectomy on day 20 of gestation but otherwise was housed like the vivarium control group 1. Control groups were allowed to complete their pregnancy and deliver fetuses from the remaining horn (Synchronous control and vivarium control group 2) or horns (Vivarium control group 1). After surgery, the dams were euthanized and tissues recovered, and the neonates were assigned to foster dams.
STS-113 Flight Control Team Photo in WFCR - Orbit 2 with Flight Director John Curry.
2002-11-27
JSC2002-02106 (27 November 2002) --- The members of the STS-113 Orbit 2 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). Flight Director John Curry stands to the left of the STS-113 mission logo and astronaut Lisa M. Nowak, spacecraft communicator (CAPCOM), stands to the left of Curry.
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.
2011-01-01
The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance
NASA Technical Reports Server (NTRS)
1973-01-01
Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.
Shuttle Performance: Lessons Learned, part 1
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
MS Ivins at the Atlantis aft flight deck controls
2001-02-10
STS98-E-5078 (10 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, monitors communications from ground controllers from her post at the aft flight deck controls on the Space Shuttle Atlantis. The scene was recorded with a digital still camera.
A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control
NASA Technical Reports Server (NTRS)
ONeill, John; Shalin, Valerie L.
2000-01-01
The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.
Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
2002-03-07
Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.
Continuous Improvements to East Coast Abort Landings for Space Shuttle Aborts
NASA Technical Reports Server (NTRS)
Butler, Kevin D.
2003-01-01
Improvement initiatives in the areas of guidance, flight control, and mission operations provide increased capability for successful East Coast Abort Landings (ECAL). Automating manual crew procedures in the Space Shuttle's onboard guidance allows faster and more precise commanding of flight control parameters needed for successful ECALs. Automation also provides additional capability in areas not possible with manual control. Operational changes in the mission concept allow for the addition of new landing sites and different ascent trajectories that increase the regions of a successful landing. The larger regions of ECAL capability increase the safety of the crew and Orbiter.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
Immunological analyses of U.S. Space Shuttle crewmembers
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Neale, L. S.; Dardano, J. R.
1986-01-01
Changes in the immunoresponsiveness of 'T' lymphocytes following space flight have been reported previously. Additional data collected before and after 11 Shuttle space flights show that absolute lymphocyte numbers, lymphocyte blastogenic capability, and eosinophil percent in the peripheral blood of crewmembers are generally depressed postflight. These responses resemble those associated with physical and emotional stress and may not be related to flight per se. Additional data from Space Shuttle flights 41B and 41D, involving 11 crewmembers, indicate a postflight decrease in cells reacting with 'B' lymphocyte and monocyte monoclonal antibody tags. Further, the loss of 'T' lymphocyte blast capability correlates with the decreased monocyte count (correlation coefficient = 0.697). This finding implies that the previously reported loss of blastogenic capability may be a function of decreased monocyte control, as noted in several nonspaceflight related studies.
2005-08-19
The Space Shuttle Discovery hitched a ride on NASA's modified Boeing 747 Shuttle Carrier Aircraft for the flight from the Dryden Flight Research Center in California, to Kennedy Space Center, Florida, on August 19, 2005. The cross-country ferry flight to return Discovery to Florida after it's landing in California will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
STS-1 landing at Edwards - first orbital mission
NASA Technical Reports Server (NTRS)
1981-01-01
The first flight of a space shuttle into space and back occurred from April 12 to April 14, 1981. After years of testing of the space shuttle Columbia and training the astronauts in simulators, the orbiter lifted off into space on the 12th, boosted by the seven million pounds of thrust supplied by its solid-propellant rockets and liquid-hydrogen engines. The flight, one of four Orbital Flight Tests of Columbia, served as a two-day demonstration of the first reusable, piloted spacecraft's ability to go into orbit and return safely to Earth. Columbia carried as its main payload a Developmental Flight Instrumentation pallet with instruments to record pressures, temperatures, and levels of acceleration at various points on the vehicle during launch, flight, and landing. One of many cameras aboard--a remote television camera--revealed some of the thermal protection tiles had disengaged during launch. As Columbia reentered the atmosphere from space at Mach 24 (24 times the speed of sound) after 36 orbits, aerodynamic heating built up to over 3,000 degrees Fahrenheit, causing some concern during the moments when ionized gases disrupted radio communication. But at 188,000 feet and Mach 10, mission commander John W. Young and pilot Robert L. Crippen reported that the orbiter was performing as expected. After a series of maneuvers to reduce speed, the mission commander and pilot prepared to land. In flight, Young and Crippen tested the spacecraft's on-board systems, fired the orbital maneuvering system for changing orbits, employed the reaction control system for controlling attitude, and opened and closed the payload doors. Columbia was the first reusable, piloted spacecraft, the first piloted lifting-reentry vehicle, and the first piloted spacecraft without a crew escape system. Energy management for the space shuttles was based on previous experience with the X-15 at NASA's Flight Research Center (which had become the Dryden Flight Research Center in 1976). Landing the shuttles without power--and therefore without the weight penalty of an additional engine and fuel--was based on previous experience at the Flight Research Center with piloted lifting bodies that also landed without power, as had the X-15s. Dryden and Edwards Air Force Base (AFB) had also hosted the approach and landing tests of the shuttle prototype Enterprise in 1977 and had tested the computers used for the shuttles' flight control systems in the F-8 Digital Fly-By-Wire aircraft, which also contributed to the solution of a dangerous pilot induced oscillation that occurred on the final approach and landing test. In this clip Young and Crippen fly the orbiter Columbia to a picture-perfect, unpowered landing on the dry lakebed runway 23 at Edwards AFB, CA, after it's first orbital flight, which ended on April 14.
Replication of Space-Shuttle Computers in FPGAs and ASICs
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2008-01-01
A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.
Space Shuttle Orbiter auxiliary power unit
NASA Technical Reports Server (NTRS)
Mckenna, R.; Wicklund, L.; Baughman, J.; Weary, D.
1982-01-01
The Space Shuttle Orbiter auxiliary power units (APUs) provide hydraulic power for the Orbiter vehicle control surfaces (rudder/speed brake, body flap, and elevon actuation systems), main engine gimbaling during ascent, landing gear deployment and steering and braking during landing. Operation occurs during launch/ascent, in-space exercise, reentry/descent, and landing/rollout. Operational effectiveness of the APU is predicated on reliable, failure-free operation during each flight, mission life (reusability) and serviceability between flights (turnaround). Along with the accumulating flight data base, the status and results of efforts to achieve these long-run objectives is presented.
2005-08-18
NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
A comparison of hypersonic vehicle flight and prediction results
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1995-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for four hypersonic vehicles are discussed. The four vehicles are the X-15, the Reentry F, the Sandia Energetic Reentry Vehicle Experiment (SWERVE), and the Space Shuttle. The comparisons are taken from papers published by researchers active in the various programs. Aerodynamic comparisons include reaction control jet interaction on the Space Shuttle. Various forms of heating including catalytic, boundary layer, shock interaction and interference, and vortex impingement are compared. Predictions were significantly exceeded for the heating caused by vortex impingement (on the Space Shuttle OMS pods) and for heating caused by shock interaction and interference on the X-15 and the Space Shuttle. Predictions of boundary-layer state were in error on the X-15, the SWERVE, and the Space Shuttle vehicles.
NASA Technical Reports Server (NTRS)
Friend, Robert B.
1998-01-01
In the modeling of spacecraft dynamics it is important to accurately characterize the environment in which the vehicle operates, including the environments induced by the vehicle itself. On the Space Shuttle these induced environmental factors include reaction control system plume. Knowledge of these environments is necessary for performance of control systems and loads analyses, estimation of disturbances due to thruster firings, and accurate state vector propagation. During the STS-71 mission, while the Orbiter was performing attitude control for the mated Orbiter/Mir stack, it was noted that the autopilot was limit cycling at a rate higher than expected from pre-flight simulations. Investigations during the mission resulted in the conjecture that an unmodelled plume impingement force was acting upon the orbiter elevons. The in-flight investigations were not successful in determining the actual magnitude of the impingement, resulting in several sequential post-flight investigations. Efforts performed to better quantify the vernier reaction control system induced plume impingement environment of the Space Shuttle orbiter are described in this paper, and background detailing circumstances which required the more detailed knowledge of the RCS self impingement forces, as well as a description of the resulting investigations and their results is presented. The investigations described in this paper applied microgravity acceleration data from two shuttle borne microgravity experiments, SAMS and OARE, to the solution of this particular problem. This solution, now used by shuttle analysts and mission planners, results in more accurate propellant consumption and attitude limit cycle estimates in preflight analyses, which are critical for pending International Space Station missions.
STS-118 Ascent/Entry Flight Control Team in WFCR
2007-09-17
JSC2007-E-46429 (17 Sept. 2007) --- The members of the STS-118 Ascent/Entry flight control team and crewmembers pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich holds the STS-118 mission logo. Astronauts Scott Kelly, commander, is at left foreground and astronaut Chris Ferguson, spacecraft communicator (CAPCOM), is at right foreground. Additional crewmembers pictured are Charlie Hobaugh, pilot; Barbara R. Morgan, Tracy Caldwell and Rick Mastracchio, all mission specialists.
2012-07-20
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, students and their flight instructors from Florida Tech, or FIT, in Melbourne, tour the midfield Air Traffic Control Tower. The instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
STS-105 Flight Control Team Photo
2001-08-16
JSC2001-02228 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Planning team pose for a group portrait in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). Astronaut Robert L. Curbeam, Jr., spacecraft communicator (CAPCOM), stands behind the STS-105 mission logo. Flight director Bryan Austin is visible in the front row on the far right.
Scintillation Effects on Space Shuttle GPS Data
NASA Technical Reports Server (NTRS)
Goodman, John L.; Kramer, Leonard
2001-01-01
Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.
Shuttle Risk Progression by Flight
NASA Technical Reports Server (NTRS)
Hamlin, Teri; Kahn, Joe; Thigpen, Eric; Zhu, Tony; Lo, Yohon
2011-01-01
Understanding the early mission risk and progression of risk as a vehicle gains insights through flight is important: . a) To the Shuttle Program to understand the impact of re-designs and operational changes on risk. . b) To new programs to understand reliability growth and first flight risk. . Estimation of Shuttle Risk Progression by flight: . a) Uses Shuttle Probabilistic Risk Assessment (SPRA) and current knowledge to calculate early vehicle risk. . b) Shows impact of major Shuttle upgrades. . c) Can be used to understand first flight risk for new programs.
2007-06-23
The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.
Biochemical and hematologic changes after short-term space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1992-01-01
Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.
Space Shuttle Main Propulsion System Gaseous Hydrogen Flow Control Valve Poppet Failure
NASA Technical Reports Server (NTRS)
Zeitler, Rick
2010-01-01
The presentation provides background information pertinent to the MPS GH2 Flow Control Valve Poppet failure which occurred on the Space Shuttle Endeavour during STS-126 flight. The presentation provides general MPS system operating information which is pertinent to understanding the failure causes and affects. The presentation provides additional background information on the operating environment in which the FCV functions and basic design history of the flow control valve. The presentation provides an overview of the possible flight failure modes and a brief summary of the flight rationale which was developed for this failure event. This presentation is an introductory presentation to 3 other speakers at the conference who will be speaking on M&P aspects of the investigation, non destructive inspection techniques development, and particle impact testing.
Activity on the flight deck during EVA on Flight Day 7
1997-02-17
S82-E-5616 (17 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls the Remote Manipulator System (RMS) on the Space Shuttle Atlantis' aft flight deck. This view was taken with an Electronic Still Camera (ESC).
STS-116/ISS 12A.1 flight controllers on console during EVA #4
2006-12-18
JSC2006-E-54436 (18 Dec. 2006) --- ISS lead flight director John Curry (right) and astronaut Stephen K. Robinson, at the CAPCOM console, represent part of the busy ground support effort for the add-on spacewalk by the STS-116 crew. Astronaut Joseph R. Tanner, who like Robinson is a veteran of multiple space walks, assisted with CAPCOM duties. While flight controllers in this space station flight control room were busy supporting the spacewalk, so were their counterparts in the space shuttle flight control room, not far away in the Johnson Space Center's Mission Control Center.
Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; Valasek, John
2006-01-01
Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.
2010-04-05
JSC2010-E-046777 (5 April 2010) --- Astronaut Rick Sturckow, spacecraft communicator (CAPCOM) for the STS-131 mission, is pictured at his console in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
STS-114: Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Paul Hill, STS-114 Lead Shuttle Flight Director, and Wayne Hill, Deputy Manager for the Space Shuttle Program and Chair of the Mission Management Team, discusses with the News media the complete operational success of the STS-114 Flight. Paul Hill mentioned the undocking and flight around did occur right on time that day, and checking out Discovery's entry system in preparation for de-orbit on Monday morning. He summarized the long list of flight operations and activities demonstrated like various forms of inspections on RCC and tile, gap fillers and blanket, imagery and photography, three space walks and re-supply. Wayne Hill talked about flight control check out, pre-entry plans, opportunity landing in Cape Carneval, Florida and back-up landing operations in Edwards Air Force Base, California. He emphasized the concern for crew and public safety during landing. News media focused their questions on public expectations and feelings about the return of the Shuttle to Earth, analysis of mechanical and technical failures, safety of dark or daylight landings.
Langley applications experiments data management system study. [for space shuttles
NASA Technical Reports Server (NTRS)
Lanham, C. C., Jr.
1975-01-01
A data management system study is presented that defines, in functional terms, the most cost effective ground data management system to support Advanced Technology Laboratory (ATL) flights of the space shuttle. Results from each subtask performed and the recommended system configuration for reformatting the experiment instrumentation tapes to computer compatible tape are examined. Included are cost factors for development of a mini control center for real-time support of the ATL flights.
Convair-240 aircraft modified with shuttle hatch for CES testing
NASA Technical Reports Server (NTRS)
1987-01-01
Shuttle Crew Escape System (CES) hardware includes space shuttle side hatch incorporated into Convair-240 aircraft at Naval Weapons Center, China Lake, California. Closeup shows dummy positioned in the Convair-240 escape hatch. Beginning this month, tests will be conducted here to evaluate a tractor rocket system - one of two escape methods being studied by NASA to provide crew egress capability during Space Shuttle controlled gliding flight.
Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Bergmann, E.; Weiler, P.
1983-01-01
An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.
Conceptual Inquiry of the Space Shuttle and International Space Station GNC Flight Controllers
NASA Technical Reports Server (NTRS)
Kranzusch, Kara
2007-01-01
The concept of Mission Control was envisioned by Christopher Columbus Kraft in the 1960's. Instructed to figure out how to operate human space flight safely, Kraft envisioned a room of sub-system experts troubleshooting problems and supporting nominal flight activities under the guidance of one Flight Director who is responsible for the success of the mission. To facilitate clear communication, MCC communicates with the crew through a Capsule Communicator (CAPCOM) who is an astronaut themselves. Gemini 4 was the first mission to be supported by such a MCC and successfully completed the first American EVA. The MCC seen on television is called the Flight Control Room (FCR, pronounced ficker) or otherwise known as the front room. While this room is the most visible aspect, it is a very small component of the entire control center. The Shuttle FCR is known as the White FCR (WFCR) and Station's as FCR-1. (FCR-1 was actually the first FCR built at JSC which was used through the Gemini, Apollo and Shuttle programs until the WFCR was completed in 1992. Afterwards FCR-1 was refurbished first for the Life Sciences Center and then for the ISS in 2006.) Along with supporting the Flight Director, each FCR operator is also the supervisor for usually two or three support personnel in a back room called the Multi-Purpose Support Room (MPSR, pronounced mipser). MPSR operators are more deeply focused on their specific subsystems and have the responsible to analyze patterns, and diagnose and assess consequences of faults. The White MPSR (WMPSR) operators are always present for Shuttle operations; however, ISS FCR controllers only have support from their Blue MPSR (BMPSR) while the Shuttle is docked and during critical operations. Since ISS operates 24-7, the FCR team reduces to a much smaller Gemini team of 4-5 operators for night and weekend shifts when the crew is off-duty. The FCR is also supported by the Mission Evaluation Room (MER) which is a collection of contractor engineers who provide analysis and long-term troubleshooting support. Each MER operator is an expert in a very small portion of a sub-system and each FCR console usually interfaces with several MER positions.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Spencer, B., Jr.
1980-01-01
Tests were conducted in the 8 foot transonic pressure tunnel to obtain wind tunnel data for comparison with static stability and control parameters measured on the space shuttle orbiter approach and landing flight tests. The longitudinal stability, elevon effectiveness, lateral directional stability, and aileron effectiveness derivatives were determined from the wind tunnel data and compared with the flight test results. The comparison covers a range of angles of attack from approximately 2 deg to 10 deg at subsonic Mach numbers of 0.41 to 0.56. In general the wind tunnel results agreed well with the flight test results, indicating the wind tunnel data is applicable to the design of entry vehicles for subsonic speeds over the angle of attack range studied.
STS-52 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1992-01-01
The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.
STS-114 Space Shuttle Discovery Performs Back Flip For Photography
NASA Technical Reports Server (NTRS)
2005-01-01
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
STS-52 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W., Jr.
1992-12-01
The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.
2007-06-25
Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.
2012-07-20
CAPE CANAVERAL, Fla. – Inside the RLV Hangar near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, students and their flight instructors from Florida Tech, FIT, in Melbourne, view F104 Starfighter aircraft and listen to Starfighter Director Rick Svetkoff. The flight instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
Brown at RMS controls on the aft flight deck
1998-11-24
STS095-366-031 (29 Oct-7 Nov 1998) --- Astronaut Curtis L. Brown, Jr., mission commander, operates controls on the aft flight deck of the Space Shuttle Discovery. Brown was joined by four other NASA astronauts and two payload specialists for the nine-day mission.
NASA Technical Reports Server (NTRS)
1996-01-01
On this tenth day of the STS-77 mission, the flight crew, Cmdr. John H. Casper, Pilot Curtis L. Brown, Jr., and Mission Specialists Andrew S.W. Thomas, Ph.D., Daniel W. Bursch, Mario Runco, Jr., and Marc Garneau, Ph.D., perform a routine check of the shuttle's flight control surfaces and reaction control system jets, wrap up work with a number of scientific investigations, and begin securing the cabin for the trip back to Earth. Most experiments aboard the shuttle have been completed and stowed away, although a few will operate throughout the night and be deactivated once the crew wakes. Crew members Andy Thomas, a native of Australia, and Marc Garneau, a Canadian, each receive special greetings today as STS-77 nears its end. South Australia Premier Dean Brown called Thomas with congratulations early this morning as the shuttle passed above Brown's office in Adelaide, Australia, Thomas' hometown. Later, Canadian Prime Minister Jean Chretien called Garneau to congratulate him on the mission and the joint Canadian Space Agency and NASA experiments that were conducted.
Photographic coverage of STS-111 Landing
2002-06-19
JSC2002-E-26015 (19 June 2002) --- The Space Shuttle Endeavour is shown on the big screen in this overall view of the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). The shuttle landed at Edwards Air Force Base, California at 10:58 a.m. (PDT) on June 19, 2002. The landing site was switched to Edwards after three days of wave offs at Kennedy Space Center, Florida, due to unacceptable weather conditions.
STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew
2010-06-08
JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration
National Space Transportation System Reference. Volume 2: Operations
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.
Challenges of assuring crew safety in space shuttle missions with international cargoes.
Vongsouthy, C; Stenger-Nguyen, P A; Nguyen, H V; Nguyen, P H; Huang, M C; Alexander, R G
2004-02-01
The top priority in America's manned space flight program is the assurance of crew and vehicle safety. This priority gained greater focus during and after the Space Shuttle return-to-flight mission (STS-26). One of the interesting challenges has been to assure crew safety and adequate protection of the Space Shuttle, as a national resource, from increasingly diverse cargoes and operations. The control of hazards associated with the deployment of complex payloads and cargoes has involved many international participants. These challenges are examined in some detail along with examples of how crew safety has evolved in the manned space program and how the international partners have addressed various scenarios involving control and mitigation of potential hazards to crew and vehicle safety. c2003 Published by Elsevier Ltd.
2009-03-03
CAPE CANAVERAL, Fla. – One of the three thoroughly inspected gaseous hydrogen flow control valves is shown after its arrival at NASA's Kennedy Space Center in Florida. Technicians installed and retested them in space shuttle Discovery. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians prepare to install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes
2009-03-03
CAPE CANAVERAL, Fla. – One of the three thoroughly inspected gaseous hydrogen flow control valves is shown after its arrival at NASA's Kennedy Space Center in Florida. Technicians installed and retested them in space shuttle Discovery. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
Report on research and technology-FY 1981
NASA Technical Reports Server (NTRS)
1981-01-01
More than 65 technical reports, papers, and articles published by personnel and contractors at the Dryden Flight Research Center are listed. Activities performed for the Offices of Aeronautics and Space Technology, Space and Terrestrial Applications, Space Transportation Systems, and Space Tracking and Data Systems are summarized. Preliminary stability and control derivatives were determined for the shuttle orbiter at hypersonic speeds from the data obtained at reentry. The shuttle tile tests, spin research vehicle nose shapes flight investigations, envelope expansion flights for the Ames tilt rotor research aircraft, and the AD-1 oblique wing programs were completed as well as the KC-135 winglet program.
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
NASA Technical Reports Server (NTRS)
Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.
1980-01-01
A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.
Shuttle Abort Flight Management (SAFM) - Application Overview
NASA Technical Reports Server (NTRS)
Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike
2002-01-01
One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic Abort Landing (TAL), East Coast Abort Landing (ECAL) and Return to Launch Site (RTLS). Sequential and simultaneous engine failures are assessed and landing footprint information is provided during actual entry scenarios as well as hypothetical "loss of thrust now" scenarios during ascent.
2010-04-05
JSC2010-E-046772 (5 April 2010) --- Astronauts George Zamka (left) and Rick Sturckow, both spacecraft communicators (CAPCOM) for the STS-131 mission, are pictured at their consoles in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2010-04-05
JSC2010-E-046808 (5 April 2010) --- Astronauts Rick Sturckow (foreground) and George Zamka, both spacecraft communicators (CAPCOM) for the STS-131 mission, watch the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset, checks control panel data while seated in the commanders seat on forward flight deck. A flight data file (FDF) notebook rests on his lap. A portable computer (laptop) is positioned on the center console. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
2012-07-20
CAPE CANAVERAL, Fla. – Students and their flight instructors from Florida Tech, or FIT, in Melbourne, tour the Vehicle Assembly Building and view space shuttle Atlantis at NASA’s Kennedy Space Center in Florida. The instructors and their students arrived at the Shuttle Landing Facility, or SLF, in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors also toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, and viewed the runway plaques marking wheels stop for each of the three space shuttles. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – Students and their flight instructors from Florida Tech, or FIT, in Melbourne, tour the Vehicle Assembly Building and view space shuttle Atlantis at NASA’s Kennedy Space Center in Florida. The instructors and their students arrived at the Shuttle Landing Facility, or SLF, in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors also toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, and viewed the runway plaques marking wheels stop for each of the three space shuttles. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – In a support building near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, students and their flight instructors from Florida Tech, FIT, in Melbourne listen to F104 Starfighters Director Rick Svetkoff. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center in Florida, flight instructors and their students from Florida Tech, or FIT, in Melbourne prepare to depart the Shuttle Landing Facility, or SLF, in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center in Florida, flight instructors and their students from Florida Tech, or FIT, in Melbourne prepare to depart the Shuttle Landing Facility, or SLF, in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – Students and their flight instructors arrive at NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida in Cherokee Warrior and Cessna 172S lightweight aircraft from Florida Tech, or FIT, in Melbourne. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck
1988-02-03
STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.
STS-80 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1997-01-01
The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
STS-114 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
The major activities of Day 8 for the STS-114 crew of the Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) are a press conference and a conversation with President Bush. The two crews are interviewed by American, Japanese, and Russian media. Discovery crew members on the shuttle's mid-deck review paperwork regarding the impending extravehicular activity (EVA) to remove gap fillers from underneath the orbiter, and the Space Station Remote Manipulator System grapples the External Stowage Platform-2 in the Shuttle's payload bay. Finally, Mission control grants the shuttle crew some time off.
2012-07-20
CAPE CANAVERAL, Fla. – Inside the RLV Hangar near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, flight instructors from Florida Tech, FIT, in Melbourne, listen to NASA Aviation Safety Officer Joe Torsani and view a NASA Huey helicopter. At left, in the red shirt is Glenn Vera, director of FIT Aviation. The flight instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Du, Jianping; Crady, Camille; Satterfield, Rick; Putcha, Lakshmi
2007-01-01
The purpose is to assess physical and chemical degradation of select pharmaceutical formulations from the Shuttle and ISS medical kits. Eleven pharmaceuticals dispensed as different dosage forms were selected based on their physical / chemical characteristics and susceptibility to environmental factors such as, temperature, humidity and light sensitivity. When available, ground-controls of the study medications with matching brand and lot numbers were used for comparison. Samples retrieved from flight were stored along with their matching controls in a temperature and humidity controlled environmental chamber. Temperature, humidity, and radiation data from the Shuttle and ISS were retrieved from onboard HOBO U12 Temp/RH Data Loggers, and from passive dosimeters. Physical and chemical analyses of the pharmaceuticals were conducted using validated United States Pharmacopeia (USP) methods. Results indicated degradation of 6 of the 11 formulations returned from space flights. Four formulations, Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, and ciprofloxacin tablets depicted discoloration after flight. Chemical content analyses using High or Ultra Performance Liquid Chromatography (HPLC / UPLC) methods revealed that dosage forms of Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, lidocaine, ciprofloxacin and mupirocin contained less than 95% of manufacturer s labeled claim of active drug compound. Shuttle and ISS environments affect stability and shelf life of certain mediations flown on these missions. Data analysis is in progress to examine the effect of specific space flight environmental factors on pharmaceutical stability. The degradation profiles generated from ground studies in analog environments will be useful in establishing predictive shelf-life profiles for medications intended for use during long-term space exploration missions.
Caldwell in the aft FD of STS-118 Space Shuttle Endeavor
2007-08-12
ISS015-E-22145 (12 Aug. 2007) --- Astronaut Tracy Caldwell, STS-118 mission specialist, looks over her shoulder for a photo while working the controls on the aft flight deck of Space Shuttle Endeavour while docked with the International Space Station.
NASA Technical Reports Server (NTRS)
Fay, Stanley; Gates, Stephen; Henderson, Timothy; Sackett, Lester; Kirchwey, Kim; Stoddard, Isaac; Storch, Joel
1988-01-01
The second Control Of Flexible Structures Flight Experiment (COFS-2) includes a long mast as in the first flight experiment, but with the Langley 15-m hoop column antenna attached via a gimbal system to the top of the mast. The mast is to be mounted in the Space Shuttle cargo bay. The servo-driven gimbal system could be used to point the antenna relative to the mast. The dynamic interaction of the Shuttle Orbiter/COFS-2 system with the Orbiter on-orbit Flight Control System (FCS) and the gimbal pointing control system has been studied using analysis and simulation. The Orbiter pointing requirements have been assessed for their impact on allowable free drift time for COFS experiments. Three fixed antenna configurations were investigated. Also simulated was Orbiter attitude control behavior with active vernier jets during antenna slewing. The effect of experiment mast dampers was included. Control system stability and performance and loads on various portions of the COFS-2 structure were investigated. The study indicates possible undesirable interaction between the Orbiter FCS and the flexible, articulated COFS-2 mast/antenna system, even when restricted to vernier reaction jets.
2005-08-19
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
F-8 DFBW simulating STS contro l system - Pilot-induced oscillation (PIO) on landing
NASA Technical Reports Server (NTRS)
1978-01-01
From 1972 to 1985 the NASA Dryden Flight Research Center conducted flight research with an F-8C employing the first digital fly-by-wire flight control system without a mechanical back up. The decision to replace all mechanical control linkages to rudder, ailerons, and other flight control surfaces was made for two reasons. First, it forced the research engineers to focus on the technology and issues that were truly critical for a production fly-by-wire aircraft. Secondly, it would give industry the confidence it needed to apply the technology--confidence it would not have had if the experimental system relied on a mechanical back up. In the first few decades of flight, pilots had controlled aircraft through direct force--moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails. As engine power and speeds increased, more force was needed and hydraulically boosted controls emerged. Soon, all high-performance and large aircraft had hydraulic-mechanical flight-control systems. These conventional flight control systems restricted designers in the configuration and design of aircraft because of the need for flight stability. As the electronic era grew in the 1960s, so did the idea of aircraft with electronic flight-control systems. Wires replacing mechanical devices would give designers greater flexibility in configuration and in the size and placement of components such as tail surfaces and wings. A fly-by-wire system also would be smaller, more reliable, and in military aircraft, much less vulnerable to battle damage. A fly-by-wire aircraft would also be much more responsive to pilot control inputs. The result would be more efficient, safer aircraft with improved performance and design. The Aircraft By the late 1960s, engineers at Dryden began discussing how to modify an aircraft and create a fly-by-wire testbed. Support for the concept at NASA Headquarters came from Neil Armstrong, former research pilot at Dryden. He served in the Office of Advanced Research and Technology following his historic Apollo 11 lunar landing and knew electronic control systems from his days training in and operating the lunar module. Armstrong supported the proposed Dryden project and backed the transfer of an F-8C Crusader from the U.S. Navy to NASA to become the Digital Fly-By-Wire (DFBW) research aircraft. It was given the tail number 'NASA 802.' Wires from the control stick in the cockpit to the control surfaces on the wings and tail surfaces replaced the entire mechanical flight-control system in the F-8. The heart of the system was an off-the-shelf backup Apollo digital flight-control computer and inertial sensing unit, which transmitted pilot inputs to the actuators on the control surfaces. On May 25, 1972, the highly modified F-8 became the first aircraft to fly completely dependent upon an electronic flight-control system without any mechanical backup. The pilot was Gary Krier. The first phase of the DFBW program validated the fly-by-wire concept and quickly showed that a refined system, especially in large aircraft, would greatly enhance flying qualities by sensing motion changes and applying pilot inputs instantaneously. The Phase 1 system had a backup analog fly-by-wire system in the event of a failure in the Apollo computer unit, but it was never necessary to use the system in flight. In a joint program carried out with the Langley Research Center in the second phase of research, the original Apollo system was replaced with a triply redundant digital system. It would provide backup computer capabilities if a failure occurred. The DFBW program lasted 13 years. The final research flight, the 210th of the program, was made April 2, 1985, with Dryden Research Pilot Ed Schneider at the controls. Research Benefits The F-8 DFBW validated the principal concepts of the all-electric flight control systems now used in a variety of airplanes ranging from the F/A-18 to the Boeing 777 and the space shuttles. A DFBW flight control system also is used on the space shuttles. NASA 802 was the testbed for the sidestick-controller used in the F-16 fighter, the second U.S. high performance aircraft with a DFBW system. In addition to pioneering the space shuttle's fly-by-wire flight-control system, NASA 802 was the testbed that explored Pilot Induced Oscillations (PIO) and validated methods to suppress them. PIOs occur when a pilot over-controls an aircraft and a sustained oscillation results. On the last of five free flights of the prototype Space Shuttle Enterprise during approach and landing tests in l977, a PIO developed as the vehicle settled onto the runway. The problem was duplicated with the F-8 DFBW and a series of PIO suppression filters was developed and tested on the aircraft for the shuttle program office. DFBW research carried out with NASA 802 at Dryden is now considered one of the most significant and successful aeronautical programs in NASA history. In this clip we see NASA research pilot John Manke at the controls of Dryden's F-8 Digital Fly-By-Wire aircraft as it enters a severe pilot induced oscillation or PIO just after completion of a touch-and-go landing while testing for a signal-delay-related problem that occurred during an approach to landing on the shuttle prototype Enterprise.
Space Shuttle development update
NASA Technical Reports Server (NTRS)
Brand, V.
1984-01-01
The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
2002-03-01
JSC2002-E-08143 (1 March 2002) --- Astronaut Charles O. Hobaugh, seated at the Spacecraft Communicator (CAPCOM) console in the Shuttle Flight Control Room of the Johnson Space Center's Mission Control Center, gives a thumbs up signal, obviously connected to improving weather at the launch site for the Space Shuttle Columbia several hundred miles away in Florida. Astronaut William A. Oefelein is partially obscured in the background.
Control of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.
2014-01-01
The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).
Space shuttle orbiter test flight series
NASA Technical Reports Server (NTRS)
Garrett, D.; Gordon, R.; Jackson, R. B.
1977-01-01
The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.
NASA Technical Reports Server (NTRS)
Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)
1994-01-01
Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.
Payload Operations Support Team Tools
NASA Technical Reports Server (NTRS)
Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David;
2007-01-01
Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations
The first Chinese student space shuttle getaway special program
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen
1988-01-01
The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.
The Chinese student space shuttle get-way-special program
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen
1989-01-01
The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.
NASA Technical Reports Server (NTRS)
Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.
1990-01-01
A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.
CONSTELLATION Images from other centers - February 2010
2010-02-01
JSC2010-E-017955 (4 Feb. 2010) --- Flight directors for the STS-130/20A mission pose for a preflight group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Pictured from the left are Chris Edelen, Norm Knight, Kwatsi Alibaruho and Gary Horlacher.
CONSTELLATION Images from other centers - February 2010
2010-02-04
JSC2010-E-017954 (4 Feb. 2010) --- Flight directors for the STS-130/20A mission pose for a preflight group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Pictured from the left are Chris Edelen, Norm Knight, Kwatsi Alibaruho and Gary Horlacher.
Space Shuttle Enterprise Demate
2012-05-12
The space shuttle Enterprise hangs from a sling after being demated from the NASA 747 Shuttle Carrier Aircraft (SCA) at John F. Kennedy (JFK) International Airport in Jamica, New York, Sunday, May 13, 2012. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to the Intrepid Sea, Air & Space Museum in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Fluid control mechanisms in weightlessness
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.
1987-01-01
Experiments performed on Space Shuttle flights have emphasized study of the earliest effects of the cephalad fluid shift resulting from microgravity. Analysis of one subject's urine collected during flight showed that a sharp increase in antidiuretic hormone occurred within 2 h of launch, followed by an increase in cortisol excretion. Although this subject had symptoms of the space adaptation syndrome (SAS), inflight data from Spacelab missions suggested that these transient changes were not caused by SAS. Unpaired t-tests and Mann-Whitney tests showed that before and after flight, plasma thyroxine and urine osmolality were significantly higher in Shuttle crewmembers who exhibited more severe symptoms of SAS than in asymptomatic crewmembers.
NASA Technical Reports Server (NTRS)
1981-01-01
A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.
STS-105 Flight Control Team Photo
2001-07-31
JSC2001-02115 (31 July 2001) --- The flight controllers for the Ascent/Entry shift for the upcoming STS-105 mission pose with the assigned astronaut crew for a team portrait in the Shuttle Flight Control Room (WFCR) of Houston's Mission Control Center (MCC). Flight director John Shannon (left center) and STS-105 commander Scott J. Horowitz hold the mission logo. Also pictured on the front row are spacecraft communicator Kenneth D. Cockrell and STS-105 crew members Daniel T. Barry, Frederick W. (Rick) Sturckow and Patrick G. Forrester. The team had been participating in an integrated simulation for the scheduled August mission.
2017-02-12
Since the days of Gemini all of America’s human spaceflight programs have been controlled by men and women stationed in one of several flight control rooms at NASA’s Johnson Space Center in Houston: the International Space Station flight controllers recently moved into an upgraded facility in the room that hosted the teams during the first manned flights of Apollo and the space shuttle. Here’s a tour of “Mission Control Houston” through the years, from its first generation through the facility ready for the flights of Orion, the spacecraft that will take humans farther into space than they’ve ever gone before.
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Foster, J. D.
1973-01-01
Unpowered automatic approaches and landings with a CV990 aircraft were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle. The flight tests were designed to study from 11,300 m to touchdown the performance of a navigation and guidance concept which utilized blended radio/inertial navigation using VOR, DME, and ILS as the ground navigation aids. In excess of fifty automatic approaches and landings were conducted. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines on a conventional size runway.
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, NASA Aviation Safety Officer Joe Torsani, at left, speaks with students and their flight instructors after they arrived in Cherokee Warrior and Cessna 172S lightweight aircraft from Florida Tech, FIT, in Melbourne. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, NASA Aviation Safety Officer Joe Torsani, at right, speaks with students and their flight instructors after they arrived in Cherokee Warrior and Cessna 172S lightweight aircraft from Florida Tech, or FIT, in Melbourne. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-05-11
CAPE CANAVERAL, Fla. – Communication no longer required between Orbiter Processing Facility-2 and the Launch Control Center at NASA’s Kennedy Space Center in Florida, a headset is left on a console on space shuttle Endeavour’s flight deck after the shuttle is powered down for the final time. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Ben Smegelsky
Code of Federal Regulations, 2012 CFR
2012-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
NASA Technical Reports Server (NTRS)
Orr, James K.; Peltier, Daryl
2010-01-01
Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.
NASA Technical Reports Server (NTRS)
Osder, S.; Keller, R.
1971-01-01
Guidance and control design studies that were performed for three specific space shuttle candidate vehicles are described. Three types of simulation were considered. The manual control investigations and pilot evaluations of the automatic system performance is presented. Recommendations for systems and equipment, both airborne and ground-based, necessary to flight test the guidance and control concepts for shuttlecraft terminal approach and landing are reported.
Sustaining Human Space Flight: From the Present to the Future
NASA Technical Reports Server (NTRS)
Russell, Rick
2010-01-01
This slide presentation reviews some of the efforts to ensure that human space flight continues in NASA. With the aging shuttle orbiter fleet, some actions have been taken to assure safe operations. Some of these are: (1) the formation of a Corrosion Control Review Board (CCRB) that will assess the extent and cause of corrosion to the shuttle, and provide short term and long term corrective actions, among other objectives, (2) a formalization of an aging vehicle assessment (AVA) as part of a certification for the Return-to-Flight, (3) an assessment of the age life of the materials in the space shuttle, and (4) the formation of the Aging Orbiter Working Group (AOWG). There are also slides with information about the International Space Station. There is also information about the need to update the Kennedy Space Center, to sustain a 21st century launch complex and the requirement to further the aim of commercial launch capability.
Fundamental concepts of structural loading and load relief techniques for the space shuttle
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Mowery, D. K.; Winder, S. W.
1972-01-01
The prediction of flight loads and their potential reduction, using various control system logics for the space shuttle vehicles, is discussed. Some factors not found on previous launch vehicles that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. These load-producing factors and load-reducing techniques are analyzed.
Enterprise - First Tailcone Off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... government reimbursable payload on the Space Shuttle. § 1214.101 Section § 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
NASA Technical Reports Server (NTRS)
Chapman, David K.; Wells, H. William
1996-01-01
The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Kennedy Center Director Bob Cabana speaks with Closeout Crew lead Travis Thompson (left), and STS-135 Assistant Launch Director Pete Nickolenko during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Charlie Blackwell-Thompson, Jeremy Graeber, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; and Assistant Orbiter Test Conductor Laurie Sally. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Hegarty, D. M.
1974-01-01
A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.
2001-02-26
The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.;
2011-01-01
Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
2001-05-01
A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001. The two largest vehicles trailing the shuttle provide electrical power and air conditioning to the shuttle's systems during post-flight recovery operations. The Endeavour had just completed mission STS-100, an almost 12-day mission to install the Canadarm 2 robotic arm and deliver some three tons of supplies and experiments to the International Space Station. The landing was the 48th shuttle landing at Edwards since shuttle flights began in 1981. After post-flight processing, the Endeavour was mounted atop one of NASA's modified Boeing 747 shuttle carrier aircraft and ferried back to the Kennedy Space Center in Florida on May 8, 2001.
2008-11-14
CAPE CANAVERAL, Fla. – Center Director Bob Cabana (center) shares a happy moment in the Firing Room of the Launch Control Center at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Endeavour on the STS-126 mission. Liftoff was on time at 7:55 p.m. EST. STS-126 is the 124th space shuttle flight and the 27th flight to the International Space Station. The mission will feature four spacewalks and work that will prepare the space station to house six crew members for long-duration missions. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Hanaway, John F.; Moorehead, Robert W.
1989-01-01
The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.
NASA Technical Reports Server (NTRS)
Powell, R. W.
1975-01-01
There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.
Space Shuttle Enterprise Demate
2012-05-12
The space shuttle Enterprise is lowered onto a transport vehicle after being demated from the NASA 747 Shuttle Carrier Aircraft (SCA) at John F. Kennedy (JFK) International Airport in Jamica, New York, Sunday, May 13, 2012. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to the Intrepid Sea, Air & Space Museum in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Space Shuttle Enterprise Demate
2012-05-12
NASA's 747 Shuttle Carrier Aircraft (SCA), with space shuttle Enterprise latched on its back, is towed from the hangar at John F. Kennedy (JFK) International Airport in New York late in the night on Saturday, May 12, 2012. Early Sunday morning, Enterprise was removed from the SCA. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to Intrepid in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Space Shuttle Enterprise Demate
2012-05-12
A yellow sling is lowered onto space shuttle Enterprise, which sits atop NASA's 747 Shuttle Carrier Aircraft (SCA) prior to it being demated a few hours later at John F. Kennedy (JFK) International Airport in New York, Saturday, May 12, 2012. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to Intrepid in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Electromagnetic Compatibility for the Space Shuttle
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2004-01-01
This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Stuffed Snoopy wearing cap and sporting a Space Shuttle emblem
2000-02-22
JSC2000-01580 (22 February 2000) --- Snoopy, who has had a long history with the astronauts and Houston's Mission Control Center, showed up in the Shuttle Flight Control Room on one of the consoles during the STS-99 mission. The NASA Astronaut personal safety award -- called the Silver Snoopy -- is given for outstanding performance by NASA employees or NASA contractors who contribute to flight safety or mission success. Snoopy is a product of the imagination of the late cartoonist Charles Schulz. Schulz died on Saturday, Feb. 12, 2000, the second day of the 11-day SRTM mission and on the eve of his final color strip appearing in Sunday newspapers on February 13, 2000.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
Space Construction Experiment Definition Study (SCEDS), part 3. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1983-01-01
Study tasks were directed toward definition of an early shuttle controls and dynamics flight experiment, as well as evolutionary or supplemental experiments, that address the needs of the dynamics and controls community and demonstrates the shuttle system capability to perform construction operations. A requirement that the first bending mode of the SCE be above 0.15 Hertz to avoid coupling with the DAP was adopted.
HAL/SM language specification. [programming languages and computer programming for space shuttles
NASA Technical Reports Server (NTRS)
Williams, G. P. W., Jr.; Ross, C.
1975-01-01
A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.
2012-07-20
CAPE CANAVERAL, Fla. – In a support building near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, Center Director Bob Cabana speaks to students and their flight instructors from Florida Tech, or FIT, in Melbourne. The group arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – In a support building near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, Center Director Bob Cabana speaks to students and their flight instructors from Florida Tech, or FIT, in Melbourne. The group arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft.. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, a flight instructor and his students inspect the lightweight aircraft they flew in earlier in the day from Florida Tech, or FIT, in Melbourne. Several instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, a flight instructor and his students inspect the lightweight aircraft they flew in earlier in the day from Florida Tech, or FIT, in Melbourne. Several instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – Inside the RLV Hangar near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, students and their flight instructors from Florida Tech, FIT, in Melbourne view F104 Starfighter aircraft and hear a presentation from Starfighter Director Rick Svetkoff. The group arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
RB-ARD: A proof of concept rule-based abort
NASA Technical Reports Server (NTRS)
Smith, Richard; Marinuzzi, John
1987-01-01
The Abort Region Determinator (ARD) is a console program in the space shuttle mission control center. During shuttle ascent, the Flight Dynamics Officer (FDO) uses the ARD to determine the possible abort modes and make abort calls for the crew. The goal of the Rule-based Abort region Determinator (RB/ARD) project was to test the concept of providing an onboard ARD for the shuttle or an automated ARD for the mission control center (MCC). A proof of concept rule-based system was developed on a LMI Lambda computer using PICON, a knowdedge-based system shell. Knowdedge derived from documented flight rules and ARD operation procedures was coded in PICON rules. These rules, in conjunction with modules of conventional code, enable the RB-ARD to carry out key parts of the ARD task. Current capabilities of the RB-ARD include: continuous updating of the available abort mode, recognition of a limited number of main engine faults and recommendation of safing actions. Safing actions recommended by the RB-ARD concern the Space Shuttle Main Engine (SSME) limit shutdown system and powerdown of the SSME Ac buses.
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware
NASA Technical Reports Server (NTRS)
Class, C. R.; Presta, G.; Trucks, H.
1975-01-01
A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.
14 CFR 1214.108 - Termination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...
14 CFR 1214.108 - Termination.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...
14 CFR 1214.108 - Termination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...
14 CFR 1214.108 - Termination.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...
Code of Federal Regulations, 2011 CFR
2011-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2013 CFR
2013-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2012 CFR
2012-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2014 CFR
2014-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2010 CFR
2010-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Acoustic environments for JPL shuttle payloads based on early flight data
NASA Technical Reports Server (NTRS)
Oconnell, M. R.; Kern, D. L.
1983-01-01
Shuttle payload acoustic environmental predictions for the Jet Propulsion Laboratory's Galileo and Wide Field/Planetary Camera projects have been developed from STS-2 and STS-3 flight data. This evaluation of actual STS flight data resulted in reduced predicted environments for the JPL shuttle payloads. Shuttle payload mean acoustic levels were enveloped. Uncertainty factors were added to the mean envelope to provide confidence in the predicted environment.
SAFER Inspection of Space Shuttle Thermal Protection System
NASA Technical Reports Server (NTRS)
Scoville, Zebulon C.; Rajula, Sudhakar
2005-01-01
In the aftermath of the space shuttle Columbia accident, it quickly became clear that new methods would need to be developed that would provide the capability to inspect and repair the shuttle's thermal protection system (TPS). A boom extension to the Remote Manipulator System (RMS) with a laser topography sensor package was identified as the primary means for measuring the damage depth in acreage tile as well as scanning Reinforced Carbon- Carbon (RCC) surfaces. However, concern over the system's fault tolerance made it prudent to investigate alternate means of acquiring close range photographs and contour depth measurements in the event of a failure. One method that was identified early was to use the Simplified Aid For EVA Rescue (SAFER) propulsion system to allow EVA access to damaged areas of concern. Several issues were identified as potential hazards to SAFER use for this operation. First, the ability of an astronaut to maintain controlled flight depends upon efficient technique and hardware reliability. If either of these is insufficient during flight operations, a safety tether must be used to rescue the crewmember. This operation can jeopardize the integrity of the Extra-vehicular Mobility Unit (EMU) or delicate TPS materials. Controls were developed to prevent the likelihood of requiring a tether rescue, and procedures were written to maximize the chances for success if it cannot be avoided. Crewmember ability to manage tether cable tension during nominal flight also had to be evaluated to ensure it would not negatively affect propellant consumption. Second, although propellant consumption, flight control, orbital dynamics, and flight complexity can all be accurately evaluated in Virtual Reality (VR) Laboratory at Johnson Space Center, there are some shortcomings. As a crewmember's hand is extended to simulate measurement of tile damage, it will pass through the vehicle without resistance. In reality, this force will push the crewmember away from the vehicle, and could induce a moment which, if strong enough, could saturate the attitude control system in SAFER. This raises the concern that additional propellant will be consumed to maintain controlled flight. To account for this, the fidelity of the Virtual Reality simulation was improved to include the effect of crewmember contact with the vehicle during SAFER flight. In addition, while participating in VR simulations, the subject is in shirt sleeves and sits in a chair. This does not provide a flight-like representation of body position awareness. To prevent inadvertent contact with tile or RCC, other facilities were utilized to establish crew preferences for body attitude and tool configuration. Finally, a study was performed to determine if attitude constraints are needed for the Space shuttle and International Space Station to reduce SAFER flight difficulty.
Space Shuttle Enterprise Demate
2012-05-12
A set of cranes and wind restraints constructed to remove space shuttle Enterprise from atop NASA's 747 Shuttle Carrier Aircraft are being put into place at John F. Kennedy (JFK) International Airport in New York, Saturday, May 12, 2012. Enterprise will be placed on a barge that will move by tugboat up the Hudson River to Intrepid in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
2009-02-03
CAPE CANAVERAL, Fla. – Mike Curie (left), with NASA Public Affairs, introduces NASA managers following their day-long Flight Readiness Review of space shuttle Discovery for the STS-119 mission. Next to Curie are (from left) William H. Gerstenmaier, associate administrator for Space Operations, John Shannon, Shuttle Program manager, Mike Suffredini, program manager for the International Space Station, and Mike Leinbach, shuttle launch director. NASA managers decided to plan a launch no earlier than Feb. 19, pending additional analysis and particle impact testing associated with a flow control valve in the shuttle's main engine system. Photo credit: NASA/Cory Huston
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...
14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25114 (16 August 2001) --- Flight director John Shannon monitors data at his console in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks to perform work on the International Space Station (ISS).
Hypogravity's Effect on the Life Cycle of Japanese Quail
NASA Technical Reports Server (NTRS)
Hester, Patricia Y.
1999-01-01
A series of studies were conducted to determine the effect of activities preceding space-flight and during space-flight on quail embryonic development. While the overall development of the quail embryos was evaluated, the report presented herein, focused on calcium utilization or uptake from eggshells by developing embryos during incubation in space and on earth. In the pre-space trials, fertilized quail eggs were subjected to pre-night dynamics including forces of centrifugation, vibration, or a combination of vibration and centrifugation prior to incubation for 6 or 16 days. In another trial, fertile quail eggs were tested for survivability in a refrigerator stowage kit for eggs (RSKE) which was subsequently used to transport the eggs to space. Eggs in the RSKE were subjected to shuttle launch dynamics including G force and random vibration profiles. In the space- flight trials, 48 fertile quail eggs were launched on space shuttle Flight STS-76 and were subsequently incubated in a Slovakian incubator onboard space station, MIR. Two sets of ground controls each with 48 fertile eggs with and without exposure to launch dynamics were initiated 5 days post-launch. There was a laboratory control (incubated in Lyon RX2 incubator at 37.5 C) and a synchronous control (incubated in Lyon RX2 incubator at 39 - 400 C), which simulated the temperature of the space-flight incubator. Following space-flight trials, post-flight trials were conducted where quail eggs were incubated in Lyon RX2 or Slovakian incubators under various temperatures with or without launch dynamics. Eggshells from all study trials were retrieved and analyzed for calcium content to determine if its utilization by developing quail embryos was affected by activities preceding space-flight or during incubation in space under microgravity. Results from the pre-flight and post-flight showed that pre-flight activities and shuttle launch dynamics had no effect on calcium uptake from the eggshell by developing embryos. However, calcium uptake from the eggshell by developing embryos incubated in micro,aravity was impaired by 12.6% when compared to embryos incubated on earth under laboratory control environment. This impairment was unlikely due to factors other than microgravity. In general, calcium utilization by developing embryos increased with age of incubation with the most increase occurring at day 16 of incubation.
Space Shuttle reaction control system thruster metal nitrate removal and characterization
NASA Technical Reports Server (NTRS)
Saulsberry, R. L.; Mccartney, P. A.
1993-01-01
The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.
Development of an Advanced Animal Habitat for Spaceflight
NASA Technical Reports Server (NTRS)
Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.
1994-01-01
It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Troutman, P. A.
1984-01-01
The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments.
Spaceship Columbia's first flight
NASA Technical Reports Server (NTRS)
Young, J. W.; Crippen, R. L.
1981-01-01
This is a review of the initial flight of the spaceship Columbia - the first of four test missions of the nation's space transportation system. Engineering test pilot/astronaut activity associated with operation, control, and monitoring of the spaceship are discussed. Demonstrated flying qualities and performance of the Space Shuttle are covered.
Rendezvous and Proximity Operations of the Space Shuttle
NASA Technical Reports Server (NTRS)
Goodman, John L.
2005-01-01
Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.
2010-04-29
JSC2010-E-060725 (29 April 2010) --- The members of the STS-131 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Bryan Lunney and NASA astronaut Alan Poindexter, commander, (left center) stand on the second row. Additional crew members pictured are NASA astronauts James P. Dutton Jr., pilot; Clayton Anderson, Dorothy Metcalf-Lindenburger, Stephanie Wilson, Rick Mastracchio and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, all mission specialists.
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, from left, Steve Stich, manager of the Kennedy Orbiter Project Office; John Fraser, with Boeing Co. at the Marshall Space Flight Center; Rick Russell, with the NASA Orbiter Sustaining Engineering Office; and Rene Ortega with Marshall Space Flight Center's Shuttle Propulsion Office, are presented with a plaque for their work on the fuel control valve problem on space shuttle Discovery. The award was presented after the successful launch of Discovery on the STS-119 mission. Liftoff was on time at 7:43 p. m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
The Spacelab Instrument Pointing System (IPS) and its first flight
NASA Astrophysics Data System (ADS)
Heusmann, H.; Wolf, P.
1985-11-01
The development of the Instrument Pointing System (IPS) as part of Spacelab's experimental apparatus for open Pallet direct space exposure, and its test flight aboard the Shuttle Orbiter are discussed. The IPS is a three-axis-controlled platform with stellar, sun and earth pointing modes, and a better than 1 arcsec pointing ability. The development of an 'inside-out gimbal' configuration with the platform acting like a joint between the unstable Shuttle and the inertially stabilized payload facilitated close to hemispherical pointing and the adaptability for payloads of almost any size. Gimbal axes torquers counteract Orbiter acceleration due to crew movement and thruster firings, and facilitate target acquisition and precision pointing, by command from a crew-engaged computer preprogrammed for all possible control steps. Carrying an experimental solar-physics payload, the IPS correctly performed all intended functions and withstood launch and orbital loads. Several anomalies were detected and successfully corrected in-flight.
STS-98 Flight Control Team Photo in the WFCR
2001-01-08
JSC2001-00001 (January 2001) --- The STS-98 astronaut crew poses with about five dozen flight controllers making up its ascent/entry team in the shuttle flight control room of the Johnson Space Center's Mission Control Center (MCC). Standing with the STS-98 insignia is flight director LeRoy Cain. He is flanked by astronauts Marsha S. Ivins, mission specialist, and Kenneth D. Cockrell, mission commander. Behind Cockrell is astronaut Robert L. Curbeam, Jr., mission specialist; and behind Ivins and Cain is astronaut Mark L. Polansky, pilot. Astronaut Thomas D. Jones, mission specialist (blue shirt) stands near the flight director sign. Astronaut Scott D. Altman, CAPCOM or Spacecraft Communicator, is immediately behind Cain. Launch is currently scheduled for February 6, 2001.
14 CFR § 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accomplished on a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... services will be priced on the basis of estimated costs. If a special dedicated Shuttle flight is required...
One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig
NASA Technical Reports Server (NTRS)
1999-01-01
One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to seek ways of reducing turbulence produced by large aircraft. Pilots flying as much as several miles behind large aircraft have encountered wake turbulence that have caused control problems. The NASA study helped the Federal Aviation Administration modify flight procedures for commercial aircraft during airport approaches and departures. Following the wake vortex studies, NASA 905 was modified by Boeing to its present SCA configuration and the aircraft was returned to Dryden for its role in the 1977 Space Shuttle Approach and Landing Tests (ALT). This series of eight captive and five free flights with the orbiter prototype Enterprise, in addition to ground taxi tests, validated the aircraft's performance as an SCA, in addition to verifying the glide and landing characteristics of the orbiter configuration -- paving the way for orbital flights. A flight crew escape system, consisting of an exit tunnel extending from the flight deck to a hatch in the bottom of the fuselage, was installed during the modifications. The system also included a pyrotechnic system to activate the hatch release and cabin window release mechanisms. The flight crew escape system was removed from the NASA 905 following the successful completion of the ALT program. NASA 905 was the only SCA used by the space shuttle program until November 1990, when NASA 911 was delivered as an SCA. Along with ferrying Enterprise and the flight-rated orbiters between the launch and landing sites and other locations, NASA 905 also ferried Enterprise to Europe for display in England and at the Paris Air Show. NASA 911 The second SCA is designated NASA 911. It was obtained by NASA from Japan Airlines (JAL) in 1989. It was also modified by Boeing Corporation. It was delivered to NASA 20 November 1990.
Rendezvous and Proximity Operations of the Space Shuttle
NASA Technical Reports Server (NTRS)
Goodman, John L.
2005-01-01
Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.
The BIMDA shuttle flight mission: a low cost microgravity payload.
Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G
1991-01-01
This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.
1998-08-20
In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
14 CFR 1214.202 - Reimbursement policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... year Shuttle operation period. (ii) For a dedicated Shuttle flight during the second phase, NASA shall... great public value, the reimbursement to NASA for the dedicated, standard Shuttle flight in either the... Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who Have Made Substantial...
14 CFR 1214.202 - Reimbursement policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... year Shuttle operation period. (ii) For a dedicated Shuttle flight during the second phase, NASA shall... great public value, the reimbursement to NASA for the dedicated, standard Shuttle flight in either the... Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who Have Made Substantial...
NASA Technical Reports Server (NTRS)
Suit, William T.
1989-01-01
Estimates of longitudinal stability and control parameters for the space shuttle were determined by applying a maximum likelihood parameter estimation technique to Challenger flight test data. The parameters for pitching moment coefficient, C(m sub alpha), (at different angles of attack), pitching moment coefficient, C(m sub delta e), (at different elevator deflections) and the normal force coefficient, C(z sub alpha), (at different angles of attack) describe 90 percent of the response to longitudinal inputs during Space Shuttle Challenger flights with C(m sub delta e) being the dominant parameter. The values of C(z sub alpha) were found to be input dependent for these tests. However, when C(z sub alpha) was set at preflight predictions, the values determined for C(m sub delta e) changed less than 10 percent from the values obtained when C(z sub alpha) was estimated as well. The preflight predictions for C(z sub alpha) and C(m sub alpha) are acceptable values, while the values of C(z sub delta e) should be about 30 percent less negative than the preflight predictions near Mach 1, and 10 percent less negative, otherwise.
Archive data base and handling system for the Orbiter flying qualities experiment program
NASA Technical Reports Server (NTRS)
Myers, T. T.; Dimarco, R.; Magdaleno, R. E.; Aponso, B. L.
1986-01-01
The OFQ archives data base and handling system assembled as part of the Orbiter Flying Qualities (OFQ) research of the Orbiter Experiments Program (EOX) are described. The purpose of the OFQ archives is to preserve and document shuttle flight data relevant to vehicle dynamics, flight control, and flying qualities in a form that permits maximum use for qualified users. In their complete form, the OFQ archives contain descriptive text (general information about the flight, signal descriptions and units) as well as numerical time history data. Since the shuttle program is so complex, the official data base contains thousands of signals and very complex entries are required to obtain data. The OFQ archives are intended to provide flight phase oriented data subsets with relevant signals which are easily identified for flying qualities research.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:14:57.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:12:50.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:04:38.
2000-11-20
JSC2000-07294 (20 November 2000) --- The 40-odd flight controllers assigned to the STS-97 ascent team and some special guests pose for a group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). The five guests attired in the blue and white shirts are the flight crew members for the STS-97 crew, scheduled to be launched from Florida on the last day of this month. The astronauts are, from the left, Joseph R. Tanner, Carlos I. Noriega, Brent W. Jett, Jr., Michael J. Bloomfield and Marc Garneau, who represents the Canadian Space Agency (CSA). Ascent shift flight director Wayne Hale stands next to Tanner.
Risk management in fly-by-wire systems
NASA Technical Reports Server (NTRS)
Knoll, Karyn T.
1993-01-01
A general description of various types of fly-by-wire systems is provided. The risks inherent in digital flight control systems, like those used in the Space Shuttle, are identified. The results of a literature survey examining risk management methods in use throughout the aerospace industry are presented. The applicability of these methods to the Space Shuttle program is discussed.
Electromechanical flight control actuator. [for space shuttles
NASA Technical Reports Server (NTRS)
1976-01-01
An electromechanical actuator that will follow a proportional control command with minimum wasted energy is developed. The feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts is demonstrated. Recommendations for further development are given.
In-flight simulation studies at the NASA Dryden Flight Research Facility
NASA Technical Reports Server (NTRS)
Shafer, Mary F.
1992-01-01
Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.
In-flight simulation studies at the NASA Dryden Flight Research Facility
NASA Technical Reports Server (NTRS)
Shafer, Mary F.
1994-01-01
Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.
NASA Technical Reports Server (NTRS)
Gartner, W. B.; Baldwin, K. M.
1973-01-01
A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
The STS-92 crew is ready to leave KSC after CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Commander Brian Duffy climbs into a T-38 jet aircraft at KSC's Shuttle Landing Facility for a flight back to Houston. He and other crew members were at KSC for Crew Equipment Interface Test (CEIT) activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).
STS-109 Post Flight Presentation
NASA Astrophysics Data System (ADS)
2002-04-01
The STS-109 Post Flight presentation begins with Mission Specialists Nancy J. Currie, Michael J. Massimino, James H. Newman, and Richard M. Linnehan shown getting suited on launch day. Actual footage of the liftoff of the Space Shuttle Columbia is shown. Five spacewalks are performed to service the Hubble Space Telescope. Richard Linnehan and John Grunsfield are replacing solar arrays, connectors and power control units on the Hubble Space Telescope. Mission Specialist Nancy Currie will use Space Shuttle Columbia's robotic arm to grab the telescope, move it away from the orbiter and release it. A look at the coast of South America is also presented.
STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck
1991-08-11
STS043-02-020 (2-11 Aug. 1991) --- Astronaut Michael A. Baker, STS-43 pilot, seated at the forward flight deck pilot station controls of the Space Shuttle Atlantis, eats a free-floating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel.
2007-08-21
KENNEDY SPACE CENTER, FLA. -- Endeavour passes the air traffic control tower (left) next to the Shuttle Landing Facility as it touches down on runway 15 at NASA's Kennedy Space Center after traveling nearly 5.3 million miles on mission STS-118. Behind Endeavour is the Vehicle Assembly Building. The Space Shuttle Endeavour crew, led by Commander Scott Kelly, completes a 13-day mission to the International Space Station. The STS-118 mission began Aug. 8 and installed a new gyroscope, an external spare parts platform and another truss segment to the expanding station. Endeavour's main gear touched down at 12:32:16 p.m. EDT. Nose gear touchdown was at 12:32:29 p.m. and wheel stop was at 12:33:20 p.m. Endeavour landed on orbit 201. STS-118 was the 119th space shuttle flight, the 22nd flight to the station, the 20th flight for Endeavour and the second of four missions planned for 2007. This was the 65th landing of an orbiter at Kennedy. Photo credit: NASA/Rafael Hernandez
2007-08-21
KENNEDY SPACE CENTER, FLA. -- Endeavour passes the air traffic control tower (left) next to the Shuttle Landing Facility as it touches down on runway 15 at NASA's Kennedy Space Center after traveling nearly 5.3 million miles on mission STS-118. Behind Endeavour is the Vehicle Assembly Building. The Space Shuttle Endeavour crew, led by Commander Scott Kelly, completes a 13-day mission to the International Space Station. The STS-118 mission began Aug. 8 and installed a new gyroscope, an external spare parts platform and another truss segment to the expanding station. Endeavour's main gear touched down at 12:32:16 p.m. EDT. Nose gear touchdown was at 12:32:29 p.m. and wheel stop was at 12:33:20 p.m. Endeavour landed on orbit 201. STS-118 was the 119th space shuttle flight, the 22nd flight to the station, the 20th flight for Endeavour and the second of four missions planned for 2007. This was the 65th landing of an orbiter at Kennedy. Photo credit: NASA/Rafael Hernandez
[STS-48 Mission Highlights Resource Tape. Part 1 of 2
NASA Technical Reports Server (NTRS)
1991-01-01
In this first part of a two part video mission-highlights set, the flight of the STS-48 Space Shuttle Orbiter Discovery is reviewed. The flight crew consisted of: J. O. Creighton (Commander); Ken Reightler (Pilot); Charles 'Sam' Gemar (Mission Specialist); James 'Jim' Buchli (MS); and Mark Brown (MS). Step-by-step pre-launch and sunset launch sequences are shown with accompanying shots inside the Mission Control Center. The primary goal of this mission was the deployment of Upper Atmosphere Research Satellite (UARS). Other (secondary) payloads included: the MidDeck Zero Gravity Experiment (MODE); the Sam/Cream device; the Shuttle Activation Monitor/Cosmic Ray Effects and Activation Monitor Experiment; and the Physiology and Anatomical Rodent Experiment (PARE). Crew activities were shown, along with Earth views (Aurora Borealis (B/W), light from the Kuwait oil fires, lightning over Italy and other areas, polar regions and ice caps, and the United States at night (B/W)). This was the thirteenth flight of the Space Shuttle Discovery. A night landing is shown.
NASA Technical Reports Server (NTRS)
1974-01-01
The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.
2002-03-01
Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.
STS-116/ISS 12A.1 flight controllers on console during EVA #4
2006-12-18
JSC2006-E-54451 (17 Dec. 2006) --- Astronauts Stephen K. Robinson and Joseph R. Tanner, spacecraft communicators (CAPCOM), communicate with the STS-116 crew and its spacewalkers participating in an unprecedented fourth session of extravehicular activity on the same shuttle mission. The two spacewalk veterans are seated at the CAPCOM console in the space station flight control room (FCR-1) in the Johnson Space Center's Mission Control Center.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25113 (16 August 2001) --- Flight director Kelly Beck monitors data at her console in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of the two scheduled space walks to perform work on the International Space Station (ISS).
NASA Remembers Astronaut Bruce McCandless II
2017-12-22
Former NASA Astronaut Bruce McCandless II, best known for his iconic free-floating spacewalk on a 1984 shuttle flight, died on Dec. 21 at the age of 80. A native of Boston, McCandless II attended the U.S. Naval Academy and served as a naval aviator before joining NASA in 1966. He served in support or backup roles during the Apollo and Skylab programs, including serving as the communicator from mission control to the Apollo 11 crew during their historic 1969 moonwalk. On Feb. 7, 1984, during the Space Shuttle Challenger’s STS-41B mission, he made the first, untethered, free flight spacewalk in the Manned Maneuvering Unit. In 1990, McCandless II was part of the crew on Space Shuttle Discovery’s STS-31 mission, which deployed the Hubble Space Telescope.
NASA Technical Reports Server (NTRS)
Underwood, J. M.; Cooke, D. R.
1982-01-01
A correlation of the stability and control derivatives from flight (STS-1 & 2) with preflight predictions is presented across the Mach range from 0.9 to 25. Flight data obtained from specially designed flight test maneuvers as well as from conventional bank maneuvers generally indicate good agreement with predicted data. However, the vehicle appears to be lateral-directionally more stable than predicted in the transonic regime. Aerodynamic 'reasonableness tests' are employed to test for validity of flight data. The importance of testing multiple models in multiple wind tunnels at the same test conditions is demonstrated.
2010-07-29
CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Discovery, or OV-103, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo
Postflight balance control recovery in an elderly astronaut: a case report
NASA Technical Reports Server (NTRS)
Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey
2004-01-01
OBJECTIVE: To examine the sensorimotor adaptive response of a 77-year-old man exposed to the gravito-inertial challenges of orbital space flight. STUDY DESIGN: Prospective case study with retrospective comparisons. SETTING: NASA Neurosciences Laboratory (Johnson Space Center) and Baseline Data Collection Facility (Kennedy Space Center). PRIMARY PARTICIPANT: One 77-year-old male shuttle astronaut. INTERVENTION: Insertion into low Earth orbit was used to remove gravitational stimuli and thereby trigger sensorimotor adaptation to the microgravity environment. Graviceptor stimulation was reintroduced at landing, and sensorimotor readaptation to the terrestrial environment was tracked to completion. MAIN OUTCOME MEASURES: Computerized dynamic posturography tests were administered before and after orbital flight to determine the magnitude and time course of recovery. RESULTS: The elderly astronaut exhibited balance control performance decrements on landing day; however, there were no significant differences between his performance and that of younger astronauts tested on the same shuttle mission or on previous shuttle missions of similar duration. CONCLUSIONS: These results demonstrate that the physiological changes attributed to aging do not necessarily impair adaptive sensorimotor control processes.
NASA Technical Reports Server (NTRS)
1977-01-01
Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.
The Evolution of Utilizing Manual Throttles to Avoid Excessively Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2011-01-01
In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controllers in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.
The Evolution of Utilizing Manual Throttling to Avoid Excessively Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2010-01-01
In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controller in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain low threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.
Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System
NASA Technical Reports Server (NTRS)
Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.
1983-01-01
Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.
Spaceflight effects on cultured embryonic chick bone cells
NASA Technical Reports Server (NTRS)
Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.
2000-01-01
A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the same statistical levels as control counterparts. Flight cells elaborated a less extensive extracellular matrix, evidenced by a reduced collagen gene expression and collagen protein appearance compared with controls. Osteocalcin was expressed by all cells, a result indicating progressive differentiation of both flight and control osteoblasts, but its message levels also were reduced in flight cells compared with ground samples. This finding suggested that osteoblasts subjected to flight followed a slower progression toward a differentiated function. The summary of data indicates that spaceflight, including microgravity exposure, demonstrably affects bone cells by down-regulating type I collagen and osteocalcin gene expression and thereby inhibiting expression of the osteogenic phenotype notably by committed osteoblasts. The information is important for insight into the response of bone cells to changes of gravity and of force in general.
The MATHEMATICA economic analysis of the Space Shuttle System
NASA Technical Reports Server (NTRS)
Heiss, K. P.
1973-01-01
Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).
1998-08-19
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
1998-08-20
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
Space Shuttle Program Tin Whisker Mitigation
NASA Technical Reports Server (NTRS)
Nishimi, Keith
2007-01-01
The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.
The KSC Simulation Team practices for contingencies in Firing Room 1
NASA Technical Reports Server (NTRS)
1998-01-01
In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
Research into the development of a knowledge acquisition taxonomy
NASA Technical Reports Server (NTRS)
Fink, Pamela K.
1991-01-01
Monthly progress reports for September 1990 to January 1991 are given. Topics that are briefly covered include problem solving and learning taxonomies, knowledge acquisition techniques, software design, air traffic control, and space shuttle flight control.
2001-05-08
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida.
Space Shuttle Enterprise Demate
2012-05-12
The space shuttle Enterprise, mounted on transport vehicle, is backed into a temporary hanger after being demated from the NASA 747 Shuttle Carrier Aircraft (SCA) at John F. Kennedy (JFK) International Airport in Jamica, New York, Sunday, May 13, 2012. Enterprise will be placed on a barge that will move by tugboat up the Hudson River to the Intrepid Sea, Air & Space Museum in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
2005-03-29
Brig. Gen. Curtis Bedke, commander of the Air Force Flight Test Center at Edwards Air Force Base, received some first-hand insight on how to fly a Space Shuttle approach and landing, courtesy of NASA astronaut and STS-114 mission commander Eileen Collins. The series of proficiency flights in NASA's modified Grumman Gulfstream-II Shuttle Training Aircraft were in preparation for the STS-114 mission with the shuttle Discovery. Although NASA's Kennedy Space Center in Florida is the primary landing site for Space Shuttle missions, flight crews also practice the shuttle's steep approach and landing at Edwards in case weather or other situations preclude a landing at the Florida site and force a diversion to Edwards AFB.
Space Shuttle Main Engine - The Relentless Pursuit of Improvement
NASA Technical Reports Server (NTRS)
VanHooser, Katherine P.; Bradley, Douglas P.
2011-01-01
The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
STS-99 Endeavour touches down at SLF after successful mission
NASA Technical Reports Server (NTRS)
2000-01-01
In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew are returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.
STS-99 Endeavour touches down at SLF after successful mission
NASA Technical Reports Server (NTRS)
2000-01-01
In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.
STS-99 Endeavour touches down at SLF after successful mission
NASA Technical Reports Server (NTRS)
2000-01-01
Space Shuttle Endeavour stirs up dust as its wheels touch down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.
STS-99 MS Kavandi poses for a photo on OV-105's middeck
2000-02-18
S99-E-5716 (18 February 2000) --- Astronaut Janet L. Kavandi on the mid deck of the Space Shuttle Endeavour. A series of electronic stills was taken of the STS-99 individual crew members on the day they got the good news from flight controllers in Houston that Shuttle Radar Topography Mission (SRTM) mapping time had been extended.
Payload specialist station study. Part 2: CEI specifications (part 1). [space shuttles
NASA Technical Reports Server (NTRS)
1976-01-01
The performance, design, and verification specifications are established for the multifunction display system (MFDS) to be located at the payload station in the shuttle orbiter aft flight deck. The system provides the display units (with video, alphanumerics, and graphics capabilities), associated with electronic units and the keyboards in support of the payload dedicated controls and the displays concept.
Mission control activity during STS-61 EVA
1993-12-07
STS61-S-101 (8 Dec 1993) --- Astronaut Gregory J. Harbaugh, spacecraft communicator (CAPCOM), observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-orbiting Space Shuttle Endeavour. Seen on the screen in the front of the flight control room, preparing to work with the Hubble Space Telescope's (HST) magnetometers, are astronauts F. Story Musgrave and Jeffrey A. Hoffman. Harbaugh stayed busy passing up flight controllers suggestions and directions during the record-breaking battery of in-space servicing sessions. Lead flight director Milt Heflin is partially visible at left edge of frame.
Space Shuttle Flight Support Motor no. 1 (FSM-1)
NASA Technical Reports Server (NTRS)
Hughes, Phil D.
1990-01-01
Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.
third "free flight" of Shuttle Orbiter 101 Spacecraft
1977-09-23
S77-28542 (23 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" separates from the NASA 747 carrier aircraft during the third free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 23, 1977, at the Dryden Flight Research Center (DFRC) in Southern California. The vehicle, with astronauts Fred W. Haise Jr., commander, and C. Gordon Fullerton, pilot, remained in unpowered flight for five-minutes and 34-seconds before landing on the desert land of Edwards Air Force Base.
1978-05-01
This photograph shows a liquid oxygen tank for the Shuttle External Tank (ET) during a hydroelastic modal survey test at the Marshall Space Flight Center. The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.
Spaceflight Effects on Mammalian Development Summary of Research
NASA Technical Reports Server (NTRS)
Alberts, Jeffrey
1998-01-01
Pregnant rats were flown as small payloads on the Space Shuttle and studied during the flight and for approximately a week after returning to Earth, when they were due to deliver their offspring. Studies of vestibular function in the rat pups were examined as part of the research program. Daily videorecordings were made of the rats' behavior in the Animal Enclosure Modules (AEMS) and in identical compartments maintained in the Orbiter Environment Simulator at the Kennedy Space Center (referred to below as Synchronous Control groups). There was continuous postflight surveillance of the rat dams, including timelapse recordings of labor and delivery. The videorecords provided by crewmembers constitute the best systematic views of spaceflown rats to date, despite the dramatic deterioration of visibility sustained after about the 4th day of flight. We were able to make both qualitative and quantitative observations. Rats were observed to engage in a varied repertoire of species-typical activities within the confines of the AEM. We devised a kinematic coding scheme by which we classified and quantified the movements made by dams in space and in the 1-g control condition. We found that movements involving pitch and yaw were about equivalent in Flight and Synchronous animals. In contrast, Flight dams displayed about seven times more rolling movements than did Control. NASA enabled early access to the AEMs after the Shuttle landed. Rats were intact and healthy. Body weight gain during the 9-11 day flights was equivalent to Controls. Post-flight observations, derived from 24hr/day videorecordings, showed that Flight rats ambulated less, reared fewer times and spent less time bipedal than did controls. Overall, their anti-gravitational responses appeared compromised.
NASA Technical Reports Server (NTRS)
Sinha, Sujit
1988-01-01
A study was conducted to evaluate the performance implications of a heads-up ascent flight design for the Space Transportation System, as compared to the current heads-down flight mode. The procedure involved the use of the Minimum Hamiltonian Ascent Shuttle Trajectory Evaluation Program, which is a three-degree-of-freedom moment balance simulation of shuttle ascent. A minimum-Hamiltonian optimization strategy was employed to maximize injection weight as a function of maximum dynamic pressure constraint and Solid Rocket Motor burnrate. Performance Reference Mission Four trajectory groundrules were used for consistency. The major conclusions are that for heads-up ascent and a mission nominal design maximum dynamic pressure value of 680 psf, the optimum solid motor burnrate is 0.394 ips, which produces a performance enhancement of 4293 lbm relative to the baseline heads-down ascent, with 0.368 ips burnrate solid motors and a 680 psf dynamic pressure constraint. However, no performance advantage exists for heads-up flight if the current Solid Rocket Motor target burnrate of 0.368 ips is used. The advantage of heads-up ascent flight employing the current burnrate is that Space Shuttle Main Engine throttling for dynamic pressure control is not necessary.
STS-55 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.
Effects of space flight on GLUT-4 content in rat plantaris muscle
NASA Astrophysics Data System (ADS)
Tabata, I.; Kawanaka, Kentaro; Sekiguchi, Chiharu; Nagaoka, Shunji; Ohira, Yoshinobu
The effects of 14 days of space flight on the glucose transporter protein (GLUT-4) were studied in the plantaris muscle of growing 9-week-old, male Sprague Dawley rats. The rats were randomly separated into five groups: pre-flight vivarium ground controls (PF-VC) sacrificed approximately 2 h after launch; flight groups sacrificed either approximately 5 h (F-R0) or 9 days (F-R9) after the return from space; and synchronous ground controls (SC-R0 and SC-R9) sacrificed at the same time as the respective flight groups. The flight groups F-R0 and F-R9 were exposed to micro-gravity for 14 days in the Spacelab module located in the cargo bay of the shuttle transport system - 58 of the manned Space Shuttle for the NASA mission named ''Spacelab Life Sciences 2''. Body weight and plantaris weight of SC-R0 and F-R0 were significantly higher than those of PF-VC. Neither body weight nor plantaris muscle weight in either group had changed 9 days after the return from space. As a result, body weight and plantaris muscle weight did not differ between the flight and synchronous control groups at any of the time points investigated. The GLUT-4 content (cpm/µg membrane protein) in the plantaris muscle did not show any significant change in response to 14 days of space flight or 9 days after return. Similarly, citrate synthase activity did not change during the course of the space flight or the recovery period. These results suggest that 14 days of space flight does not affect muscle mass or GLUT-4 content of the fast-twitch plantaris muscle in the rat.
Space Shuttle Enterprise Demate
2012-05-12
Space shuttle Enterprise is held aloft by a yellow sling and a set of cranes after it was removed from the top of NASA's 747 Shuttle Carrier Aircraft early Sunday morning at John F. Kennedy (JFK) International Airport in New York, Sunday, May 13, 2012 .The 747 was towed backwards so that Enterprise could be lowered. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to the Intrepid Sea, Air & Space Museum in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Space Shuttle Enterprise Demate
2012-05-12
NASA and United Space Alliance workers lower a yellow sling onto space shuttle Enterprise, which sits atop NASA's 747 Shuttle Carrier Aircraft (SCA) prior to it being demated a few hours later at John F. Kennedy (JFK) International Airport in New York, Saturday, May 12, 2012. Once the sling was firmly attached early Sunday morning, Enterprise was lifted from the SCA. The shuttle will be placed on a barge that will move by tugboat up the Hudson River to Intrepid in June. The shuttle will be lifted by crane and placed on the flight deck of the Intrepid, where it will be on exhibit to the public starting this summer in a temporary climate-controlled pavilion. Photo Credit: (NASA/Kim Shiflet)
Hardware interface unit for control of shuttle RMS vibrations
NASA Technical Reports Server (NTRS)
Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran
1994-01-01
Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.
STS-40 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
STS-40 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-07-01
The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.
Space shuttle simulation model
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1980-01-01
The effects of atmospheric turbulence in both horizontal and near horizontal flight, during the return of the space shuttle, are important for determining design, control, and 'pilot-in-the-loop' effects. A nonrecursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model, the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes which are entitled shuttle simulation turbulence tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 10,000 meters. The turbulence generation procedure is described as well as the results of validating the simulated turbulence. Conclusions and recommendations are presented and references cited. The tabulated one dimensional von Karman spectra and the results of spectral and statistical analyses of the SSTT are contained in the appendix.
Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Kornilova, Ludmila; Tomilovskaya, Elena; Parker, Donald E.; Leigh, R. John; Kozlovskaya, Inessa
2009-01-01
Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.
Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System
NASA Technical Reports Server (NTRS)
McCloud, Peter L.; Wobick, Craig A.
2007-01-01
During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.
Research pilot and former astronaut C. Gordon Fullerton in an F/A-18
2002-05-14
Former NASA astronaut C. Gordon Fullerton, seated in the cockpit of an F/A-18, is a research pilot at NASA's Dryden Flight Research Center, Edwards, Calif. Since transferring to Dryden in 1986, his assignments have included a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. He flew a series of development air launches of the X-38 prototype Crew Return Vehicle and in the launches for the X-43A Hyper-X project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft in support a variety of atmospheric physics, ground mapping and meteorology studies. Fullerton also was project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Fullerton also evaluated the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, one of only two non-Russian pilots to fly that aircraft. With more than 15,000 hours of flying time, Fullerton has piloted 135 different types of aircraft in his career. As an astronaut, Fullerton served on the support crews for the Apollo 14, 15, 16, and 17 lunar missions. In 1977, Fullerton was on one of the two flight crews that piloted the Space Shuttle prototype Enterprise during the Approach and Landing Test Program at Dryden. Fullerton was the pilot on the STS-3 Space Shuttle orbital flight test mission in 1982, and commanded the STS-51F Spacelab 2 mission in 1985. He has logged 382 hours in space flight. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel.
Review of Orbiter Flight Boundary Layer Transition Data
NASA Technical Reports Server (NTRS)
Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.
2006-01-01
In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.
Main propulsion system test requirements for the two-engine Shuttle-C
NASA Technical Reports Server (NTRS)
Lynn, E. E.; Platt, G. K.
1989-01-01
The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.
Drawing of STS-34 SSBUV orbiter interface and command and status monitoring
NASA Technical Reports Server (NTRS)
1989-01-01
Line drawing titled SSBUV ORBITER INTERFACE FOR COMMAND AND STATUS MONITORING shows how the shuttle solar backscatter ultraviolet (UV) (SSBUV) will be operated by crewmembers on the aft flight deck using a autonomous payload controller (APC). SSBUV instrument will calibrate ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites NOAA-9 and NOAA-11. During STS-34, SSBUV instruments mounted in get away special (GAS) canisters in Atlantis', Orbiter Vehicle (OV) 104's, payload bay will use the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard the TIROS satellite, as OV-104 and the satellite pass over the same Earth location within a one-hour window. SSBUV is managed by NASA's Goddard Space Flight Center (GSFC).
International Space Station (ISS)
2001-04-28
A Canadian "handshake" in space occurred on April 28, 2001, as the Canadian-built space station robotic arm (Canadarm2) transferred its launch cradle over to Endeavour's robotic arm. Pictured is astronaut James S. Voss, Expedition Two flight engineer, working the controls of the new robotic arm. Marning the controls from the shuttle's aft flight deck, Canadian Mission Specialist Chris A. Hadfield of the Canadian Space Agency (CSA) was instrumental in the activity. The Space lab pallet that carried the Canadarm2 robotic arm to the station was developed at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
Update on the Effects of Space Flight on Development of Immune Responses
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Foster, M.; Morton, D.; Bailliard, F.; Fowler, N. A.; Hakenwewerth, A. M.; Bates, R.; Miller, E. S.
1999-01-01
This study has been completed, and the following is an update of the results as published. Pregnant rats were flown on the Space Shuttle in the NIH.R I mission for 11 days, and pregnant control rats were maintained in animal enclosure modules in a ground-based chamber under conditions approximating those in flight. Additional controls were in standard housing. The effects of the flight on immunological parameters (including blastogenesis, interferon-gamma production, response to colony stimulating factor and total immunoglobulin levels) of dams, fetuses, and pups was determined.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Mcconnell, J. G.; Compton, H. R.
1984-01-01
Longitudinal aerodynamic performance comparisons between flight extracted and predicted values are presented for the first eight NASA Space Shuttle entry missions. Challenger results are correlated with the ensemble five flight Columbia experience and indicate effects due to differing angle-of-attack and body flap deflection profiles. An Appendix is attached showing the results of each flight using both the LaRC LAIRS and NOAA atmospheres. Discussions are presented which review apparent density anomalies observed in the flight data, with particular emphasis on the suggested shears and turbulence encountered during STS-2 and STS-4. Atmospheres derived from Shuttle data are presented which show structure different than that remotely sensed and imply regions of unstable air masses as a plausible explanation. Though additional aerodynamic investigations are warranted, an added benefit of Shuttle flight data for atmospheric research is discussed, in particular, as applicable to future NASA space vehicles such as AOTVs and tethered satellites.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
Space Operations Center - A concept analysis
NASA Technical Reports Server (NTRS)
1980-01-01
The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During an End-to-End (ETE) Mission Management Team (MMT) launch simulation at KSC, Mike Rein, division chief of Media Services, and Lisa Malone, director of External Relations and Business Development at KSC, work the consoles. In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. The ETE MMT simulation included L-2 and L-1 day Prelaunch MMT meetings, an external tanking/weather briefing, and a launch countdown. The ETE transitioned to the Johnson Space Center for the flight portion of the simulation, with the STS-114 crew in a simulator at JSC. Such simulations are common before a launch to keep the Shuttle launch team sharp and ready for liftoff.
An Induced Environment Contamination Monitor for the Space Shuttle
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Decher, R. (Editor)
1978-01-01
The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.
First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit
NASA Technical Reports Server (NTRS)
Meade, Carl J.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.
Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.
Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.
1983-01-01
The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.
Organizing Space Shuttle parametric data for maintainability
NASA Technical Reports Server (NTRS)
Angier, R. C.
1983-01-01
A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.
STS-97 WFCR launch Day activities
2000-12-01
JSC2000-E-29806 (30 November 2000) --- (From left) Astronauts Scott J. Kelly (Lt. Cdr., USN) , Dominic L. Gorie (Captain, USN) and Christopher J. Loria (Major, USMC), at the spacecraft communicator (CAPCOM) console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC), monitor audio from the crew onboard Endeavour just prior to liftoff of STS-97. The CAPCOM console is reponsible for communicating the largest majority of oral messages to the shuttle cew members throughout the duration of all mission.
MCC level C formulation requirements. Shuttle TAEM targeting
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are described. This processor is used for preentry evaluation of the entry through landing maneuvers, and includes a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.
Shuttle in Mate-Demate Device being Loaded onto SCA-747
NASA Technical Reports Server (NTRS)
1991-01-01
At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
2000-10-29
The early-morning Sun provides a golden backdrop to the Space Shuttle Discovery encased in the Mate-Demate Device (MDD) at NASA’s Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used to prepare the shuttle for its ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA’s modified Boeing 747 Shuttle Carrier Aircraft.
NASA Technical Reports Server (NTRS)
Holland, W.
1974-01-01
This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.
Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.
2009-01-01
This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2011-01-01
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.
Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle
NASA Technical Reports Server (NTRS)
Naylor, J. R.; Hynes, R. J.; Molnar, D. O.
1974-01-01
The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.
NASA Technical Reports Server (NTRS)
Baldwin, Evelyn
2008-01-01
The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.
STS-78 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).
1992-09-12
A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.
Space Shuttle program orbital flight test program results and implications
NASA Technical Reports Server (NTRS)
Kohrs, R. H.
1982-01-01
The Space Shuttle System Orbital Flight Test (OFT) program results are described along with an overview of significant development issues and their resolution. In addition, an overall summary of the development status and the follow-on flight demonstrations of Shuttle improvements such as Lightweight External Tank, High Performance SRBs, Full Power Level (109%) Main Engine Operation, and the SRB Filament Wound Case (FWC) will be discussed.
Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction
NASA Technical Reports Server (NTRS)
McCluskey, R.
2004-01-01
Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.
NASA Technical Reports Server (NTRS)
Lafuse, Sharon A.
1991-01-01
The paper describes the Shuttle Leak Management Expert System (SLMES), a preprototype expert system developed to enable the ECLSS subsystem manager to analyze subsystem anomalies and to formulate flight procedures based on flight data. The SLMES combines the rule-based expert system technology with the traditional FORTRAN-based software into an integrated system. SLMES analyzes the data using rules, and, when it detects a problem that requires simulation, it sets up the input for the FORTRAN-based simulation program ARPCS2AT2, which predicts the cabin total pressure and composition as a function of time. The program simulates the pressure control system, the crew oxygen masks, the airlock repress/depress valves, and the leakage. When the simulation has completed, other SLMES rules are triggered to examine the results of simulation contrary to flight data and to suggest methods for correcting the problem. Results are then presented in form of graphs and tables.
STS-114 Flight Day 12 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Flight Day 12 features a night undocking of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) from the International Space Station (ISS). The STS-114 crew and the Expedition 11 crew of the ISS (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) bid each other farewell. Prior to the undocking, Discovery and Mission Control are heard discussing troubleshooting of an oxygen flow sensor. Crew preparations for undocking are also heard. After the spacecraft are shown separating, Collins discusses with Mission Control possible debris seen on a monitor. The video includes several scenes of the ISS from the shuttle orbiter, one with Kazakhstan and another with the Himalayas in the background, and another shot with a hand-held camera by Noguchi. Other Earth views include the Sinai Peninsula and Nile Delta in Egypt, a storm at sea, and a black and white view of the Southern Lights over Australia.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1984-01-01
A six-degree-of-freedom simulation analysis has been performed for the Space Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal conditions using the entry flight control system specified in May 1978. The off-nominal conditions included the following: (1) aerodynamic uncertainties, (2) an error in deriving the angle of attack from onboard instrumentation, (3) the failure of two of the four reaction control-system thrusters on each side, and (4) a lateral center-of-gravity offset. With combinations of the above off-nominal conditions, the control system performed satisfactorily with a few exceptions. The cases that did not exhibit satisfactory performance displayed the following main weaknesses. Marginal performance was exhibited at hypersonic speeds with a sensed angle-of-attack error of 4 deg. At supersonic speeds the system tended to be oscillatory, and the system diverged for several cases because of the inability to hold lateral trim. Several system modifications were suggested to help solve these problems and to maximize safety on the first flight: alter the elevon-trim and speed-brake schedules, delay switching to rudder trim until the rudder effectiveness is adequate, and reduce the overall rudder loop gain. These and other modifications were incorporated in a flight-control-system redesign in May 1979.
Managing Toxicological Risks: The Legacy of Shuttle Operations
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.
2015-01-01
The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.
2011-07-07
NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Mobile Christian - shuttle flight
2009-04-21
Louis Stork, 13, and Erin Whittle, 14, look on as Brianna Johnson, 14, conducts a 'test' of a space shuttle main engine in the Test Control Center exhibit in StenniSphere, the visitor center at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.
STS-99 Commander Kregel poses for a photo on OV-105's middeck
2000-02-18
S99-E-5719 (18 February 2000) --- Astronaut Kevin R. Kregel, mission commander, on the mid deck of the Space Shuttle Endeavour. A series of electronic stills was taken of the STS-99 indiviaul crew members on the day they got the good news from flight controllers in Houston that Shuttle Radar Topograpy Mission (SRTM) mapping time had been extended.
Mobile Christian - shuttle flight
NASA Technical Reports Server (NTRS)
2009-01-01
Louis Stork, 13, and Erin Whittle, 14, look on as Brianna Johnson, 14, conducts a 'test' of a space shuttle main engine in the Test Control Center exhibit in StenniSphere, the visitor center at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.
NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the
NASA Technical Reports Server (NTRS)
2000-01-01
NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25111 (16 August 2001) --- Flight directors John Shannon (left foreground), Kelly Beck, and Steve Stich monitor the data displayed at their consoles in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of the two scheduled space walks to perform work on the International Space Station (ISS).
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
Altered Innate and Lymphocytic Immune Responses in Mouse Splenocytes Post-Flight
NASA Technical Reports Server (NTRS)
Hwang, ShenAn; Crucian, Brian E.; Sams, Clarence F.; Actor, Jeffrey K.
2011-01-01
Space flight is known to affect immune responses of astronauts and animals, decreasing lymphocytic responses to mitogenic stimuli, delayed typed hypersensitivity reactions, and T-cell activation. Despite changes in immune suppression, there are no reports of consistent adverse clinical events post flight. To further investigate the spectrum of affected immune responses, murine splenocytes were stimulated immediately post-shuttle flight (14 days on STS-135) with T-cell stimulators or toll-like receptor agonists. Comparisons were made to ground control splenocytes from age-matched mice. Cell phenotypes were assessed, as well as activation markers and associated cytokine production. The CD4+ population decreased with no concurrent decrease in CD8+ cells from shuttle mice post flight compared to ground controls. Regarding antigen presenting cell populations, the number of CD11c+ cells were slightly elevated post flight, compared to ground controls, with increased MHC Class I expression (I-A(sup b)) and no change in Class II expression (H-2K(sup b)). CD86+ populations were also significantly diminished. However, the decreased markers did not correlate with activity. Stimulation of splenocytes post flight showed significant increase in bead uptake, increased Class I expression, increased TNF-alpha and IL-6 production in response to TLR-2 (zymosan) and TLR-4 (LPS) agonists. While most activated (ConA or anti-CD3/anti-CD28) CD4+ cells showed markedly diminished responses (reduced IL-2 production), non-specific T cell responses to superantigen (SEA/SEB) increased post flight as determined by expression of early activation markers. Production of additional cytokines was also dysregulated postflight. Overall, persistent immune changes during space flight could represent unique clinical risks for exploration class missions. The consequences of pathogenic encounter remain an important concern that should be addressed.
F-15A in flight closeup of 10 degree cone experiment
1976-02-04
The number two F-15A (Serial #71-0281) was obtained by NASA from the U.S. Air Force in 1976 and was used for more than 25 advanced research projects involving aerodynamics, performance, propulsion control, control integration, instrumentation development, human factors, and flight test techniques. Included in these projects was its role as a testbed to evaluate aerodynamic pressures on Space Shuttle thermal protection tiles at specific altitudes and speeds.
Approach and Landing Tests Film Documentary
2018-05-09
Documentary of shuttle Enterprise on the Shuttle Carrier Aircraft (SCA), separating from the SCA in flight, and in free-flight. Footage shows SCA pilots Fitzhugh “Fitz” Fulton and Tom McMurtry heading to the aircraft, and Gordon Fullerton and Fred Haise following a flight in the prototype shuttle. During the nearly one-year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype.
NASA Technical Reports Server (NTRS)
Martin, J. A.; Wilhite, A. W.
1979-01-01
The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.
NASA Contingency Shuttle Crew Support (CSCS) Medical Operations
NASA Technical Reports Server (NTRS)
Adams, Adrien
2010-01-01
The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support
The F-15B Lifting Insulating Foam Trajectory (LIFT) Flight Test
NASA Technical Reports Server (NTRS)
Corda, Stephen; Whiteman, Donald; Tseng, Ting; Machin, Ricardo
2006-01-01
A series of flight tests has been performed to assess the structural survivability of space shuttle external tank debris, known as divots, in a real flight environment. The NASA F-15B research test bed aircraft carried the Aerodynamic Flight Test Fixture configured with a shuttle foam divot ejection system. The divots were released in flight at subsonic and supersonic test conditions matching points on the shuttle ascent trajectory. Very high-speed digital video cameras recorded the divot trajectories. The objectives of the flight test were to determine the structural survivability of the divots in a real flight environment, assess the aerodynamic stability of the divots, and provide divot trajectory data for comparison with debris transport models. A total of 10 flights to Mach 2 were completed, resulting in 36 successful shuttle foam divot ejections. Highspeed video was obtained at 2,000 pictures per second for all of the divot ejections. The divots that were cleanly ejected remained structurally intact. The conical frustum-shaped divots tended to aerodynamically trim in both the subsonic and supersonic free-stream flow.
Design development and test: Two-gas atmosphere control subsystem
NASA Technical Reports Server (NTRS)
Jackson, J. K.
1974-01-01
An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.
Space Flight: The First 30 Years
NASA Technical Reports Server (NTRS)
1991-01-01
A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.
Cockrell and Rominger go through de-orbit preparations in the flight deck
1996-12-06
STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.
Development of the brine shrimp Artemia is accelerated during spaceflight
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Metcalf, J.; DeBell, L.; Paulsen, A.; Noren, W.; Guikema, J. A.
1994-01-01
Developmentally arrested brine shrimp cysts have been reactivated during orbital spaceflight on two different Space Shuttle missions (STS-50 and STS-54), and their subsequent development has been compared with that of simultaneously reactivated ground controls. Flight and control brine shrimp do not significantly differ with respect to hatching rates or larval morphology at the scanning and transmission EM levels. A small percentage of the flight larvae had defective nauplier eye development, but the observation was not statistically significant. However, in three different experiments on two different flights, involving a total of 232 larvae that developed in space, a highly significant difference in degree of flight to control development was found. By as early as 2.25 days after reactivation of development, spaceflight brine shrimp were accelerated, by a full instar, over ground control brine shrimp. Although developing more rapidly, flight shrimp grew as long as control shrimp at each developmental instar or stage.
NASA Technical Reports Server (NTRS)
Alverado, U.
1975-01-01
The use of the space shuttle for the Earth Resources Program is discussed. Several problems with respect to payload selection, integration, and mission planning were studied. Each of four shuttle roles in the sortie mode were examined and projected into an integrated shuttle program. Several representative Earth Resources missions were designed which would use the shuttle sortie as a platform and collectively include the four shuttle roles. An integrated flight program based on these missions was then developed for the first two years of shuttle flights. A set of broad implications concerning the uses of the shuttle for Earth Resources studies resulted.
Shuttle crew escape systems (CES) rocket test at Hurricane Mesa, Utah
1987-11-12
Shuttle crew escape systems (CES) tractor rocket tests conducted at Hurricane Mesa, Utah. This preliminary ground test of the tractor rocket will lead up to in-air evaluations. View shows tractor rocket as it is fired from side hatch mockup. The tractor rocket concept is one of two escape methods being studied to provide crew egress capability during Space Shuttle controlled gliding flight. In-air tests of the system, utilizing a Convair-240 aircraft, will begin 11-19-87 at the Naval Weapons Center in China Lake, California.
Shuttle crew escape systems test conducted in JSC Bldg 9A CCT
1987-03-20
Shuttle crew escape systems test is conducted by astronauts Steven R. Nagel (left) and Manley L. (Sonny) Carter in JSC One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Nagel and Carter are evaluating methods for crew escape during Space Shuttle controlled gliding flight. JSC test was done in advance of tests scheduled for facilities in California and Utah. Here, Carter serves as test subject evaluating egress positioning for the tractor rocket escape method - one of the two systems currently being closely studied by NASA.
2001-02-05
KENNEDY SPACE CENTER, FLA. -- STS-98 Commander Ken Cockrell, near the nose of the Shuttle Training Aircraft he just landed, makes his way across the parking apron of the Shuttle Landing Facility. The cockpit of the STA is outfitted like the Shuttle, which provides practice at the controls, especially for landing. The STS-98 crew recently arrived at KSC to prepare for their launch Feb. 7 to the International Space Station. The seventh construction flight to the Space Station, it will carry the U.S. Laboratory Destiny, a key module for space experiments
NASA Technical Reports Server (NTRS)
Carmean, W. D.; Hitz, F. R.
1976-01-01
Guidelines are developed for use in control and display panel design for payload operations performed on the aft flight deck of the orbiter. Preliminary payload procedures are defined. Crew operational concepts are developed. Payloads selected for operational simulations were the shuttle UV optical telescope (SUOT), the deep sky UV survey telescope (DUST), and the shuttle UV stellar spectrograph (SUSS). The advanced technology laboratory payload consisting of 11 experiments was selected for a detailed evaluation because of the availability of operational data and its operational complexity.