Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
Space shuttle solid rocket booster cost-per-flight analysis technique
NASA Technical Reports Server (NTRS)
Forney, J. A.
1979-01-01
A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.
The design of flight hardware: Organizational and technical ideas from the MITRE/WPI Shuttle Program
NASA Technical Reports Server (NTRS)
Looft, F. J.
1986-01-01
The Mitre Corporation of Bedford Mass. and the Worcester Polytechnic Institute are developing several experiments for a future Shuttle flight. Several design practices for the development of the electrical equipment for the flight hardware have been standardized. Some of the ideas are presented, not as hard and fast rules but rather in the interest of stimulating discussions for sharing such ideas.
Use of Heritage Hardware on Orion MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2012-01-01
Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.
Use of Heritage Hardware on MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2011-01-01
Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.
14 CFR ยง 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accomplished on a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... services will be priced on the basis of estimated costs. If a special dedicated Shuttle flight is required...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
NASA Technical Reports Server (NTRS)
Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.
1984-01-01
A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
NASA Technical Reports Server (NTRS)
Kezirian, Michael T.
2010-01-01
Introducing composite vessels into the Space Shuttle Program represented a significant technical achievement. Each Orbiter vehicle contains 24 (nominally) Kevlar tanks for storage of pressurized helium (for propulsion) and nitrogen (for life support). The use of composite cylinders saved 752 pounds per Orbiter vehicle compared with all-metal tanks. The weight savings is significant considering each Shuttle flight can deliver 54,000 pounds of payload to the International Space Station. In the wake of the Columbia accident and the ensuing Return to Flight activities, the Space Shuttle Program, in 2005, re-examined COPV hardware certification. Incorporating COPV data that had been generated over the last 30 years and recognizing differences between initial Shuttle Program requirements and current operation, a new failure mode was identified, as composite stress rupture was deemed credible. The Orbiter Project undertook a comprehensive investigation to quantify and mitigate this risk. First, the engineering team considered and later deemed as unfeasible the option to replace existing all flight tanks. Second, operational improvements to flight procedures were instituted to reduce the flight risk and the danger to personnel. Third, an Orbiter reliability model was developed to quantify flight risk. Laser profilometry inspection of several flight COPVs identified deep (up to 20 mil) depressions on the tank interior. A comprehensive analysis was performed and it confirmed that these observed depressions were far less than the criterion which was established as necessary to lead to liner buckling. Existing fleet vessels were exonerated from this failure mechanism. Because full validation of the Orbiter Reliability Model was not possible given limited hardware resources, an Accelerated Stress Rupture Test of a flown flight vessel was performed to provide increased confidence. A Bayesian statistical approach was developed to evaluate possible test results with respect to the model credibility and thus flight rationale for continued operation of the Space Shuttle with existing flight hardware. A non-destructive evaluation (NDE) technique utilizing Raman Spectroscopy was developed to directly measure the overwrap residual stress state. Preliminary results provide optimistic results that patterns of fluctuation in fiber elastic strains over the outside vessel surface could be directly correlated with increased fiber stress ratios and thus reduced reliability.
2004-09-09
KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Terry White inspects plastic-covered flight hardware in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.
NASA Technical Reports Server (NTRS)
1972-01-01
Mission analysis is discussed, including the consolidation and expansion of mission equipment and experiment characteristics, and determination of simplified shuttle flight schedule. Parametric analysis of standard space hardware and preliminary shuttle/payload constraints analysis are evaluated, along with the cost impact of low cost standard hardware.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments
NASA Technical Reports Server (NTRS)
Budney, T. J.; Stone, R. W.
1982-01-01
Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.
Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13
NASA Technical Reports Server (NTRS)
Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.
2007-01-01
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.
Space Shuttle STS-1 SRB damage investigation
NASA Technical Reports Server (NTRS)
Nevins, C. D.
1982-01-01
The physical damage incurred by the solid rocket boosters during reentry on the initial space shuttle flight raised the question of whether the hardware, as designed, would yield the low cost per flight desired. The damage was quantified, the cause determined and specific design changes recommended which would preclude recurrence. Flight data, postflight analyses, and laboratory hardware examinations were used. The resultant findings pointed to two principal causes: failure of the aft skirt thermal curtain at the onset of reentry aerodynamic heating, and overloading of the aft shirt stiffening rings during water impact. Design changes were recommended on both the thermal curtain and the aft skirt structural members to prevent similar damage on future missions.
NASA Technical Reports Server (NTRS)
1979-01-01
The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
2011-07-12
JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding...
Managing Toxicological Risks: The Legacy of Shuttle Operations
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.
Preliminary Findings from the SHERE ISS Experiment
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.
2009-01-01
The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.
NASA's approach to space commercialization
NASA Technical Reports Server (NTRS)
Gillam, Isaac T., IV
1986-01-01
The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.
Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions
NASA Technical Reports Server (NTRS)
Mattingly, S. G.; Rude, E. T.; Marshner, R. L.
1975-01-01
A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services ยง 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services ยง 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services ยง 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services ยง 1214.804 Services, pricing basis, and other...
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
EVA 2 activity on Flight Day 5 to service the Hubble Space Telescope
1997-02-15
STS082-742-047 (11-21 Feb. 1997) --- On Flight Day 5, astronaut Joseph R. Tanner (left) holds a 500 pound piece of hardware as he stands on the end of the Space Shuttle Discovery's Remote Manipulator System (RMS) arm, as tethered astronaut Gregory J. Harbaugh works nearby. The piano-shaped object held aloft by Tanner is actually the Fine Guidance Sensor 1 (FGS-1), which Tanner had just removed from the Hubble Space Telescope (HST). Harbaugh is inspecting the FGS' bay to set the stage for the two to insert the replacement hardware. EDITOR'S NOTE: For orientation purposes, the picture should be held with Space Shuttle's OMS pods at top.
KSC facilities status and planned management operations. [for Shuttle launches
NASA Technical Reports Server (NTRS)
Gray, R. H.; Omalley, T. J.
1979-01-01
A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.
Orbiter Auxiliary Power Unit Flight Support Plan
NASA Technical Reports Server (NTRS)
Guirl, Robert; Munroe, James; Scott, Walter
1990-01-01
This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.
NASA Technical Reports Server (NTRS)
Curran, R. T.
1971-01-01
A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.
2009-09-16
EDWARDS AIR FORCE BASE, Calif. โ ((ED09-0253-83) The tail cone that improves the aerodynamics of the space shuttle for its cross-country ferry flight is positioned aft of shuttle Discoveryโs rocket nozzles prior to installation at NASAโs Dryden Flight Research Center. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Tony Landis
2009-09-16
EDWARDS AIR FORCE BASE, Calif. โ (ED09-0253-84) The tail cone that improves the aerodynamics of the space shuttle for its cross-country ferry flight is positioned aft of shuttle Discoveryโs rocket nozzles prior to installation at NASAโs Dryden Flight Research Center. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Tony Landis
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
NASA Technical Reports Server (NTRS)
1972-01-01
The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.
Convair-240 aircraft modified with shuttle hatch for CES testing
NASA Technical Reports Server (NTRS)
1987-01-01
Shuttle Crew Escape System (CES) hardware includes space shuttle side hatch incorporated into Convair-240 aircraft at Naval Weapons Center, China Lake, California. Closeup shows dummy positioned in the Convair-240 escape hatch. Beginning this month, tests will be conducted here to evaluate a tractor rocket system - one of two escape methods being studied by NASA to provide crew egress capability during Space Shuttle controlled gliding flight.
NASA Technical Reports Server (NTRS)
Katembe, W. J.; Edelmann, R. E.; Brinckmann, E.; Kiss, J. Z.
1998-01-01
Experiments with Arabidopsis have been developed for spaceflight studies in the European Space Agency's Biorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants of Arabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate small Arabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions for Arabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.
Study of efficient video compression algorithms for space shuttle applications
NASA Technical Reports Server (NTRS)
Poo, Z.
1975-01-01
Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.
NASA Technical Reports Server (NTRS)
Hegarty, D. M.
1974-01-01
A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.
Developmental Flight Instrumentation System for the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Crawford, Kevin; Thomas, John
2006-01-01
The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.
A criterion for establishing life limits. [for Space Shuttle Main Engine service
NASA Technical Reports Server (NTRS)
Skopp, G. H.; Porter, A. A.
1990-01-01
The development of a rigorous statistical method that would utilize hardware-demonstrated reliability to evaluate hardware capability and provide ground rules for safe flight margin is discussed. A statistical-based method using the Weibull/Weibayes cumulative distribution function is described. Its advantages and inadequacies are pointed out. Another, more advanced procedure, Single Flight Reliability (SFR), determines a life limit which ensures that the reliability of any single flight is never less than a stipulated value at a stipulated confidence level. Application of the SFR method is illustrated.
Composite Overwrapped Pressure Vessels (COPV): Flight Rationale for the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Kezirian, Michael T.; Johnson, Kevin L.; Phoenix, Stuart L.
2011-01-01
Each Orbiter Vehicle (Space Shuttle Program) contains up to 24 Kevlar49/Epoxy Composite Overwrapped Pressure Vessels (COPV) for storage of pressurized gases. In the wake of the Columbia accident and the ensuing Return To Flight (RTF) activities, Orbiter engineers reexamined COPV flight certification. The original COPV design calculations were updated to include recently declassified Kevlar COPV test data from Lawrence Livermore National Laboratory (LLNL) and to incorporate changes in how the Space Shuttle was operated as opposed to orinigially envisioned. 2005 estimates for the probability of a catastrophic failure over the life of the program (from STS-1 through STS-107) were one-in-five. To address this unacceptable risk, the Orbiter Project Office (OPO) initiated a comprehensive investigation to understand and mitigate this risk. First, the team considered and eventually deemed unfeasible procuring and replacing all existing flight COPVs. OPO replaced the two vessels with the highest risk with existing flight spare units. Second, OPO instituted operational improvements in ground procedures to signficiantly reduce risk, without adversely affecting Shuttle capability. Third, OPO developed a comprehensive model to quantify the likelihood of occurrance. A fully-instrumented burst test (recording a lower burst pressure than expected) on a flight-certified vessel provided critical understanding of the behavior of Orbiter COPVs. A more accurate model was based on a newly-compiled comprehensive database of Kevlar data from LLNL and elsewhere. Considering hardware changes, operational improvements and reliability model refinements, the mean reliability was determined to be 0.998 for the remainder of the Shuttle Program (from 2007, for STS- 118 thru STS-135). Since limited hardware resources precluded full model validation through multiple tests, additional model confidence was sought through the first-ever Accelerated Stress Rupture Test (ASRT) of a flown flight article. A Bayesian statistical approach was developed to interpret possible test results. Since the lifetime observed in the ASRT exceeded initial estimates by one to two orders of magnitude, the Space Shuttle Program deemed there was significant conservatism in the model and accepted continued operation with existing flight hardware. Given the variability in tank-to-tank original prooftest response, a non-destructive evaluation (NDE) technique utilizing Raman Spectroscopy was developed to directly measure COPV residual stress state. Preliminary results showed that patterns of low fiber elastic strains over the outside vessel surface, together with measured permanent volume growth during proof, could be directly correlated to increased fiber stress ratios on the inside fibers adjacent to the liner, and thus reduced reliability.
In-flight rain damage tests of the shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Meyer, Robert R., Jr.; Barneburg, Jack
1988-01-01
NASA conducted in-flight rain damage tests of the Shuttle thermal protection system (TPS). Most of the tests were conducted on an F-104 aircraft at the Dryden Flight Research Facility of NASA's Ames Research Center, although some tests were conducted by NOAA on a WP-3D aircraft off the eastern coast of southern Florida. The TPS components tested included LI900 and LI2200 tiles, advanced flexible reusable surface insulation, reinforced carbon-carbon, and an advanced tufi tile. The objective of the test was to define the damage threshold of various thermal protection materials during flight through rain. The test hardware, test technique, and results from both F-104 and WP-3D aircraft are described. Results have shown that damage can occur to the Shuttle TPS during flight in rain.
Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware
NASA Technical Reports Server (NTRS)
Class, C. R.; Presta, G.; Trucks, H.
1975-01-01
A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Report by the Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1981-01-01
The process of preparation for the first two shuttle flights was observed and information from both flights was gathered in order to confirm the concept and performance of the major elements of the space transportation system. To achieve truly operational operating safety, regularity, and minimum practical cost, the organization of efforts between the R&D community and any transportation service organization should be clearly separated with the latter organization assuming responsibilities for marketing its services; planning and acquiring prime hardware and spares; maintainance; certification of procedures; training; and creation of requirements for future development. A technical audit of the application of redundancy concepts to shuttle systems is suggested. The state of the art of space transportation hardware suggests that a number of concept changes may improve reliability, costs, and operational safety. For the remaining R&D flights, it is suggested that a redline audit be made of limits that should not be exceeded for ready to launch.
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; Omalley, Terence F.
1991-01-01
An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.
Marshall Space Flight Center CFD overview
NASA Technical Reports Server (NTRS)
Schutzenhofer, Luke A.
1989-01-01
Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.
STS-57 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the waning twilight, the service structures on Launch Pad 39B (left) and the Mobile Launcher Platform carrying Space Shuttle Discovery glow with lights. The Shuttle began rollout to the pad at 2:04 p.m. EDT from the Vehicle Assembly Building at NASAs Kennedy Space Center, marking a major milestone in the Space Shuttle Programs Return to Flight. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
Hoffman, William C., III
1996-01-01
Determining deterioration characteristics of the Space Shuttle crew escape system pyrotechnic components loaded with hexanitrostilbene would enable us to establish a hardware life-limit for these items, so we could better plan our equipment use and, possibly, extend the useful life of the hardware. We subjected components to accelerated-age environments to determine degradation characteristics and established a hardware life-limit based upon observed and calculated trends. We extracted samples using manufacturing lots currently installed in the Space Shuttle crew escape system and from other NASA programs. Hardware included in the study consisted of various forms and ages of mild detonating fuse, linear shaped charge, and flexible confined detonating cord. The hardware types were segregated into 5 groups. One was subjected to detonation velocity testing for a baseline. Two were first subjected to prolonged 155 F heat exposure, and the other two were first subjected to 255 F, before undergoing detonation velocity testing and/or chromatography analysis. Test results showed no measurable changes in performance to allow a prediction of an end of life given the storage and elevated temperature environments the hardware experiences. Given the lack of a definitive performance trend, coupled with previous tests on post-flight Space Shuttle hardware showing no significant changes in chemical purity or detonation velocity, we recommend a safe increase in the useful life of the hardware to 20 years, from the current maximum limits of 10 and 15 years, depending on the hardware.
Shuttle's 160 hour ground turnaround - A design driver
NASA Technical Reports Server (NTRS)
Widick, F.
1977-01-01
Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.
2009-06-05
CAPE CANAVERAL, Fla. โ TIn Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, STS-128 crew members are lowered into space shuttle Discovery's payload bay to check equipment. At center is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-128 flight will carry science and storage racks to the International Space Station on Discovery. Launch is targeted for Aug. 7. Photo credit: NASA/Jim Grossmann
Hardware interface unit for control of shuttle RMS vibrations
NASA Technical Reports Server (NTRS)
Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran
1994-01-01
Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.
Mission Possible: BioMedical Experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Bopp, E.; Kreutzberg, K.
2011-01-01
Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.
Mechanics of Granular Materials labeled hardware
NASA Technical Reports Server (NTRS)
2000-01-01
Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).
The development and testing of a regenerable CO2 and humidity control system for Shuttle
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1977-01-01
A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.
Global positioning system supported pilot's display
NASA Technical Reports Server (NTRS)
Scott, Marshall M., Jr.; Erdogan, Temel; Schwalb, Andrew P.; Curley, Charles H.
1991-01-01
The hardware, software, and operation of the Microwave Scanning Beam Landing System (MSBLS) Flight Inspection System Pilot's Display is discussed. The Pilot's Display is used in conjunction with flight inspection tests that certify the Microwave Scanning Beam Landing System used at Space Shuttle landing facilities throughout the world. The Pilot's Display was developed for the pilot of test aircraft to set up and fly a given test flight path determined by the flight inspection test engineers. This display also aids the aircraft pilot when hazy or cloud cover conditions exist that limit the pilot's visibility of the Shuttle runway during the flight inspection. The aircraft position is calculated using the Global Positioning System and displayed in the cockpit on a graphical display.
Biofilms On Orbit and On Earth: Current Methods, Future Needs
NASA Technical Reports Server (NTRS)
Vega, Leticia
2013-01-01
Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.
2011-07-12
JSC2011-E-067679 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-12
JSC2011-E-067680 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Evaluation of RSRM case hardware fretting concerns
NASA Technical Reports Server (NTRS)
Swauger, Thomas R.
1990-01-01
Fretting corrosion was first noted on Shuttle flight STS-26. This flight was the first usage of the Redesigned Solid Rocket Motor (RSRM). The occurrence of fretting has since been observed on both the field and factory joints of the RSRM. Fretting is a form of corrosion that occurs at the interface between contacting, highly loaded, metal surfaces when exposed to slight relative vibratory motions. The engineering effort performed to evaluate the effect of fretting on the RSRM case hardware is summarized. Based on the results of this evaluation, several conclusions were made concerning flight safety. Also, recommendations were made concerning trending the effects of multiple generations of fretting damage.
STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.
2005-05-06
JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.
2009-11-06
CAPE CANAVERAL, Fla. โ In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, STS-130 Commander George Zamka dressed in clean-room attire, known as a "bunny suit," gets the feel of the cockpit of space shuttle Endeavour. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-130 flight will carry the Tranquility pressurized module with a built-in cupola to the International Space Station aboard Endeavour. Launch is targeted for Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-09-15
EDWARDS AIR FORCE BASE, Calif. โ (ED09-0253-81) Space Shuttle Discovery is surrounded by the Mate-DeMate Device gantry and ground support equipment at NASAโs Dryden Flight Research Center during processing for its ferry flight back to the Kennedy Space Center in Florida. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Carla Thomas
Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve
NASA Technical Reports Server (NTRS)
Russell, Richard
2010-01-01
This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.
2011-07-12
JSC2011-E-067682 (12 July 2011) --- Chief engineer Frank Svrecek pauses in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility is referred to as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members are lowered into space shuttle Endeavour's payload bay to check out the equipment. At right is Mission Specialist Garrett Reisman; at left is Mission Specialist Takao Doi. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. Reisman will join the Expedition 16 crew on the International Space Station, replacing flight engineer Leopold Eyharts. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
Replication of Space-Shuttle Computers in FPGAs and ASICs
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2008-01-01
A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.
2011-07-12
JSC2011-E-067674 (12 July 2011) --- Chris St. Julian, left, a Prairie View A&M electrical engineering major who is interning at NASA for the summer, pilots the shuttle for a simulated landing in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility bears the orbiter designation of Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Space Shuttle Program Tin Whisker Mitigation
NASA Technical Reports Server (NTRS)
Nishimi, Keith
2007-01-01
The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members get a close look inside space shuttle Endeavour's payload bay. The crew is at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. Doi represents the Japanese Aerospace and Exploration Agency. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Analysis of physical exercises and exercise protocols for space transportation system operation
NASA Technical Reports Server (NTRS)
Coleman, A. E.
1982-01-01
A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.
Extended Duration Orbiter Medical Project
NASA Technical Reports Server (NTRS)
Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)
1999-01-01
Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.
NASA Technical Reports Server (NTRS)
1974-01-01
Results of a state-of-the-art assessment of technology areas which affect the Earth Resources Program are presented along with a functional description of the basic earth resources system. Major areas discussed include: spacecraft flight hardware, remote sensors, data processing techniques and hardware, user models, user interfaces, and operations technology.
Role of CFD in propulsion design - Government perspective
NASA Technical Reports Server (NTRS)
Schutzenhofer, L. A.; Mcconnaughey, H. V.; Mcconnaughey, P. K.
1990-01-01
Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.
Constellation's First Flight Test: Ares I-X
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce R.
2010-01-01
On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.
2009-09-15
EDWARDS AIR FORCE BASE, Calif. โ (ED09-0253-73) The nose of Space Shuttle Discovery peers out from work platforms while undergoing servicing in the Mate-DeMate Device at NASAโs Dryden Flight Research Center in preparation for its ferry flight to NASAโs Kennedy Space Center in Florida. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Tony Landis
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility (SSPF), Charles J. Precourt, deputy manager of NASA's International Space Station Program, is interviewed by a reporter from a local television station. Representatives from the media were invited to commemorate the fifth anniversary of the launch of the first element of the Station with a tour of the facility and had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. NASA and Boeing mission managers were on hand to talk about the various hardware elements currently being processed for flight.
HAL/SM language specification. [programming languages and computer programming for space shuttles
NASA Technical Reports Server (NTRS)
Williams, G. P. W., Jr.; Ross, C.
1975-01-01
A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.
Study of an astronomical extreme ultraviolet rocket spectrometer for use on shuttle missions
NASA Technical Reports Server (NTRS)
Bowyer, C. S.
1977-01-01
The adaptation of an extreme ultraviolet astronomy rocket payload for flight on the shuttle was studied. A sample payload for determining integration and flight procedures for experiments which may typically be flown on shuttle missions was provided. The electrical, mechanical, thermal, and operational interface requirements between the payload and the orbiter were examined. Of particular concern was establishing a baseline payload accommodation which utilizes proven common hardware for electrical, data, command, and possibly real time monitoring functions. The instrument integration and checkout procedures necessary to assure satisfactory in-orbit instrument performance were defined and those procedures which can be implemented in such a way as to minimize their impact on orbiter integration schedules were identified.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
Medical evaluations on the KC-135 1991 flight report summary
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.
1993-01-01
The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.
Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware
NASA Technical Reports Server (NTRS)
Pippin, Gary; Finckenor, Miria M.
2009-01-01
Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.
NASA Technical Reports Server (NTRS)
Woods, Ron
2012-01-01
Ron Woods shared incredibly valuable insights gained during his 28 years at the Kennedy Space Center (KSC) packaging Flight Crew Equipment for shuttle and ISS missions. In particular, Woods shared anecdotes and photos from various processing events. The moral of these stories and the main focus of this discussion were the additional processing efforts and effects related to a "ship-and-shoot" philosophy toward flight hardware.
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Knott, W. M.
1994-01-01
The Porous Tube Plant Nutrient Delivery Systems or PTPNDS (U.S. Patent #4,926,585) has been under development for the past six years with the goal of providing a means for culturing plants in microgravity, specifically providing water and nutrients to the roots. Direct applications of the PTPNDS include plant space biology investigations on the Space Shuttle and plant research for life support in the Space Station Freedom. In the past, we investigated various configurations, the suitability of different porous materials, and the effects of pressure and pore size on plant growth. Current work is focused on characterizing the physical operation of the system, examining the effects of solution aeration, and developing prototype configurations for the Plant Growth Unit (PGU), the flight system for the Shuttle mid-deck. Future developments will involve testing on KC-135 parabolic flights, the design of flight hardware and testing aboard the Space Shuttle.
STS-79 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.
NASA Technical Reports Server (NTRS)
Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.
1998-01-01
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.
2007-02-06
KENNEDY SPACE CENTER, FLA. -- On the floor of the Space Station Processing Facility, astronauts Dan Tani (left) and Peggy Whitson practice working with a cover, something they may handle during an upcoming shuttle flight. With construction of the Space Station the primary focus of future shuttle missions, astronaut crews will be working with one or more of the elements and hardware already being processed in the SSPF. Photo credit: NASA/Kim Shiflett
Development of a shuttle recovery Commercial Materials Processing in Space (CMPS) program
NASA Technical Reports Server (NTRS)
1989-01-01
The work performed has covered the following tasks: update commercial users requirements; assess availability of carriers and facilities; shuttle availability assessment; development of optimum accommodations plan; and payload documentation requirements assessment. The results from the first four tasks are presented. To update commercial user requirements, contacts were made with the JEA and CCDS partners to obtain copies of their most recent official flight requests. From these requests the commercial partners' short and long range plans for flight dates, flight frequency, experiment hardware and carriers was determined. A 34 by 44 inch chart was completed to give a snapshot view of the progress of commercialization in space. Further, an assessment was made of the availability of carriers and facilities. Both existing carriers and those under development were identified for use by the commercial partners. A data base was compiled to show the capabilities of the carriers. A shuttle availability assessment was performed using the primary and secondary shuttle manifests released by NASA. Analysis of the manifest produced a flight-by-flight list of flight opportunities available to commercial users. Using inputs from the first three tasks, an Optimum Accommodations Plan was developed. The Accommodation Plan shows the commercial users manifested by flight, the experiment flown, the carrier used and complete list of commercial users that could not be manifested in each calendar year.
Advanced flight hardware for organic separations
NASA Astrophysics Data System (ADS)
Deuser, Mark S.; Vellinger, John C.; Weber, John T.
1997-01-01
Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1986-01-01
Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.
An Alternative Method Of Specifying Shock Test Criteria
NASA Technical Reports Server (NTRS)
Ferebee, R. C.; Clayton, J.; Alldredge, D.; Irvine, T.
2008-01-01
Shock testing of aerospace vehicle hardware has presented many challenges over the years due to the high magnitude and short duration of the specifications. Recently, component structural failures have occurred during testing that have not manifested themselves on over 200 Space Shuttle solid rocket booster (SRB) flights (two boosters per flight). It is suspected that the method of specifying shock test criteria may be leaving important information out of the test process. The traditional test criteria specification, the shock response spectrum, can be duplicated by any number of waveforms that may not resemble the actual flight test recorded time history. One method of overcoming this limitation is described herein, which may prove useful for qualifying hardware for the upcoming Constellation Program.
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1975-01-01
The specific electrical discharge problems that can directly affect the shuttle vehicle and its payloads are addressed. General design guidelines are provided to assist flight hardware managers in minimizing these kinds of problems. Specific data are included on workmanship practices and system testing while in low pressure environments. Certain electrical discharge problems that may be unique to the design of the shuttle vehicle itself and to its various mission operational models are discussed.
TACAN operational description for the space shuttle orbital flight test program
NASA Technical Reports Server (NTRS)
Hughes, C. L.; Hudock, P. J.
1979-01-01
The TACAN subsystems (three TACAN transponders, six antennas, a subsystem operating program, and redundancy management software in a tutorial form) are discussed and the interaction between these subsystems and the shuttle navigation system are identified. The use of TACAN during the first space transportation system (STS-1), is followed by a brief functional description of the TACAN hardware, then proceeds to cover the software units with a view to the STS-1, and ends with a discussion on the shuttle usage of the TACAN data and anticipated performance.
STS-59 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.
STS-60 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).
STS-43 crewmembers perform various tasks on OV-104's aft flight deck
1991-08-11
STS043-37-012 (2-11 Aug 1991) --- Three STS-43 astronauts are busy at work onboard the earth-orbiting space shuttle Atlantis. Astronaut Shannon W. Lucid is pictured performing one of several tests on Computer hardware with space station applications in mind. Sharing the aft flight deck with Lucid are Michael A. Baker (left), pilot and John E. Blaha, mission commander.
Multiple-body simulation with emphasis on integrated Space Shuttle vehicle
NASA Technical Reports Server (NTRS)
Chiu, Ing-Tsau
1993-01-01
The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.
Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.
1983-01-01
The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).
The role of the National Launch System in support of Space Station Freedom
NASA Technical Reports Server (NTRS)
Green, J. L.; Saucillo, R. J.; Cirillo, W. M.
1992-01-01
A study was performed to determine the most appropriate potential use of the National Launch System (NLS) for Space Station Freedom (SSF) logistics resupply and growth assembly needs. Objectives were to estimate earth-to-SSF cargo requirements, identify NLS sizing trades, and assess operational constraints of a shuttle and NLS transportation infrastructure. Detailed NLS and Shuttle flight manifests were developed to model varying levels of NLS support. NLS delivery of SSF propellant, and in some cases, cryoenic fluids, yield significant shuttle flight savings with minimum impact to the baseline SSF design. Additional cargo can be delivered by the NLS if SSF trash disposal techniques are employed to limit return cargo requirements. A common vehicle performance level can be used for both logistics resupply and growth hardware delivery.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Space shuttle holddown post blast shield
NASA Technical Reports Server (NTRS)
Larracas, F. B.
1991-01-01
The original and subsequent designs of the Solid Rocket Booster/Holddown Post blast shield assemblies and their associated hardware are described. It presents the major problems encountered during their early use in the Space Shuttle Program, during the Return-to-Flight Modification Phase, and during their fabrication and validation testing phases. The actions taken to correct the problems are discussed, along with the various concepts now being considered to increase the useful life of the blast shield.
Review of Low Earth Orbital (LEO) flight experiments
NASA Technical Reports Server (NTRS)
Leger, L.; Santosmason, B.; Visentine, J.; Kuminecz, J.
1987-01-01
The atomic oxygen flux exposure experiments flown on Space Shuttle flights STS-5 and STS-8 are described along with the results of measurements made on hardware returned from the Solar Maximum repair mission (Space Shuttle flight 41-C). In general, these experiments have essentially provided for passive exposure of samples to oxygen fluences of approximately 1 to 3.5 x 10(20) atoms/sq cm. Atmospheric density is used to derive fluence and is dependent on solar activity, which has been on the decline side of the 11-year cycle. Thus, relatively low flight altitudes of less than 300 km were used to acquire these exposures. After exposure, the samples were analyzed using various methods ranging from mass loss to extensive scanning electron microscopy and surface analysis techniques. Results are summarized and implications for the space station are discussed.
NASA Technical Reports Server (NTRS)
1974-01-01
A space shuttle sortie mission which can be performed inexpensively in the early shuttle era and which, if the necessary intermediate steps are accomplished provides a major technological advance for the user organization-the U.S. Bureau of Census is described. The orbital configuration created for the Urban Land Use/1980 Census mission is illustrated including sensors and ground support equipment along with the information flow for the mission. Factors discussed include: specific Census Bureau functions to be supported by the mission; hardware and flight operations necessary for implementation of the mission; and integration of the TERSSE pallet into a shuttle mission.
Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Welzyn, Ken
2011-01-01
The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.
The JPL/KSC telerobotic inspection demonstration
NASA Technical Reports Server (NTRS)
Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob
1990-01-01
An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.
P-MASS and P-GBA: Two new hardware developments for growing plants in space
NASA Technical Reports Server (NTRS)
Hoehn, Alexander; Luttges, Marvin W.; Robinson, Michael C.; Stodieck, Louis S.; Kliss, Mark H.
1994-01-01
Plant growth, and especially plant performance experiments in microgravity are limited by the currently available plant growth facilities (low light levels, inadequate nutrient delivery and atmosphere conditioning systems, insufficient science instrumentation, infrequent flight opportunities). In addition, mission durations of 10 to 14 days aboard the NSTS Space Shuttle allow for only brief periods of microgravity exposure with respect to the life cycle of a plant. Based on seed germination experiments, using the Generic BioProcessing Apparatus hardware (GBA), two new payloads have been designed specifically for plant growth. These payloads provide new opportunities for plant gravitational and space biology research and emphasize the investigation of plant performance (photosynthesis, biomass accumulations) in microgravity. The Plant-Module for Autonomous Space Support (P-MASS) was designed to utilize microgravity exposure times in excess of 30 days on the first flight of the recoverable COMET satellite (Commercial Experiment Transporter). The Plant-Generic Bioprocessing Apparatus (P-GBA), is designed for the National Space Transportation System (NSTS) Space Shuttle middeck and the SPACEHAB environment. The P-GBA is an evolution from the GBA hardware and P-MASS (plant chamber and instrumentation). The available light levels of both payloads more than double currently available capabilities.
2011-07-11
CAPE CANAVERAL, Fla. โ A frustum from one of space shuttle Atlantis' two spent solid rocket boosters is lowered toward the dock at Hangar AF at Cape Canaveral Air Force Station in Florida to begin the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-11
CAPE CANAVERAL, Fla. โ At Hangar AF at Cape Canaveral Air Force Station in Florida, a booster retrieval ship delivers a frustum from one of space shuttle Atlantis' spent solid rocket boosters, beginning the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Statistical Analysis of an Infrared Thermography Inspection of Reinforced Carbon-Carbon
NASA Technical Reports Server (NTRS)
Comeaux, Kayla
2011-01-01
Each piece of flight hardware being used on the shuttle must be analyzed and pass NASA requirements before the shuttle is ready for launch. One tool used to detect cracks that lie within flight hardware is Infrared Flash Thermography. This is a non-destructive testing technique which uses an intense flash of light to heat up the surface of a material after which an Infrared camera is used to record the cooling of the material. Since cracks within the material obstruct the natural heat flow through the material, they are visible when viewing the data from the Infrared camera. We used Ecotherm, a software program, to collect data pertaining to the delaminations and analyzed the data using Ecotherm and University of Dayton Log Logistic Probability of Detection (POD) Software. The goal was to reproduce the statistical analysis produced by the University of Dayton software, by using scatter plots, log transforms, and residuals to test the assumption of normality for the residuals.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 1: Summary
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests include plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
Shuttle Entry Air Data System (SEADS) hardware development. Volume 2: History
NASA Technical Reports Server (NTRS)
While, D. M.
1983-01-01
Hardware development of the Shuttle Entry Air Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests included plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.
Space Shuttle Solid Rocket Booster Debris Assessment
NASA Technical Reports Server (NTRS)
Kendall, Kristin; Kanner, Howard; Yu, Weiping
2006-01-01
The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.
Mission planning and simulation via intelligent agents
NASA Technical Reports Server (NTRS)
Gargan, Robert A., Jr.; Tilley, Randall W.
1987-01-01
A system that can operate from a flight manifest to plan and simulate payload preparation and transport via Shuttle flights is described. The design alternatives and the prototype implementation of the payload hardware and inventory tracking system are discussed. It is shown how intelligent agents can be used to generate mission schedules, and how, through the use of these intelligent agents, knowledge becomes separated into small manageable knowledge bases.
STS-78 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).
Transplantable tissue growth-a commercial space venture
NASA Astrophysics Data System (ADS)
Giuntini, Ronald E.; Vardaman, William K.
1997-01-01
Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.
STS-62 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).
STS-76 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).
STS-74/Mir photogrammetric appendage structural dynamics experiment
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Gilbert, Michael G.
1996-01-01
The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.
2009-11-16
Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday with a 2:28 p.m. EST launch from NASA's Kennedy Space Center in Florida. The shuttle will transport spare hardware to the outpost and return a station crew member who spent more than two months in space. Atlantis is carrying about 30,000 pounds of replacement parts for systems that provide power to the station, keep it from overheating, and maintain a proper orientation in space. The large equipment can best be transported using the shuttle's unique capabilities
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the thermal protection system tiles on the underside of space shuttle Endeavour. From left are Mission Specialists Takao Doi, Michael Foreman and Richard Linnehan, Pilot Gregory Johnson (turned away), Commander Dominic Gorie and Mission Specialist Robert Behnken. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the wheel well on the underside of space shuttle Endeavour. From left front are astronaut Garrett Reisman, Mission Specialists Takao Doi, Michael Foreman and Richard Linnehan, Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialist Robert Behnken. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System
NASA Technical Reports Server (NTRS)
Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.
1972-01-01
A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.
International Space Station (ISS)
2006-07-04
Space Shuttle Discovery and its seven-member crew launched at 2:38 p.m. (EDT) to begin the two-day journey to the International Space Station (ISS) on the historic Return to Flight STS-121 mission. The shuttle made history as it was the first human-occupying spacecraft to launch on Independence Day. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.
Orbiter utilization as an ACRV
NASA Technical Reports Server (NTRS)
Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.
1990-01-01
Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.
Space Shuttle Orbiter waste collection system conceptual study
NASA Technical Reports Server (NTRS)
Abbate, M.
1985-01-01
The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
Satellite servicing mission preliminary cost estimation model
NASA Technical Reports Server (NTRS)
1987-01-01
The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.
Taking the Heat: Handling the Shuttle's RCC Wing Panels
NASA Technical Reports Server (NTRS)
Stegles, Katrine S.
2008-01-01
Innovative inspection technology was developed to inspect the Reinforced Carbon-Carbon (RCC) wing panels on the vehicle, thus eliminating need to remove/reinstall all 44 RCC panels for inspections per processing flow. Manually holding inspection tools up to the RCC panels was a 3-person job with high risk of personnel injury and flight hardware damage. To further enhance ergonomics, reduce personnel/flight hardware risks, and improve repeatability, an inspection cart and fixture were constructed to physically secure the instruments for Inspectors during 652 inspection points per flow. The electric lift used to handle RCCs was also utilized to raise the heavy, bulky inspection equipment up to the wing leading edge.
Space shuttle solid rocket booster recovery subsystem
NASA Technical Reports Server (NTRS)
Runkle, R. E.
1981-01-01
The studies, the development, and the testing program that led to the design and delivery of all flight hardware are described. Special emphasis was placed on the recovery parachutes. The parachutes were designed to deploy in a severe environment and safely lower to Earth an 85 ton rocket motor casing.
NASA Technical Reports Server (NTRS)
Martin, F. H.
1972-01-01
An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.
A cost assessment of reliability requirements for shuttle-recoverable experiments
NASA Technical Reports Server (NTRS)
Campbell, J. W.
1975-01-01
The relaunching of unsuccessful experiments or satellites will become a real option with the advent of the space shuttle. An examination was made of the cost effectiveness of relaxing reliability requirements for experiment hardware by allowing more than one flight of an experiment in the event of its failure. Any desired overall reliability or probability of mission success can be acquired by launching an experiment with less reliability two or more times if necessary. Although this procedure leads to uncertainty in total cost projections, because the number of flights is not known in advance, a considerable cost reduction can sometimes be achieved. In cases where reflight costs are low relative to the experiment's cost, three flights with overall reliability 0.9 can be made for less than half the cost of one flight with a reliability of 0.9. An example typical of shuttle payload cost projections is cited where three low reliability flights would cost less than $50 million and a single high reliability flight would cost over $100 million. The ratio of reflight cost to experiment cost is varied and its effect on the range in total cost is observed. An optimum design reliability selection criterion to minimize expected cost is proposed, and a simple graphical method of determining this reliability is demonstrated.
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2005-01-01
NASA's space shuttle fleet is nearing its return to flight with a complex mission on board Discovery that will combine tests of new hardware and procedures adopted in the wake of Columbia's loss with urgent repairs and resupply for the International Space Station. A seven-member astronaut crew has trained throughout most of the two-year hiatus in shuttle operations for the 13-day mission, shooting for a three-week launch window that opens May 15. The window, and much else about the STS-114 mission, is constrained by NASA's need to ensure it has fixed the ascent/debris problem that doomed Columbia and its crew as they attempted to reenter the atmosphere on Feb. 1, 2003. The window was selected so Discovery's ascent can be photographed in daylight with 107 different ground- and aircraft-based cameras to monitor the redesigned external tank for debris shedding. Fixed cameras and the shuttle crew will also photograph the tank in space after it has been jettisoned.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy
NASA Technical Reports Server (NTRS)
Madzsar, George C.; Bickford, Randall L.; Duncan, David B.
1994-01-01
This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.
An overview of in-flight plume diagnostics for rocket engines
NASA Technical Reports Server (NTRS)
Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.
1992-01-01
An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
STS-71 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-09-01
This video highlights the international cooperative Shuttle/Mir mission of the STS-71 flight. The STS-71 flightcrew consists of Cmdr. Robert Hoot' Gibson, Pilot Charles Precourt, and Mission Specialists Ellen Baker, Bonnie Dunbar, and Gregory Harbaugh. The Mir 18 flightcrew consisted of Cmdr. Vladamir Dezhurov, Flight Engineer Gennady Strekalov, and Cosmonaut-Research Dr. Norman Thagard. The Mir 18 crew consisted of Cmdr. Anatoly Solovyev and Flight Engineer Nikolai Budarin. The prelaunch, launch, shuttle in-orbit, and in-orbit rendezvous and docking of the Mir Space Station to the Atlantis Space Shuttle are shown. The Mir 19 crew accompanied the STS-71 crew and will replace the Mir 18 crew upon undocking from the Mir Space Station. Shown is on-board footage from the Mir Space Station of the Mir 18 crew engaged in hardware testing and maintenance, medical and physiological tests, and a tour of the Mir. A spacewalk by the two Mir 18 cosmonauts is shown as they performed maintenance of the Mir Space Station. After the docking between Atlantis and Mir is completed, several mid-deck physiological experiments are performed along with a tour of Atlantis. Dr Thagard remained behind with the Shuttle after undocking to return to Earth with reports from his Mir experiments and observations. In-cabin experiments included the IMAX Camera Systems tests and the Shuttle Amateur Radio Experiment-2 (SAREX-2). There is footage of the shuttle landing.
A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)
NASA Technical Reports Server (NTRS)
Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip
2016-01-01
Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.
Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster
NASA Technical Reports Server (NTRS)
Craft, Joe; Ess, Robert; Sauvageau, Don
2003-01-01
The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.
The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle
NASA Technical Reports Server (NTRS)
Cipriano, Leonard F.; Ballard, Rodney W.
1988-01-01
The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.
International Space Station (ISS)
2005-06-09
The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.
The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve
2010-01-01
This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41533 (9 Aug. 2007) --- Astronauts Stephanie Wilson (left), STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
NASA Technical Reports Server (NTRS)
1994-01-01
This is an overview of the White Sands Test Facility's role in ensuring the safety and reliability of materials and hardware slated for launch aboard the Space Shuttle. Engine firings, orbital flights debris impact tests, and propulsion tests are featured as well as illustrating how they provide flight safety testing for the Johnson Space Center, other NASA centers, and various government agencies. It also contains a historical perspective and highlights of major programs that have been participated in as part of NASA.
Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Damico, Stephen; Brewer, John
2011-01-01
The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2012-01-01
As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions
2012-09-12
Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.
Acoustic Emission Detection of Impact Damage on Space Shuttle Structures
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.
2004-01-01
The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
2000-09-06
The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 crew members inspect the wheel well on the underside of space shuttle Endeavour. Seen kneeling in front are Mission Specialists Richard Linnehan, Robert Behnken and Pilot Gregory Johnson. Behind them are Mission Specialists Takao Doi and Michael Foreman and Commander Dominic Gorie. They are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance employee James Calloway checks the temperature and humidity level recorder in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.
2005-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.
2006-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program
NASA Technical Reports Server (NTRS)
VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett
2010-01-01
Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.
Digital data processing system dynamic loading analysis
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Tucker, A. E.
1976-01-01
Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at left) were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at right, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Fifth anniversary of the first element of the International Spac
2003-12-03
Members of the media (at right) were invited to commemorate the fifth anniversary of the launch of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Giving an overview of Space Station processing are, at left, David Bethay (white shirt), Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Space Shuttle Discovery lingers at the foot of Launch Pad 39B in the evening twilight. First motion from the Vehicle Assembly Building was at 2:04 p.m. EDT April 6, and the Shuttle was hard down on the pad at 1:16 a.m. EDT April 7. The Shuttle sits atop a Mobile Launcher Platform transported by a Crawler-Transporter underneath. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Photo courtesy of Scott Andrews.
2007-07-03
KENNEDY SPACE CENTER, FLA. -- The main engines on the orbiter Endeavour (upper right) are seen as Endeavour is lowered into high bay 1 of the Vehicle Assembly Building for stacking with the external tank (seen at left) and solid rocket boosters on the mobile launcher platform. Endeavour will be launched on mission STS-118, its first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Endeavour is targeted for launch on Aug. 7. Photo credit: NASA/Troy Cryder
Experiment module concepts study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1970-01-01
The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.
Advanced flight hardware for organic separations using aqueous two-phase partitioning
NASA Astrophysics Data System (ADS)
Deuser, Mark S.; Vellinger, John C.; Weber, John T.
1996-03-01
Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.
1997-07-01
The Space Shuttle Columbia (STS-94) soared from Launch Pad 39A begirning its 16-day Microgravity Science Laboratory -1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time to improve the opportunity to lift off before Florida summer rain showers reached the space center. During the space flight, the MSL-1 was used to test some of the hardware, facilities and procedures that were planned for use on the International Space Station which were managed by scientists and engineers from the Marshall Space Flight Center, while the flight crew conducted combustion, protein crystal growth and materials processing experiments. Also onboard was the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which was attached to the right side of Columbia's payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 was a reflight of that mission.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41538 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist; Sandra Magnus, Expedition 17 flight engineer; and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. A computer display is visible in the foreground.
NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the
NASA Technical Reports Server (NTRS)
2000-01-01
NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.
Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing
2018-03-08
A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASAโs Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.
Safety Considerations in the Ground Environment
NASA Technical Reports Server (NTRS)
Kirkpatrick, Paul D.; Palo, Thomas E.
2007-01-01
In the history of humankind, every great space adventure has begun on the ground. While this seems to be stating the obvious, mission and spacecraft designers who have overlooked this fact have paid a high price, either in loss or damage to the spacecraft pre-launch, or in mission failure or reduction. Spacecraft personnel may risk not only their flight hardware, but they may also risk their lives, their co-workers lives and even the general public by not heeding safety on the ground. Their eyes may be on the stars but their feet are on the ground! One additional comment: Although the design requirements are very different for human rated and nonhuman rated flight hardware, while on the ground that flight hardware (and its ground support equipment) doesn't care about what it is flying on. On the ground, additional requirements are often levied to protect the work force and general public. (Authors' Note: The source material for this chapter is primarily taken from the Kennedy Space Center Handbook (KHB) 1700.7/45 SW Handbook S-100 Space Shuttle Payload Ground Safety Handbook and the authors' personal experiences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoehn, A.; Chamberlain, D.J.; Forsyth, S.W.
PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). {ital Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens} were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center formoreย ยป Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support. {copyright} {ital 1997 American Institute of Physics.}ยซย less
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-123 Mission Specialist Takao Doi tries out one of the cameras that will be used on the mission. Doi represents the Japanese Aerospace and Exploration Agency. He and other crew members are at NASA's Kennedy Space Center for a crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on space shuttle Endeavour on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2016-01-01
Shuttle Flight 41-C, the Solar Max Repair mission, took off on April 6, 1984 from Kennedy Space Center in Florida. As with 41-B, the dress rehearsal for this flight, launch was early in the morning. It occurred at 7:58 CST. The landing also took place at KSC the following Friday, April 13, 1984. This was Challenger's fifth flight. There were two prime EMU's and one back-up short EMU stowed for this flight in the Airlock. The two MMU's were again mounted in their Flight Support Stations in the payload bay. Figure 1 shows the EMU functional schematic while Figure 2 shows the hardware which makes up the EMU. The payload bay configuration for the MMU's appears in Figure 3.
NASA Astrophysics Data System (ADS)
Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert
1997-01-01
PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.
NASA Technical Reports Server (NTRS)
Gazanik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan;
2005-01-01
In November 2004, NASA's Space Shuttle Program approved the development of the Extravehicular (EVA) Infrared (IR) Camera to test the application of infrared thermography to on-orbit reinforced carbon-carbon (RCC) damage detection. A multi-center team composed of members from NASA's Johnson Space Center (JSC), Langley Research Center (LaRC), and Goddard Space Flight Center (GSFC) was formed to develop the camera system and plan a flight test. The initial development schedule called for the delivery of the system in time to support STS-115 in late 2005. At the request of Shuttle Program managers and the flight crews, the team accelerated its schedule and delivered a certified EVA IR Camera system in time to support STS-114 in July 2005 as a contingency. The development of the camera system, led by LaRC, was based on the Commercial-Off-the-Shelf (COTS) FLIR S65 handheld infrared camera. An assessment of the S65 system in regards to space-flight operation was critical to the project. This paper discusses the space-flight assessment and describes the significant modifications required for EVA use by the astronaut crew. The on-orbit inspection technique will be demonstrated during the third EVA of STS-121 in September 2005 by imaging damaged RCC samples mounted in a box in the Shuttle's cargo bay.
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin
2008-01-01
High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an assessment study focused on increasing the probability of returning spatially resolved scientific/engineering thermal imagery. This paper provides an overview of the assessment task and the systematic approach designed to establish confidence in the ability of existing assets to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. A discussion of capability demonstration in support of a potential Shuttle boundary layer transition flight test is presented. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the proposed Shuttle boundary layer transition flight test could lead to potential future applications with hypersonic flight test programs within the USAF and DARPA along with flight test opportunities supporting NASA s project Constellation.
2011-07-10
CAPE CANAVERAL, Fla. - Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. โ The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. โ The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Ares I-X: On the Threshold of Exploration
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce
2009-01-01
Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.
NASA Technical Reports Server (NTRS)
Charles, John B.; Platts, S. H.
2011-01-01
The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
Ares I-X Flight Test - On the Fast Track to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Robinson, Kimberly F.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
NASA Technical Reports Server (NTRS)
1997-01-01
Members of the STS-83 flight crew pose alongside a T-33 jet trainer aircraft after arriving at the KSC Shuttle Landing Facility for Terminal Countdown Demonstration (TCDT) exercises for that space flight. They are (left to right) Payload Specialist Roger K. Crouch; Pilot Susan L. Still; Mission Commander James D. Halsell, Jr.; Mission Specialist Michael L. Gernhardt; Payload Specialist She is the second woman to fly in this capacity on the Space Shuttle. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day mission. The MSL-1 will used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station, while the seven-member crew conducts combustion, protein crystal growth and materials processing experiments.
CM-2 Environmental / Modal Testing of Spacehab Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1982-01-01
The Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) family of spacecraft are intended to operate with minimum interfaces with the U.S. Space Shuttle in order to increase flight opportunities. The SPARTAN I Spacecraft was designed to enhance structural capabilities and increase reliability. The approach followed results from work experience which evolved from sounding rocket projects. Structural models were developed to do the analyses necessary to satisfy safety requirements for Shuttle hardware. A loads analysis must also be performed. Stress analysis calculations will be performed on the main structural elements and subcomponents. Attention is given to design considerations and program definition, the schematic representation of a finite element model used for SPARTAN I spacecraft, details of loads analysis, the stress analysis, and fracture mechanics plan implications.
Fifth anniversary of the first element of the International Spac
2003-12-03
In the Space Station Processing Facility, (from left) David Bethay, Boeing/ISS Florida Operations; Charlie Precourt, deputy manager of the International Space Station Program; and Tip Talone, director of Space Station and Payload Processing, give an overview of Space Station processing for the media. Members of the media were invited to commemorate the fifth anniversary of the launch of the first element of the International Space Station by touring the Space Station Processing Facility (SSPF) at KSC. Reporters also had the opportunity to see Space Station hardware that is being processed for deployment once the Space Shuttles return to flight. The facility tour also included an opportunity for reporters to talk with NASA and Boeing mission managers about the various hardware elements currently being processed for flight.
Operational Lessons Learned from the Ares I-X Flight Test
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle, Ares I-X will be stacked on a MLP and rolled out to the pad on a Saturn-era crawler-transporter. While Ares I-X was only held in place by the four hold-down posts on its aft skirt during rollout, a new vehicle stabilization system (VSS) attached to the vertical service structure kept the vehicle from undue swaying prior to launch at the pad, LC 39B. Following the launch, the flight test vehicle first stage was recovered with the aid of new parachutes resized to accommodate the five-segment-long first stage, which had a much greater length and mass than the Shuttle s reusable solid rocket boosters. After splashdown, recovery divers exercised extra care when handling the first stage to ensure that the flight data recorders in the fifth segment simulator were not damaged by exposure to sea water. The data recovered from the Ares I-X flight test will be very valuable in verifying the predicted environments and models used to design the vehicle. Lessons learned from Ares I-X will be shared with the Ares Projects through written and verbal reports and through integration of mission team members into the Project workforce.
Tethered Space Satellite-1 (TSS-1): Technical Roundabouts
NASA Technical Reports Server (NTRS)
O'Connor, Brian; Stevens, Jennifer
2016-01-01
In the early 1990's US and Italian scientists collaborated to study the electrodynamics of dragging a satellite on a tether through the electrically charged portion of Earth's atmosphere called the ionosphere. An electrical current induced in the long wire could be used for power and thrust generation for a satellite. Other tether uses include momentum exchange, artificial gravity, deployment of sensors or antennas, and gravity-gradient stabilization for satellites. Before the Tethered Space Satellite (TSS-1), no long tether had ever been flown, so many questions existed on how it would actually behave. The TSS consisted of a satellite with science experiments attached to a 12.5 mile long, very thin (0.10 inch diameter) copper wire assembly wound around a spool in the deployer reel mechanism. With the Space Shuttle at an altitude of 160 nautical miles above earth, the satellite was to be deployed by raising it from the Shuttle bay on a boom facing away from Earth. Once cleared of the bay, the deployer mechanism was to slowly feed out the 12-plus miles of tether. Scientific data would be collected throughout the operation, after which the satellite would be reeled back in. Pre-flight testing system level tests involved setting up a tether receiver to catch the 12.5 mile tether onto another reel as it was being unwound by the deployer reel mechanism. Testing only the reel mechanism is straightforward. This test becomes more complicated when the TSS is mounted on the flight pallet at Kennedy Space Center (KSC). The system level tests must be passed before the pallet can be installed into the Space Shuttle cargo bay. A few months before flight, the TSS payload had been integrated onto the Spacelab pallet and system level tests, including unreeling and reeling the tether, had been successfully completed. Some of this testing equipment was then shipped back to the contractor Martin Marietta. Systems-level load analyses, which cannot be run until all information about each payload is finalized, was run in parallel with the physical integration of the hardware into the Shuttle payload bay. The coupled loads analysis, as it is called, incorporates any updates to the model due to system level tests, and any changes that were found during integration. The coupled loads analysis revealed that a single bolt attaching the deployer reel mechanism to the support structure had a "negative margin" - which is an indication that it might fail during operation. Hardware certification rules do not allow for hardware to fly with negative margins, so this issue had to be resolved before the flight. Since there is conservatism in engineering analysis, there is an option to "waive" the margin requirement, and fly the experiment as is. On the other hand, a structural failure of one payload could have serious or catastrophic consequences to other payloads and possibly the mission. Minor design changes or fixes might be feasible within the payload bay prior to launch. Any major design changes that required the spooling test to validate the hardware, or for the pallet to be removed, would cause TSS not to be ready for the Shuttle launch.
2009-08-28
CAPE CANAVERAL, Fla. โ At NASA's Kennedy Space Center in Florida, space shuttle Discovery hurtles toward space on the STS-128 mission. Below the main engine nozzles are the blue mach diamonds, a formation of shock waves in the exhaust plume of an aerospace propulsion system Liftoff from Launch Pad 39A was on time at 11:59 p.m. EDT. The first launch attempt on Aug. 24 was postponed due to unfavorable weather conditions. The second attempt on Aug. 25 also was postponed due to an issue with a valve in space shuttle Discovery's main propulsion system. The STS-128 mission is the 30th International Space Station assembly flight and the 128th space shuttle flight. The 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Photo credit: NASA/Tony Gray-Tom Farrar
2000-07-01
Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).
1992-01-22
This is the Space Shuttle Orbiter Discovery, STS-42 mission, with the First International Microgravity Laboratory (IML-1) module shown in the cargo bay. IML-1, the first in a series of Shuttle flights, was dedicated to study the fundamental materials and life sciences in the microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Discovery was launched on January 22, 1992 for the IML-1 mission.
Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin
NASA Technical Reports Server (NTRS)
Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.
1994-01-01
One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.
Other Challenges in the Development of the Orbiter Environmental Control Hardware
NASA Technical Reports Server (NTRS)
Gibb, J. W.; Mcintosh, M. E.; Heinrich, S. R.; Thomas, E.; Steele, M.; Schubert, F.; Koszenski, E. P.; Wynveen, R. A.; Murray, R. W.; Schelkopf, J. D.
1985-01-01
Development of the Space Shuttle orbiter environmental control and life support system (ECLSS) included the identification and resolution of several interesting problems in several systems. Some of these problems occurred late in the program, including the flight phase. Problems and solutions related to the ammonia boiler system (ABS), smoke detector, water/hydrogen separator, and waste collector system (WCS) are addressed.
Mechanics of Granular Materials (MGM0 Flight Hardware in Bench Test
NASA Technical Reports Server (NTRS)
2000-01-01
Engineering bench system hardware for the Mechanics of Granular Materials (MGM) experiment is tested on a lab bench at the University of Colorado in Boulder. This is done in a horizontal arrangement to reduce pressure differences so the tests more closely resemble behavior in the microgravity of space. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).
Space Shuttle orbiter Columbia touches down at Edwards Air Force Base
1981-04-14
S81-30744 (14 April 1981) --- The rear wheels of the space shuttle orbiter Columbia are about to touch down on Rogers Lake (a dry bed) at Edwards Air Force Base in southern California to successfully complete a stay in space of more than two days. Astronauts John W. Young, STS-1 commander, and Robert L. Crippen, pilot, are aboard the vehicle. The mission marked the first NASA flight to end with a wheeled landing and represents the beginning of a new age of spaceflight that will employ the same hardware repeatedly. Photo credit: NASA
Improved orbiter waste collection system study
NASA Technical Reports Server (NTRS)
Bastin, P. H.
1984-01-01
Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.
Motivational contracting in space programs - Government and industry prospectives
NASA Technical Reports Server (NTRS)
Clough, D. R.
1985-01-01
NASA's Marshall Space Flight Center has used incentive-free policies in contracting for Apollo's Saturn Launch vehicle hardware, as well as award-fee contracts for major development and early production programs in the case of the Space Shuttle Program. These programs have evolved to a point at which multiple incentive fees are useful in motivating cost reductions and assuring timely achievement of delivery requirements and flight mission goals. An examination is presently conducted of the relative success of these motivation-oriented techniques, drawing on the comments of both government and industry personnel.
Spacelab 4: Primate experiment support hardware
NASA Astrophysics Data System (ADS)
Fusco, P. R.; Peyran, R. J.
1984-05-01
A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.
Spacelab 4: Primate experiment support hardware
NASA Technical Reports Server (NTRS)
Fusco, P. R.; Peyran, R. J.
1984-01-01
A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.
STS-83 Columbia Rollout to PAD-39A (fish eye view in VAB)
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle Orbiter Columbia begins its rollout from the Vehicle Assembly Building (VAB) to Launch Pad 39A in preparation for the STS-83 mission. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day space flight. The MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the seven-member flight crew conducts combustion, protein crystal growth and materials processing experiments.
Techniques for determination of impact forces during walking and running in a zero-G environment
NASA Technical Reports Server (NTRS)
Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William
1992-01-01
One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.
A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control
NASA Technical Reports Server (NTRS)
ONeill, John; Shalin, Valerie L.
2000-01-01
The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-13
CAPE CANAVERAL, Fla. โ A water-spraying tugboat escorts the Liberty Star as it tows the right spent booster from space shuttle Atlantis' final to Port Canaveral in Florida. The Liberty Star is one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. โ Crews from the Liberty Star, one of NASA's solid rocket booster retrieval ships, inspect the end of the right spent booster from space shuttle Atlantis' final launch, as it is taken to a berth at Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-10
CAPE CANAVERAL, Fla. โ A team oversees the return of the right spent booster from space shuttle Atlantis' final to Port Canaveral in Florida. The boat and team are from the Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
CM-2 Environmental/Modal Testing of SPACEHAB Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.
2009-08-24
CAPE CANAVERAL, Fla. โ Xenon lights over Launch Pad 39A at NASA's Kennedy Space Center in Florida compete with the lightning strike seen to the left. Space shuttle Discovery is on the pad waiting for a scheduled liftoff on the STS-128 mission. Launch was scrubbed due to the weather conditions that violated the limitations for liftoff. Another launch attempt was scheduled for 1:10 a.m. Aug. 26. Discovery's 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission is the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Photo credit: NASA/Ben Cooper
Space Shuttle avionics upgrade - Issues and opportunities
NASA Astrophysics Data System (ADS)
Swaim, Richard A.; Wingert, William B.
An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.
President and Mrs. Clinton watch launch of Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) Astronaut Eileen Collins (in flight suit) with unidentified companions, NASA Administrator Daniel Goldin, Astronaut Robert Cabana, First Lady Hillary Rodham Clinton, and U.S. President Bill Clinton. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Collins will command the crew of STS-93, the first woman to hold that position. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.
Plasma arc welding repair of space flight hardware
NASA Technical Reports Server (NTRS)
Hoffman, David S.
1993-01-01
Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.
2005-06-01
STS121-S-001 (June 2005) --- The STS-121 patch depicts the space shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it will be in during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, is the final Shuttle Return to Flight test mission. This utilization and logistics flight will bring a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) will be delivered and stowed externally on ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew will also carry out testing of shuttle inspection and repair hardware, as well as evaluate operational techniques and concepts for conducting on-orbit inspection and repair. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Shuttle/Agena study. Annex A: Ascent agena configuration
NASA Technical Reports Server (NTRS)
1972-01-01
Details are presented on the Agena rocket vehicle description, vehicle interfaces, environmental constraints and test requirements, software programs, and ground support equipment. The basic design concept for the Ascent Agena is identified as optimization of reliability, flexibility, performance capabilities, and economy through the use of tested and flight-proven hardware. The development history of the Agenas A, B, and D is outlined and space applications are described.
Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Lake, Mark S.
1995-01-01
This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.
STS-99 crew conducts a bench review in USA building 1
1999-08-11
S99-09460 (11 August 1999) --- Astronauts Janet L. Kavandi and Gerhard P.J. Thiele, mission specialists, participate in a flight crew equipment (FCE) bench review of STS-99 hardware. The two are preparing for a mission aboard the Space Shuttle Endeavour later this year. Thiele, who represents the European Space Agency (ESA), is one of two international mission specialists on the crew.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
Spur Gear Wear Investigated in Support of Space Shuttle Return-To-Flight Efforts
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Oswald, Fred B.
2005-01-01
As part of NASA s Return-To-Flight efforts, the Space Operations Program investigated the condition of actuators for the orbiter s rudder speed brake. The actuators control the position of the rudder panels located in the tail of the orbiter, providing both steering control and braking during reentry, approach, and landing. Inspections of flight hardware revealed fretting and wear damage to the critical working surfaces of the actuator gears. To best understand the root cause of the observed damage and to help establish an appropriate reuse and maintenance plan for these safety critical parts, researchers completed a set of gear wear experiments at the NASA Glenn Research Center.
X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2004-01-01
The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.
A Real-Time Telemetry Simulator of the IUS Spacecraft
NASA Technical Reports Server (NTRS)
Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo
1998-01-01
A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).
Commerce lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
Conceived as one or more arrays of carriers which would fly aboard space shuttle, Commerce Lab can provide a point of focus for implementing a series of shuttle flights, co-sponsored by NASA and U.S. domestic concerns, for performing materials processing in research and pre-commercial investigations. As an orbiting facility for testing, developing, and implementing hardware and procedures, Commerce Lab can enhance space station development and hasten space platform production capability. Tasks considered include: (1) synthesis of user requirements and identification of common element and voids; (2) definition of performance and infrastructure requirement and alternative approaches; and (3) carrier, mission model, and infrastructure development.
1982-04-01
The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.
1982-11-01
The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
Integration and Test of Shuttle Small Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.
2003-01-01
Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2007-05-02
KENNEDY SPACE CENTER, FLA. -- A train carrying space shuttle reusable solid rocket motor segments from the ATK Launch Systems manufacturing site in Brigham City,Utah, to NASAโs Kennedy Space Center in Florida was derailed May 2. At the site of the train mishap involving eight NASA solid rocket booster segment cars, a handling fixture has been attached to a box car being used as a spacer between the segment cars so that it can be removed from the rails. The solid rocket booster cars can be seen behind it. The train was traveling over the Meridian & Bigbee railroad near Pennington, Ala., at the time of the mishap.. The hardware was intended for use on shuttle Discovery's STS-120 mission in October and shuttle Atlantis's STS-122 mission in December. These segments are interchangeable, and ATK Launch Systems has replacement units that could be used for the shuttle flights, if necessary.
Shuttle Radar Topography Mission (SRTM)
,
2009-01-01
Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.
Thermal systems design and analysis for a 10 K Sorption Cryocooler flight experiment
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Bard, Steven
1993-01-01
The design, analysis and predicted performance of the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is described from a thermal perspective. BETSCE is a shuttle side-wall mounted cryogenic technology demonstration experiment planned for launch in November 1994. BETSCE uses a significant amount of power (about 500 W peak) and the resultant heat must be rejected passively with radiators, as BETSCE has no access to the active cooling capability of the shuttle. It was a major challenge to design and configure the individual hardware assemblies, with their relatively large radiators, to enable them to reject their heat while satisfying numerous severe shuttle-imposed constraints. This paper is a useful case study of a small shuttle payload that needs to reject relatively high heat loads passively in a highly constrained thermal environment. The design approach described is consistent with today's era of 'faster, better, cheaper' small-scale space missions.
1995-05-27
The crew patch of STS-72 depicts the Space Shuttle Endeavour and some of the payloads on the flight. The Japanese satellite, Space Flyer Unit (SFU) is shown in a free-flying configuration with the solar array panels deployed. The inner gold border of the patch represents the SFU's distinct octagonal shape. Endeavourโs rendezvous with and retrieval of SFU at an altitude of approximately 250 nautical miles. The Office of Aeronautics and Space Technology's (OAST) flyer satellite is shown just after release from the Remote Manipulator System (RMS). The OAST satellite was deployed at an altitude of 165 nautical miles. The payload bay contains equipment for the secondary payloads - the Shuttle Laser Altimeter (SLA) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV). There were two space walks planned to test hardware for assembly of the International Space Station. The stars represent the hometowns of the crew members in the United States and Japan.
STS-94 Columbia Landing at KSC
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
1983-01-01
This photograph shows the Spacelab 1 module and pallet ready to be installed in the cargo bay of the Space Shuttle Orbiter Columbia at the Kennedy Space Center. The overall goal of the first Spacelab mission was to verify its Space performance through a variety of scientific experiments. The investigation selected for this mission tested the Spacelab hardware, flight and ground systems, and crew to demonstrate their capabilities for advanced research in space. However, Spacelab 1 was not merely a checkout flight or a trial run. Important research problems that required a laboratory in space were scheduled for the mission. Spacelab 1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. These fields were Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. Spacelab 1 was launched aboard the Space Shuttle Columbia (STS-9 mission) on November 28, 1983.
STS-94 Columbia Landing at KSC (before main gear touchdown)
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.
Space Shuttle crew compartment debris-contamination
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Villarreal, Leopoldo J.
1992-01-01
Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.
Discovery: Under the Microscope at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2013-01-01
The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.
Putting the Power of Configuration in the Hands of the Users
NASA Technical Reports Server (NTRS)
Al-Shihabi, Mary-Jo; Brown, Mark; Rigolini, Marianne
2011-01-01
Goal was to reduce the overall cost of human space flight while maintaining the most demanding standards for safety and mission success. In support of this goal, a project team was chartered to replace 18 legacy Space Shuttle nonconformance processes and systems with one fully integrated system Problem Reporting and Corrective Action (PRACA) processes provide a closed-loop system for the identification, disposition, resolution, closure, and reporting of all Space Shuttle hardware/software problems PRACA processes are integrated throughout the Space Shuttle organizational processes and are critical to assuring a safe and successful program Primary Project Objectives Develop a fully integrated system that provides an automated workflow with electronic signatures Support multiple NASA programs and contracts with a single "system" architecture Define standard processes, implement best practices, and minimize process variations
Space Shuttle Discovery rolls out to Launch Pad 39A for Oct. 5 launch
NASA Technical Reports Server (NTRS)
2000-01-01
As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date.
Decisions, endings, and new beginnings.
Dorr, Robert F
2005-08-01
The Washington Watch column examines NASA shuttle developments, airline pilot age issues, development of a personnel recovery vehicle, and includes an obituary for retired Air Force General Bernard Schriever, remembered as an air and space pioneer. The discussion of NASA shuttle developments reports on the space shuttle flight schedule and NASA's ability to deliver hardware to the International Space Station, funding levels and equipment development schedules related to President Bush's mandate to visit Mars, a report on the space program by the American Academy of Arts and Sciences, and top-level management changes at NASA. The discussion of airline pilot age issues examines efforts to change mandatory retirement requirements. The discussion of personnel recovery vehicles reports on development of an aircraft designed to rescue survivors during combat search and rescue missions.
Transition Induced by Fence Geometrics on Shuttle Orbiter at Mach 10
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2010-01-01
Fence-induced transition data simulating a raised gap filler have been acquired on the wing lower surface of a Shuttle Orbiter model in the Langley 31-Inch Mach 10 Tunnel to compare with the Shuttle Boundary Layer Transition Flight and HYTHIRM Experiments, and to provide additional correlation data for the Boundary Layer Transition Tool. In a qualitative assessment, the data exhibit the expected response to all parameter variations; however, it is unclear whether fully effective tripping at the fence was ever realized at any test condition with the present model hardware. A preliminary, qualitative comparison of the ground-based transition measurements with those obtained from the STS-128 HYTHIRM imagery at Mach 15 reveal similar transition-wake response characteristics in terms of the spreading and the path along the vehicle surface.
NASA Technical Reports Server (NTRS)
Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.
1996-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
1976-01-01
This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.
2009-08-28
CAPE CANAVERAL, Fla. โ Space shuttle Discovery rises majestically from Launch Pad 39A at NASA's Kennedy Space Center in Florida as it heads for space on the STS-128 mission. Below the main engine nozzles are the blue mach diamonds, a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff from Launch Pad 39A was on time at 11:59 p.m. EDT. The first launch attempt on Aug. 24 was postponed due to unfavorable weather conditions. The second attempt on Aug. 25 also was postponed due to an issue with a valve in space shuttle Discovery's main propulsion system. The STS-128 mission is the 30th International Space Station assembly flight and the 128th space shuttle flight. The 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Photo credit: NASA/Rusty Backer-George Roberts
STS-94 Columbia Landing at KSC (drag chute deploy)
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.
The IRIS-GUS Shuttle Borne Upper Stage System
NASA Technical Reports Server (NTRS)
Tooley, Craig; Houghton, Martin; Bussolino, Luigi; Connors, Paul; Broudeur, Steve (Technical Monitor)
2002-01-01
This paper describes the Italian Research Interim Stage - Gyroscopic Upper Stage (IRIS-GUS) upper stage system that will be used to launch NASA's Triana Observatory from the Space Shuttle. Triana is a pathfinder earth science mission being executed on rapid schedule and small budget, therefore the mission's upper stage solution had to be a system that could be fielded quickly at relatively low cost and risk. The building of the IRIS-GUS system wa necessary because NASA lost the capability to launch moderately sized upper stage missions fro the Space Shuttle when the PAM-D system was retired. The IRIS-GUS system restores this capability. The resulting system is a hybrid which mates the existing, flight proven IRIS (Italian Research Interim Stage) airborne support equipment to a new upper stage, the Gyroscopic Upper Stage (GUS) built by the GSFC for Triana. Although a new system, the GUS exploits flight proven hardware and design approaches in most subsystems, in some cases implementing proven design approaches with state-of-the-art electronics. This paper describes the IRIS-GUS upper stage system elements, performance capabilities, and payload interfaces.
A unique challenge: Emergency egress and life support equipment at KSC
NASA Technical Reports Server (NTRS)
Waddell, H. M., Jr.
1975-01-01
As a result of the investigation following the January 1967 fire, which took the lives of three astronauts, materials were developed, flight hardware was modified, and test procedures were rewritten in order to establish the framework within which a more effective rescue concept could be developed. Topics discussed include breathing units, improved life support equipment, miniresuscitators, and hazardous tasks during space shuttle launch and landing operations.
2011-07-10
CAPE CANAVERAL, Fla. โ A crane working from the dock at Hangar AF at Cape Canaveral Air Force Station in Florida removes one of the spools holding the parachutes and lines from the right spent boosters from space shuttle Atlantis' final launch. The parachutes and booster were gathered by the crews from the Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Ares I-X Flight Test - The Future Begins Here
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2008-01-01
In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John
2011-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
Spaceflight effects on cultured embryonic chick bone cells
NASA Technical Reports Server (NTRS)
Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.
2000-01-01
A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the same statistical levels as control counterparts. Flight cells elaborated a less extensive extracellular matrix, evidenced by a reduced collagen gene expression and collagen protein appearance compared with controls. Osteocalcin was expressed by all cells, a result indicating progressive differentiation of both flight and control osteoblasts, but its message levels also were reduced in flight cells compared with ground samples. This finding suggested that osteoblasts subjected to flight followed a slower progression toward a differentiated function. The summary of data indicates that spaceflight, including microgravity exposure, demonstrably affects bone cells by down-regulating type I collagen and osteocalcin gene expression and thereby inhibiting expression of the osteogenic phenotype notably by committed osteoblasts. The information is important for insight into the response of bone cells to changes of gravity and of force in general.
Versatile fluid-mixing device for cell and tissue microgravity research applications.
Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H
1996-01-01
Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.
1998-06-02
STS-91 Mission Specialist Janet Lynn Kavandi gives a smile and a thumbs-up as two technicians help her with her flight suit in the Operations and Checkout (O&C) Building. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39A. She is on her first Shuttle flight. Kavandi was selected as an astronaut candidate in 1994. She holds a doctorate in analytical chemistry and has received two patents. On this mission, she will be responsible for the SPACEHAB module aboard Discovery which will be used to transport supplies to Mir and bring back U.S. experiment hardware that has been in operation aboard the space station. She will also assist Chang-Diaz with AMS operations. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will return to Earth as a STS-91 crew member after living more than four months aboard Mir
Development of an Advanced Animal Habitat for Spaceflight
NASA Technical Reports Server (NTRS)
Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.
1994-01-01
It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.
STS-77 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-77 Space Shuttle Program Mission Report summarizes the Payload activities as well as the: Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME) systems performance during the seventy-seventh flight of the Space Shuttle Program, the fifty-second flight since the return-to-flight, and the eleventh flight of the Orbiter Endeavour (OV-105). STS-77 was also the last flight of OV-105 prior to the vehicle being placed in the Orbiter Maintenance Down Period (OMDP). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-78; three SSME's that were designated as serial numbers 2037, 2040, and 2038 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-080. The RSRM's, designated RSRM-47, were installed in each SRB and the individual RSRM's were designated as 360TO47A for the left SRB, and 360TO47B for the right SRB. The STS-77 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VII, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of this flight were to successfully perform the operations necessary to fulfill the requirements of Spacehab-4, the SPARTAN 207/inflatable Antenna Experiment (IAE), and the Technology Experiments Advancing Missions in Space (TEAMS) payload. Secondary objectives of this flight were to perform the experiments of the Aquatic Research Facility (ARF), Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), Biological Research in Canisters (BRIC), Get-Away-Special (GAS), and GAS Bridge Assembly (GBA). The STS-77 mission was planned as a 9-day flight plus 1 day, plus 2 contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-77 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 11. The Government Fumished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table II. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET). The six-person crew for STS-77 consisted of John H. Casper, Col., U. S. Air Force, Commander; Curtis L. Brown, Jr., Lt. Col., U. S. Air Force, Pilot; Andrew S. W. Thomas, Civilian, Ph.D., Mission Specialist 1; Daniel W. Bursch, CDR., U. S. Navy, Mission Specialist 2; Mario Runco, Jr., Civilian, Mission Specialist 3; and Marc Gameau, Civilian, PhD, Mission Specialist 4.
A modular suite of hardware enabling spaceflight cell culture research
NASA Technical Reports Server (NTRS)
Hoehn, Alexander; Klaus, David M.; Stodieck, Louis S.
2004-01-01
BioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation. The ICM can accommodate up to 8 individually controlled temperature zones. Command and telemetry capabilities allow real-time downlink of data and video permitting remote payload operation and ground control synchronization. Individual cell culture experiments can be accommodated in a variety of devices ranging from 'microgravity test tubes' or standard 100 mm Petri dishes, to complex, fed-batch bioreactors with automated culture feeding, waste removal and multiple sample draws. Up to 3 levels of containment can be achieved for chemical fixative addition, and passive gas exchange can be provided through hydrophobic membranes. Many additional options exist for designing customized hardware depending on specific science requirements.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
NASA Astrophysics Data System (ADS)
Long, Marianna M.; Bishop, John Bradford; Delucas, Lawrence J.; Nagabhushan, Tattanhalli L.; Reichert, Paul; Smith, G. David
1997-01-01
The Protein Crystal Growth Facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from its first seven flights on the Space Shuttle, the last with laser light scattering instrumentation in place. The PCF's objective is twofold: (1) the production of high quality protein crystals for x-ray analysis and subsequent structure-based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for x-ray analysis and continue productions trials aimed at the development of a processing facility for crystalline recombinant a-interferon.
2007-07-08
KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
2007-07-08
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41541 (9 Aug. 2007) --- Astronauts Stephanie Wilson, STS-120 mission specialist, and Dan Tani, Expedition 16 flight engineer, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
View of Spacelab 2 pallet in the open payload bay
1985-07-29
51F-33-005 (29 July - 6 August 1985) --- Experiments and the instrument pointing system (IPS) for Spacelab 2 are backdropped against the Libya/Tunisia Mediterranean coast and black space in this 70mm view photographed through the aft flight deck windows of the Space Shuttle Challenger. Also partially visible among the cluster of Spacelab 2 hardware are the solar optical universal polarimeter (SOUP) experiment and the coronal helium abundance experiment (CHASE).
Preliminary design of flight hardware for two-phase fluid research
NASA Technical Reports Server (NTRS)
Hustvedt, D. C.; Oonk, R. L.
1982-01-01
This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.
NASA Technical Reports Server (NTRS)
Johnson, Corinne F.; Dreschel, Thomas W.; Brown, Christopher S.; Wheeler, Raymond M.
1994-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the spaceflight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.
Tethered Space Satellite-1 (TSS-1): Wound About a Bolt
NASA Technical Reports Server (NTRS)
O'Connor, Brian; Stevens, Jennifer
2016-01-01
In the early 1990's US and Italian scientists collaborated to study the electrodynamics on a long tether between two satellites as it moved through the electrically charged portion of Earth's atmosphere called the ionosphere. Potential uses for the electrical current induced in the long wire include power and thrust generation for a satellite, momentum exchange, artificial gravity, deployment of sensors or antennas, and gravity-gradient stabilization. The Tethered Space Satellite (TSS) was a first-of-its-kind experiment with long tethers in space. It consisted of a satellite with science experiments attached to a 12.5 mile long, very thin (0.10 inch diameter) copper wire assembly wound around a spool in the deployer reel mechanism. The whole mechanism sits on a pallet that is installed into the Shuttle bay. At an altitude of 160 nautical miles above earth, the satellite would be deplodeployed from the Shuttle bay by raising it on a boom facing away from Earth. Once cleared of the bay, the deployer mechanism would slowly feed out the 12-plus miles of tether. Scientific data would be collected throughout the operation, after which the satellite would be reeled back in. A receiver spool to catch the 12.5 mile tether as it was being unwound by the deployer reel mechanism was set up to do the system-level test of deployer real mechanism prior to installing the loaded pallet into the Shuttle bay. The system level tests were required before the pallet could be installed into the Space Shuttle cargo bay. A few months before flight, the system level tests, including unreeling and reeling the tether, were completed at Kennedy Space Center (KSC) and the TSS payload was installed onto the Spacelab pallet. Some of this testing equipment was then shipped back to the contractor, Martin Marietta. Integration with the Shuttle began. Systems-level load analyses, which cannot be run until all information about each payload is finalized, was run in parallel with the physical integration of the hardware into the Shuttle payload bay. An analysis, called Coupled loads analysis, incorporates any updates to the model due to system level tests of all the different payloads, and any changes that were found during integration. Engineering analysis examines the worst case scenarios for the loads the hardware will see. The two times during the mission where the dynamic loads are the worst were 1) the first 10-second portion of Shuttle lift off, and 2) a 2-second time during landing when the landing gears hit the ground. The coupled loads analysis using the final verification loads showed that a single bolt attaching the deployer reel mechanism to the support structure had a "negative margin" - which is an indication that it might fail - during touch down. Hardware certification rules do not allow for hardware to fly with negative margins. A structural failure of one payload could have serious or catastrophic consequences to other payloads, or may significantly damage the Orbiter. The issue had to be resolved before the flight.
Ares I-X Flight Test--The Future Begins Here
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Robinson, Kimberly F.
2008-01-01
In less than one year, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately 130,000 feet (39,600 meters (m)) and through maximum dynamic pressure ('Max Q') of approximately 800 pounds per square foot (38.3 kilopascals (kPa)). Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by a two-part integrated vehicle CDR in March and July 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008. Ares I-X is the first step in the long journey to the Moon and farther destinations. This suborbital test will be NASA's first flight of a new human-rated launch vehicle in more than a generation. This promises to be an exciting time for NASA and the nation, as we reach for new goals in space exploration. A visual presentation is included.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
Advances in spaceborne synthetic aperture radar sensor technology
NASA Technical Reports Server (NTRS)
Caro, E. R.; Ruzek, M.
1986-01-01
The evolution of space SARs for NASA projects since Seasat (1978) is surveyed, with an emphasis on hardware development. The fundamental principles of SAR are reviewed; the SIR-A and SIR-B instruments flown as Shuttle payloads are characterized; their antennas, transmitters, receivers, and data subsystems are described; the advantages offered by the SIR-C dual-frequency (L and C band) dual-polarization distributed SAR (being developed for a future Shuttle flight and as the basis of an SAR for the Earth Observing System) are explained; and a number of technical challenges are identified (including RF elements, structural fidelity, pointing accuracy, data handling, and dc power). Drawings, diagrams, sample images, photographs, and tables are provided.
Pressure Sensitive Tape in the Manufacture of Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Champneys, Jeff
2007-01-01
ATK Launch Systems Inc. manufactures the reusable solid rocket motor (RSRM) for NASA's Space Shuttle program. They are used in pairs to launch the Space Shuttle. Pressure sensitive tape (PST) is used throughout the RSRM manufacturing process. A few PST functions are: 1) Secure labels; 2) Provide security seals; and 3) Protect tooling and flight hardware during various inert and live operations. Some of the PSTs used are: Cloth, Paper, Reinforced Teflon, Double face, Masking, and Vinyl. Factors given consideration for determining the type of tape to be used are: 1) Ability to hold fast; 2) Ability to release easily; 3) Ability to endure abuse; 4) Strength; and 5) Absence of adhesive residue after removal.
2009-09-20
EDWARDS AIR FORCE BASE, Calif. โ ED09-0253-103) Space shuttle Discovery and its modified 747 carrier aircraft lift off from Edwards Air Force Base early in the morning on Sept. 20, 2009 on the first leg of its ferry flight back to the Kennedy Space Center in Florida. Discovery had landed at Edwards Sept. 11 after the STS-128 mission to the International Space Station. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. NASA photo /Tom Tschida
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members and divers in skiffs from Liberty Star, one of NASA's solid rocket booster retrieval ships, are prepared to retrieve the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, use skiffs to approach the right spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's final launch. Divers are already in the water. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-28
CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch hangs in a hoisting device at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is moved into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, accompany the left spent booster, used during space shuttle Discovery's final launch, into the building for processing. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Liberty Star, one of NASA's solid rocket booster retrieval ships, attach a tow rope to the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, monitors the progress as the massive parachute from the right spent booster from space shuttle Discovery's final launch is hauled on board. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-28
CAPE CANAVERAL, Fla. -- Workers in a small raft, guide the left spent booster used during space shuttle Discovery's final launch into position in a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, Jeff; Ayala, Samuel
2000-01-01
NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.
STS-101: Crew Activity Report/Flight Day 10 Highlights
NASA Technical Reports Server (NTRS)
2000-01-01
This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASAโs Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASAโs Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
One year old and growing: a status report of the International Space Station and its partners
NASA Technical Reports Server (NTRS)
Bartoe, J. D.; Fortenberry, L.
2000-01-01
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future. Published by Elsevier Science Ltd.
Plasmid acquisition in microgravity
NASA Technical Reports Server (NTRS)
Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.
1995-01-01
In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.
NASA Technical Reports Server (NTRS)
1999-01-01
The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members are Commander Curtis L. Brown, Pilot Scott J. Kelly, European Space Agency (ESA) astronaut Jean-Francois Clervoy who will join space walkers Steven L. Smith, C. Michael Foale, John M. Grunsfeld, and ESA astronaut Claude Nicollier. The objectives of the HST Third Servicing Mission (SM3A) are to replace the telescope's six gyroscopes, a Fine-Guidance Sensor, an S-Band Single Access Transmitter, a spare solid-state recorder and a high-voltage/temperature kit for protecting the batteries from overheating. In addition, the crew plans to install an advanced computer that is 20 times faster and has six times the memory of the current Hubble Space Telescope computer. To prepare for these extravehicular activities (EVAs), the SM3A astronauts participated in Crew Familiarization sessions with the actual SM3A flight hardware. During these sessions the crew spent long hours rehearsing their space walks in the Guidance Navigation Simulator and NBL (Neutral Buoyancy Laboratory). Using space gloves, flight Space Support Equipment (SSE), and Crew Aids and Tools (CATs), the astronauts trained with and verified flight orbital replacement unit (ORU) hardware. The crew worked with a number of trainers and simulators, such as the High Fidelity Mechanical Simulator, Guidance Navigation Simulator, System Engineering Simulator, the Aft Shroud Door Trainer, the Forward Shell/Light Shield Simulator, and the Support Systems Module Bay Doors Simulator. They also trained and verified the flight Orbital Replacement Unit Carrier (ORUC) and its ancillary hardware. Discovery's planned 10-day flight is scheduled to end with a night landing at Kennedy.
NASA Astrophysics Data System (ADS)
Lamkin, T.; Whitney, Brian
1995-09-01
This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
2008-07-21
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center remove the protective wrapping from the Flight Support System for the Hubble Space Telescope. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lowered onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center prepare to lift the Flight Support System for the Hubble Space Telescope from its transportation canister. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center begin to lift the Flight Support System for the Hubble Space Telescope from its transportation canister. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lowered onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is positioned onto a work platform by workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-21
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center remove the protective wrapping from the Flight Support System for the Hubble Space Telescope. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister under the supervision of workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Flight Support System for the Hubble Space Telescope is lifted from its transportation canister under the supervision of workers from NASA's Goddard Space Flight Center. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Pauckert, R. P.
1974-01-01
The stability characteristics of the like-doublet injector were defined over the range of OME chamber pressures and mixture ratios. This was accomplished by bomb testing the injector and cavity configurations in solid wall thrust chamber hardware typical of a flight contour with fuel heated to regenerative chamber outlet temperatures. It was found that stability in the 2600-2800 Hz region depends upon injector hydraulics and on chamber acoustics.
MS Musgrave handled hardware in the FWD MDDK
2014-04-09
51F-13-021 (29 July-6 Aug 1985) --- Astronaut Story Musgrave, STS51F mission specialist, is seen hitching a zero-g ride on a blood centrifuge on the middeck of the space shuttle Challenger. "The centrifuge got more workout than just separation of our blood," crewmate John Bartoe, payload specialist, later told a gathering of media representatives at the 51F post-flight press conference, referring to Musgrave's off-duty antics. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.
1997-02-13
KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, Bill; Witt, Vincent; Chullen, Cinda
2010-01-01
The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.
1977-01-01
This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.
1997-07-17
KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCโs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbiaโs 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program
1997-07-17
KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCโs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbiaโs 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program
1997-07-17
KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCโs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbiaโs 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program
1997-07-17
KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCโs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbiaโs 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program
STS-94 Columbia Landing at KSC (main gear touchdown)
NASA Technical Reports Server (NTRS)
1997-01-01
With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.
STS-94 Columbia Landing at KSC (side view with sunrise)
NASA Technical Reports Server (NTRS)
1997-01-01
With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.
Integration and Test for Small Shuttle Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.; Day, John H. (Technical Monitor)
2001-01-01
Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
Microgravity Flight - Accommodating Non-Human Primates
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis
1994-01-01
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights. The RRF accommodated two adult 8-11 kg rhesus monkeys, while the Russian experiments and hardware were configured for a younger animal in the 44 kg range. Both the American and Russian hardware maintained a controlled environmental system, specifically temperature, humidity, a timed lighting cycle, and had means for providing food and fluids to the animal(s). Crew availability during a Shuttle mission was to be an optimal condition for retrieval and refrigeration of the animal urine samples along with a manual calcein injection which could lead to greater understanding of bone calcium incorporation. A special portable bioisolation glove box was under development to support this aspect of the experiment profile along with the capability of any contingency human intervention. As a result of recent U.S./Russian negotiations, funding for Space Station, and a series of other events, the SLS-3 mission was cancelled and applicable Rhesus Project experiments incorporated into the Russian Bion 11 and 12 missions. A presentation of the RRF and COSMOS/Bion rhesus hardware is presented along with current plans for the hardware.
Microgravity Flight: Accommodating Non-Human Primates
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis
1995-01-01
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights. The RRF accommodated two adult 8-11 kg rhesus monkeys, while the Russian experiments and hardware were configured for a younger animal in the 44 kg range. Both the American and Russian hardware maintained a controlled environmental system, specifically temperature, humidity, a timed lighting cycle, and had means for providing food and fluids to the animal(s). Crew availability during a Shuttle mission was to be an optimal condition for retrieval and refrigeration of the animal urine samples along with a manual calcein injection which could lead to greater understanding of bone calcium incorporation. A special portable bioisolation glove box was under development to support this aspect of the experiment profile along with the capability of any contingency human intervention. As a result of recent U.S./Russian negotiations, funding for Space Station, and a series of other events, the SLS-3 mission was cancelled and applicable Rhesus Project experiments incorporated into the Russian Bion 11 and 12 missions. A presentation of the RRF and COSMOS/Bion rhesus hardware is presented along with current plans for the hardware.
Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy
NASA Technical Reports Server (NTRS)
Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.
2009-01-01
The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.
Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy
NASA Technical Reports Server (NTRS)
Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh
2007-01-01
The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.
Shuttle-Derived Launch Vehicles' Capablities: An Overview
NASA Technical Reports Server (NTRS)
Rothschild, William J.; Bailey, Debra A.; Henderson, Edward M.; Crumbly, Chris
2005-01-01
Shuttle-Derived Launch Vehicle (SDLV) concepts have been developed by a collaborative team comprising the Johnson Space Center, Marshall Space Flight Center, Kennedy Space Center, ATK-Thiokol, Lockheed Martin Space Systems Company, The Boeing Company, and United Space Alliance. The purpose of this study was to provide timely information on a full spectrum of low-risk, cost-effective options for STS-Derived Launch Vehicle concepts to support the definition of crew and cargo launch requirements for the Space Exploration Vision. Since the SDLV options use high-reliability hardware, existing facilities, and proven processes, they can provide relatively low-risk capabilities to launch extremely large payloads to low Earth orbit. This capability to reliably lift very large, high-dollar-value payloads could reduce mission operational risks by minimizing the number of complex on-orbit operations compared to architectures based on multiple smaller launchers. The SDLV options also offer several logical spiral development paths for larger exploration payloads. All of these development paths make practical and cost-effective use of existing Space Shuttle Program (SSP) hardware, infrastructure, and launch and flight operations systems. By utilizing these existing assets, the SDLV project could support the safe and orderly transition of the current SSP through the planned end of life in 2010. The SDLV concept definition work during 2004 focused on three main configuration alternatives: a side-mount heavy lifter (approximately 77 MT payload), an in-line medium lifter (approximately 22 MT Crew Exploration Vehicle payload), and an in-line heavy lifter (greater than 100 MT payload). This paper provides an overview of the configuration, performance capabilities, reliability estimates, concept of operations, and development plans for each of the various SDLV alternatives. While development, production, and operations costs have been estimated for each of the SDLV configuration alternatives, these proprietary data have not been included in this paper.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 Through 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2011-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 through 25. Over a 14-month period the Space Shuttle visited the ISS on four occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), and STS-132 (ULF4), as well as on Soyuz flights 19-23. This paper reports the analytical results for these returned potable water archival samples and their compliance with ISS water quality standards.
A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements
NASA Technical Reports Server (NTRS)
Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.
2001-01-01
NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.
National Space Transportation System (NSTS) technology needs
NASA Technical Reports Server (NTRS)
Winterhalter, David L.; Ulrich, Kimberly K.
1990-01-01
The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).
NASA newsletters for the Weber Student Shuttle Involvement Project
NASA Technical Reports Server (NTRS)
Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III
1988-01-01
Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.
Electronics systems test laboratory testing of shuttle communications systems
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Bromley, L. K.
1985-01-01
Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.
2012-02-17
Skylab and Mir Space Stations: In 1964, design and feasibility studies were initiated for missions that could use modified Apollo hardware for a number of possible lunar and Earth-orbital scientific and applications missions. An S-IVB stage of a Saturn V launch vehicle was outfitted completely as a workshop. The Skylab 1 Orbital Workshop with its Apollo Telescope Mount was launched into orbit May 14, 1973. The Skylab 2, 3 and 4 missions, each with three-man crews, proved that humans could live and work in space for extended periods. The Shuttle-Mir Program was a joint effort between 1994-1998 which allowed American and Russian crews to share expertise and knowledge while working together in space. As preparation for the construction of the International Space Station, Shuttle-Mir encompassed 11 space shuttle flights and 7 astronaut residencies on the Russian space station Mir. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2010-01-08
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, members of space shuttle Discovery's STS-131 crew participate in training activities during the Crew Equipment Interface Test, or CEIT, for their mission. Here, Pilot James P. Dutton Jr. experiences the feel of the cockpit from inside the crew module. The CEIT provides the crew with hands-on training and observation of shuttle and flight hardware. The seven-member crew will deliver the multi-purpose logistics module Leonardo, filled with resupply stowage platforms and racks to be transferred to locations around the International Space Station. Three spacewalks will include work to attach a spare ammonia tank assembly to the station's exterior and return a European experiment from outside the station's Columbus module. Discovery's launch is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Kim Shiflett
Solid Rocket Booster (SRB) Flight System Integration at Its Best
NASA Technical Reports Server (NTRS)
Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
U.S. Rep. Dave Weldon outside the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
Standing in front of the U.S. Lab, named Destiny, U.S. Rep. Dave Weldon (left) thanks Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, for briefing him on the equipment inside the Lab. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
2011-01-18
JSC2011-E-003204 (18 Jan. 2011) --- NASA astronauts Rex Walheim, STS-135 mission specialist; and Mike Fossum (foreground), Expedition 28 flight engineer and Expedition 29 commander; use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
2000-09-11
KENNEDY SPACE CENTER, Fla. -- As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2000-09-11
KENNEDY SPACE CENTER, Fla. -- As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1975-01-01
Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
2012-08-09
CAPE CANAVERAL, Fla. โ During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASAโs Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASAโs Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon โ for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
STS-72 Endeavour, Orbiter Vehicle (OV-105), crew insignia
1995-05-01
STS072-S-001 (May 1995) --- The crew patch of STS-72 depicts the space shuttle Endeavour and some of the payloads on the flight. The Japanese satellite, Space Flyer Unit (SFU) is shown in a free-flying configuration with the solar array panels deployed. The inner gold border of the patch represents the SFU's distinct octagonal shape. Endeavour will rendezvous with and retrieve SFU at an altitude of approximately 250 nautical miles. The Office of Aeronautics and Space Technology's (OAST) flyer satellite is shown just after release from the Remote Manipulator System (RMS). The OAST satellite will be deployed at an altitude of 165 nautical miles to fly free for two days gathering scientific data. The payload bay contains equipment for the secondary payloads - the Shuttle Laser Altimeter (SLA) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUI). There are two spacewalks planned to test hardware for assembly of the International Space Station. The stars represent the hometowns of the crew members in the United States and Japan. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the wheel bay to stow Atlantisโ landing gear in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility finish Hurricane preparations on the payload bay doors of Atlantis. Preparing for the expected impact of Hurricane Frances on Saturday, workers also powered down the Space Shuttle orbiters, and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the orbiter Atlantis and related equipment for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantisโ payload bay doors are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantisโ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker checks out part of Atlantis after payload bay doors were closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantisโ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2009-02-02
JOHNSON SPACE CENTER, Houston โ STS127-S-001 (JSC) -- Space shuttle mission STS-127 is the 32nd construction flight of the International Space Station, or ISS, and the final of a series of three flights dedicated to the assembly of the Japanese "Kibo" laboratory complex. In addition to delivering, installing and servicing an external scientific platform that will be attached to the end of the Japanese module, STS-127 will bring up a new ISS crew member and return another one to Earth, replace vital components of the ISS electrical production system, and transfer various pieces of hardware to ISS. Five spacewalks and the operation of four different robotic arms will be required to accomplish these tasks over 10 days. A crew spokesperson had the following words for the patch: "Bathed in sunlight, the blue Earth is represented without boundaries to remind us that we all share this world. In the center, the golden flight path of the space shuttle turns into the three distinctive rays of the astronaut symbol culminating in the star-like emblem characteristic of the Japanese space agency, yet soaring further into space as it paves the way for future voyages and discoveries for all humankind." The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043673 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043661 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-132 crew during their MSS/SIMP EVA3 OPS 4 training
2010-01-28
JSC2010-E-014953 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
STS-132 crew during their MSS/SIMP EVA3 OPS 4 training
2010-01-28
JSC2010-E-014949 (28 Jan. 2010) --- NASA astronauts Piers Sellers, STS-132 mission specialist; and Tracy Caldwell Dyson, Expedition 23/24 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
2008-08-21
CAPE CANAVERAL, Fla. โ At NASA's Kennedy Space Center, this alligator was spotted cruising the flood waters caused by Tropical Storm Fay. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
STS-134 crew and Expedition 24/25 crew member Shannon Walker
2010-03-25
JSC2010-E-043662 (25 March 2010) --- NASA astronauts Gregory H. Johnson, STS-134 pilot; and Shannon Walker, Expedition 24/25 flight engineer, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.
Programs for Testing an SSME-Monitoring System
NASA Technical Reports Server (NTRS)
Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary;
2007-01-01
A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.
Space Station Systems Analysis Study. Volume 2: Program options, book 1, parts 1 and 2
NASA Technical Reports Server (NTRS)
1977-01-01
Program options are defined and requirements are determined for integrating crew, mass, volume, and electrical power for a space construction base which incorporates the space shuttle external tanks. Orbits, stabilization, flight control hardware, as well as modules and aids for orbital assembly and servicing are considered. The effectiveness of various program options for life science and radio astronomy missions, for the solar terrestrial observatory, and for public service platforms is assessed. Technology development items are identified and costs are estimated.
Modular biowaste monitoring system
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1975-01-01
The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.
NASA's Principal Center for Review of Clean Air Act Regulations
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia
2003-01-01
Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.
Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research
NASA Astrophysics Data System (ADS)
Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.
2005-08-01
For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.
2002-01-02
JOHNSON SPACE CENTER, HOUSTON, TEXAS - STS-111 INSIGNIA -- The STS-111 patch symbolizes the hardware, people, and partner nations that contribute to the flight. The Space Shuttle rises on the plume of the Astronaut Office symbol, carrying the Canadian Mobile Base System (MBS) for installation while docked to the International Space Station (ISS). The mission is named UF-2 for ISS Utilization Flight number two. The ISS orbit completes the Astronaut Office symbol and is colored red, white, and blue to represent the flags of the United States, Russia, France, and Costa Rica. The Earth background shows Italy, which contributes the Multi Purpose Logistics Module (MPLM) used on this flight to re-supply ISS. The ten stars in the sky represent the ten astronauts and cosmonauts on orbit during the flight, and the star at the top of the patch represents the Johnson Space Center, in the state of Texas, from which the flight is managed. The names of the STS-111 crew border the upper part of the patch, and the Expedition Five (going up) and Expedition Four (coming down) crews' names form the bottom of the patch. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. The NASA insignia design for Space Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.
1990-01-01
Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.
The Inertial Upper Stage - Flight experience and capabilities
NASA Astrophysics Data System (ADS)
Kuhns, Randall H.; Maricich, Peter L.; Bangsund, Edward L.; Friske, Stephen A.; Hallman, Wayne P.; Goldstein, Allen E.
1993-10-01
The Inertial Upper Stage (IUS) is a two-stage rocket designed to place a variety of payloads in high earth orbit or on interplanetary trajectories, which has been boosted to date, together with its payloads, from the earth's surface to low altitude park orbits by the USAF Titan launcher and the NASA Space Shuttle. This paper discusses the IUS redundancy and presents data on the value of the IST's redundant design and the past uses of the vehicle's redundant capability to achieve mission success. The value of IUS's redundancy has been confirmed on several flights. The paper presents block diagrams of the IUS redundancy architecture and of the redundancy hardware switching and commands.
Modeling and Simulation of Shuttle Launch and Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
2008-08-29
CAPE CANAVERAL, Fla. โ In the Life Science Building at NASA's Kennedy Space Center, a space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2008-08-29
CAPE CANAVERAL, Fla. โ In the Life Science Building at NASA's Kennedy Space Center, this space experiment rack is under development for flight aboard NASA's first commercially-provided research flights on Zero Gravity Corporation's reduced gravity aircraft. Known as the FASTRACK Space Experiment Platform, the rack is designed to support two standard lockers that fit inside the space shuttle's crew middeck. It is being developed jointly by Kennedy and Space Florida to facilitate NASA and commercial use of reusable U.S. suborbital flight vehicles currently under development. FASTRACK will enable investigators to test experiments, apparatus and analytical techniques in hardware compatible with the International Space Station, and to perform science that can be carried out during the reduced gravity available for brief periods during aircraft parabolas. Flight testing of the FASTRACK will be performed on four consecutive days between September 9-12 from Ellington Field near NASA's Johnson Space Center, Houston. Photo credit: NASA/Troy Cryder
2002-01-01
STS111-S-001 (January 2002) --- The STS-111 patch symbolizes the hardware, people, and partner nations that contribute to the flight. The space shuttle rises on the plume of the Astronaut Office symbol, carrying the Canadian Mobile Base System (MBS) for installation while docked to the International Space Station (ISS). The mission is named UF-2 for ISS Utilization Flight number two. The ISS orbit completes the Astronaut Office symbol and is colored red, white, and blue to represent the flags of the United States, Russia, France, and Costa Rica. The Earth background shows Italy, which contributes the Multi Purpose Logistics Module (MPLM) used on this flight to re-supply ISS. The ten stars in the sky represent the ten astronauts and cosmonauts on orbit during the flight, and the star at the top of the patch represents the Johnson Space Center, in the state of Texas, from which the flight is managed. The names of the STS-111 crew border the upper part of the patch, and the Expedition Five (going up) and Expedition Four (coming down) crews? names form the bottom of the patch. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle
NASA Technical Reports Server (NTRS)
Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.
1994-01-01
The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, William; Witt, Vincent; Chullen, Cinda
2010-01-01
The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.
2011-01-01
The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.
Solid Surface Combustion Experiment Completes a Series of Eight Successful Flights
NASA Technical Reports Server (NTRS)
1996-01-01
The Solid Surface Combustion Experiment (SSCE) was the first combustion experiment to fly in the space shuttle and the first such experiment in the NASA spaceflight program since Skylab. SSCE was actually a series of experiments designed to begin to characterize flame spreading over solid fuels in microgravity and the differences of this flame spreading from normal gravity behavior. These experiments should lead to a better understanding of the physical processes involved--increasing our understanding of fire behavior, both in space and on Earth. SSCE results will help researchers evaluate spacecraft fire hazards. These experiments were conceived by the principal investigator, Professor Robert A. Altenkirch, Dean of Engineering at Washington State University. In the first five flights, the fuel sample--ashless filter paper instrumented with three thermocouples--was mounted in a sealed chamber filled with a 50-percent or 35-percent mixture of oxygen in nitrogen at pressures of 1.0, 1.5, and 2.0 atm. In the next three flights, a polymethyl methacrylate (plexiglass) fuel was instrumented with three thermocouples and tested in a 70-percent or 50-percent mixture of oxygen and nitrogen at pressures of 1.0 and 2.0 atm. SSCE is a self-contained, battery-operated experiment that can be flown either in the shuttle middeck or in the Spacelab module. More information about the hardware configuration have been published. This past year, the final two of eight flights were completed on STS-64 and STS-63. The NASA Lewis Research Center designed and built the SSCE payload and performed engineering, testing, scientific, and flight operations support. The SSCE project was supported in some way by nearly every major sector of Lewis' organization. Professor Altenkirch developed a numerical simulation of the flame-spreading process from first principles (of fluid mechanics, heat transfer, and reaction kinetics). The spread rates, flame shape, and thermodynamic data from the SSCE flights are being compared directly with the results of the computational model. Results from the eight flights will be used to formulate an improved solid-phase pyrolysis model. In addition, some results of the flights have been published and presented at international combustion symposiums. Additional solid fuel combustion experiments are being investigated for future tests with the existing hardware.
Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters
NASA Technical Reports Server (NTRS)
Lehr, Mark E.
2005-01-01
A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.
Space shuttle low cost/risk avionics study
NASA Technical Reports Server (NTRS)
1971-01-01
All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.
Water quality program elements for Space Station Freedom
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.
1991-01-01
A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center cuts away the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center removes the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center begin to remove the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center cuts away the protective wrapping from the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Orbital Replacement Unit Carrier for the Hubble Space Telescope is secured on a work platform by workers from NASA's Goddard Space Flight Center. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center cuts away the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Orbital Replacement Unit Carrier for the Hubble Space Telescope is lifted from its transportation canister by workers from NASA's Goddard Space Flight Center. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Orbital Replacement Unit Carrier for the Hubble Space Telescope is positioned on a work platform by workers from NASA's Goddard Space Flight Center. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center removes the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center removes the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center removes the protective wrapping from the Orbital Replacement Unit Carrier for the Hubble Space Telescope. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Coho, William K.; Weiland, Karen J.; VanZandt, David M.
1998-01-01
A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.
Industrial Engineering Lifts Off at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Barth, Tim
1998-01-01
When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the U.S. Lab, called 'Destiny,' which is in the Space Station Processing Facility, U.S. Rep. Dave Weldon (right) looks over equipment. In the background (center) is Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
Development of a versatile laser light scattering instrument
NASA Astrophysics Data System (ADS)
Meyer, William V.; Ansari, Rafat R.
1990-10-01
A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.
Development of a versatile laser light scattering instrument
NASA Technical Reports Server (NTRS)
Meyer, William V.; Ansari, Rafat R.
1990-01-01
A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.
NASA Technical Reports Server (NTRS)
Mckenzie, Robert L.
1988-01-01
An analytical study and its experimental verification are described which show the performance capabilities and the hardware requirements of a method for measuring atmospheric density along the Space Shuttle flightpath during entry. Using onboard instrumentation, the technique relies on Rayleigh scattering of light from a pulsed ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing density measurements with an uncertainty of less than 1 percent and with a spatial resolution along the flightpath of 1 km, over an altitude range from 50 to 90 km. Experimental verification of the signal linearity and the expected signal-to-noise ratios is demonstrated in a simulation facility at conditions that duplicate the signal levels of the flight environment.
U.S. Rep. Dave Weldon outside the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, U.S. Rep Dave Weldon (at left) looks at the U.S. Lab, called Destiny. With him are Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, Dana Gartzke, the congressman's chief of staffm and Boeing workers. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
2011-02-28
CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- At the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is moved to a tracked dolly for processing. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
2011-02-28
CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
Animation graphic interface for the space shuttle onboard computer
NASA Technical Reports Server (NTRS)
Wike, Jeffrey; Griffith, Paul
1989-01-01
Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.
Reliability Growth in Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2014-01-01
A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility unwrap plastic for use in covering equipment as part of preparations for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
Biochemical and hematologic changes after short-term space flight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.
1991-01-01
Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration = 28, 56, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 to 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2010-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.
Cygnus Orbital ATK OA-6 Final Hatch Closure
2016-03-06
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed for the upcoming flight of a Cygnus cargo vessel. The spacecraft is scheduled for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. When members of the ISS Expedition 47 crew open the hatch, they will be greeted with a sign noting the spacecraft was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.
NASA Technical Reports Server (NTRS)
1993-01-01
The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.
NASA Technical Reports Server (NTRS)
Graf, John
2009-01-01
NASA is currently engaged in an activity to facilitate effective operations on the International Space Station (ISS) after the Space Shuttle retires. Currently, the Space Shuttle delivers crew and cargo to and from ISS. The Space Shuttle provides the only large scale method of hardware return from ISS to the ground. Hardware that needs to be periodically repaired, refurbished, or recalibrated must come back from ISS on the Shuttle. One example of NASA flight hardware that is used on ISS and refurbished on the ground is the Compound Specific Analyzer for Oxygen (CSA-O2). The CSA-O2 is an electrochemical sensor that is used on orbit for about 12 months (depending on Shuttle launch schedules), then returned to the ground for sensor replacement. The shuttle is scheduled to retire in 2010, and the ISS is scheduled to operate until 2016. NASA needs a hand held sensor that measures oxygen in the ISS environment and has a 5-10 year service life. After conducting a survey of oxygen sensor systems, NASA selected a Tunable Diode Laser Absorption Spectrometer (TDLAS) as the method of measurement that best addresses the needs for ISS. These systems are compact, meet ISS accuracy requirements, and because they use spectroscopic techniques, the sensors are not consumed or altered after making a measurement. TDLAS systems have service life ratings of 5-10 years, based on the lifetime of the laser. NASA is engaged in modifying a commercially available sensor, the Vaisala OMT 355, for the ISS application. The Vaisala OMT 355 requires three significant modifications to meet ISS needs. The commercial sensor uses a wall mount power supply, and the ISS sensor needs to use a rechargeable battery as its source of power. The commercial sensor has a pressure correction setpoint: the sensor can be adjusted to operate at reduced pressure conditions, but the sensor does not self correct dynamically and automatically. The ISS sensor needs to operate in the airlock, and make accurate measurements in an environment that can change from 14.7 psia to 10.2 psia in 15 minutes. The commercial sensor needs to be repackaged into a configuration that is more compact, and better suited for ISS airlock operations. NASA has recently completed a prototype of the reconfigured system. The unit has been repackaged in a way that the optical path of the spectrometer is unchanged, but the electronics has been integrated into a case measuring 10.7 X 7.2 X 3.0 inches. Two flight qualified rechargeable batteries have been integrated into system. The batteries can power the sensor for 10 hours on a single charge. A pressure sensor has been added to the system. The modified unit automatically compensates for changes in pressure, and meets 0.2% accuracy requirements for oxygen measurements in an environment with 18 to 32% oxygen across a pressure range of 10.0 to 15.0 psia.
Utilization of the Space Vision System as an Augmented Reality System For Mission Operations
NASA Technical Reports Server (NTRS)
Maida, James C.; Bowen, Charles
2003-01-01
Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to flight hardware capable of utilizing this technology. This is the basis for this proposed Space Human Factors Engineering project, the determination of the display symbology within the performance limits of the Space Vision System that will objectively improve human performance. This utilization of existing flight hardware will greatly reduce the costs of implementation for flight. Besides being used onboard shuttle and space station and as a ground-based system for mission operational support, it also has great potential for science and medical training and diagnostics, remote learning, team learning, video/media conferencing, and educational outreach.
2012-08-09
CAPE CANAVERAL, Fla. โ During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASAโs Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASAโs Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon โ for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
2012-08-09
CAPE CANAVERAL, Fla. โ During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASAโs Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASAโs Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon โ for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
Status of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Honeycutt, John; Cook, Jerry; Lyles, Garry
2016-01-01
NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Status of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Lyles, Garry
2016-01-01
NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
2008-08-21
CAPE CANAVERAL, Fla. โ Debris covers a road eroded by Tropical Storm Fay near Launch Pad 39A at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
2008-08-21
CAPE CANAVERAL, Fla. โ Wind and rain from Tropical Storm Fay pummel the area near the Vehicle Assembly Building at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
2008-08-21
CAPE CANAVERAL, Fla. โ Due to Tropical Storm Fay, the ground is flooded on a road alongside the turn basin at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
2008-08-21
CAPE CANAVERAL, Fla. โ Flooding and some tree damage near the Vehicle Assembly Building are results from Tropical Storm Fay at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
2008-08-21
CAPE CANAVERAL, Fla. โ Due to Tropical Storm Fay, the roadside canals and surrounding grounds are flooded at NASA's Kennedy Space Center. In the background is the Vehicle Assembly Building. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Ben Smegelsky
2008-08-21
CAPE CANAVERAL, Fla. โ An alligator seeks higher ground alongside a road at NASA's Kennedy Space Center during the onslaught of Tropical Storm Fay. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller
Flight Hardware Fabricated for Combustion Science in Space
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
NASA Technical Reports Server (NTRS)
Jackson, Dionne
2005-01-01
The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.
Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor
2004-01-01
A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis
Movable Ground Based Recovery System for Reuseable Space Flight Hardware
NASA Technical Reports Server (NTRS)
Sarver, George L. (Inventor)
2013-01-01
A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
Ku-band system design study and TDRSS interface analysis
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Mckenzie, T. M.; Choi, H. J.; Tsang, C. S.; An, S. H.
1983-01-01
The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated.
Marshall Space Flight Center Materials and Processes Laboratory
NASA Technical Reports Server (NTRS)
Tramel, Terri L.
2012-01-01
Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.
Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions
NASA Technical Reports Server (NTRS)
Kuang, A.; Musgrave, M. E.; Matthews, S. W.; Cummins, D. B.; Tucker, S. C.
1995-01-01
The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)
NASA Technical Reports Server (NTRS)
Walker, James L.
1998-01-01
The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Orbital Replacement Unit Carrier for the Hubble Space Telescope is lifted from its transportation canister by workers from NASA's Goddard Space Flight Center. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, at ground-level left, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-18
CAPE CANAVERAL, Fla. โ In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Orbital Replacement Unit Carrier for the Hubble Space Telescope is lowered onto a work platform by workers from NASA's Goddard Space Flight Center. The Orbital Replacement Unit Carrier, or ORUC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Flight Support System, or FSS, seen behind the ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in late July. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Keltner, D. J.
1975-01-01
This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Space Shuttle Upgrades Advanced Hydraulic Power System
NASA Technical Reports Server (NTRS)
2004-01-01
Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.
Building on the Past - Looking to the Future. Part 2; A Focus on Expanding Horizons
NASA Technical Reports Server (NTRS)
Guidry, Richard W.; Nash, Sally K.; Rehm, Raymond B.; Wolf, Scott L.; Wong, Teresa K.
2010-01-01
The history of space endeavors stretches far from Robert Goddard s initial flights and will certainly extend far beyond the construction of the International Space Station. As society grows in knowledge of and familiarity with space, the focus of maintaining the safety of the crews and the habitability of the vehicles will be of the utmost importance to the National Aeronautics and Space Administration (NASA) community. Through the years, Payload Safety has developed not only as a Panel, but also as part of the NASA community, striving to enhance the efficiency and understanding of how business should be conducted as more International Partners become involved. The recent accomplishments of the first docking of the Japan Aerospace Exploration Agency (JAXA) HII Transfer Vehicle (HTV 1) and completion of the Japanese Experiment Module (JEM) or KIBO and the Russian MRM2 to the International Space Station (ISS) mark significant steps for the future of ISS. 2010 will mark the final flights of the Shuttle and the completion of ISS assembly. Future delivery of humans and hardware will rely on the Russian Progress and Soyuz, the Japanese HII Transfer Vehicle (HTV), the European Automated Transfer Vehicle (ATV) and US "Commercial Off-The-Shelf" (COTS) and Constellation vehicles. The International Partners (IPs) will have more capability in delivery as well as responsibility for review of hardware they deliver to assure safe operation. This is the second in a series of papers and presentations in what is hoped to be an annual update that illustrates challenges and lessons learned in the areas of communication (how hazard reports can be misunderstood), safety requirements (transitioning from Shuttle-centric to ISS-centric), and processes (review of hardware by RSC-E and Franchised ESA and JAXA PSRP) which have been vital in conducting the business of the Payload Safety Review Panel (PSRP). This year will focus on the items annotated above.
Remote Software Application and Display Development
NASA Technical Reports Server (NTRS)
Sanders, Brandon T.
2014-01-01
The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).
Telescience operations with the solar array module plasma interaction experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Bibyk, Irene K.
1995-01-01
The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
1987-07-01
A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at the Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.
1987-07-01
A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at thw Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.
Flight Testing of the Capillary Pumped Loop 3 Experiment
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem
2002-01-01
The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, points out a feature to U.S. Rep. Dave Weldon (right) in the U.S. Lab, called 'Destiny.' In the far background is Dana Gartzke, the congressman's chief of staff. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
A key constituent of the NASA Space Launch System (SLS) architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). This engine was selected largely due to the maturity and extensive experience gained through 30-plus years of service. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle and mounting it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration and operational details, there were also hardware upgrades needed. While the magnitude of effort is less than that needed to develop a new clean-sheet engine system, this paper describes some of the expected and unexpected challenges encountered to date on the path to the first flight of SLS.
Space Shuttle Main Engine - The Relentless Pursuit of Improvement
NASA Technical Reports Server (NTRS)
VanHooser, Katherine P.; Bradley, Douglas P.
2011-01-01
The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.
Shuttle Risk Progression by Flight
NASA Technical Reports Server (NTRS)
Hamlin, Teri; Kahn, Joe; Thigpen, Eric; Zhu, Tony; Lo, Yohon
2011-01-01
Understanding the early mission risk and progression of risk as a vehicle gains insights through flight is important: . a) To the Shuttle Program to understand the impact of re-designs and operational changes on risk. . b) To new programs to understand reliability growth and first flight risk. . Estimation of Shuttle Risk Progression by flight: . a) Uses Shuttle Probabilistic Risk Assessment (SPRA) and current knowledge to calculate early vehicle risk. . b) Shows impact of major Shuttle upgrades. . c) Can be used to understand first flight risk for new programs.
2007-06-23
The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.
Biochemical and hematologic changes after short-term space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1992-01-01
Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.