Historical problem areas: Lessons learned for expendable and reusable vehicle propulsion systems
NASA Technical Reports Server (NTRS)
Fester, Dale A.
1991-01-01
The following subject areas are covered: expendable launch vehicle lessons learned, upper stage/transfer vehicle lessons learned, shuttle systems - reuse, and reusable system issues and lessons learned.
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Messer, Bradley P.
2006-01-01
This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.
Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned
NASA Technical Reports Server (NTRS)
Graves, Stan R.; McCool, Alex (Technical Monitor)
2001-01-01
An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Albright, John D.; D'Amico, Stephen J.; Brewer, John M.; Melcher, John C., IV
2011-01-01
The Space Shuttle Integrated Main Propulsion System (IMPS) consists of the External Tank (ET), Orbiter Main Propulsion System (MPS), and Space Shuttle Main Engines (SSMEs). The IMPS is tasked with the storage, conditioning, distribution, and combustion of cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) propellants to provide first and second stage thrust for achieving orbital velocity. The design, certification, and operation of the associated IMPS hardware have produced many lessons learned over the course of the Space Shuttle Program (SSP). A subset of these items will be discussed in this paper for consideration when designing, building, and operating future spacecraft propulsion systems. This paper will focus on lessons learned related to Orbiter MPS and is the first of a planned series to address the subject matter.
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
NASA Technical Reports Server (NTRS)
Meinhold, Anne
2013-01-01
The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.
Shuttle Performance: Lessons Learned, Part 2
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.
NASA Technical Reports Server (NTRS)
Studor, George
2007-01-01
A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.
Orbiter Water Dump Nozzles Redesign Lessons Learned
NASA Technical Reports Server (NTRS)
Rotter, Hank
2017-01-01
Hank Rotter, NASA Technical Fellow for Environmental Control and Life Support System, will provide the causes and lessons learned for the two Space Shuttle Orbiter water dump icicles that formed on the side of the Orbiter. He will present the root causes and the criticality of these icicles, along with the redesign of the water dump nozzles and lessons learned during the redesign phase.
Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems
NASA Technical Reports Server (NTRS)
Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank
2011-01-01
Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.
Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1983-01-01
The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
Aeromedical Lessons from the Space Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Pool, Sam L.
2005-01-01
This paper presents the aeromedical lessons learned from the Space Shuttle Columbia Accident Investigation. The contents include: 1) Introduction and Mission Response Team (MRT); 2) Primary Disaster Field Office (DFO); 3) Mishap Investigation Team (MIT); 4) Kennedy Space Center (KSC) Mishap Response Plan; 5) Armed Forces Institute of Pathology (AFIP); and 6) STS-107 Crew Surgeon.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Welzyn, Ken
2011-01-01
The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.
Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.
2009-01-01
Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.
Lessons learned from evaluating launch-site processing problems of Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Flores, Carlos A.; Heuser, Robert E.; Sales, Johnny R.; Smith, Anthony M.
1992-01-01
The authors discuss a trend analysis program that is being conducted on the problem reports written during the processing of Space Shuttle payloads at Kennedy Space Center. The program is aimed at developing lessons learned that can both improve the effectiveness of the current payload processing cycles as well as help to guide the processing strategies for Space Station Freedom. The payload processing reports from STS 26R and STS 41 are used. A two-tier evaluation activity is described, and some typical results from the tier one analyses are presented.
Operations to Research: Communication of Lessons Learned
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2009-01-01
This presentation explores ways to build upon previous spaceflight experience and communicate this knowledge to prepare for future exploration. An operational approach is highlighted, focusing on selection and retention standards (disease screening and obtaining medical histories); pre-, in-, and post-flight monitoring (establishing degrees of bone loss, skeletal muscle loss, cardiovascular deconditioning, medical conditions, etc.); prevention, mitigation, or treatment (in-flight countermeasures); and, reconditioning, recovery, and reassignment (post-flight training regimen, return to pre-flight baseline and flight assignment). Experiences and lessons learned from the Apollo, Skylab, Shuttle, Shuttle-Mir, International Space Station, and Orion missions are outlined.
Lessons learned from trend analysis of Shuttle Payload Processing problem reports
NASA Technical Reports Server (NTRS)
Heuser, Robert E.; Pepper, Richard E., Jr.; Smith, Anthony M.
1989-01-01
In the wake of the Challenger accident, NASA has placed an increasing emphasis on trend analysis techniques. These analyses provide meaningful insights into system and hardware status, and also develop additional lessons learned from historical data to aid in the design and operation of future space systems. This paper presents selected results from such a trend analysis study that was conducted on the problem report data files for the Shuttle Payload Processing activities. Specifically, the results shown are for the payload canister system which interfaces with and transfers payloads from their processing facilities to the orbiter.
Launch Vehicle Propulsion Life Cycle Cost Lessons Learned
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Rhodes, Russell E.; Robinson, John W.
2010-01-01
This paper will review lessons learned for space transportation systems from the viewpoint of the NASA, Industry and academia Space Propulsion Synergy Team (SPST). The paper provides the basic idea and history of "lessons learned". Recommendations that are extremely relevant to NASA's future investments in research, program development and operations are"'provided. Lastly, a novel and useful approach to documenting lessons learned is recommended, so as to most effectively guide future NASA investments. Applying lessons learned can significantly improve access to space for cargo or people by focusing limited funds on the right areas and needs for improvement. Many NASA human space flight initiatives have faltered, been re-directed or been outright canceled since the birth of the Space Shuttle program. The reasons given at the time have been seemingly unique. It will be shown that there are common threads as lessons learned in many a past initiative.
NASA Technical Reports Server (NTRS)
Johnson, Teresa A.
2006-01-01
Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1
NASA Technical Reports Server (NTRS)
Goodman, John L.
2011-01-01
This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.
NASA Technical Reports Server (NTRS)
Chandler, Michael
2010-01-01
As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the investigation, medico-legal issues, the Spacecraft Crew Survival Integrated Investigation Team report and training for accident response.
Lessons learned for improving spacecraft ground operations
NASA Astrophysics Data System (ADS)
Bell, Michael; Stambolian, Damon; Henderson, Gena
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.
2012-01-01
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
Constellation Program: Lessons Learned. Volume 1; Executive Summary
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L. (Editor)
2011-01-01
This document (Volume I) provides an executive summary of the lessons learned from the Constellation Program. A companion Volume II provides more detailed analyses for those seeking further insight and information. In this volume, Section 1.0 introduces the approach in preparing and organizing the content to enable rapid assimilation of the lessons. Section 2.0 describes the contextual framework in which the Constellation Program was formulated and functioned that is necessary to understand most of the lessons. Context of a former program may seem irrelevant in the heady days of new program formulation. However, readers should take some time to understand the context. Many of the lessons would be different in a different context, so the reader should reflect on the similarities and differences in his or her current circumstances. Section 3.0 summarizes key findings developed from the significant lessons learned at the program level that appear in Section 4.0. Readers can use the key findings in Section 3.0 to peruse for particular topics, and will find more supporting detail and analyses in Section 4.0 in a topical format. Appendix A contains a white paper describing the Constellation Program formulation that may be of use to readers wanting more context or background information. The reader will no doubt recognize some very similar themes from previous lessons learned, blue-ribbon committee reviews, National Academy reviews, and advisory panel reviews for this and other large-scale human spaceflight programs; including Apollo, Space Shuttle, Shuttle/Mir, and the ISS. This could represent an inability to learn lessons from previous generations; however, it is more likely that similar challenges persist in the Agency structure and approach to program formulation, budget advocacy, and management. Perhaps the greatest value of these Constellation lessons learned can be found in viewing them in context with these previous efforts to guide and advise the Agency and its stakeholders.
Shuttle Lesson Learned - Toxicology
NASA Technical Reports Server (NTRS)
James, John T.
2010-01-01
This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.
Lessons Learned from Ares I Upper Stage Structures and Thermal Design
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq
2012-01-01
The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.
Space Shuttle Program Legacy Report
NASA Technical Reports Server (NTRS)
Johnson, Scott
2012-01-01
Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.
Lessons Learned From The EMU Fire and How It Impacts CxP Suit Element Development and Testing
NASA Technical Reports Server (NTRS)
Metts, Jonathan; Hill, Terry
2008-01-01
During testing a Space Shuttle Extravehicular Mobility Unit (EMU) pressure garment and life-support backpack was destroyed in a flash fire in the Johnson Space Center's Crew systems laboratory. This slide presentation reviews the accident, probable causes, the lessons learned and the effect this has on the testing and the environment for testing of the Space Suit for the Constellation Program.
Logistics Lessons Learned in NASA Space Flight
NASA Technical Reports Server (NTRS)
Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah
2006-01-01
The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
NASA Astrophysics Data System (ADS)
Mitsui, Masami; Takeuchi, Nobuo; Kawada, Yasuhiro; Kobayashi, Royoji; Nogami, Manami; Miki, Masami
2013-09-01
When records of success are accumulating, we should be most alert to maintain the safety culture we labored to establish and nurture.Space Shuttle Columbia Accident in 2002 and Fukushima Nuclear Power Station Accident in 2011 are seemingly unrelated. But, by studying the accident reports issued after these accidents, the authors found that the organizational causes that led to the accidents were surprisingly similar. The causes of these accidents were rooted in the history and culture of the respective organizations.In this paper, the authors will discuss differences and similarities in these two accidents based on the reports submitted by the accident investigation boards of these two accidents. This will be followed by the lessons learned the authors derived.
NASA Technical Reports Server (NTRS)
Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.
1983-01-01
Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.
STS-114: Discovery Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.
2011-01-01
With the ending of the Space Shuttle Program, it is critical that we not forget the Human Factors lessons we have learned over the years. At every phase of the life cycle, from manufacturing, processing and integrating vehicle and payload, to launch, flight operations, mission control and landing, hundreds of teams have worked together to achieve mission success in one of the most complex, high-risk socio-technical enterprises ever designed. Just as there was great diversity in the types of operations performed at every stage, there was a myriad of human factors that could further complicate these human systems. A single mishap or close call could point to issues at the individual level (perceptual or workload limitations, training, fatigue, human error susceptibilities), the task level (design of tools, procedures and aspects of the workplace), as well as the organizational level (appropriate resources, safety policies, information access and communication channels). While we have often had to learn through human mistakes and technological failures, we have also begun to understand how to design human systems in which individuals can excel, where tasks and procedures are not only safe but efficient, and how organizations can foster a proactive approach to managing risk and supporting human enterprises. Panelists will talk about their experiences as they relate human factors to a particular phase of the shuttle life cycle. They will conclude with a framework for tying together human factors lessons-learned into system-level risk management strategies.
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
NASA Technical Reports Server (NTRS)
Rocha, Rodney
2011-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) ESMD Risk and Knowledge Management team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the official Columbia Accident Investigation Board (CAIB). Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document. This report is accompanied by a video that will be sent at request
Space Shuttle GN and C Development History and Evolution
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don
2011-01-01
Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
Shuttle Performance: Lessons Learned, part 1
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.
GPS Lessons Learned from the International Space Station, Space Shuttle and X-38
NASA Technical Reports Server (NTRS)
Goodman, John L.
2005-01-01
This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.
Lewis and Clark Park Shuttle: Lessons Learned.
DOT National Transportation Integrated Search
2006-08-01
In anticipation of increased visitation expected for the Lewis & Clark bicentennial, the park, Sunset Empire Transportation District, and other partners implemented a seasonal summer bus service that provided an alternative to driving to Fort Clatsop...
Vehicle Procurement Lessons Learned at Yosemite National Park.
DOT National Transportation Integrated Search
2005-02-28
In seeking to obtain replacement buses for its Valley Shuttle fleet, Yosemite National Park encountered numerous uncertainties in the procurement process that complicated what was intended to be a relatively straightforward purchase. The analysis tha...
Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zaretsky, Erwin V.
2017-01-01
The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.
Electric Trams : Lessons Learned at Cape Cod National Seashore
DOT National Transportation Integrated Search
2005-08-31
In seeking to obtain environmentally friendly replacement vehicles for its parking shuttle service, Cape Cod National Seashore set out to procure two hybrid-electric trams in 1998. Ultimately, battery-powered trams were delivered with multiple safety...
Microbiological Lessons Learned from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.
2011-01-01
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.
Shuttle Case Study Collection Website Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah S.; Johnson, Grace K.
2012-01-01
As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.
Loss of Signal: Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap
NASA Technical Reports Server (NTRS)
Stepaniak, Philip C. (Editor); Lane, Helen W. (Editor); Davis, Jeffrey R.
2014-01-01
The editors of Loss of Signal wanted to document the aeromedical lessons learned from the Space Shuttle Columbia mishap. The book is intended to be an accurate and easily understood account of the entire process of recovering and analyzing the human remains, investigating and analyzing what happened to the crew, and using the resulting information to recommend ways to prevent mishaps and provide better protection to crewmembers. Our goal is to capture the passions of those who devoted their energies in responding to the Columbia mishap. We have reunited authors who were directly involved in each of these aspects. These authors tell the story of their efforts related to the Columbia mishap from their point of view. They give the reader an honest description of their responsibilities and share their challenges, their experiences, and their lessons learned on how to enhance crew safety and survival, and how to be prepared to support space mishap investigations. As a result of this approach, a few of the chapters have some redundancy of information and authors' opinions may differ. In no way did we or they intend to assign blame or criticize anyone's professional efforts. All those involved did their best to obtain the truth in the situations to which they were assigned.
NASA/MOD Operations Impacts from Shuttle Program
NASA Technical Reports Server (NTRS)
Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly
2011-01-01
Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.
NASA Technical Reports Server (NTRS)
Maxwell, Theresa G.; Bihner, William J.
2010-01-01
This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.
Shuttle Transportation System Case-Study Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah
2012-01-01
A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.
Lessons learned from KSC processing on STS science, applications, and commercial payloads
NASA Technical Reports Server (NTRS)
Williams, W. E.; Ragusa, J. M.
1984-01-01
The present investigation is concerned with an evaluation of the lessons learned in connection with the flights of the Shuttle orbiters Columbia, Challenger, and Discovery. A description is provided of several general and specific lessons related to the processing of free-flying and attached payloads. John F. Kennedy Space Center (KSC), as the prime launch and landing site, is responsible for managing all payload-to-payload, payload-to-simulated orbiter, and payload-to-orbiter operations. For each payload, a KSC Launch Site Support Manager (LSSM) is named as the primary point of contact for the customer. Attention is given to aspects of planning interaction, payload types, and problems of ground processing. The discussed lessons are partly related to the value of early contact between customers and KSC representatives, the primary point of contact, the launch site support plan, and the importance of customer participation.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
Space Shuttle Orbiter logistics - Managing in a dynamic environment
NASA Technical Reports Server (NTRS)
Renfroe, Michael B.; Bradshaw, Kimberly
1990-01-01
The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.
Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)
NASA Technical Reports Server (NTRS)
Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)
1999-01-01
This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.
The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned
NASA Technical Reports Server (NTRS)
Long, Victoria S.; Wright, M. Clara; McDanels, Steve
2015-01-01
The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.
Learning from near-misses to avoid future catastrophes
NASA Astrophysics Data System (ADS)
Dillon, Robin L.
2014-11-01
Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
Welding in Space: Lessons Learned for Future In Space Repair Development
NASA Technical Reports Server (NTRS)
Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.
2005-01-01
Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.
From Bridges and Rockets, Lessons for Software Systems
NASA Technical Reports Server (NTRS)
Holloway, C. Michael
2004-01-01
Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.
STS-71 Shuttle/Mir mission report
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
1995-01-01
The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The materials in this guide were designed to help teachers and other adults maximize the learning experiences and other educational events scheduled on space shuttle Mission 51-L. They include: (1) a description of the live lessons to be conducted by Christa McAuliffe; (2) teaching-related events of Mission 51-L; (3) a list of key mission-related…
DOT National Transportation Integrated Search
2003-05-01
This report presents the first in a series of case studies on lessons learned from planning and : implementing alternative transportation systems (ATS) and from developing partnerships with : local and regional communities. The report is supported by...
Operational Lessons Learned from the Ares I-X Flight Test
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle, Ares I-X will be stacked on a MLP and rolled out to the pad on a Saturn-era crawler-transporter. While Ares I-X was only held in place by the four hold-down posts on its aft skirt during rollout, a new vehicle stabilization system (VSS) attached to the vertical service structure kept the vehicle from undue swaying prior to launch at the pad, LC 39B. Following the launch, the flight test vehicle first stage was recovered with the aid of new parachutes resized to accommodate the five-segment-long first stage, which had a much greater length and mass than the Shuttle s reusable solid rocket boosters. After splashdown, recovery divers exercised extra care when handling the first stage to ensure that the flight data recorders in the fifth segment simulator were not damaged by exposure to sea water. The data recovered from the Ares I-X flight test will be very valuable in verifying the predicted environments and models used to design the vehicle. Lessons learned from Ares I-X will be shared with the Ares Projects through written and verbal reports and through integration of mission team members into the Project workforce.
NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.
NASA Technical Reports Server (NTRS)
Orr, James K.
2010-01-01
This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.
STS-114 Flight Day 13 and 14 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
On Flight Day 13, the crew of Space Shuttle Discovery on the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) hear a weather report from Mission Control on conditions at the shuttle's possible landing sites. The video includes a view of a storm at sea. Noguchi appears in front of a banner for the Japanese Space Agency JAXA, displaying a baseball signed by Japanese MLB players, demonstrating origami, displaying other crafts, and playing the keyboard. The primary event on the video is an interview of the whole crew, in which they discuss the importance of their mission, lessons learned, shuttle operations, shuttle safety and repair, extravehicular activities (EVAs), astronaut training, and shuttle landing. Mission Control dedicates the song "A Piece of Sky" to the Shuttle crew, while the Earth is visible below the orbiter. The video ends with a view of the Earth limb lit against a dark background.
Shuttle get-away special experiments
NASA Technical Reports Server (NTRS)
Orton, George
1987-01-01
This presentation describes two shuttle Get-Away-Special (GAS) experiments built by McDonnell Douglas to investigate low-g propellant acquisition and gaging. The first experiment was flown on shuttle mission 41-G in October 1984. The second experiment has been qualified for flight and is waiting for a flight assignment. The tests performed to qualify these experiments for flight are described, and the lessons learned which can be applied to future GAS experiments are discussed. Finally, survey results from 134 GAS experiments flown to date are presented. On the basis of these results it is recommended that future GAS experiments be qualified to shuttle thermal and dynamic environments through a rigorous series of mission operating tests. Furthermore, should automatic activation of the experiment be required during the boost phase of the mission, NASA-supplied redundant barometric switches should be employed to trigger the activation.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
Space Shuttle Orbiter Structures and Mechanisms
NASA Technical Reports Server (NTRS)
Gilmore, Adam L.; Estes, Lynda R.; Eilers, James A.; Logan, Jeffrey S.; Evernden, Brent A.; Decker, William S.; Hagen, Jeffrey D.; Davis, Robert E.; Broughton, James K.; Campbell, Carlisle C.;
2011-01-01
The Space Shuttle Orbiter has performed exceptionally well over its 30 years of flight experience. Among the many factors behind this success were robust, yet carefully monitored, structural and mechanical systems. From highlighting key aspects of the design to illustrating lessons learned from the operation of this complex system, this paper will attempt to educate the reader on why some subsystems operated flawlessly and why specific vulnerabilities were exposed in others. Specific areas to be covered will be the following: high level configuration overview, primary and secondary structure, mechanical systems ranging from landing gear to the docking system, and windows.
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1989-01-01
This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.
1992-01-01
The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.
Project Interface Requirements Process Including Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Bauch, Garland T.
2010-01-01
Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings
NASA Technical Reports Server (NTRS)
Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil
2009-01-01
This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.
Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.
2006-01-01
The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.
Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use
NASA Technical Reports Server (NTRS)
Nufer, Brian
2010-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system testing, checkout, and operational use.
NASA Technical Reports Server (NTRS)
Price, Richard N.
2007-01-01
This paper intends to describe the lessons learned while specifying validating and installing a bit sync to replace the 30 year old Aydin Model 335a PCM bit sync used in the Space Shuttle Launch Control Center. The engineer had to analyze the original requirements and specifications and then create new requirements documentation that more correctly described our needs. One issue to consider was the removal of unnecessary requirements such as various data formats when only one format is used. The conversion to a system that no longer has an assortment of analog rotary switches required retraining of the operators. Finally, post-procurement corrections for undisclosed user requirements and missed design requirements required close contact with a manufacturer who was willing to accommodate the changes.
Integration and Test of Shuttle Small Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.
2003-01-01
Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
Post-Challenger evaluation of space shuttle risk assessment and management
NASA Technical Reports Server (NTRS)
1988-01-01
As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.
Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan; Davis, Jerel; Glenn, Christopher
2011-01-01
For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.
Space Shuttle Software Development and Certification
NASA Technical Reports Server (NTRS)
Orr, James K.; Henderson, Johnnie A
2000-01-01
Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools
Bird Strike Risk for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Hales, Christy; Czech, Matthew
2017-01-01
Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. This presentation will outline an approach for estimating risk resulting from bird strikes to space launch vehicles. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts all affect the risk due to bird strike. Lessons learned, challenges over lack of data, and significant risk contributors will be discussed.
Space experiment development process
NASA Technical Reports Server (NTRS)
Depauw, James F.
1987-01-01
Described is a process for developing space experiments utilizing the Space Shuttle. The role of the Principal Investigator is described as well as the Principal Investigator's relation with the project development team. Described also is the sequence of events from an early definition phase through the steps of hardware development. The major interactions between the hardware development program and the Shuttle integration and safety activities are also shown. The presentation is directed to people with limited Shuttle experiment experience. The objective is to summarize the development process, discuss the roles of major participants, and list some lessons learned. Two points should be made at the outset. First, no two projects are the same so the process varies from case to case. Second, the emphasis here is on Code EN/Microgravity Science and Applications Division (MSAD).
Suva, Domizio; Poizat, Germain
2015-02-04
For many years hospitals have been implementing crew resource management (CRM) programs, inspired by the aviation industry, in order to improve patient safety. However, while contributing to improved patient care, CRM programs are controversial because of their limited impact, a decrease in effectiveness over time, and the underinvestment by some caregivers. By analyzing the space shuttle Challenger accident, the objective of this article is to show the potential impact of the professional culture in decision-making processes. In addition, to present an approach by cultural factors which are an essential complement to current CRM programs in order to enhance the safety of care.
Space Shuttle Reusable Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Moore, Dennis; Phelps, Jack; Perkins, Fred
2010-01-01
RSRM is a highly reliable human-rated Solid Rocket Motor: a) Largest diameter SRM to achieve flight status; b) Only human-rated SRM. RSRM reliability achieved by: a)Applying special attention to Process Control, Testing, and Postflight; b) Communicating often; c) Identifying and addressing issues in a disciplined approach; d) Identifying and fully dispositioning "out-of-family" conditions; e) Addressing minority opinions; and f) Learning our lessons.
Lessons Learned Study Final Report for the Exploration Systems Mission Directorate
NASA Technical Reports Server (NTRS)
Van Laak, Jim; Brumfield, M. Larry; Moore, Arlene A.; Anderson, Brooke; Dempsey, Jim; Gifford, Bob; Holloway, Chip; Johnson, Keith
2004-01-01
This report is the final product of a 90-day study performed for the Exploration Systems Mission Directorate. The study was to assemble lessons NASA has learned from previous programs that could help the Exploration Systems Mission Directorate pursue the Exploration vision. It focuses on those lessons that should have the greatest significance to the Directorate during the formulation of program and mission plans. The study team reviewed a large number of lessons learned reports and data bases, including the Columbia Accident Investigation Board and Rogers Commission reports on the Shuttle accidents, accident reports from robotic space flight systems, and a number of management reviews by the Defense Sciences Board, Government Accountability Office, and others. The consistency of the lessons, findings, and recommendations validate the adequacy of the data set. In addition to reviewing existing databases, a series of workshops was held at each of the NASA centers and headquarters that included senior managers from the current workforce as well as retirees. The full text of the workshop reports is included in Appendix A. A lessons learned website was opened up to permit current and retired NASA personnel and on-site contractors to input additional lessons as they arise. These new lessons, when of appropriate quality and relevance, will be brought to the attention of managers. The report consists of four parts: Part 1 provides a small set of lessons, called the Executive Lessons Learned, that represent critical lessons that the Exploration Systems Mission Directorate should act on immediately. This set of Executive Lessons and their supporting rationale have been reviewed at length and fully endorsed by a team of distinguished NASA alumni; Part 2 contains a larger set of lessons, called the Selected Lessons Learned, which have been chosen from the lessons database and center workshop reports on the basis of their specific significance and relevance to the near-term work of the Exploration Directorate. These lessons frequently support the Executive lessons but are more general in nature; Part 3 consists of the reports of the center workshops that were conducted as part of this activity. These reports are included in their entirety (approximately 200 pages) in Appendix G and have significance for specific managers; Part 4 consists of the remainder of the lessons that have been selected by this effort and assembled into a database for the use of the Explorations Directorate. The database is archived and hosted in the Lessons Learned Knowledge Network, which provides a flexible search capability using a wide variety of search terms. Finally, a spreadsheet lists databases searched and a bibliography identifies reports that have been reviewed as sources of lessons for this task. NASA has been presented with many learning opportunities. We have conducted numerous programs, some extremely successful and others total failures. Most have been documented with a formal lessons learned activity, but we have not always incorporated these learning opportunities into our normal modes of business. For example, the Robbins Report of 2001 clearly indicates that many project failures of the past two decades were the result of violating well documented best practices, often in direct violation of management instructions and directives. An overarching lesson emerges: that disciplined execution in accordance with proven best practices is the greatest single contributor to a successful program. The Lessons Learned task team offers a sincere hope that the lessons presented herein will be helpful to the Exploration Systems Directorate in charting and executing their course. The success of the Directorate and of NASA in general depends on our collective ability to move forward without having to relearn the lessons of those who have gone before.
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.
2011-01-01
It is important to the Space Shuttle Program (SSP), as well as future manned spaceflight programs, to understand the early mission risk and progression of risk as the program gains insights into the integrated vehicle through flight. The risk progression is important to the SSP as part of the documentation of lessons learned. The risk progression is important to future programs to understand reliability growth and the first flight risk. This analysis uses the knowledge gained from 30 years of operational flights and the current Shuttle PRA to calculate the risk of Loss of Crew and Vehicle (LOCV) at significant milestones beginning with the first flight. Key flights were evaluated based upon historical events and significant re-designs. The results indicated that the Shuttle risk tends to follow a step function as opposed to following a traditional reliability growth pattern where risk exponentially improves with each flight. In addition, it shows that risk can increase due to trading safety margin for increased performance or due to external events. Due to the risk drivers not being addressed, the risk did not improve appreciably during the first 25 flights. It was only after significant events occurred such as Challenger and Columbia, where the risk drivers were apparent, that risk was significantly improved. In addition, this paper will show that the SSP has reduced the risk of LOCV by almost an order of magnitude. It is easy to look back afte r 30 years and point to risks that are now obvious, however; the key is to use this knowledge to benefit other programs which are in their infancy stages. One lesson learned from the SSP is understanding risk drivers are essential in order to considerably reduce risk. This will enable the new program to focus time and resources on identifying and reducing the significant risks. A comprehensive PRA, similar to that of the Shuttle PRA, is an effective tool quantifying risk drivers if support from all of the stakeholders is given.
The Space Shuttle focused-technology program - Lessons learned
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Gabris, E. A.
1983-01-01
The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.
Lessons Learned During the Refurbishment and Testing of an Observatory After Long-Term Storage
NASA Technical Reports Server (NTRS)
Hawk, John; Peabody, Sharon; Stavely, Richard
2015-01-01
Thermal Fluids Analysis Workshop (TFAWS) 2015, Silver Spring, MD NCTS 21070-15. This paper addresses the lessons learned during the refurbishment and testing of the thermal control system for a spacecraft which was placed into long-term storage. The DSCOVR (Deep Space Climate Observatory) Observatory (formerly known as Triana) was originally scheduled to launch on the Space Shuttle in 2002. With the Triana spacecraft nearly complete, the mission was canceled and the satellite was abruptly put into storage in 2001. In 2008 the observatory was removed from storage to begin refurbishment and testing. Problems arose associated with hardware that was not currently manufactured, coatings degradation, and a significant lack of documentation. Also addressed is the conversion of the thermal and geometric math models for use with updated thermal analysis software tools.
Use of a position-sensitive multi-anode photomultiplier tube for finding gamma-ray source direction
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul
2014-09-01
Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
Aeromedical Lessons Learned from the Space Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Chandler, Mike
2011-01-01
This slide presentation provides an update on the Columbia accident response presented in 2005 with additional information that was not available at that time. It will provide information on the following topics: (1) medical response and Search and Rescue, (2) medico-legal issues associated with the accident, (3) the Spacecraft Crew Survival Integrated Investigation Team Report published in 2008, and (4) future NASA flight surgeon spacecraft accident response training.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
Subjective Sleep Experience During Shuttle Missions
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra; Slack, Kelley; Locke, James; Patterson, Holly; Faulk, Jeremy; Keeton, Kathryn; Leveton, Lauren
2012-01-01
It is now known that for many astronauts, sleep is reduced in spaceflight. Given that sleep is intimately tied to performance, safety, health, and well being, it is important to characterize factors that hinder sleep in space, so countermeasures can be implemented. Lessons learned from current spaceflight can be used to inform the development of space habitats and mitigation strategies for future exploration missions. The purpose of this study was to implement a survey and one-on-one interviews to capture Shuttle flyers' subjective assessment of the factors that interfered with a "good nights sleep" during their missions. Strategies that crewmembers reported using to improve their sleep quality during spaceflight were also discussed. Highlights from the interview data are presented here.
Integration and Test for Small Shuttle Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.; Day, John H. (Technical Monitor)
2001-01-01
Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned
NASA Technical Reports Server (NTRS)
Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica
2010-01-01
The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.
NASA Technical Reports Server (NTRS)
Kemp, N. D.
1983-01-01
Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.
Seal Technology for Hypersonic Vehicle and Propulsion: An Overview
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
2008-01-01
Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.
Ontology Development and Evolution in the Accident Investigation Domain
NASA Technical Reports Server (NTRS)
Carvalho, Robert; Berrios, Dan; Williams, James
2004-01-01
InvestiigationOrganizer (IO) is a collaborative semantic web system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, allowing investigators to integrate evidence, causal models, and investigation results. IO has been used to support investigations ranging from a small property damage case to the loss of the Space Shuttle Columbia. Through IO'S use in these investigations, we have learned significant lessons? about the application of ontologies and semantic systems to solving real-world problems. This paper will describe the development of the ontology within IO, from the initial development, its growth in response to user requests during use in investigations, and the recent work that was done to control the results of that growth. This paper will also describe the lessons learned from this experience and how they may apply to the implementaton of future ontologies and semantic systems.
Analysis of large space structures assembly: Man/machine assembly analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.
Risk management in international manned space program operations.
Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N
2004-02-01
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.
Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Damico, Stephen; Brewer, John
2011-01-01
The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.
2018-02-22
A certificate is on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed with its certificate in the preservation room as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.
Impact Testing of Orbiter Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Kerr, Justin
2006-01-01
This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.
Shuttle payload S-band communications system
NASA Technical Reports Server (NTRS)
Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.
1985-01-01
The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.
STS-121: Discovery Entry Flight Director Post Landing Press Conference
NASA Technical Reports Server (NTRS)
2006-01-01
Steve Stitch, STS-121 Entry Flight Director, and Wayne Hale, Space Shuttle Program is shown in this post landing press conference. Steve Stitch begins with discussing the following topics: 1) Weather at Kennedy Space Center; 2) Gap filler protrusion; 3) De-orbit burn; 4) Space Shuttle Landing; 5) Global Position Satellite System (GPSS) performance; and 6) Post-landing rain showers. Wayne Hale discusses external tank observations at launch and the goals that were obtained by this flight, which are to deliver 4000 pounds of scientific equipment, increase the crew members to three on the International Space Station (ISS), and repair the ISS. Questions from the press on lessons learned from the Auxiliary Power Unit (APU) leak, and flight readiness reviews are addressed.
NASA Technical Reports Server (NTRS)
Orr, James K.
2010-01-01
This presentation focuses on the Space Shuttle Primary Avionics Software System (PASS) and the people who developed and maintained this system. One theme is to provide quantitative data on software quality and reliability over a 30 year period. Consistent data relates to code break discrepancies. Requirements were supplied from external sources. Requirement inspections and measurements not implemented until later, beginning in 1985. Second theme is to focus on the people and organization of PASS. Many individuals have supported the PASS project over the entire period while transitioning from company to company and contract to contract. Major events and transitions have impacted morale (both positively and negatively) across the life of the project.
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1986-01-01
Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.
NASA Astronaut Selection 2009: Behavioral Overview
NASA Technical Reports Server (NTRS)
Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.
2010-01-01
NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.
Modal Testing of Seven Shuttle Cargo Elements for Space Station
NASA Technical Reports Server (NTRS)
Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)
2001-01-01
From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.
SSME Electrical Harness and Cable Development and Evolution
NASA Technical Reports Server (NTRS)
Abrams, Russ; Heflin, Johnny; Burns, Bob; Camper, Scott J.; Hill, Arthur J.
2010-01-01
The Space Shuttle Main Engine (SSME) electrical harness and cable system consists of the various interconnecting devices necessary for operation of complex rocket engine functions. Thirty seven harnesses incorporate unique connectors, backshell adapters, conductors, insulation, shielding, and physical barriers for a long maintenance-free life while providing the means to satisfy performance requirements and to mitigate adverse environmental influences. The objective of this paper is to provide a description of the SSME electrical harness and cable designs as well as the development history and lessons learned.
2018-02-22
A certificate and quilt square are on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed in the preservation room with its certificate as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.
Recovery of the Space Shuttle Columbia Avionics
NASA Technical Reports Server (NTRS)
Hames, Kevin L.
2003-01-01
Lessons Learned: a) Avionics data can playa critical role in the investigation of a "close call" or accident. b) Avionics designers should think about the role their systems might play in an investigation. c) Know your data, down to the bit level. d) Know your spacecraft - follow the data. e) Internal placement of circuit cards can affect their survivability. f) Think about how to reconstruct nonvolatile memory (e.g. serialize IC's, etc.) g) Use of external assets can aid in extracting data from avionics.
The evolution of automated launch processing
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1988-01-01
The NASA Launch Processing System (LPS) to which attention is presently given has arrived at satisfactory solutions for the distributed-computing, good user interface and dissimilar-hardware interface, and automation-related problems that emerge in the specific arena of spacecraft launch preparations. An aggressive effort was made to apply the lessons learned in the 1960s, during the first attempts at automatic launch vehicle checkout, to the LPS. As the Space Shuttle System continues to evolve, the primary contributor to safety and reliability will be the LPS.
Legacy of Environmental Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Lane, Helen W.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.
Food systems for space travel.
Bourland, C T
1999-01-01
Space food systems have evolved from tubes and cubes to Earth-like food being planned for the International Space Station. The weight, volume, and oxygen-enriched atmosphere constraints of earlier spacecraft severely limited the type of food that could be used. Food systems improved as spacecraft conditions became more habitable. Space food systems have traditionally been based upon the water supply. This presentation summarizes the food development activities from Mercury through Shuttle, Shuttle/Mir, and plans for the International Space Station. Food development lessons learned from the long-duration missions with astronauts on the Mir station are also discussed. Nutritional requirements for long-duration missions in microgravity and problems associated with meeting these requirements for Mir will be elucidated. The psychological importance of food and the implications for food development activities are summarized.
Loss of Signal, Aeromedical Lessons Learned for the STS-I07 Columbia Space Shuttle Mishap
NASA Technical Reports Server (NTRS)
Patlach, Robert; Stepaniak, Philip C.; Lane, Helen W.
2014-01-01
Loss of Signal, a NASA publication to be available in May 2014, presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goals of this book are to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews.
NASA Astrophysics Data System (ADS)
Kanas, Nick; Ritsher, Jennifer
2005-05-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.
Kanas, Nick; Ritsher, Jennifer
2005-01-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.
Science Operation in Space: Lessons
NASA Technical Reports Server (NTRS)
1988-01-01
This program (conceived by a group of veteran Shuttle astronauts) shows prospective experimenters how they can better design their experiments for operation onboard Shuttle flights. Shuttle astronauts Dunbar, Seddon, Hoffman, Cleave, Ross, and ChangDiaz also show how crews live and work in space.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.
Integrated Risk and Knowledge Management Program -- IRKM-P
NASA Technical Reports Server (NTRS)
Lengyel, David M.
2009-01-01
The NASA Exploration Systems Mission Directorate (ESMD) IRKM-P tightly couples risk management and knowledge management processes and tools to produce an effective "modern" work environment. IRKM-P objectives include: (1) to learn lessons from past and current programs (Apollo, Space Shuttle, and the International Space Station); (2) to generate and share new engineering design, operations, and management best practices through preexisting Continuous Risk Management (CRM) procedures and knowledge-management practices; and (3) to infuse those lessons and best practices into current activities. The conceptual framework of the IRKM-P is based on the assumption that risks highlight potential knowledge gaps that might be mitigated through one or more knowledge management practices or artifacts. These same risks also serve as cues for collection of knowledge particularly, knowledge of technical or programmatic challenges that might recur.
Space Shuttle and Hypersonic Entry
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Gerstenmaier, William H.
2014-01-01
Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight regimes will be a key enabler to facilitate the consolidation of the new emerging scenarios. The objective of this symposium is therefore to focus on lesson learned, to then analyze the main elements of those new scenarios, both from Institutional and Private sectors; and finally provide the leads for future collaboration opportunities between Italy, the United States and international partners, so to join profitably the opportunities offered by this new era of the aerospace technologies.
SRMS History, Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Jorgensen, Glenn; Bains, Elizabeth
2011-01-01
Early in the development of the Space Shuttle, it became clear that NASA needed a method of deploying and retrieving payloads from the payload bay. The Shuttle Remote Manipulator System (SRMS) was developed to fill this need. The 50 foot long robotic arm is an anthropomorphic design consisting of three electromechanical joints, six degrees of freedom, and two boom segments. Its composite boom construction provided a light weight solution needed for space operations. Additionally, a method of capturing payloads with the arm was required and a unique End Effector was developed using an electromechanical snare mechanism. The SRMS is operated using a Displays and Controls Panel and hand controllers located within the aft crew compartment of the shuttle. Although the SRMS was originally conceived to deploy and retrieve payloads, its generic capabilities allowed it to perform many other functions not originally conceived of. Over the years it has been used for deploying and retrieving constrained and free flying payloads, maneuvering and supporting EVA astronauts, satellite repair, International Space Station construction, and as a viewing aid for on-orbit International Space Station operations. After the Columbia accident, a robotically compatible Orbiter Boom Sensor System (OBSS) was developed and used in conjunction with the SRMS to scan the Thermal Protection System (TPS) of the shuttle. These scans ensure there is not a breach of the TPS prior to shuttle re-entry. Ground operations and pre mission simulation, analysis and planning played a major role in the success of the SRMS program. A Systems Engineering Simulator (SES) was developed to provide a utility complimentary to open loop engineering simulations. This system provided a closed-loop real-time pilot-driven simulation giving visual feedback, display and control panel interaction, and integration with other vehicle systems, such as GN&C. It has been useful for many more applications than traditional training. Evolution of the simulations, guided by the Math Model Working Group, showed the utility of input from multiple modeling groups with a structured forum for discussion.There were many unique development challenges in the areas of hardware, software, certification, modeling and simulation. Over the years, upgrades and enhancements were implemented to increase the capability, performance and safety of the SRMS. The history and evolution of the SRMS program provided many lessons learned that can be used for future space robotic systems.
Apollo: Learning From the Past, For the Future
NASA Technical Reports Server (NTRS)
Grabois, Michael R.
2009-01-01
This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"
Apollo: Learning From the Past, For the Future
NASA Technical Reports Server (NTRS)
Grabois, Michael R.
2010-01-01
This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"
Astronaut medical selection during the shuttle era: 1981-2011.
Johnston, Smith L; Blue, Rebecca S; Jennings, Richard T; Tarver, William J; Gray, Gary W
2014-08-01
U.S. astronauts undergo extensive job-related screening and medical examinations prior to selection in order to identify candidates optimally suited for careers in spaceflight. Screening medical standards evolved over many years and after extensive spaceflight experience. These standards assess health-related risks for each astronaut candidate, minimizing the potential for medical impact on future mission success. This document discusses the evolution of the Shuttle-era medical selection standards and the most common reasons for medical dis-qualification of applicants. Data for astronaut candidate finalists were compiled from medical records and NASA archives from the period of 1978 to 2004 and were retrospectively reviewed for medically disqualifying conditions. During Shuttle selection cycles, a total of 372 applicants were disqualified due to 425 medical concerns. The most common disqualifying conditions included visual, cardiovascular, psychiatric, and behavioral disorders. During this time period, three major expert panel reviews resulted in refinements and alterations to selection standards for future cycles. Shuttle-era screening, testing, and specialist evaluations evolved through periodic expert reviews, evidence-based medicine, and astronaut medical care experience. The Shuttle medical program contributed to the development and implementation of NASA and international standards, longitudinal data collection, improved medical care, and occupational surveillance models. The lessons learned from the Shuttle program serve as the basis for medical selection for the ISS, exploration-class missions, and for those expected to participate in commercial spaceflight.
NASA Technical Reports Server (NTRS)
Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.
2010-01-01
The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.
Managing External Relations: The Lifeblood of Mission Success
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2007-01-01
The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.
Logistics: An integral part of cost efficient space operations
NASA Technical Reports Server (NTRS)
Montgomery, Ann D.
1996-01-01
The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.
The evolution of Orbiter depot support, with applications to future space vehicles
NASA Technical Reports Server (NTRS)
Mcclain, Michael L.
1990-01-01
The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.
Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Goodman, John L.; Walker, Stephen R.
2009-01-01
Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.
Dressing for Altitude: U.S. Aviation Pressure Suits--Wiley Post to Space Shuttle
NASA Technical Reports Server (NTRS)
Jenkins, Dennis R.
2012-01-01
Since its earliest days, flight has been about pushing the limits of technology and, in many cases, pushing the limits of human endurance. The human body can be the limiting factor in the design of aircraft and spacecraft. Humans cannot survive unaided at high altitudes. There have been a number of books written on the subject of spacesuits, but the literature on the high-altitude pressure suits is lacking. This volume provides a high-level summary of the technological development and operational use of partial- and full-pressure suits, from the earliest models to the current high altitude, full-pressure suits used for modern aviation, as well as those that were used for launch and entry on the Space Shuttle. The goal of this work is to provide a resource on the technology for suits designed to keep humans alive at the edge of space. Hopefully, future generations will learn from the hard-fought lessons of the past. NASA is committed to the future of aerospace, and a key component of that future is the workforce. Without these men and women, technological advancements would not be possible. Dressing for Altitude is designed to provide the history of the technology and to explore the lessons learned through years of research in creating, testing, and utilizing today s high-altitude suits. It is our hope that this information will prove helpful in the development of future suits. Even with the closeout of the Space Shuttle and the planned ending of the U-2 program, pressure suits will be needed for protection as long as humans seek to explore high frontiers. The NASA Aeronautics Research Mission Directorate is committed to the training of the current and future aerospace workforce. This book and the other books published by the NASA Aeronautics Research Mission Directorate are in support of this commitment. Hopefully, you will find this book a valuable resource for many years to come.
Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.
2011-01-01
The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e.g., sensory aids) will have both space and Earth-based applications. Early postflight field tests are recommended to provide the evidence base for best practices for future commercial flight programs. Learning Objective: Overview of the Space Shuttle Program regarding adaptive changes in sensorimotor function, including what was learned from research, what was implemented for medical operations, and what is recommended for commercial flights.
Genesis Reentry Observations and Data Analysis
NASA Technical Reports Server (NTRS)
Suggs, R. M.; Swift, W. R.
2005-01-01
The Genesis spacecraft reentry represented a unique opportunity to observe a "calibrated meteor" from northern Nevada. Knowing its speed, mass, composition, and precise trajectory made it a good subject to test some of the algorithms used to determine meteoroid mass from observed brightness. It was also a good test of an inexpensive set of cameras that could be deployed to observe future shuttle reentries. The utility of consumer-grade video cameras was evident during the STS-107 accident investigation, and the Genesis reentry gave us the opportunity to specify and test commercially available cameras that could be used during future reentries. This Technical Memorandum describes the video observations and their analysis, compares the results with a simple photometric model, describes the forward scatter radar experiment, and lists lessons learned from the expedition and implications for the Stardust reentry in January 2006 as well as future shuttle reentries.
Behavioral Health and Performance Operations During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.
2011-01-01
Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions
Mississippi National River and Recreation Area : shuttle market analysis
DOT National Transportation Integrated Search
2015-05-05
This report summarizes the results of marketing interviews conducted with National Park Service units operating shuttle services similar to what is being considered for the Mississippi National River and Recreation Area. The report includes lessons l...
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2005-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.
NASA Technical Reports Server (NTRS)
Watson, Steve; Orr, Jim; O'Neil, Graham
2004-01-01
A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.
The effect of environmental initiatives on NASA specifications and standards activities
NASA Technical Reports Server (NTRS)
Griffin, Dennis; Webb, David; Cook, Beth
1995-01-01
The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
On the hitchhiker Robot Operated Materials Processing System: Experiment data system
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Jenstrom, Del
1995-01-01
The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.
Loss of Signal, Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap
NASA Technical Reports Server (NTRS)
Stepaniak, Phillip C.; Patlach, Robert
2014-01-01
Loss of Signal, a NASA publication to be available in May 2014 presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goal of this book is to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews. This poster presents an outline of Loss of Signal contents and highlights from each of five sections - the mission and mishap, the response, the investigation, the analysis and the future.
STS Case Study Development Support
NASA Technical Reports Server (NTRS)
Rosa de Jesus, Dan A.; Johnson, Grace K.
2013-01-01
The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.
Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011
NASA Technical Reports Server (NTRS)
Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.
2011-01-01
The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.
NASA Technical Reports Server (NTRS)
Savage, Paul D.; Connolly, J. P.; Navarro, B. J.
1999-01-01
Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
TDRS-A - The pioneering payload
NASA Technical Reports Server (NTRS)
Browning, R. K.
1983-01-01
The first launch of a Tracking Data Relay Satellite (TDRS-A) on board the Shuttle Orbiter 'Challenger' of the Space Transportation System (STS) provided many pioneering events as a payload/user. The TDRS-A was launched as a payload of the STS as well as a payload of the Inertial Upper Stage (IUS) on April 4, 1983. This paper traces the payload processing flow of the TDRS-A from its arrival at the Kennedy Space Center (KSC), through its launch on Challenger and its trans-orbit flight on the IUS to geosynchronous orbit. The TDRS-A, as a customer/user of these launch systems, is examined and reviewed and lessons learned are noted.
Space Shuttle Propulsion System Reliability
NASA Technical Reports Server (NTRS)
Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David
2011-01-01
This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.
Refining the Ares V Design to Carry Out NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Creech, Steve
2008-01-01
NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.
Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, M.D.; Fencl, A.F.; Newton, G.J.
1995-12-01
Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice onmore » Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.« less
Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian Mckirdy
2011-09-01
This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed.more » These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.« less
Shuttle Entry Imaging Using Infrared Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve
2007-01-01
During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.
Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan D.
2011-01-01
Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.
Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane
NASA Technical Reports Server (NTRS)
Jenkins, Dennis R.
2000-01-01
It is a beginning. Over forty-five years have elapsed since the X-15 was conceived; 40 since it first flew. And 31 since the program ended. Although it is usually heralded as the most productive flight research program ever undertaken, no serious history has been assembled to capture its design, development, operations, and lessons. This monograph is the first step towards that history. Not that a great deal not previously been written about the X-15, because it has. But most of it has been limited to specific aspects of the program; pilot's stories, experiments. lessons-learned, etc. But with the exception of Robert S. Houston's history published by the Wright Air Development Center in 1958, and later included in the Air Force History Office's Hypersonic Revolution, no one has attempted to tell the entire story. And the WADC history is taken entirely from the Air Force perspective, with small mention of the other contributors.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Labbe, Steve; Lebsock, Kenneth L.
2010-01-01
Within the broad aerospace community the importance of identifying, documenting and widely sharing lessons learned during system development, flight test, operational or research programs/projects is broadly acknowledged. Documenting and sharing lessons learned helps managers and engineers to minimize project risk and improve performance of their systems. Often significant lessons learned on a project fail to get captured even though they are well known 'tribal knowledge' amongst the project team members. The physical act of actually writing down and documenting these lessons learned for the next generation of NASA GN&C engineers fails to happen on some projects for various reasons. In this paper we will first review the importance of capturing lessons learned and then will discuss reasons why some lessons are not documented. A simple proven approach called 'Pause and Learn' will be highlighted as a proven low-impact method of organizational learning that could foster the timely capture of critical lessons learned. Lastly some examples of 'lost' GN&C lessons learned from the aeronautics, spacecraft and launch vehicle domains are briefly highlighted. In the context of this paper 'lost' refers to lessons that have not achieved broad visibility within the NASA-wide GN&C CoP because they are either undocumented, masked or poorly documented in the NASA Lessons Learned Information System (LLIS).
Shaping NASA's Kennedy Space Center Safety for the Future
NASA Technical Reports Server (NTRS)
Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette
2011-01-01
With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.
Best Practices for Reliable and Robust Spacecraft Structures
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Murthy, P. L. N.; Patel, Naresh R.; Bonacuse, Peter J.; Elliott, Kenny B.; Gordon, S. A.; Gyekenyesi, J. P.; Daso, E. O.; Aggarwal, P.; Tillman, R. F.
2007-01-01
A study was undertaken to capture the best practices for the development of reliable and robust spacecraft structures for NASA s next generation cargo and crewed launch vehicles. In this study, the NASA heritage programs such as Mercury, Gemini, Apollo, and the Space Shuttle program were examined. A series of lessons learned during the NASA and DoD heritage programs are captured. The processes that "make the right structural system" are examined along with the processes to "make the structural system right". The impact of technology advancements in materials and analysis and testing methods on reliability and robustness of spacecraft structures is studied. The best practices and lessons learned are extracted from these studies. Since the first human space flight, the best practices for reliable and robust spacecraft structures appear to be well established, understood, and articulated by each generation of designers and engineers. However, these best practices apparently have not always been followed. When the best practices are ignored or short cuts are taken, risks accumulate, and reliability suffers. Thus program managers need to be vigilant of circumstances and situations that tend to violate best practices. Adherence to the best practices may help develop spacecraft systems with high reliability and robustness against certain anomalies and unforeseen events.
Failure Analysis at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Salazar, Victoria L.; Wright, M. Clara
2010-01-01
History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael; Henderson, Gena; Stambolian, Damon
2013-01-01
NASA policy requires each Program or Project to develop a plan for how they will address Lessons Learned. Projects have the flexibility to determine how best to promote and implement lessons learned. A large project might budget for a lessons learned position to coordinate elicitation, documentation and archival of the project lessons. The lessons learned process crosses all NASA Centers and includes the contactor community. o The Office of The Chief Engineer at NASA Headquarters in Washington D.C., is the overall process owner, and field locations manage the local implementation. One tool used to transfer knowledge between program and projects is the Lessons Learned Information System (LLIS). Most lessons come from NASA in partnership with support contractors. A search for lessons that might impact a new design is often performed by a contractor team member. Knowledge is not found with only one person, one project team, or one organization. Sometimes, another project team, or person, knows something that can help your project or your task. Knowledge sharing is an everyday activity at the Kennedy Space Center through storytelling, Kennedy Engineering Academy presentations and through searching the Lessons Learned Information system. o Project teams search the lessons repository to ensure the best possible results are delivered. o The ideas from the past are not always directly applicable but usually spark new ideas and innovations. Teams have a great responsibility to collect and disseminate these lessons so that they are shared with future generations of space systems designers. o Leaders should set a goal for themselves to host a set numbers of lesson learned events each year and do more to promote multiple methods of lessons learned activities. o High performing employees are expected to share their lessons, however formal knowledge sharing presentation are not the norm for many employees.
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2003-01-01
This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.
Engineering Lessons Learned and Systems Engineering Applications
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.
2005-01-01
Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.
Engineering Lessons Learned and Systems Engineering Applications
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.
2005-01-01
Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk
Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Willsey, Mark; Bailey, Brad
2011-01-01
In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.
Lessons Learned and Technical Standards: A Logical Marriage
NASA Technical Reports Server (NTRS)
Gill, Paul; Vaughan, William W.; Garcia, Danny; Gill, Maninderpal S. (Technical Monitor)
2001-01-01
A comprehensive database of lessons learned that corresponds with relevant technical standards would be a boon to technical personnel and standards developers. The authors discuss the emergence of one such database within NASA, and show how and why the incorporation of lessons learned into technical standards databases can be an indispensable tool for government and industry. Passed down from parent to child, teacher to pupil, and from senior to junior employees, lessons learned have been the basis for our accomplishments throughout the ages. Government and industry, too, have long recognized the need to systematically document And utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. The use of lessons learned is a principle component of any organizational culture committed to continuous improvement. They have formed the foundation for discoveries, inventions, improvements, textbooks, and technical standards. Technical standards are a very logical way to communicate these lessons. Using the time-honored tradition of passing on lessons learned while utilizing the newest in information technology, the National Aeronautics and Space Administration (NASA) has launched an intensive effort to link lessons learned with specific technical standards through various Internet databases. This article will discuss the importance of lessons learned to engineers, the difficulty in finding relevant lessons learned while engaged in an engineering project, and the new NASA project that can help alleviate this difficulty. The article will conclude with recommendations for more expanded cross-sectoral uses of lessons learned with reference to technical standards.
Lessons Learned in Engineering
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.
NASA Technical Reports Server (NTRS)
Watson, Kevin J.; Robbins, William W.
2004-01-01
The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.
Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2011-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.
Assembly of 5.5-Meter Diameter Developmental Barrel Segments for the Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Carter, Robert W.
2011-01-01
Full scale assembly welding of Ares I Upper Stage 5.5-Meter diameter cryogenic tank barrel segments has been performed at the Marshall Space Flight Center (MSFC). One full-scale developmental article produced under the Ares 1 Upper Stage project is the Manufacturing Demonstration Article (MDA) Barrel. This presentation will focus on the welded assembly of this barrel section, and associated lessons learned. Among the MDA articles planned on the Ares 1 Program, the Barrel was the first to be completed, primarily because the process of manufacture from piece parts (barrel panels) utilized the most mature friction stir process planned for use on the Ares US program: Conventional fixed pin Friction Stir Welding (FSW). This process is in use on other space launch systems, including the Shuttle s External Tank, the Delta IV common booster core, the Delta II, and the Atlas V rockets. The goals for the MDA Barrel development were several fold: 1) to prove out Marshall Space Flight Center s new Vertical Weld Tool for use in manufacture of cylindrical barrel sections, 2) to serve as a first run for weld qualification to a new weld specification, and 3) to provide a full size cylindrical section for downstream use in precision cleaning and Spray-on Foam Insulation development. The progression leading into the welding of the full size barrel included sub scale panel welding, subscale cylinder welding, a full length confidence weld, and finally, the 3 seamed MDA barrel processing. Lessons learned on this MDA program have been carried forward into the production tooling for the Ares 1 US Program, and in the use of the MSFC VWT in processing other large scale hardware, including two 8.4 meter diameter Shuttle External Tank barrel sections that are currently being used in structural analysis to validate shell buckling models.
Unmanned Ground Vehicle (UGV) Lessons Learned
2001-11-01
iii 1. INTRODUCTION ....................................................................................................... 1 1.1... INTRODUCTION 1.1 PURPOSE The purpose of this effort is to compile Lessons Learned from the unmanned ground vehicle (UGV) programs that could be relevant to... introduction of gunpowder, this lesson was no longer valid. Castles crumbled and new lessons had to be learned. One such lesson was that the faster
NASA Technical Reports Server (NTRS)
Oberhettinger, David
2011-01-01
A lessons learned system is a hallmark of a mature engineering organization A formal lessons learned process can help assure that valuable lessons get written and published, that they are well-written, and that the essential information is "infused" into institutional practice. Requires high-level institutional commitment, and everyone's participation in gathering, disseminating, and using the lessons
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0249] Solicitation of Feedback and Lessons-Learned from... or the Commission) is soliciting feedback and lessons-learned from members of the public, licensees... constructed in accordance with the licensing basis. The NRC has applied lessons- learned from the prior plants...
Lessons Learned in Engineering. Supplement
NASA Technical Reports Server (NTRS)
Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.
ERIC Educational Resources Information Center
An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.
2016-01-01
The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…
Columbia Crew Survival Investigation Report
NASA Technical Reports Server (NTRS)
2009-01-01
NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.
Lessons learned from facilitating the state and tribal government working group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurstedt, H.A. Jr.
1994-12-31
Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.
2005-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.
2006-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
NASA Crew Launch Vehicle Flight Test Options
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg
2006-01-01
Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.
Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69
NASA Technical Reports Server (NTRS)
Park, Young W.; Brazzel, Jack P., Jr.; Carpenter, J. Russell; Hinkel, Heather D.; Newman, James H.
1996-01-01
A real-time global positioning system (GPS) Kalman filter has been developed to support automated rendezvous with the International Space Station (ISS). The filter is integrated with existing Shuttle rendezvous software running on a 486 laptop computer under Windows. In this work, we present real-time and postflight results achieved with the filter on STS-69. The experiment used GPS data from an Osborne/Jet propulsion Laboratory TurboRouge receiver carried on the Wake Shield Facility (WSF) free flyer and a Rockwell Collins 3M receiver carried on the Orbiter. Real time filter results, processed onboard the Shuttle and replayed in near-time on the ground, are based on single vehicle mode operation and on 5 to 20 minute snapshots of telemetry provided by WSF for dual-vehicle mode operation. The Orbiter and WSF state vectors calculated using our filter compare favorably with precise reference orbits determined by the University of Texas Center for Space Research. The lessons learned from this experiment will be used in conjunction with future experiments to mitigate the technology risk posed by automated rendezvous and docking to the ISS.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0055] Changes to the Generic Aging Lessons Learned (GALL... Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging management review procedure and... into ADAMS. II. Background The NRC issues LR-ISGs to communicate insights and lessons learned and to...
ERIC Educational Resources Information Center
Roche, Anne; Clarke, Doug; Clarke, David; Chan, Man Ching Esther
2016-01-01
A central premise of this project is that teachers learn from the act of teaching a lesson and that this learning is evident in the planning and teaching of a subsequent lesson. We are studying the knowledge construction of mathematics teachers utilising multi-camera research techniques during lesson planning, classroom interactions and…
ERIC Educational Resources Information Center
Clarke, Doug; Clarke, David; Roche, Anne; Chan, Man Ching Esther
2015-01-01
A central premise of this project is that teachers learn from the act of teaching a lesson and that this learning is evident in the planning and teaching of a subsequent lesson. In this project, the knowledge construction of mathematics teachers was examined utilising multi-camera research techniques during lesson planning, classroom interactions…
Brownfields City of Cleveland: Deconstruction Lessons Learned Report
This technical memorandum presents an overview of Cleveland’s current deconstruction initiative goals and lessons learned (in the Cleveland area) and potential strategies for addressing lessons learned.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, ``Buried and Underground Piping and Tanks... AMPs in NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's... issues LR-ISG to communicate insights and lessons learned and to address emergent issues not covered in...
Precursor SSF utilization: The MODE experiments
NASA Technical Reports Server (NTRS)
Crawley, Edward F.
1992-01-01
The MIT Space Engineering Research Center is the principal investigator for a series of experiments which utilize the Shuttle Middeck as an engineering dynamics laboratory. The first, which flew on STS-48 in Sep. 1991, was the Middeck O-gravity Dynamics Experiment (MODE). This experiment focused on the dynamics of a scaled deployable truss, similar to that of SSF, and contained liquids in tanks. MODE will be reflown in the fall of 1993. In mid-1994, the Middeck Active Control Experiment (MACE) will examine the issues associated with predicting and verifying the closed loop behavior of a controlled structure in zero gravity. The paper will present experiment background, planning, operational experience, results, and lessons learned from these experiments which are pertinent to SSF utilization.
The X-38 V-201 Fin Fold Actuation Mechanism
NASA Technical Reports Server (NTRS)
Lupo, Christian; Robertson, Brandan; Gafka, George
2004-01-01
The X-38 Vehicle 201 (V-201) is a space flight prototype lifting body vehicle that was designed to launch to orbit in the Space Shuttle orbiter payload bay. Although the project was cancelled in May 2003, many of the systems were nearly complete. This paper will describe the fin folding actuation mechanism flight subsystems and development units as well as lessons learned in the design, assembly, development testing, and qualification testing. The two vertical tail fins must be stowed (folded inboard) to allow the orbiter payload bay doors to close. The fin folding actuation mechanism is a remotely or extravehicular activity (EVA) actuated single fault tolerant system consisting of seven subsystems capable of repeatedly deploying or stowing the fins.
Spacecraft Design Considerations for Piloted Reentry and Landing
NASA Technical Reports Server (NTRS)
Stroud, Kenneth J.; Klaus, David M.
2006-01-01
With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.
Flight Dynamics and GN&C for Spacecraft Servicing Missions
NASA Technical Reports Server (NTRS)
Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom
2010-01-01
Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.
Mission Possible: BioMedical Experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Bopp, E.; Kreutzberg, K.
2011-01-01
Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.
Teacher Responses to Learning Cycle Science Lessons for Early Childhood Education
NASA Astrophysics Data System (ADS)
Kraemer, Emily N.
Three learning cycle science lessons were developed for preschoolers in an early childhood children's center in Costa Mesa, California. The lessons were field tested by both novice and experienced teachers with children ranging from three to five years old. Teachers were then interviewed informally to collect feedback on the structure and flow the lessons. The feedback was encouraging remarks towards the use of learning cycle science lessons for early childhood educators. Adjustments were made to the lessons based on teacher feedback. The lessons and their implications for preschool education are discussed.
ERIC Educational Resources Information Center
US Department of Education, 2007
2007-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This issue of "Lessons Learned" addresses after-action reports, which are an integral part of the emergency preparedness planning continuum and support effective crisis response. After-action reports have a threefold purpose. They…
Compton Gamma Ray Observatory: Lessons Learned in Propulsion
NASA Technical Reports Server (NTRS)
Dressler, G. A.; Joseph, G. W.; Behrens, H. W.; Asato, D. I.; Carlson, R. A.; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Compton Gamma Ray Observatory was the second of NASA's Great Observatories. At 17 1/2 tons. it was the heaviest astrophysical payload ever flown at the time of its launch on April 5, 1991 aboard the Space Shuttle. During initial, on-orbit priming of the spacecraft's monopropellant hydrazine propulsion system, a severe waterhammer transient was experienced. At that time, anomalous telemetry readings were received from on-board propulsion system instrumentation. This led to ground analyses and laboratory investigations as to the root cause of the waterhammer, potential damage to system integrity and functionality, and risks for switching from the primary (A-side) propulsion system to the redundant (B-side) system. The switchover to B-side was ultimately performed successfully and the spacecraft completed its basic and extended missions in this configuration. Nine years later, following a critical control gyroscope failure, Compton was safely deorbited and re-entered the Earth's atmosphere on June 4, 2000. Additional risk assessments concerning viability of A- and B-sides were necessary to provide confidence in attitude and delta-V authority and reliability to manage the precisely controlled reentry. This paper summarizes the design and operation of the propulsion system used on the spacecraft and provides "lessons learned" from the system engineering investigations into the propellant loading procedures, the initial priming anomaly, mission operations, and the commanded re-entry following the gyro failure.
NASA Technical Reports Server (NTRS)
Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.
1990-01-01
This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
Lessons from 30 Years of Flight Software
NASA Technical Reports Server (NTRS)
McComas, David C.
2015-01-01
This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS.
ERIC Educational Resources Information Center
US Department of Education, 2008
2008-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on the response and recovery efforts to wildfires by the San Diego County Office of Education (SDCOE) and its school and community partners. Natural disasters such as floods,…
Hosono, Naotsune; Inoue, Hiromitsu; Tomita, Yutaka
2017-01-01
This paper discusses co-creation learning procedures of second language lessons for deaf students, and sign language lessons by a deaf lecturer. The analyses focus on the learning procedure and resulting assessment, considering the disability. Through questionnaires ICT-based co-creative learning technologies are effective and efficient and promote spontaneous learning motivation goals.
Unintended knowledge learnt in primary science practical lessons
NASA Astrophysics Data System (ADS)
Park, Jisun; Abrahams, Ian; Song, Jinwoong
2016-11-01
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.
Lessons learned from first year cistern monitoring in Camden ...
Invited panelist for Webinar 08/16/2016 by Office of Water : Lessons Learned from Past Green Infrastructure Projects Invited panelist for Webinar 08/16/2016 by Office of Water : Lessons Learned from Past Green Infrastructure Projects
Lessons Learned and Technical Standards: A Logical Marriage for Future Space Systems Design
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)
2002-01-01
A comprehensive database of engineering lessons learned that corresponds with relevant technical standards will be a valuable asset to those engaged in studies on future space vehicle developments, especially for structures, materials, propulsion, control, operations and associated elements. In addition, this will enable the capturing of technology developments applicable to the design, development, and operation of future space vehicles as planned in the Space Launch Initiative. Using the time-honored tradition of passing on lessons learned while utilizing the newest information technology, NASA has launched an intensive effort to link lessons learned acquired through various Internet databases with applicable technical standards. This paper will discuss the importance of lessons learned, the difficulty in finding relevant lessons learned while engaged in a space vehicle development, and the new NASA effort to relate them to technical standards that can help alleviate this difficulty.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0068] Japan Lessons-Learned Project Directorate Interim... Commission (NRC). ACTION: Japan Lessons-Learned Project Directorate interim staff guidance; issuance. SUMMARY...-Learned Project Directorate Interim Staff Guidance (JLD-ISG), JLD-ISG-2012-01, ``Compliance with Order EA...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0067] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate Interim Staff Guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate (JLD...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0069] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate interim staff guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate Interim...
DT&E Forum for Best Practices and Lessons Learned
2013-05-01
E A N A L Y S E S IDA Paper P-4975 DT&E Forum for Best Practices and Lessons Learned L. B. Scheiber, Project Leader...and accessing from the DT&E Forum website. A. Collection of Lessons Learned and Best Practices We began the effort by reviewing approximately 30...Forum’s Home Page 1. Searching for BPLL Documents The DT&E Forum website contains DT&E Best Practice and Lessons Learned (BPLL) documents along with the
Papermaking and Poetry. ArtsEdge Curricula, Lessons and Activities.
ERIC Educational Resources Information Center
Withroe, J.
In this lesson, designed to be taught within a unit on China, primary-grade students will learn about the history of papermaking and its origins in China and even learn how to make their own paper. After learning about Chinese art and culture in the lesson, students will write their own "cinquain" poem about China. The lesson presents an…
ERIC Educational Resources Information Center
Stiler, Gary
2009-01-01
The author describes how the Understanding by Design (backwards planning) lesson plan format was used by his preservice K-12 students to develop service-learning lesson plans. Preservice teachers in a multicultural education course were given an assignment to develop service-learning lesson plans using the Understanding by Design planning process.…
NASA Astrophysics Data System (ADS)
Chan, Man Ching Esther; Clarke, David J.; Clarke, Doug M.; Roche, Anne; Cao, Yiming; Peter-Koop, Andrea
2018-03-01
The major premise of this project is that teachers learn from the act of teaching a lesson. Rather than asking "What must a teacher already know in order to practice effectively?", this project asks "What might a teacher learn through their activities in the classroom and how might this learning be optimised?" In this project, controlled conditions are created utilising purposefully designed and trialled lesson plans to investigate the process of teacher knowledge construction, with teacher selective attention proposed as a key mediating variable. In order to investigate teacher learning through classroom practice, the project addresses the following questions: To what classroom objects, actions and events do teachers attend and with what consequence for their learning? Do teachers in different countries attend to different classroom events and consequently derive different learning benefits from teaching a lesson? This international project combines focused case studies with an online survey of mathematics teachers' selective attention and consequent learning in Australia, China and Germany. Data include the teacher's adaptation of a pre-designed lesson, the teacher's actions during the lesson, the teacher's reflective thoughts about the lesson and, most importantly, the consequences for the planning and delivery of a second lesson. The combination of fine-grained, culturally situated case studies and large-scale online survey provides mutually informing benefits from each research approach. The research design, so constituted, offers the means to a new and scalable vision of teacher learning and its promotion.
Considerations for implementing an organizational lessons learned process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fosshage, Erik D
2013-05-01
This report examines the lessons learned process by a review of the literature in a variety of disciplines, and is intended as a guidepost for organizations that are considering the implementation of their own closed-loop learning process. Lessons learned definitions are provided within the broader context of knowledge management and the framework of a learning organization. Shortcomings of existing practices are summarized in an attempt to identify common pitfalls that can be avoided by organizations with fledgling experiences of their own. Lessons learned are then examined through a dual construct of both process and mechanism, with emphasis on integrating intomore » organizational processes and promoting lesson reuse through data attributes that contribute toward changed behaviors. The report concludes with recommended steps for follow-on efforts.« less
A Summary of NASA and USAF Hypergolic Propellant Related Spills and Fires
NASA Technical Reports Server (NTRS)
Nufer, Brian
2010-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system test, checkout, and operational use.
Development of the CLAES instrument aperture door system
NASA Technical Reports Server (NTRS)
Stubbs, D. M.
1990-01-01
The design, assembly, and test processes followed in developing a space-qualified aperture door system are described. A blackbody calibration source is mounted inside the door, requiring the assembly to open and close a minimum of 150 cycles for instrument recalibration. Within the door system are four separate mechanisms, three of which are redundant; a pyro launch latch, a hinge bearing assembly, and a pair of pivot mechanisms. Decoupling devices within the pivot mechanisms allow an active drive unit to automatically overdrive a failed drive unit. The door is also stowable for possible Shuttle retrieval and re-entry. Illustrations and photographs of the flight hardware help acquaint the reader with the design. The aim is to pass on lessons learned in all phases of developing this spaceflight mechanism.
Radiation Susceptibility Assessment of Off the Shelf (OTS) Hardware
NASA Technical Reports Server (NTRS)
Culpepper, William X.; Nicholson, Leonard L. (Technical Monitor)
2000-01-01
The reduction in budgets, shortening of schedules and necessity of flying near state of the art technology have forced projects and designers to utilize not only modern, non-space rated EEE parts but also OTS boards, subassemblies and systems. New instrumentation, communications, portable computers and navigation systems for the International Space Station, Space Shuttle, and Crew Return Vehicle are examples of the realization of this paradigm change at the Johnson Space Center. Because of this change, there has been a shift in the radiation assessment methodology from individual part testing using low energy heavy ions to board and box level testing using high-energy particle beams. Highlights of several years of board and system level testing are presented along with lessons learned, present areas of concern, insights into test costs, and future challenges.
Marshall Space Flight Center's role in EASE/ACCESS mission management
NASA Technical Reports Server (NTRS)
Hawkins, Gerald W.
1987-01-01
The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.
ERIC Educational Resources Information Center
Lewis, Catherine; Perry, Rebecca; Murata, Aki
During "lesson study" teachers formulate long-term goals for student learning and development, collaboratively work on "research lessons" to bring these goals to life, document and discuss student responses to these lessons, and revise the lessons in response to student learning. This document summarizes the content of a…
A Checklist of Artillery Organizational Histories; A Compilation.
1982-03-08
Artillery. 3d Battalion. Ab Operational reports - Lessons learned. ( 3d ) 1966- . (Vietnam n.p.) APO 96318. 1. Vietnamese Conflict, 1961- I. Title. 11...1973. A631 U.S. Army. 18th Artillery. 3d Bn. A18 Operational report(s) - Lessons learned. ( 3d ) (Vietnam, n.p.) 1966- nos. 1. Vietnamese Conflict, 1961...1973. I. Title. II. T: Lessons learned. *DS557 Vietnamese Conflict, 1961-1973 A63A]8 ’U.S. Army. 18th Artillery. 3d Bn. Lessons learned. (Vietnam, n.p
Improving the primary school science learning unit about force and motion through lesson study
NASA Astrophysics Data System (ADS)
Phaikhumnam, Wuttichai; Yuenyong, Chokchai
2018-01-01
The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.
Learning to Lead, Leading to Learn: How Facilitators Learn to Lead Lesson Study
ERIC Educational Resources Information Center
Lewis, Jennifer M.
2016-01-01
This article presents research on how teacher developers in the United States learn to conduct lesson study. Although the practice of lesson study is expanding rapidly in the US, high-quality implementation requires skilled facilitation. In contexts such as the United States where this form of professional development is relatively novel, few…
Solid-State Lighting: Early Lessons Learned on the Way to Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.
2013-12-31
The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.
NASA Astrophysics Data System (ADS)
Edyani, E. A.; Supriatna, A.; Kurnia; Komalasari, L.
2017-02-01
The research is aimed to investigate how lesson analysis as teacher’s self-reflection changes the teacher’s lesson design on chemical equation topic. Lesson Analysis has been used as part of teacher training programs to improve teacher’s ability in analyzing their own lesson. The method used in this research is a qualitative method. The research starts from build lesson design, implementation lesson design to senior high school student, utilize lesson analysis to get information about the lesson, and revise lesson design. The revised lesson design from the first implementation applied to the second implementation, resulting in better design. This research use lesson analysis Hendayana&Hidayat framework. Video tapped and transcript are employed on each lesson. After first implementation, lesson analysis result shows that teacher-centered still dominating the learning because students are less active in discussion, so the part of lesson design must be revised. After second implementation, lesson analysis result shows that the learning already student-centered. Students are very active in discussion. But some part of learning design still must be revised. In general, lesson analysis was effective for teacher to reflect the lessons. Teacher can utilize lesson analysis any time to improve the next lesson design.
Lesson Study: Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Murphy, Richard; Weinhardt, Felix; Wyness, Gill; Rolfe, Heather
2017-01-01
Lesson Study is a popular approach to teacher professional development used widely in Japan. It involves a small group of teachers co-planning a series of lessons based on a shared learning goal for the pupils, with one teacher leading the co-constructed lesson and their colleagues invited to observe pupil learning in the lesson. The team then…
Solid-State Lighting. Early Lessons Learned on the Way to Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandahl, L. J.; Cort, K. A.; Gordon, K. L.
2014-01-01
Analysis of issues and lessons learned during the early stages of solid-state lighting market introduction in the U.S., which also summarizes early actions taken to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps.
Lesson Closure: An Important Piece of the Student Learning Puzzle
ERIC Educational Resources Information Center
Ganske, Kathy
2017-01-01
As we seek ways to improve literacy teaching and learning, we need to be careful not to overlook lesson closure as an opportunity to solidify student learning. This Teaching Tip describes the importance of taking time at the ends of lessons, days, and weeks to revisit what students have learned as a means for helping them synthesize and assimilate…
NASA Astrophysics Data System (ADS)
Collins, Tonya Monique Nicki
Two Professional Learning Communities of physics teachers from different high schools voluntarily participated in Lesson Study as a means of professional development. The five teacher-participants and one participant-researcher partook of two Lesson Study cycles, each of which focused on student physics misconceptions. The Lesson Study resulted in two topics of physics: projectiles and gravitation. The researcher aimed to determine what happens to secondary physics teachers who undergo Lesson Study through this phenomenological case study. Specifically, (1) What is the process of Lesson Study with secondary physics teachers? and (2) What are the teacher-reported outcomes of Lesson Study with secondary physics teachers? Overall, Lesson Study provided an avenue for secondary physics teachers to conduct inquiry on their students in an attempt to better understand student thinking and learning. As a result, teachers collaborated to learn how to better meet the needs of their students and self-reported growth in many areas of teaching and teacher knowledge. The study resulted in twelve hypotheses to be tested in later research centering on idealizing the process of Lesson Study and maximizing secondary physics teacher growth.
Integrating Instruments of Power and Influence: Lessons Learned and Best Practices
2008-01-01
practices developed by ACT’s Joint Analysis and Lessons Learned Centre in Monsanto , Portugal. Summary xix European Union An increasing European role in...oversees the Joint Analysis and Lessons Learned Centre in Monsanto , Por- tugal, the mission of which is critical for the purposes of this report. These
Human Spaceflight Conjunction Assessment: Lessons Learned
NASA Technical Reports Server (NTRS)
Smith, Jason T.
2011-01-01
This viewgraph presentation reviews the process of a human space flight conjunction assessment and lessons learned from the more than twelve years of International Space Station (ISS) operations. Also, the application of these lessons learned to a recent ISS conjunction assessment with object 84180 on July 16, 2009 is also presented.
NASA's Lessons Learned and Technical Standards: A Logical Marriage
NASA Technical Reports Server (NTRS)
Gill, Paul; Vaughan, William W.; Garcia, Danny; Weinstein, Richard
2001-01-01
Lessons Learned have been the basis for our accomplishments throughout the ages. They have been passed down from father to son, mother to daughter, teacher to pupil, and older to younger worker. Lessons Learned have also been the basis for NASA's accomplishments for more than forty years. Both government and industry have long recognized the need to systematically document and utilize the knowledge gained from past experiences in order to avoid the repetition of failures and mishaps. Lessons Learned have formed the foundation for discoveries, inventions, improvements, textbooks, and Technical Standards.
ERIC Educational Resources Information Center
Castro, Edgar Oscar
2013-01-01
A 30-year contribution of the Space Shuttle Program is the evolution of NASA's social actions through organizational learning. This study investigated how NASA learned over time following two catastrophic accidents. Schwandt's (1997) organizational Learning System Model (OLSM) characterized the learning in this High Reliability…
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.
2004-01-01
In the production of each Space Shuttle Reusable Solid Rocket Motor (RSRM), over 100,000 inspections are performed. ATK Thiokol Inc. reviewed these inspections to ensure a robust inspection system is maintained. The principal effort within this endeavor was the systematic identification and evaluation of inspections considered to be single-point. Single-point inspections are those accomplished on components, materials, and tooling by only one person, involving no other check. The purpose was to more accurately characterize risk and ultimately address and/or mitigate risk associated with single-point inspections. After the initial review of all inspections and identification/assessment of single-point inspections, review teams applied risk prioritization methodology similar to that used in a Process Failure Modes Effects Analysis to derive a Risk Prioritization Number for each single-point inspection. After the prioritization of risk, all single-point inspection points determined to have significant risk were provided either with risk-mitigating actions or rationale for acceptance. This effort gave confidence to the RSRM program that the correct inspections are being accomplished, that there is appropriate justification for those that remain as single-point inspections, and that risk mitigation was applied to further reduce risk of higher risk single-point inspections. This paper examines the process, results, and lessons learned in identifying, assessing, and mitigating risk associated with single-point inspections accomplished in the production of the Space Shuttle RSRM.
The J-2X Fuel Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.
Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success
NASA Technical Reports Server (NTRS)
Moore, D. R.; Phelps, W. J.
2011-01-01
The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.
Progesterone After Estradiol Modulates Shuttle-Cage Escape by Facilitating Volition
Mayeaux, Darryl J.; Tandle, Sarah M.; Cilano, Sean M.; Fitzharris, Matthew J.
2015-01-01
In animal models of depression, depression is defined as performance on a learning task. That task is typically escaping a mild electric shock in a shuttle cage by moving from one side of the cage to the other. Ovarian hormones influence learning in other kinds of tasks, and these hormones are associated with depressive symptoms in humans. The role of these hormones in shuttle-cage escape learning, however, is less clear. This study manipulated estradiol and progesterone in ovariectomized female rats to examine their performance in shuttle-cage escape learning without intentionally inducing a depressive-like state. Progesterone, not estradiol, within four hours of testing affected latencies to escape. The improvement produced by progesterone was in the decision to act, not in the speed of learning or speed of escaping. This parallels depression in humans in that depressed people are slower in volition, in their decisions to take action. PMID:26823653
Key Events in Student Leaders' Lives and Lessons Learned from Them
ERIC Educational Resources Information Center
Sessa, Valerie I.; Morgan, Brett V.; Kalenderli, Selin; Hammond, Fanny E.
2014-01-01
This descriptive study used an interview protocol developed by the Center for Creative Leadership with 50 college student leaders to determine what key developmental events young college leaders experience and the leadership lessons learned from these events. Students discussed 180 events and 734 lessons learned from them. Most events defined by…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
..., Revision 2; ``Generic Aging Lessons Learned (GALL) Report'' AGENCY: Nuclear Regulatory Commission (NRC... Nuclear Power Plants'' and NUREG-1801, Revision 2; ``Generic Aging Lessons Learned (GALL) Report... Lessons Learned (GALL) Report.'' These revised documents describe methods acceptable to the NRC staff for...
ERIC Educational Resources Information Center
Lieberman, Joanne
2009-01-01
The present article addresses how lesson study can facilitate changing traditional norms of individualism, conservatism and presentism that constrain American teachers from learning from one another. The article investigates how lesson study can serve as a vehicle for developing teacher learning communities by developing or redeveloping teachers'…
Improving the recognition of near-miss events on NASA missions
NASA Astrophysics Data System (ADS)
Dillon, R. L.; Rogers, E. W.; Madsen, P.; Tinsley, C. H.
Organizations that ignore near-miss data may be inappropriately rewarding risky behavior. If managers engage in risky behavior and succeed, research shows that these managers are likely to be promoted without close scrutiny of their risky decisions, even if the success is because of good fortune. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance). History from the shuttle program shows that only the occasional large failure increases attention to anomalies again. This research demonstrates the presence of normalization of deviance in NASA missions and also examines a factor (the significance of the project) that may increase people's awareness of near-misses to counter this trend. Increasing awareness of chance success should increase the likelihood that significant learning can occur from the mission regardless of outcome. We conclude with prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve organizational learning. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
Leveraging Lesson Learning in Tactical Units
1997-01-01
then it may be a lesson, but as Vetock points out, determining useful lessons requires analysis. Discovery of the wrong lesson can be as bad as not...34lesson learning is a very dangerous business.൘ Distinguishing a good" lesson from a " bad " one requires experience, a good grasp of doctrine, and...section - - boasted 3 cigarette lighters, 1 bar of soap, 2 wallets, 40 bottles, 1 suspender, and 11 French toothpaste .55 49 As Vetock points out, the
NASA Astrophysics Data System (ADS)
Setyaningsih, S.
2018-03-01
Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, far right, is pictured with panelists from the Apollo 1 Lessons Learned event in the Training Auditorium at NASA's Kennedy Space Center in Florida. In the center, are Ernie Reyes, retired, former Apollo 1 senior operations manager; and John Tribe, retired, former Apollo 1 Reaction and Control System lead engineer. At far left is Zulie Cipo, the Apollo, Challenger, Columbia Lessons Learned Program event support team lead. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
ERIC Educational Resources Information Center
US Department of Education, 2008
2008-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue examines the incidence of student walkout demonstrations and the various ways in which administrators, school staff, law enforcement, and the community at large can help keep youths…
Lessons Learned from School Crises and Emergencies, Vol. 1, Issue 2, Fall 2006
ERIC Educational Resources Information Center
US Department of Education, 2006
2006-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. School and student names have been changed to protect identities. Information for this publication was gathered through a series of interviews with school stakeholders involved in the actual incident. This "Lessons Learned" issue…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... Draft NUREG-1801, Revision 2; ``Generic Aging Lessons Learned (GALL) Report'' AGENCY: Nuclear Regulatory... Applications for Nuclear Power Plants ''and draft NUREG-1801, ``Generic Aging Lessons Learned (GALL) Report... Power Plants'' (SRP-LR); and the revised NUREG-1801, ``Generic Aging Lessons Learned (GALL) Report'' for...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0055] Changes to the Generic Aging Lessons Learned (GALL) Report Revision 2 AMP XI.M41, ``Buried and Underground Piping and Tanks'' AGENCY: Nuclear Regulatory... NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging...
ERIC Educational Resources Information Center
Smigielski, Alan
The three lesson plans in this issue feature the Eskimos of the Bering Sea and their culture. The lesson plans are: (1) "Learning about a Culture from Its Objects"; (2) "Learning about a Culture from a Story"; and (3) "Everyday Objects." Each lesson cites student objectives; lists materials needed; gives subjects…
Value pricing pilot program : lessons learned
DOT National Transportation Integrated Search
2008-08-01
This "Lessons Learned Report" provides a summary of projects sponsored by the Federal Highway Administration's (FHWA's) Congestion and Value Pricing Pilot Programs from 1991 through 2006 and draws lessons from a sample of projects with the richest an...
Lessons from Immune 1-3: what did we learn and what do we need to do in the future?
NASA Technical Reports Server (NTRS)
Chapes, Stephen Keith
2004-01-01
Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.
Certification Testing Approach for Propulsion System Design
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris
2005-01-01
The Certification of Propulsion Systems is costly and complex which involves development and qualification testing. The desire of the certification process is to assure all requirements can be demonstrated to be compliant. The purpose of this paper is to address the technical design concerns of certifying a system for flight. The authors of this paper have experience the lessons learned from supporting the Shuttle Program for Main Propulsion and On Orbit Propulsions Systems. They have collaborated design concerns for certifying propulsion systems. Presented are Pressurization, Tankage, Feed System and Combustion Instability concerns. Propulsion System Engineers are challenged with the dilemma for testing new systems to specific levels to reduce risk yet maintain budgetary targets. A methodical approach is presented to define the types of test suitable to address the technical issues for qualifying systems for retiring the risk levels.
NASA Technical Reports Server (NTRS)
Carvalho, Robert F.; Williams, James; Keller, Richard; Sturken, Ian; Panontin, Tina
2004-01-01
InvestigationOrganizer (IO) is a collaborative web-based system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, and allows investigators to make explicit, shared, and meaningful links between evidence, causal models, findings and recommendations. It integrates the functionality of a database, a common document repository, a semantic knowledge network, a rule-based inference engine, and causal modeling and visualization. Thus far, IO has been used to support four mishap investigations within NASA, ranging from a small property damage case to the loss of the Space Shuttle Columbia. This paper describes how the functionality of IO supports mishap investigations and the lessons learned from the experience of supporting two of the NASA mishap investigations: the Columbia Accident Investigation and the CONTOUR Loss Investigation.
NASA Technical Reports Server (NTRS)
Adair, Jerry R.
1994-01-01
This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.
Crew Office Evaluation of a Precision Lunar Landing System
NASA Technical Reports Server (NTRS)
Major, Laura M.; Duda, Kevin R.; Hirsh, Robert L.
2011-01-01
A representative Human System Interface for a precision lunar landing system, ALHAT, has been developed as a platform for prototype visualization and interaction concepts. This facilitates analysis of crew interaction with advanced sensors and AGNC systems. Human-in-the-loop evaluations with representatives from the Crew Office (i.e. astronauts) and Mission Operations Directorate (MOD) were performed to refine the crew role and information requirements during the final phases of landing. The results include a number of lessons learned from Shuttle that are applicable to the design of a human supervisory landing system and cockpit. Overall, the results provide a first order analysis of the tasks the crew will perform during lunar landing, an architecture for the Human System Interface based on these tasks, as well as details on the information needs to land safely.
Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
Welcome to Lotus 1-2-3 Advanced. Learning Activity Packets.
ERIC Educational Resources Information Center
Mills, Steven; And Others
This learning activity packet (LAP) contains five self-paced study lessons that allow students to study advanced concepts of Lotus 1-2-3 at their own pace. The lessons used in the LAP are organized in the following way: lesson name, lesson number, objectives, completion standard, performance standard, required materials, unit test, and exercises.…
NASA Technical Reports Server (NTRS)
Schneider, W. C.
1976-01-01
This report records some of the lessons learned during Skylab development. The approach taken is to list lessons which could have wide application in the development of a large space station. The lessons are amplified and explained in light of the background and experiences of the Skylab development.
Denali National Park: bus shuttle system analysis
DOT National Transportation Integrated Search
2013-09-01
This is the first in a series of briefs exploring best practices in the various ways to provide transit service in national parks. While Denali operates in a unique environment, the Visitor Transportation Service experience offers many lessons relate...
2001-01-01
Management System (JTIMS) followed, and generated spirited discussion regarding the respective roles of JTIMS and the JLLP. The discussion concluded...waiting for the Director, Joint Staff�s signature and should be in official distribution by January 2001. An update on the Joint Training Information
Developing Noticing of Reasoning through Demonstration Lessons
ERIC Educational Resources Information Center
Bragg, Leicha A.; Vale, Colleen
2014-01-01
Observation of fellow educators conducting demonstration lessons is one avenue for teachers to develop sensitivity to noticing students' reasoning. We examined teachers' noticing of children's learning behaviours in one demonstration lesson of the "Mathematical Reasoning Professional Learning Research Program" (MRPLRP). The observations…
Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning
NASA Technical Reports Server (NTRS)
2010-01-01
NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.
Jonetta T. Holt; David Christenson; Anne Black; Brett Fay; Kim Round
2009-01-01
This event in NorCal is another of the major events we have experienced in fire management. In line with our desire to learn, we ought to line up a team to help us capture lessons learned from this event." This statement, and a regional delegation, was the impetus for an information collection team from the Wildland Fire Lessons Learned Center to visit with...
ERIC Educational Resources Information Center
2003
This collection of papers includes lessons learned from a 3-year collaboration among faculty who had pursued a scholarly inquiry of service-learning, integrated service-learning into their curricula, altered their teaching, forged partnerships with community based organizations, and developed measures and methodologies for assessing results. The…
Defining a risk-informed framework for whole-of-government lessons learned: A Canadian perspective.
Friesen, Shaye K; Kelsey, Shelley; Legere, J A Jim
Lessons learned play an important role in emergency management (EM) and organizational agility. Virtually all aspects of EM can derive benefit from a lessons learned program. From major security events to exercises, exploiting and applying lessons learned and "best practices" is critical to organizational resilience and adaptiveness. A robust lessons learned process and methodology provides an evidence base with which to inform decisions, guide plans, strengthen mitigation strategies, and assist in developing tools for operations. The Canadian Safety and Security Program recently supported a project to define a comprehensive framework that would allow public safety and security partners to regularly share event response best practices, and prioritize recommendations originating from after action reviews. This framework consists of several inter-locking elements: a comprehensive literature review/environmental scan of international programs; a survey to collect data from end users and management; the development of a taxonomy for organizing and structuring information; a risk-informed methodology for selecting, prioritizing, and following through on recommendations; and standardized templates and tools for tracking recommendations and ensuring implementation. This article discusses the efforts of the project team, which provided "best practice" advice and analytical support to ensure that a systematic approach to lessons learned was taken by the federal community to improve prevention, preparedness, and response activities. It posits an approach by which one might design a systematic process for information sharing and event response coordination-an approach that will assist federal departments to institutionalize a cross-government lessons learned program.
ERIC Educational Resources Information Center
Park, Jisun; Song, Jinwoong; Abrahams, Ian
2016-01-01
This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term "unintended" learning to distinguish it from "intended" learning that appears in teachers' learning objectives. Data were collected using…
Seizing the Moment: State Lessons for Transforming Professional Learning
ERIC Educational Resources Information Center
Learning Forward, 2013
2013-01-01
Explore this first look at lessons learned through Learning Forward's ongoing initiative to develop a comprehensive system of professional learning that spans the distance from the statehouse to the classroom. This policy brief underscores the importance of a coordinated state professional learning strategy, the adoption of professional learning…
Planning and scheduling lessons learned study, executive summary
NASA Technical Reports Server (NTRS)
Robinson, Toni
1990-01-01
The study was performed to document the lessons on planning and scheduling activities for a number of missions and institutional facilities in such a way that they can be applied to future missions; to provide recommendations to both projects and Code 500 that will improve the end-to-end planning and scheduling process; and to identify what, if any, mission characteristics might be related to certain lessons learned. The results are a series of recommendations of both a managerial and technical nature related to the underlying lessons learned.
Providing Community Education: Lessons Learned from Native Patient Navigators
Burhansstipanov, Linda; Krebs, Linda U.; Harjo, Lisa; Watanabe-Galloway, Shinobu; Pingatore, Noel; Isham, Debra; Duran, Florence Tinka; Denny, Loretta; Lindstrom, Denise; Crawford, Kim
2014-01-01
Native Navigators and the Cancer Continuum (NNACC) was a community-based participatory research study among five American Indian organizations. The intervention required lay Native Patient Navigators (NPNs) to implement and evaluate community education workshops in their local settings. Community education was a new role for the NPNs and resulted in many lessons learned. NPNs met quarterly from 2008 through 2013 and shared lessons learned with one another and with the administrative team. In July 2012, the NPNs prioritized lessons learned throughout the study that were specific to implementing the education intervention. These were shared to help other navigators who may be including community education within their scope of work. The NPNs identified eight lessons learned that can be divided into three categories: NPN education and training, workshop content and presentation, and workshop logistics and problem-solving. A ninth overarching lesson for the entire NNACC study identified meeting community needs as an avenue for success. This project was successful due to the diligence of the NPNs in understanding their communities’ needs and striving to meet them through education workshops. Nine lessons were identified by the NPNs who provided community education through the NNACC project. Most are relevant to all patient navigators, regardless of patient population, who are incorporating public education into navigation services. Due to their intervention and budget implications, many of these lessons also are relevant to those who are developing navigation research. PMID:25087698
ERIC Educational Resources Information Center
US Department of Education, 2007
2007-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue addresses the experience of a school district where three middle school students hung themselves within a three-week timeframe. Although deaths were apparently unconnected, the school district is part of a…
ERIC Educational Resources Information Center
US Department of Education, 2007
2007-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on an infectious disease incident, which resulted in the death of a student, closure of area schools and the operation of an on-site school vaccine clinic. The report highlights the critical need…
ERIC Educational Resources Information Center
Belova, Nadja; Eilks, Ingo
2015-01-01
This paper describes a case study on the chemistry behind natural cosmetics in five chemistry learning groups (grades 7-11, age range 13-17) in a German comprehensive school. The lesson plan intends to promote critical media literacy in the chemistry classroom and specifically emphasizes learning with and about advertising. The lessons of four…
Real-Time Meteorological Battlespace Characterization in Support of Sea Power 21
2011-02-04
32 5.3 LESSONS LEARNED ....................................................................................... 44 6. FUTURE WORK...problem with the SWR alignment, which is sometimes re- set during SWR maintenance (see Section 6 ‘Lessons Learned ’ for a case in point). Fig...ground clutter present (discussed in Section 6 ‘Lessons Learned ’), along with the lowest-tilt, quality controlled velocity. Bottom panel shows the
ERIC Educational Resources Information Center
Shin, Tae Seob
2010-01-01
This study examined whether providing a rationale for learning a particular lesson influences students' motivation and learning in online learning environments. A mixed-method design was used to investigate the effects of two types of rationales (former student vs. instructor rationales) presented in an online introductory educational psychology…
University Educators' Instructional Choices and Their Learning Styles within a Lesson Framework
ERIC Educational Resources Information Center
Mazo, Lucille B.
2017-01-01
Research on learning styles often focuses on the learning style of the student; however, the learning style of the educator may affect instructional choices and student learning. Few studies have addressed the lack of knowledge that exists in universities with respect to educators' learning styles and a lesson framework (development, delivery, and…
Savoia, Elena; Agboola, Foluso; Biddinger, Paul D
2012-08-01
Many public health and healthcare organizations use formal knowledge management practices to identify and disseminate the experiences gained over time. The "lessons-learned" approach is one such example of knowledge management practice applied to the wider concept of organizational learning. In the field of emergency preparedness, the lessons-learned approach stands on the assumption that learning from experience improves practice and minimizes avoidable deaths and negative economic and social consequences of disasters. In this project, we performed a structured review of AARs to analyze how lessons learned from the response to real-incidents may be used to maximize knowledge management and quality improvement practices such as the design of public health emergency preparedness (PHEP) exercises. We chose as a source of data the "Lessons Learned Information Sharing (LLIS.gov)" system, a joined program of the U.S. Department of Homeland Security DHS and FEMA that serves as the national, online repository of lessons learned, best practices, and innovative ideas. We identified recurring challenges reported by various states and local public health agencies in the response to different types of incidents. We also strove to identify the limitations of systematic learning that can be achieved due to existing weaknesses in the way AARs are developed.
Multimedia Principle in Teaching Lessons
ERIC Educational Resources Information Center
Kari Jabbour, Khayrazad
2012-01-01
Multimedia learning principle occurs when we create mental representations from combining text and relevant graphics into lessons. This article discusses the learning advantages that result from adding multimedia learning principle into instructions; and how to select graphics that support learning. There is a balance that instructional designers…
Lessons learned and their application to program development and cultural issues
NASA Technical Reports Server (NTRS)
Roth, Gilbert L.
1991-01-01
The main objectives of space product assurance are, in effect, the same as those of Total Quality Management (TQM) or its many variants. The most significant ingredients are the lessons learned and their application to ongoing and future programs as they are affected by changes in the cultural environment. The cultural issues which affect almost everything done in technical programs and projects are considered. Understanding the lessons learned and the synergism which results from this combination of knowledge, culture, and lessons learned is identified as crucial. A brief discussion of the closed loop linkage that should exist between the world of hands on activities and that of educational institutions is presented.
Lessons learned from the Space Flyer Unit (SFU) mission.
Kuriki, Kyoichi; Ninomiya, Keiken; Takei, Mitsuru; Matsuoka, Shinobu
2002-11-01
The Space Flyer Unit (SFU) system and mission chronology are briefly introduced. Lessons learned from the SFU mission are categorized as programmatic and engineering lessons. In the programmatic category are dealt with both international and domestic collaborations. As for the engineering lessons safety design, orbital operation, in-flight anomaly, and post flight analyses are the major topics reviewed. c2002 Elsevier Science Ltd. All rights reserved.
Proposal Improvements That Work
NASA Technical Reports Server (NTRS)
Dunn, F.
1998-01-01
Rocketdyne Propulsion and Power, an operating location of Boeing in Canoga Park, California is under contract with NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama for design, development, production, and mission support of Space Shuttle Main Engines (SSMEs). The contract was restructured in 1996 to emphasize a mission contracting environment under which Rocketdyne supports the Space Transportation System launch manifest of seven flights a year without the need for a detailed list of contract deliverables such as nozzles, turbopumps, and combustion devices. This contract structure is in line with the overall Space Shuttle program goals established by the NASA to fly safely, meet the flight manifest, and reduce cost. Rocketdyne's Contracts, Pricing, and Estimating team has worked for the past several years with representatives from MSFC, the local Defense Contract Management Command, and the DCAA to improve the quality of cost proposals to MSFC for contract changes on the SSME. The contract changes on the program result primarily from engineering change proposals for product enhancements to improve safety, maintainability, or operability in the space environment. This continuous improvement team effort has been successful in improving proposal quality, reducing cycle time, and reducing cost. Some of the principal lessons learned are highlighted here to show how proposal improvements can be implemented to enhance customer satisfaction and ensure cost proposals can be evaluated easily by external customers.
The Ares Projects Office: Building an Exploration Culture from the Inside Up
NASA Technical Reports Server (NTRS)
Leahy, Bartholomew
2008-01-01
NASA is building its first new human-rated space exploration vehicles in nearly 40 years. This marks an important operational and cultural change from the Space Shuttle. In the wake of the Columbia disaster, the agency and the nation realized that NASA's goals and culture needed to change. The Ares Projects Office (APO), which is building the launch vehicles that will power human beings to the Moon, Mars, and beyond, is taking a page from the Saturn playbook by having NASA lead both the overall integration and the development of the Ares I upper stage. APO is also creating a new culture of cooperation, openness, and informed risk taking as we set our sights on other worlds. APO has established a team environment where issues can be discussed, information is shared, fun and teamwork are encouraged, and constructive conflict and accountability are expected. Following a "One NASA" philosophy, APO is taking steps to strengthen cooperation among space centers, contractor partners, engineering and scientific communities, and headquarters personnel. As we learn lessons from things that Went wrong with the Space Shuttle, we are also borrowing best practices from what has gone right with that program and others. All of these cultural elements will be necessary as we take the next steps beyond Earth orbit.
Microbial Contamination in the Spacecraft
NASA Technical Reports Server (NTRS)
Pierson, Duane L.
2001-01-01
Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.
The Ares Project: Building an Exploration Culture from the Inside Up
NASA Technical Reports Server (NTRS)
Cook, Stephan A.
2008-01-01
NASA is building its first new human-rated space exploration vehicles in nearly 40 years. This marks an important operational and cultural change from the Space Shuttle. In the wake of the Columbia disaster, the agency and the nation realized that NASA's goals and culture needed to change. The Ares Project, which is building the launch vehicles that will power human beings to the Moon, Mars, and beyond, is taking a page from the Saturn playbook by having NASA lead both the overall integration and the development of the Ares I upper stage. Ares is also creating a new culture of cooperation, openness, and informed risk taking as we set our sights on other worlds. Ares has established a team environment where issues can be discussed, information is shared, fun and teamwork are encouraged, and constructive conflict and accountability are expected. Following a "One NASA" philosophy, Ares is taking steps to strengthen cooperation among space centers, contractor partners, engineering and scientific communities, and headquarters personnel. As we learn lessons from things that went wrong with the Space Shuttle, we are also borrowing best practices from what has gone right with that program and others. All of these cultural elements will be necessary as we take the next steps beyond Earth orbit.
Workplace Wisdom: What Educators Can Learn from the Business World
ERIC Educational Resources Information Center
Williams, Sheri S.; Williams, John W.
2014-01-01
In many schools and businesses today, the pressure to produce results is far greater than attention to employee learning. If continued learning impacts service for business customers and their communities, then what lessons can be learned from business to support and advocate for educator learning? This article is a collection of lessons learned…
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Anderson, B. Jeffrey
2005-01-01
In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
2017-01-27
Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to John Tribe, retired, Apollo 1 Reaction and Control System lead engineer, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned program manager, at left, presents a certificate to Ernie Reyes, retired, former Apollo 1 senior operations manager, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The theme of the program was "To there and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
ERIC Educational Resources Information Center
US Department of Education, 2007
2007-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on an active shooter situation that escalated to a hostage situation that required multiple law enforcement agencies and other first responders and agencies to coordinate response and recovery…
ERIC Educational Resources Information Center
US Department of Education, 2008
2008-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on an incident involving several cases of Methicillin-resistant Staphylococcus aureus (MRSA) at a rural high school. MRSA is a specific strain of Staphylococcus aureus bacteria (often called staph)…
Safety and Mission Assurance for In-House Design Lessons Learned from Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Anderson, Joel M.
2011-01-01
This viewgraph presentation identifies lessons learned in the course of the Ares I Upper Stage design and in-house development effort. The contents include: 1) Constellation Organization; 2) Upper Stage Organization; 3) Presentation Structure; 4) Lesson-Importance of Systems Engineering/Integration; 5) Lesson-Importance of Early S&MA Involvement; 6) Lesson-Importance of Appropriate Staffing Levels; 7) Lesson-Importance S&MA Team Deployment; 8) Lesson-Understanding of S&MA In-Line Engineering versus Assurance; 9) Lesson-Importance of Close Coordination between Supportability and Reliability/Maintainability; 10) Lesson-Importance of Engineering Data Systems; 11) Lesson-Importance of Early Development of Supporting Databases; 12) Lesson-Importance of Coordination with Safety Assessment/Review Panels; 13) Lesson-Implementation of Software Reliability; 14) Lesson-Implementation of S&MA Technical Authority/Chief S&MA Officer; 15) Lesson-Importance of S&MA Evaluation of Project Risks; 16) Lesson-Implementation of Critical Items List and Government Mandatory Inspections; 17) Lesson-Implementation of Critical Items List Mandatory Inspections; 18) Lesson-Implementation of Test Article Safety Analysis; and 19) Lesson-Importance of Procurement Quality.
U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Years 2012 and 2013
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Oliva, Vladenka R.
2014-01-01
The NASA U.S. spacesuit knowledge capture (KC) program has been in operations since the beginning 2008. The program was designed to augment engineers and others with information about spacesuits in a historical way. A multitude of seminars have captured spacesuit history and knowledge over the last six years of the programs existence. Subject matter experts have provided lectures and were interviewed to help bring the spacesuit to life so that lessons learned will never be lost. As well, the program concentrated in reaching out to the public and industry by making the recorded events part of the public domain through the NASA technical library via You Tube media. The U.S. spacesuit KC topics have included lessons learned from some of the most prominent spacesuit experts and spacesuit users including current and former astronauts. The events have enriched the spacesuit legacy knowledge from Gemini, Apollo, Skylab, Space Shuttle and International Space Station Programs. As well, expert engineers and scientists have shared their challenges and successes to be remembered. The last few years have been some of the most successful years of the KC program program's life with numerous recordings and releases to the public. It is evidenced by the thousands that have view the recordings online. This paper reviews the events accomplished and archived over Fiscal Years 2012 and 2013 and highlights a few of the most memorable ones. This paper also communicates ways to access the events that are available internally to NASA as well as in the public domain.
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
Kinesthetic Astronomy: Significant Upgrades to the Sky Time Lesson that Support Student Learning
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Zawaski, M.
2004-12-01
This paper will report on a significant upgrade to the first in a series of innovative, experiential lessons we call Kinesthetic Astronomy. The Sky Time lesson reconnects students with the astronomical meaning of the day, year, and seasons. Like all Kinesthetic Astronomy lessons, it teaches basic astronomical concepts through choreographed bodily movements and positions that provide educational sensory experiences. They are intended for sixth graders up through adult learners in both formal and informal educational settings. They emphasize astronomical concepts and phenomenon that people can readily encounter in their "everyday" lives such as time, seasons, and sky motions of the Sun, Moon, stars, and planets. Kinesthetic Astronomy lesson plans are fully aligned with national science education standards, both in content and instructional practice. Our lessons offer a complete learning cycle with written assessment opportunities now embedded throughout the lesson. We have substantially strengthened the written assessment options for the Sky Time lesson to help students translate their kinesthetic and visual learning into the verbal-linguistic and mathematical-logical realms of expression. Field testing with non-science undergraduates, middle school science teachers and students, Junior Girl Scouts, museum education staff, and outdoor educators has been providing evidence that Kinesthetic Astronomy techniques allow learners to achieve a good grasp of concepts that are much more difficult to learn in more conventional ways such as via textbooks or even computer animation. Field testing of the Sky Time lesson has also led us to significant changes from the previous version to support student learning. We will report on the nature of these changes.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operations planning for these new space transportation systems. Utilizing a foundation of heritage hardware and management lessons learned mitigates both technical and programmatic risk. Project engineers and managers work closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch systems, leveraging a wealth of knowledge from Shuffle operations. In addition, NASA and its industry partners have tapped into valuable Apollo databases and are applying corporate wisdom conveyed firsthand by Apollo-era veterans of America s original Moon missions. Learning from its successes and failures, NASA employs rigorous systems engineering and systems management processes and principles in a disciplined, integrated fashion to further improve the probability of mission success.
Lessons Learned from the Advanced Topographic Laser Altimeter System
NASA Technical Reports Server (NTRS)
Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave
2016-01-01
The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.
Japanese Lesson Study Comes to California
ERIC Educational Resources Information Center
Jetter, Madeleine; Hancock, Gwen
2012-01-01
Japanese lesson study--Jugyou kenkyuu--which is a cornerstone of Project DELTA (Developing Educators Learning to Teach Algebraically), adds a new twist: the teachers take turns publicly teaching the collaboratively planned lessons with their own students for the rest of the team to observe and then analyze, based on the students' learning. Lesson…
ERIC Educational Resources Information Center
Clanton, Brandolyn; And Others
Intended for teachers of secondary school students, five lessons on consumer credit are presented. In the first lesson students identify and evaluate sources of credit, compare some of the costs and benefits of credit, and learn to apply criteria used in evaluating applications for credit. In the second lesson, students learn about two basic types…
More Lessons from Bhutan: 6 Years Later, Change Takes Root and Flourishes
ERIC Educational Resources Information Center
Telsey, Alison; Levine, Laurie
2015-01-01
In April 2011, the Journal of Staff Development (JSD) published "Lessons from Bhutan: Embrace cultural differences to effect change" (Levine, Telsey, & McCormack, 2011), which described the experiences of several U.S. educators who learned their own transformative lessons while leading professional learning in special education…
New Horizons Risk Communication Strategy, Planning, Implementation, and Lessons Learned
NASA Technical Reports Server (NTRS)
Dawson, Sandra A.
2006-01-01
This paper discusses the risk communication goals, strategy, planning process and product development for the New Horizons mission, including lessons from the Cassini mission that were applied in that effort, and presents lessons learned from the New Horizons effort that could be applicable to future missions.
Comment Data Mining to Estimate Student Performance Considering Consecutive Lessons
ERIC Educational Resources Information Center
Sorour, Shaymaa E.; Goda, Kazumasa; Mine, Tsunenori
2017-01-01
The purpose of this study is to examine different formats of comment data to predict student performance. Having students write comment data after every lesson can reflect students' learning attitudes, tendencies and learning activities involved with the lesson. In this research, Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic…
Savoia, Elena; Agboola, Foluso; Biddinger, Paul D.
2012-01-01
Many public health and healthcare organizations use formal knowledge management practices to identify and disseminate the experiences gained over time. The “lessons-learned” approach is one such example of knowledge management practice applied to the wider concept of organizational learning. In the field of emergency preparedness, the lessons-learned approach stands on the assumption that learning from experience improves practice and minimizes avoidable deaths and negative economic and social consequences of disasters. In this project, we performed a structured review of AARs to analyze how lessons learned from the response to real-incidents may be used to maximize knowledge management and quality improvement practices such as the design of public health emergency preparedness (PHEP) exercises. We chose as a source of data the “Lessons Learned Information Sharing (LLIS.gov)” system, a joined program of the U.S. Department of Homeland Security DHS and FEMA that serves as the national, online repository of lessons learned, best practices, and innovative ideas. We identified recurring challenges reported by various states and local public health agencies in the response to different types of incidents. We also strived to identify the limitations of systematic learning that can be achieved due to existing weaknesses in the way AARs are developed. PMID:23066408
Using Cooperative Learning To Improve Reading and Writing in Science.
ERIC Educational Resources Information Center
Nesbit, Catherine R.; Rogers, Cynthia A.
1997-01-01
Presents several cooperative learning lessons that integrate science, reading and writing. Notes that sample lessons involve six methods of cooperative learning drawn from four prominent developers and researchers, David Johnson, Roger Johnson, Robert Slavin, and Spencer Kagan. Describes the cooperative learning method to illustrate how to use it…
Teachers' Self-Regulated Learning Lesson Design: Integrating Learning from Problems and Successes
ERIC Educational Resources Information Center
Michalsky, Tova; Schechter, Chen
2018-01-01
Teachers' design of a lesson is critical for helping their students develop academically effective forms of self-regulating learning (SRL) in classrooms. Using a quasi-experimental design, the researchers integrated systematic collaborative learning from problematic and successful experiences into teachers' preparatory programs and examined how…
The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism
NASA Technical Reports Server (NTRS)
Gittleman, Mark; Johnston, Alistair
1996-01-01
The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.
NASA Post-Columbia Safety & Mission Assurance, Review and Assessment Initiatives
NASA Astrophysics Data System (ADS)
Newman, J. Steven; Wander, Stephen M.; Vecellio, Don; Miller, Andrew J.
2005-12-01
On February 1, 2003, NASA again experienced a tragic accident as the Space Shuttle Columbia broke apart upon reentry, resulting in the loss of seven astronauts. Several of the findings and observations of the Columbia Accident Investigation Board addressed the need to strengthen the safety and mission assurance function at NASA. This paper highlights key steps undertaken by the NASA Office of Safety and Mission Assurance (OSMA) to establish a stronger and more- robust safety and mission assurance function for NASA programs, projects, facilities and operations. This paper provides an overview of the interlocking OSMA Review and Assessment Division (RAD) institutional and programmatic processes designed to 1) educate, inform, and prepare for audits, 2) verify requirements flow-down, 3) verify process capability, 4) verify compliance with requirements, 5) support risk management decision making, 6) facilitate secure web- based collaboration, and 7) foster continual improvement and the use of lessons learned.
SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.
2004-01-01
SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.
Constellation Stretch Goals: Review of Industry Inputs
NASA Technical Reports Server (NTRS)
Lang, John
2006-01-01
Many good ideas received based on industry experience: a) Shuttle operations; b) Commercial aircraft production; c) NASA's historical way of doing business; d) Military and commercial programs. Aerospace performed preliminary analysis: a) Potential savings; b) Cost of implementation; c) Performance or other impact/penalties; d) Roadblocks; e) Unintended consequences; f) Bottom line. Significant work ahead for a "Stretch Goal"to become a good, documented requirement: 1) As a group, the relative "value" of goals are uneven; 2) Focused analysis on each goal is required: a) Need to ensure that a new requirement produces the desired consequence; b) It is not certain that some goals will not create problems elsewhere. 3) Individual implementation path needs to be studied: a) Best place to insert requirement (what level, which document); b) Appropriate wording for the requirement. Many goals reflect "best practices" based on lessons learned and may have value beyond near-term CxP requirements process.
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
NASA Astrophysics Data System (ADS)
Lamkin, T.; Whitney, Brian
1995-09-01
This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
An SSME high pressure oxidizer turbopump diagnostic system using G2(TM) real-time expert system
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1991-01-01
An expert system which diagnoses various seal leakage faults in the High Pressure Oxidizer Turbopump of the SSME was developed using G2(TM) real-time expert system. Three major functions of the software were implemented: model-based data generation, real-time expert system reasoning, and real-time input/output communication. This system is proposed as one module of a complete diagnostic system for Space Shuttle Main Engine. Diagnosis of a fault is defined as the determination of its type, severity, and likelihood. Since fault diagnosis is often accomplished through the use of heuristic human knowledge, an expert system based approach was adopted as a paradigm to develop this diagnostic system. To implement this approach, a software shell which can be easily programmed to emulate the human decision process, the G2 Real-Time Expert System, was selected. Lessons learned from this implementation are discussed.
Human Factors Checklist: Think Human Factors - Focus on the People
NASA Technical Reports Server (NTRS)
Miller, Darcy; Stelges, Katrine; Barth, Timothy; Stambolian, Damon; Henderson, Gena; Dischinger, Charles; Kanki, Barbara; Kramer, Ian
2016-01-01
A quick-look Human Factors (HF) Checklist condenses industry and NASA Agency standards consisting of thousands of requirements into 14 main categories. With support from contractor HF and Safety Practitioners, NASA developed a means to share key HF messages with Design, Engineering, Safety, Project Management, and others. It is often difficult to complete timely assessments due to the large volume of HF information. The HF Checklist evolved over time into a simple way to consider the most important concepts. A wide audience can apply the checklist early in design or through planning phases, even before hardware or processes are finalized or implemented. The checklist is a good place to start to supplement formal HF evaluation. The HF Checklist was based on many Space Shuttle processing experiences and lessons learned. It is now being applied to ground processing of new space vehicles and adjusted for new facilities and systems.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Ground Testing of a 10 K Sorption Cryocooler Flight Experiment (BETSCE)
NASA Technical Reports Server (NTRS)
Bard, S.; Wu, J.; Karlmann, P.; Cowgill, P.; Mirate, C.; Rodriguez, J.
1994-01-01
The Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is a Space Shuttle side-wall-mounted flight experiment designed to demonstrate 10 K sorption cryocooler technology in a space environment. The BETSCE objectives are to: (1) provide a thorough end-to-end characterization and space performance validation of a complete, multistage, automated, closed-cycle hydride sorption cryocooler in the 10 to 30 K temperature range, (2) acquire the quantitative microgravity database required to provide confident engineering design, scaling, and optimization, (3) advance the enabling technologies and resolve integration issues, and (4) provide hardware qualification and safety verification heritage. BETSCE ground tests were the first-ever demonstration of a complete closed-cycle 10 K sorption cryocooler. Test results exceeded functional requirements. This paper summarizes functional and environmental ground test results, planned characterization tests, important development challenges that were overcome, and valuable lessons-learned.
Advanced Communications Technology Satellite (ACTS): Four-Year System Performance
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank
1999-01-01
The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.
Mobile Learning vs. Traditional Classroom Lessons: A Comparative Study
ERIC Educational Resources Information Center
Furió, D.; Juan, M.-C.; Seguí, I.; Vivó, R.
2015-01-01
Different methods can be used for learning, and they can be compared in several aspects, especially those related to learning outcomes. In this paper, we present a study in order to compare the learning effectiveness and satisfaction of children using an iPhone game for learning the water cycle vs. the traditional classroom lesson. The iPhone game…
Rescuing Joint Personnel Recovery: Using Air Force Capability to Address Joint Shortfalls
2011-06-01
of an IP, the IP is not successfully reintegrated or the lessons learned are not incorporated into other operations. Adversaries will benefit from...Washington, D.C.: Office of Air Force History , United States Air Force, 1980, 117. 47 Durant , Michael J. In the Company of Heroes, Penguin Group... Lessons Learned, 22 September 2005, 3. 2 US Joint Task Force Katrina. The Federal Response to Hurricane Katrina Lessons Learned, February 2006, 54
Implementing a lessons learned process at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth
2016-01-01
The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.
2017-01-27
Mike Ciannilli, at left, the Apollo, Challenger, Columbia Lessons Learned Program manager, presents a certificate to Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team, during the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA's Kennedy Space Center in Florida. The program's theme was "To There and Back Again." The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
Lessons learned applying CASE methods/tools to Ada software development projects
NASA Technical Reports Server (NTRS)
Blumberg, Maurice H.; Randall, Richard L.
1993-01-01
This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.
NASA Astronauts on Soyuz: Experience and Lessons for the Future
NASA Technical Reports Server (NTRS)
2010-01-01
The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures
McKee, Michael; Thew, Denise; Starr, Matthew; Kushalnagar, Poorna; Reid, John T; Graybill, Patrick; Velasquez, Julia; Pearson, Thomas
2012-01-01
Numerous publications demonstrate the importance of community-based participatory research (CBPR) in community health research, but few target the Deaf community. The Deaf community is understudied and underrepresented in health research despite suspected health disparities and communication barriers. The goal of this paper is to share the lessons learned from the implementation of CBPR in an understudied community of Deaf American Sign Language (ASL) users in the greater Rochester, New York, area. We review the process of CBPR in a Deaf ASL community and identify the lessons learned. Key CBPR lessons include the importance of engaging and educating the community about research, ensuring that research benefits the community, using peer-based recruitment strategies, and sustaining community partnerships. These lessons informed subsequent research activities. This report focuses on the use of CBPR principles in a Deaf ASL population; lessons learned can be applied to research with other challenging-to-reach populations.
Professional Learning through the Collaborative Design of Problem-Solving Lessons
ERIC Educational Resources Information Center
Wake, Geoff; Swan, Malcolm; Foster, Colin
2016-01-01
This article analyses lesson study as a mode of professional learning, focused on the development of mathematical problem solving processes, using the lens of cultural-historical activity theory. In particular, we draw attention to two activity systems, the classroom system and the lesson-study system, and the importance of making artefacts…
Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E. Ian
2015-09-03
Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.
Does the Modality Principle for Multimedia Learning Apply to Science Classrooms?
ERIC Educational Resources Information Center
Harskamp, Egbert G.; Mayer, Richard E.; Suhre, Cor
2007-01-01
This study demonstrated that the modality principle applies to multimedia learning of regular science lessons in school settings. In the first field experiment, 27 Dutch secondary school students (age 16-17) received a self-paced, web-based multimedia lesson in biology. Students who received lessons containing illustrations and narration performed…
Automatic Dance Lesson Generation
ERIC Educational Resources Information Center
Yang, Yang; Leung, H.; Yue, Lihua; Deng, LiQun
2012-01-01
In this paper, an automatic lesson generation system is presented which is suitable in a learning-by-mimicking scenario where the learning objects can be represented as multiattribute time series data. The dance is used as an example in this paper to illustrate the idea. Given a dance motion sequence as the input, the proposed lesson generation…
Mining Mathematics in Textbook Lessons
ERIC Educational Resources Information Center
Ronda, Erlina; Adler, Jill
2017-01-01
In this paper, we propose an analytic tool for describing the mathematics made available to learn in a "textbook lesson". The tool is an adaptation of the Mathematics Discourse in Instruction (MDI) analytic tool that we developed to analyze what is made available to learn in teachers' lessons. Our motivation to adapt the use of the MDI…
Challenge Activities for the Physical Education Classroom: Affective Learning Outcomes
ERIC Educational Resources Information Center
McKenzie, Emily; Symonds, Matthew L.; Fink, Kevin; Tapps, Tyler
2017-01-01
The purpose of this article is to share three challenge-based lesson plans that can be implemented by physical educators in their classroom. Each of the lesson examples addresses the three learning domains: psychomotor, cognitive and affective. Additionally, each lesson is aligned with SHAPE America's National Standards for K-12 Physical…
Japanese Lesson Study Sustaining Teacher Learning in the Classroom Context
ERIC Educational Resources Information Center
Loose, Crystal Corle
2014-01-01
The purposes of this action research study were first to explore teacher perceptions of Japanese lesson study as a method of professional development, and second to take teachers through an action research process as they observed the implementation of a literacy lesson in the classroom. Situated Learning Theory, particularly related to teacher…
Teachers' Professional Growth through Engagement with Lesson Study
ERIC Educational Resources Information Center
Widjaja, Wanty; Vale, Colleen; Groves, Susie; Doig, Brian
2017-01-01
Lesson study is highly regarded as a model for professional learning, yet remains under-theorised. This article examines the professional learning experiences of teachers and numeracy coaches from three schools in a local network of schools, participating in a lesson study project over two research cycles in 2012. It maps the interconnections…
Implementation of lesson study in physics teaching by group of teachers in Solok West Sumatera
NASA Astrophysics Data System (ADS)
Yurnetti, Y.
2018-04-01
This article based of collaborative classroom action research with science teachers group or MGMP at Solok West Sumatera; based on their willingness to implementation of lesson study by this group. The study started by discussing some problems according to the implementation of the lesson study, establishing the teaching materials, developing learning tools, defining the model teachers, conducting classroom activities, and reflecting by discussions. The preparation of this study includes some learning material according to temperature and heat; the observation form that led by observer teachers; teachers’s model impression and open questionnaire implementation of lesson study that applied to the students and teachers. This research got some information about the strengths and weaknesses of learning using lesson study from the students involved. To conclude, the implementation of lesson study should be able to support the principle of collaborative in learning. The challenge of this study is how to make a condition to gather some teachers in one school at a certain time because they have the schedule at their own school.
ERIC Educational Resources Information Center
Farley, Helen; Murphy, Angela; Bedford, Tasman
2014-01-01
This article reports on the preliminary findings, design criteria and lessons learned while developing and piloting an alternative to traditional print-based education delivery within a prison environment. PLEIADES (Portable Learning Environments for Incarcerated Distance Education Students), was designed to provide incarcerated students with…
ERIC Educational Resources Information Center
Korkmaz Toklucu, Selma; Tay, Bayram
2016-01-01
Problem Statement: Many effective instructional strategies, methods, and techniques, which were developed in accordance with constructivist approach, can be used together in social studies lessons. Constructivist education comprises active learning processes. Two active learning approaches are cooperative learning and systematic teaching. Purpose…
Experiential Learning: Lessons Learned from the UND Business and Government Symposium
ERIC Educational Resources Information Center
Harsell, Dana Michael; O'Neill, Patrick B.
2010-01-01
The authors describe lessons learned from a limited-duration experiential learning component of a Master's level course. The course is open to Master's in Business and Master's in Public Administration students and explores the relationships between government and business. A complete discussion of the Master's in Business and Master's in Public…
Reflections on Designing a MPA Service-Learning Component: Lessons Learned
ERIC Educational Resources Information Center
Roman, Alexandru V.
2015-01-01
This article provides the "lessons learned" from the experience of redesigning two sections (face-to-face and online) of a core master of public administration class as a service-learning course. The suggestions made here can be traced to the entire process of the project, from the "seed idea" through its conceptualization and…
Sustaining Student Engagement in Learning Science
ERIC Educational Resources Information Center
Ateh, Comfort M.; Charpentier, Alicia
2014-01-01
Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…
Applying ergonomics to systems: some documented "lessons learned".
Hendrick, Hal W
2008-07-01
Based on evidence accumulated during the author's 45 years of professional experience, the author presents 23 important "lessons learned" regarding applying ergonomics to systems. Documented results from reported cases or other evidence are presented to validate each of these practical learning points.
Extension Learning Exchange: Lessons from Nicaragua
ERIC Educational Resources Information Center
Treadwell, Paul; Lachapelle, Paul; Howe, Rod
2013-01-01
There is a clear need to support global professional development, international education, and collaborative learning opportunities in Extension. The program described here established an international learning exchange in Nicaragua to lead to global professional development and future international collaboration. The primary lessons and outcomes…
Planning Mars Memory: Learning from the MER Mission
NASA Technical Reports Server (NTRS)
Charlotte, Linde
2004-01-01
This viewgraph presentation discusses ways in which the lessons learned from a mission can be systematically remembered, retained, and applied by individuals and by an organization as a whole. The presentation cites lessons learned from the Mars Exploration Rover (MER) Mission as examples.
Commercial Orbital Transportation Services (COTS) Program Lessons Learned
NASA Technical Reports Server (NTRS)
Lindenmoyer, Alan; Horkachuck, Mike; Shotwell, Gwynne; Manners, Bruce; Culbertson, Frank
2015-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the COTS Program. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.
The Impact of Toxic Agent Training on Combat Readiness
1992-03-24
Desert Storm veterans, as well as Lessons Learned from the use of toxic chemicals in World War I. Conclusions reached arei (1) Live agent training is...Department of the Army staff. The report of our findings and conclusions is attached. After reviewing this report and the lessons learned from Desert Storm...analysis of feedback from soldiers in the grades of PVl to General, input from Desert Storm veterans, as well as lessons learned from the use of toxic
Constellation Program Lessons Learned. Volume 2; Detailed Lessons Learned
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer; Neubek, Deborah J.; Thomas, L. Dale
2011-01-01
These lessons learned are part of a suite of hardware, software, test results, designs, knowledge base, and documentation that comprises the legacy of the Constellation Program. The context, summary information, and lessons learned are presented in a factual format, as known and described at the time. While our opinions might be discernable in the context, we have avoided all but factually sustainable statements. Statements should not be viewed as being either positive or negative; their value lies in what we did and what we learned that is worthy of passing on. The lessons include both "dos" and "don ts." In many cases, one person s "do" can be viewed as another person s "don t"; therefore, we have attempted to capture both perspectives when applicable and useful. While Volume I summarizes the views of those who managed the program, this Volume II encompasses the views at the working level, describing how the program challenges manifested in day-to-day activities. Here we see themes that were perhaps hinted at, but not completely addressed, in Volume I: unintended consequences of policies that worked well at higher levels but lacked proper implementation at the working level; long-term effects of the "generation gap" in human space flight development, the need to demonstrate early successes at the expense of thorough planning, and the consequences of problems and challenges not yet addressed because other problems and challenges were more immediate or manifest. Not all lessons learned have the benefit of being operationally vetted, since the program was cancelled shortly after Preliminary Design Review. We avoid making statements about operational consequences (with the exception of testing and test flights that did occur), but we do attempt to provide insight into how operational thinking influenced design and testing. The lessons have been formatted with a description, along with supporting information, a succinct statement of the lesson learned, and recommendations for future programs and projects that may be placed in similar circumstances.
Why undertake a pilot in a qualitative PhD study? Lessons learned to promote success.
Wray, Jane; Archibong, Uduak; Walton, Sean
2017-01-23
Background Pilot studies can play an important role in qualitative studies. Methodological and practical issues can be shaped and refined by undertaking pilots. Personal development and researchers' competence are enhanced and lessons learned can inform the development and quality of the main study. However, pilot studies are rarely published, despite their potential to improve knowledge and understanding of the research. Aim To present the main lessons learned from undertaking a pilot in a qualitative PhD study. Discussion This paper draws together lessons learned when undertaking a pilot as part of a qualitative research project. Important methodological and practical issues identified during the pilot study are discussed including access, recruitment, data collection and the personal development of the researcher. The resulting changes to the final study are also highlighted. Conclusion Sharing experiences of and lessons learned in a pilot study enhances personal development, improves researchers' confidence and competence, and contributes to the understanding of research. Implications for practice Pilots can be used effectively in qualitative studies to refine the final design, and provide the researcher with practical experience to enhance confidence and competence.
Reconstructing High School Chemical Reaction Lessons to Motivate and Support Conceptual Learning
NASA Astrophysics Data System (ADS)
Ndiforamang, Nathan Moma
The primary focus of this education leadership portfolio is to reconstruct lessons on chemical reaction concepts for teachers to use and reach all learners of chemistry in Cecil County Public Schools. As a high school chemistry teacher, I have observed that student enrollment in chemistry is relatively low, and students show little enthusiasm about being successful in chemistry compared to other science subjects. To understand these issues, I researched conceptual learning, misconceptions, and best practices; prepared open-ended questions in a survey for chemistry teachers in my district; distributed the survey; received their responses; and processed the information received. I analyzed the data using qualitative techniques, and the results revealed that many of the tools provided in the district's curriculum guide for chemistry were not effective in class. I used the data to search for learning tools and classroom resources that could improve students understanding of chemistry concepts. I then reconstructed eight lessons on chemical reaction concepts utilizing those tools and resources. I redistributed the reconstructed lessons to teachers who had volunteered to review the lessons and provide professional feedback. The teachers' feedback revealed that the tools and resources incorporated in the reconstructed lessons included interactive activities that would excite students. The teachers indicated that the lessons were technology rich and included a variety of learning strategies. They also noted that the lessons included too many activities to cover within a day's lesson, and some of the recommended weblinks had technical issues. Most of the suggestions received were used to improve the quality of the reconstructed lessons and will serve as a resource for future fine-tuning of the lessons.
MC-1 Engine Valves, Lessons Learned
NASA Technical Reports Server (NTRS)
Laszar, John
2003-01-01
Many lessons were learned during the development of the valves for the MC-1 engine. The purpose of this report is to focus on a variety of issues related to the engine valves and convey the lessons learned. This paper will not delve into detailed technical analysis of the components. None of the lessons learned are new or surprising, but simply reinforce the importance of addressing the details of the design early, at the component level. The Marshall Space Flight Center (MSFC), Huntsville, Alabama developed the MC-1 engine, a LOX / FW-1, 60,000 pound thrust engine. This engine was developed under the Low Cost Boost Technology office at MSFC and proved to be a very successful project for the MSFC Propulsion team and the various subcontractors working the development of the engine and its components.
NASA Astrophysics Data System (ADS)
Rembala, Richard; Ower, Cameron
2009-10-01
MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.
ERIC Educational Resources Information Center
Social Education, 1986
1986-01-01
Prepared by NASA, this guide contains lessons dealing with space for use in elementary and secondary social studies classes. Activities are many and varied. For example, students analyze the costs and benefits of space travel, develop their own space station, and explore the decision-making processes involved in the shuttle. (RM)
NASA Astrophysics Data System (ADS)
Misnasanti; Dien, C. A.; Azizah, F.
2018-03-01
This study is aimed to describe Lesson Study (LS) activity and its roles in the development of mathematics learning instruments based on Learning Trajectory (LT). This study is a narrative study of teacher’s experiences in joining LS activity. Data collecting in this study will use three methods such as observation, documentations, and deep interview. The collected data will be analyzed with Milles and Huberman’s model that consists of reduction, display, and verification. The study result shows that through LS activity, teachers know more about how students think. Teachers also can revise their mathematics learning instrument in the form of lesson plan. It means that LS activity is important to make a better learning instruments and focus on how student learn not on how teacher teach.
Active Learning Institute: Energizing Science and Math Education. A Compilation of Lesson Plans.
ERIC Educational Resources Information Center
Cuyahoga Community Coll. - East, Cleveland, OH.
The middle school and high school lessons featured in this collection were crafted by science and math teachers who participated in a week-long seminar sponsored by the Eisenhower Professional Development Program administered by the Ohio Board of Regents. The lessons showcase a variety of active learning strategies from using hands-on, low-tech…
ERIC Educational Resources Information Center
Cajkler, Wasyl; Wood, Phil; Norton, Julie; Pedder, David; Xu, Haiyan
2015-01-01
Two departments in a secondary school in England participated in "lesson study" projects over a five-month period to explore its usefulness as a vehicle for professional development. Through a cycle of two research lessons, conducted separately in each department, teachers identified challenges that inhibited the learning of their…
Data storage: Retrospective and prospective
NASA Technical Reports Server (NTRS)
Speliotis, Dennis E.
1993-01-01
We study history to learn from its lessons so we don't repeat the mistakes. Ironically, however, sometimes it seems that the lessons we learn from history is how to repeat the mistakes more precisely. A brief discussion about the history of magnetic recording is presented, and the lessons of the past are used to look into the future.
Deaf Children's Science Content Learning in Direct Instruction Versus Interpreted Instruction
ERIC Educational Resources Information Center
Kurz, Kim B.; Schick, Brenda; Hauser, Peter C.
2015-01-01
This research study compared learning of 6-9th grade deaf students under two modes of educational delivery--interpreted vs. direct instruction using science lessons. Nineteen deaf students participated in the study in which they were taught six science lessons in American Sign Language. In one condition, the lessons were taught by a hearing…
Five Important Lessons I Learned during the Process of Creating New Child Care Centers
ERIC Educational Resources Information Center
Whitehead, R. Ann
2005-01-01
In this article, the author describes her experiences of developing new child care sites and offers five important lessons that she learned through her experiences which helped her to create successful child care centers. These lessons include: (1) Finding an appropriate area and location; (2) Creating realistic financial projections based on real…
Conceptualizing and Describing Teachers' Learning of Pedagogical Concepts
ERIC Educational Resources Information Center
González, María José; Gómez, Pedro
2014-01-01
In this paper, we propose a model to explore how teachers learn pedagogical concepts in teacher education programs that expect them to become competent in lesson planning. In this context, we view pedagogical concepts as conceptual and methodological tools that help teachers to design a lesson plan on a topic, implement this lesson plan and assess…
Lessons Learned and Lessons To Be Learned: An Overview of Innovative Network Learning Environments.
ERIC Educational Resources Information Center
Jacobson, Michael J.; Jacobson, Phoebe Chen
This paper provides an overview of five innovative projects involving network learning technologies in the United States: (1) the MicroObservatory Internet Telescope is a collection of small, high-quality, and low-maintenance telescopes operated by the Harvard-Smithsonian Center for Astrophysics (Massachusetts), which may be used remotely via the…
From the Games Industry: Ten Lessons for Game-Based Learning
ERIC Educational Resources Information Center
Hollins, Paul; Whitton, Nicola
2011-01-01
This paper draws on lessons learned from the development process of the entertainment games industry and discusses how they can be applied to the field of game-based learning. This paper examines policy makers and those wishing to commission or develop games for learning and highlights potential opportunities as well as pitfalls. The paper focuses…
Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin; Kraft, Thomas
2013-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.
ERIC Educational Resources Information Center
Nakamoto, Jonathan; Sobolew-Shubin, Sandy; Orland, Martin
2015-01-01
The purpose of this study was to assess the impact of the Arts for Learning (A4L) Lessons Project on the literacy and life skills of students in grades 3, 4, and 5. A4L Lessons is a supplementary literacy curriculum designed to blend the creativity and discipline of the arts with learning science to raise student achievement in reading and…
Heritage Adoption Lessons Learned: Cover Deployment and Latch Mechanism
NASA Technical Reports Server (NTRS)
Wincentsen, James
2006-01-01
Within JPL, there is a technology thrust need to develop a larger Cover Deployment and Latch Mechanism (CDLM) for future missions. The approach taken was to adopt and scale the CDLM design as used on the Galaxy Evolution Explorer (GALEX) project. The three separate mechanisms that comprise the CDLM will be discussed in this paper in addition to a focus on heritage adoption lessons learned and specific examples. These lessons learned will be valuable to any project considering the use of heritage designs.
1982-05-14
Attachment 2 contains the reports and lessons learned which resulted from the Level II Weapon System Management activities. Attachment 3 contains the reports...and lessons learned which resulted from the Level III Weapon System Management activities. _____ r. Air Force Logistics Command Attn: Col. McConnell 2...May 14, 1982 Attachment 4 contains the plans and lessons learned which resulted from the RCC Evaluation activities. I am pleased to deliver these
NASA Technical Reports Server (NTRS)
McMann, Joe
2011-01-01
Pica Kahn conducted "An Interview with Joe McMann: Lessons Learned in Human and Hardware Behavior" on August 16, 2011. With more than 40 years of experience in the aerospace industry, McMann has gained a wealth of knowledge. This presentation focused on lessons learned in human and hardware behavior. During his many years in the industry, McMann observed that the hardware development process was intertwined with human influences, which impacted the outcome of the product.
The lift-fan powered-lift aircraft concept: Lessons learned
NASA Technical Reports Server (NTRS)
Deckert, Wallace H.
1993-01-01
This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified.
Lessons Learned: The Pale Horse Bioterrorism Response Exercise
2003-12-01
to define what the professional and personal liability of private health care providers is for Table 1. Participants in Pale Horse Tabletop Planning...Lessons Learned Lessons Learned: The “Pale Horse ” Bioterrorism Response Exercise Col. David Jarrett, MD, FACEP The city of San Antonio, Texas, and...Editorial, see p. 98 And I looked, and behold, a pale horse : and his name that sat on him was Death, and Hell followed with him. Book of Revelation 6:8 I n
Higher Education ERP: Lessons Learned.
ERIC Educational Resources Information Center
Swartz, Dave; Orgill, Ken
2001-01-01
Shares experiences and lessons learned by chief information officers of large universities about enterprise resource planning (ERP). Specifically, provides a framework for approaching an ERP that could save universities millions of dollars. (EV)
A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement
NASA Astrophysics Data System (ADS)
Mueanploy, Wannapa
2016-04-01
This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.
Implementation of Programmatic Quality and the Impact on Safety
NASA Astrophysics Data System (ADS)
Huls, Dale T.; Meehan, Kevin M.
2005-12-01
The implementation of an inadequate programmatic quality assurance discipline has the potential to adversely affect safety and mission success. This is best demonstrated in the lessons provided by the Apollo 1 Apollo 13 Challenger, and Columbia accidents; NASA Safety and Mission Assurance (S&MA) benchmarking exchanges; and conclusions reached by the Shuttle Return-to-Flight Task Group established following the Columbia Shuttle accident. Examples from the ISS Program demonstrate continuing issues with programmatic quality. Failure to adequately address programmatic quality assurance issues has a real potential to lead to continued inefficiency, increases in program costs, and additional catastrophic accidents.
Development of short Indonesian lesson plan to improve teacher performance
NASA Astrophysics Data System (ADS)
Yulianto, B.; Kamidjan; Ahmadi, A.; Asteria, P. V.
2018-01-01
The developmental research was motivated by the results of preliminary study through interviews, which revealed almost all of the teachers did not create lesson plan themselves. As a result of this load, the performance of the real learning in the classroom becomes inadequate. Moreover, when lesson plan was not made by teachers themselves, the learning process becomes ineffective. Therefore, this study designed to develop a prototype of the short lesson plan, in particular, Indonesian language teaching, and to investigate its effectiveness. The participants in the study were teachers who were trained through lesson study group to design short model’s lesson plan. Questionnaires and open-ended questions were used, and the quantitative and qualitative data obtained were analyzed accordingly. The analysis of the quantitative data, aided with SPSS, were frequency, percentage, and means, whereas the qualitative data were analyzed descriptively. The results showed that the teachers liked the model, and they were willing to design their own lesson plan. The observation data revealed that the classroom learning process became more interactive, and classroom atmosphere was more engaging and natural because the teachers did not stick to the lesson plan made by other teachers.
ERIC Educational Resources Information Center
de Bruin, Leon Rene
2018-01-01
Music institutions predominantly utilize the one-to-one lesson in developing and supporting music students' learning of skill and knowledge. This article explores the effect that interpersonal interaction plays in shaping pedagogical applications between teacher and student. Observing the learning of improvisation within this individualized social…
Applying Universal Design for Learning to Instructional Lesson Planning
ERIC Educational Resources Information Center
McGhie-Richmond, Donna; Sung, Andrew N.
2013-01-01
Universal Design for Learning is a framework for developing inclusive instructional lesson plans. The effects of introducing Universal Design for Learning Principles and Guidelines in a university teacher education program with pre-service and practicing teachers were explored in a mixed methods approach. The results indicate that the study…
Lessons Learned from Introducing Social Media Use in Undergraduate Economics Research
ERIC Educational Resources Information Center
O'Brien, Martin; Freund, Katarina
2018-01-01
The research process and associated literacy requirements are often unfamiliar and daunting obstacles for undergraduate students. The use of social media has the potential to assist research training and encourage active learning, social inclusion and student engagement. This paper documents the lessons learned from developing a blended learning…
"Periscope": Looking into Learning in Best-Practices Physics Classrooms
ERIC Educational Resources Information Center
Scherr, Rachel E.; Goertzen, Renee Michelle
2018-01-01
"Periscope" is a set of lessons to support learning assistants, teaching assistants, and faculty in learning to notice and interpret classroom events the way an accomplished teacher does. "Periscope" lessons are centered on video episodes from a variety of best-practices university physics classrooms. By observing, discussing,…
Blended Learning of Programming in the Internet Age
ERIC Educational Resources Information Center
Djenic, S.; Krneta, R.; Mitic, J.
2011-01-01
This paper presents an advanced variant of learning programming by the use of the Internet and multimedia. It describes the development of a blended learning environment, which, in addition to classroom (face-to-face) lessons, introduces lessons delivered over the Internet: the use of multimedia teaching material with completely dynamic…
Integrating the Core Curriculum through Cooperative Learning. Lesson Plans for Teachers.
ERIC Educational Resources Information Center
Winget, Patricia L., Ed.
Cooperative learning strategies are used to facilitate the integration of multicultural and multi-ability level students into California regular education classrooms. This handbook is a sampling of innovative lesson plans using cooperative learning activities developed by teachers to incorporate the core curriculum into their instruction. Three…
Webinar Presentation: Phthalates Exposures through Diet: Lessons Learned
This presentation, Phthalates Exposures through Diet: Lessons Learned, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Phthalates in the Diet and in our Homes held on June 10, 2015.
Web Cast on Arsenic Demonstration Program: Lessons Learned
Web cast presentation covered 10 Lessons Learned items selected from the Arsenic Demonstration Program with supporting information. The major items discussed include system design and performance items and the cost of the technologies.
Best Practices and Lessons Learned In LANL Approaches to Transportation Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drypolcher, Katherine Carr
Presentation includes slides on Physical Protection of Material in Transit; Graded Approach for Implementation Controls; Security Requirements; LANL Lessons Learned; Shipping Violation; Unmonitored Shipment; Foreign shipment; and the Conclusion.
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
Iterating between lessons on concepts and procedures can improve mathematics knowledge.
Rittle-Johnson, Bethany; Koedinger, Kenneth
2009-09-01
Knowledge of concepts and procedures seems to develop in an iterative fashion, with increases in one type of knowledge leading to increases in the other type of knowledge. This suggests that iterating between lessons on concepts and procedures may improve learning. The purpose of the current study was to evaluate the instructional benefits of an iterative lesson sequence compared to a concepts-before-procedures sequence for students learning decimal place-value concepts and arithmetic procedures. In two classroom experiments, sixth-grade students from two schools participated (N=77 and 26). Students completed six decimal lessons on an intelligent-tutoring systems. In the iterative condition, lessons cycled between concept and procedure lessons. In the concepts-first condition, all concept lessons were presented before introducing the procedure lessons. In both experiments, students in the iterative condition gained more knowledge of arithmetic procedures, including ability to transfer the procedures to problems with novel features. Knowledge of concepts was fairly comparable across conditions. Finally, pre-test knowledge of one type predicted gains in knowledge of the other type across experiments. An iterative sequencing of lessons seems to facilitate learning and transfer, particularly of mathematical procedures. The findings support an iterative perspective for the development of knowledge of concepts and procedures.
Encouraging Problem-Solving Disposition in a Singapore Classroom
ERIC Educational Resources Information Center
Leong, Yew Hoong; Yap, Sook Fwe; Quek, Khiok Seng; Tay, Eng Guan; Tong, Cherng Luen; Ong, Yao Teck; Chia, Alexander Stanley Foh Soon; Zaini, Irni Karen Mohd; Khong, Wee Choo; Lock, Oi Leng; Zhang, Qiao Tian Beatrice; Tham, Yi Hui; Noorhazman, Nur-Illya Nafiza Mohamed
2013-01-01
In this article, we share our learning experience as a Lesson Study team. The Research Lesson was on Figural Patterns taught in Year 7. In addition to helping students learn the skills of the topic, we wanted them to develop a problem-solving disposition. The management of these two objectives was a challenge to us. From the lesson observation and…
ERIC Educational Resources Information Center
Pang, Ming Fai; Ling, Lo Mun
2012-01-01
The lesson study approach is a systematic process for producing professional knowledge about teaching by teachers, and has spread rapidly and extensively in the United States. The learning study approach is essentially a kind of lesson study with an explicit learning theory--the variation theory of learning. In this paper, we argue that having an…
Dang, Yen H; Nice, Frank J; Truong, Hoai-An
2017-01-01
To facilitate an academic-community partnership for sustainable medical mis-sions, a 12-step process was created for an interprofessional, global health educational, and service-learning experience for students and faculty in a school of pharmacy and health professions. Lessons learned and practical guidance are provided to implement similar global health opportunities.
Community Learning Campus: It Takes a Simple Message to Build a Complex Project
ERIC Educational Resources Information Center
Pearson, George
2012-01-01
Education Canada asked Tom Thompson, president of Olds College and a prime mover behind the Community Learning Campus (CLC): What were the lessons learned from this unusually ambitious education project? Thompson mentions six lessons he learned from this complex project which include: (1) Dream big, build small, act now; (2) Keep a low profile at…
ERIC Educational Resources Information Center
de Jager, Thelma
2017-01-01
Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…
McKee, Michael; Thew, Denise; Starr, Matthew; Kushalnagar, Poorna; Reid, John T.; Graybill, Patrick; Velasquez, Julia; Pearson, Thomas
2013-01-01
Background Numerous publications demonstrate the importance of community-based participatory research (CBPR) in community health research, but few target the Deaf community. The Deaf community is understudied and underrepresented in health research despite suspected health disparities and communication barriers. Objectives The goal of this paper is to share the lessons learned from the implementation of CBPR in an understudied community of Deaf American Sign Language (ASL) users in the greater Rochester, New York, area. Methods We review the process of CBPR in a Deaf ASL community and identify the lessons learned. Results Key CBPR lessons include the importance of engaging and educating the community about research, ensuring that research benefits the community, using peer-based recruitment strategies, and sustaining community partnerships. These lessons informed subsequent research activities. Conclusions This report focuses on the use of CBPR principles in a Deaf ASL population; lessons learned can be applied to research with other challenging-to-reach populations. PMID:22982845
Lesson Plans: Road Maps for the Active Learning Classroom.
Moore-Cox, Annie
2017-11-01
Lesson planning is a documentation process used extensively in education from kindergarten through 12th grade, but rarely in higher education, including undergraduate, prelicensure nursing education. Lesson plans help teachers plan what will happen during a class period from moment to moment. Trends in nursing education, such as the incorporation of active learning strategies in the classroom, make lesson plans a timely addition to the nurse educator's toolkit. This article describes the components of a lesson plan and offers an author-developed template for use in nursing education. Using the template helps nurse educators map out activities for all class participants, such as students, student pairs and teams, and faculty. The lesson plan enables faculty to plot out the many dynamic components of an active learning class period. It also serves as a road map for subsequent faculty, which is an important feature as the profession faces a wave of retirements in the coming decade. [J Nurs Educ. 2017;56(11):697-700.]. Copyright 2017, SLACK Incorporated.
Microgravity Workstation and Restraint Evaluations
NASA Technical Reports Server (NTRS)
Chmielewski, C.; Whitmore, M.; Mount, F.
1999-01-01
Confined workstations, where the operator has limited visibility and physical access to the work area, may cause prolonged periods of unnatural posture. Impacts on performance, in terms of fatigue and posture, may occur especially if the task is tedious and repetitive or requires static muscle loading. The glovebox design is a good example of the confined workstation concept. Within the scope of the 'Microgravity Workstation and Restraint Evaluation' project, funded by the NASA Headquarters Life Sciences Division, it was proposed to conduct a series of evaluations in ground, KC-135 and Shuttle environments to investigate the human factors issues concerning confined/unique workstations, such as gloveboxes, and also including crew restraint requirements. As part of the proposed integrated evaluations, two Shuttle Detailed Supplementary Objectives (DSOs) were manifested; one on Space Transportation System (STS)-90 and one on STS-88. The DSO on STS-90 evaluated use of the General Purpose Workstation (GPWS). The STS-88 mission was planned to evaluate a restraint system at the Remote Manipulator System (RMS). In addition, KC- 1 35 flights were conducted to investigate user/workstation/restraint integration for long-duration microgravity use. The scope of these evaluations included workstations and restraints to be utilized in the ISS environment, but also incorporated other workstations/ restraints in an attempt to provide findings/requirements with broader applications across multiple programs (e.g., Shuttle, ISS, and future Lunar-Mars programs). In addition, a comprehensive electronic questionnaire has been prepared and is under review by the Astronaut Office which will compile crewmembers' lessons learned information concerning glovebox and restraint use following their missions. These evaluations were intended to be complementary and were coordinated with hardware developers, users (crewmembers), and researchers. This report is intended to provide a summary of the findings from each of the evaluations.
Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015
NASA Technical Reports Server (NTRS)
Fonda, Mark L.
2015-01-01
Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.
Colonial National Historical Park shuttle service survey.
DOT National Transportation Integrated Search
2010-02-01
As part of an effort to evaluate the shuttle serice at Colonial National Historical Park, the Volpe National Transportation Systems Center administered a survey to a sample of shuttle users in July 2009. The key purpose of the survey was to learn how...
Bee SAFE, a Skill-Building Intervention to Enhance CAM Health Literacy: Lessons Learned.
Shreffler-Grant, Jean; Nichols, Elizabeth G; Weinert, Clarann
2018-05-01
The purpose is to describe a feasibility study of a skill-building intervention to enhance health literacy about complementary and alternative (CAM) therapies among older rural adults and share lessons learned. A study was designed to examine the feasibility of an intervention to enhance CAM health literacy. The theme was "Bee SAFE" for Be a wise user of CAM, Safety, Amount, From where, and Effect. Modules were presented face to face and by webinar with older adults at a senior center in one small rural community. The team achieved its purpose of designing, implementing, and evaluating the intervention and assessing if it could be implemented in a rural community. The implementation challenges encountered and lessons learn are discussed. By improving CAM health literacy, older rural adults with chronic health conditions can make well-reasoned decisions about using CAM for health promotion and illness management. The goal is to implement the Bee SAFE intervention in other rural communities; thus team members were attentive to lessons to be learned before investing time, effort, and expense in the larger intervention. It is hoped that the lessons learned can be instructive to others planning projects in rural communities.
University Hospital Struck Deaf and Silent by Lightning: Lessons to Learn.
Dami, Fabrice; Carron, Pierre-Nicolas; Yersin, Bertrand; Hugli, Olivier
2015-08-01
We describe how an electromagnetic wave after a lightning strike affected a university hospital, including the communication shutdown that followed, the way it was handled, and the lessons learned from this incident.
Retrieval Lesson Learned from NAST-I Hyperspectral Data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.
2007-01-01
The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments.
Lesson Study-Building Communities of Learning Among Pre-Service Science Teachers
NASA Astrophysics Data System (ADS)
Hamzeh, Fouada
Lesson Study is a widely used pedagogical approach that has been used for decades in its country of origin, Japan. It is a teacher-led form of professional development that involves the collaborative efforts of teachers in co-planning and observing the teaching of a lesson within a unit for evidence that the teaching practices used help the learning process (Lewis, 2002a). The purpose of this research was to investigate if Lesson Study enables pre-service teachers to improve their own teaching in the area of science inquiry-based approaches. Also explored are the self-efficacy beliefs of one group of science pre-service teachers related to their experiences in Lesson Study. The research investigated four questions: 1) Does Lesson Study influence teacher preparation for inquiry-based instruction? 2) Does Lesson Study improve teacher efficacy? 3) Does Lesson Study impact teachers' aspiration to collaborate with colleagues? 4) What are the attitudes and perceptions of pre-service teachers to the Lesson Study idea in Science? The 12 participants completed two pre- and post-study surveys: STEBI- B, Science Teaching Efficacy Belief Instrument (Enochs & Riggs, 1990) and ASTQ, Attitude towards Science Teaching. Data sources included student teaching lesson observations, lesson debriefing notes and focus group interviews. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. This study added to the body of research on teaching learning communities, professional development programs and teacher empowerment.
U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Years 2012 and 2013
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Oliva, Vladenka R.
2014-01-01
The NASA U.S. Spacesuit Knowledge Capture (KC) program has existed since the beginning of 2008. The program was designed to augment engineers and other technical team members with historical spacesuit information to add to their understanding of the spacesuit, its evolution, its limitations, and its capabilities. Over 40 seminars have captured spacesuit history and knowledge over the last six years of the program's existence. Subject matter experts have provided lectures and some were interviewed to help bring the spacesuit to life so that lessons learned will never be lost. As well, the program concentrated in reaching out to the public and industry by making the recorded events part of the public domain through the NASA technical library through YouTube media. The U.S. Spacesuit KC topics have included lessons learned from some of the most prominent spacesuit experts and spacesuit users including current and former astronauts. The events have enriched the spacesuit legacy knowledge from Gemini, Apollo, Skylab, Space Shuttle and International Space Station Programs. As well, expert engineers and scientists have shared their challenges and successes to be remembered. Based on evidence by the thousands of people who have viewed the recordings online, the last few years have been some of the most successful years of the KC program's life with numerous digital recordings and public releases. This paper reviews the events accomplished and archived over Fiscal Years 2012 and 2013 and highlights a few of the most memorable ones. This paper also communicates ways to access the events that are available internally on the NASA domain as well as those released on the public domain.
Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations
NASA Technical Reports Server (NTRS)
Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.
2015-01-01
This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.
2017-01-27
Mike Ciannilli, the Apollo, Challenger, Columbia Lessons Learned Program manager, welcomes participants to the Apollo 1 Lessons Learned presentation in the Training Auditorium at NASA’s Kennedy Space Center in Florida. The program's theme was "To There and Back Again." Guest panelists included Charlie Duke, former Apollo 16 astronaut and member of the Apollo 1 Emergency Egress Investigation Team; Ernie Reyes, retired, Apollo 1 senior operations engineer; and John Tribe, retired, Apollo 1 Reaction and Control System lead engineer. The event helped pay tribute to the Apollo 1 crew, Gus Grissom, Ed White II, and Roger Chaffee.
Biomimicry as a route to new materials: what kinds of lessons are useful?
Reed, Emily J; Klumb, Lisa; Koobatian, Maxwell; Viney, Christopher
2009-04-28
We consider the attributes of a successful engineered material, acknowledging the contributions of composition and processing to properties and performance. We recognize the potential for relevant lessons to be learned from nature, at the same time conceding both the limitations of such lessons and our need to be selective. We then give some detailed attention to the molecular biomimicry of filamentous phage, the process biomimicry of silk and the structure biomimicry of hippopotamus 'sweat', in each case noting that the type of lesson now being learned is not the same as the potential lesson that originally motivated the study.
Lessons learned from Shuttle/Mir: psychosocial countermeasures
NASA Technical Reports Server (NTRS)
Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.
2002-01-01
BACKGROUND: During future long-duration space missions, countermeasures need to be developed to deal with psychosocial issues that might impact negatively on crewmember performance and well-being. METHODS: In our recently completed NASA-funded study of 5 U.S. astronauts, 8 Russian cosmonauts, and 42 U.S. and 16 Russian mission control personnel who participated in the Shuttle/Mir program, we evaluated a number of important psychosocial issues such as group tension, cohesion, leadership role, and the displacement of negative emotions from crewmembers to people in mission control and from mission control personnel to management. RESULTS: Based on our findings, which are reviewed, a number of psychosocial countermeasures are suggested to help ameliorate the negative impact of potential psychosocial problems during future manned space missions. CONCLUSIONS: Crewmembers should be selected not only to rule out psychopathology but also to select-in for group compatibility and facility in a common language. Training should include briefings and team building related to a number of psychosocial issues and should involve both crewmembers and mission control personnel. During the mission, both experts on the ground and the crewmembers themselves should be alert to potential interpersonal problems, including the displacement of negative emotions from the crew to the ground. Supportive activities should consist of both individual and interpersonal strategies, including an awareness of changing leisure time needs. Finally, attention should be given to postmission readjustment and to supporting the families on Earth.
E-Learning and Development: Lessons from Multi-Disciplinary Capacity Strengthening
ERIC Educational Resources Information Center
Babu, Suresh Chandra
2014-01-01
This paper documents the experience and lessons from implementing an e-learning program aimed at creating multidisciplinary research capacity. It presents a case study of bringing together a multidisciplinary group of professionals on-line to learn the skills needed to be a successful researcher in the context of HIV/AIDS and food security…
Effects of Detailed Illustrations on Science Learning: An Eye-Tracking Study
ERIC Educational Resources Information Center
Lin, Yu Ying; Holmqvist, Kenneth; Miyoshi, Kiyofumi; Ashida, Hiroshi
2017-01-01
The eye-tracking method was used to assess the influence of detailed, colorful illustrations on reading behaviors and learning outcomes. Based on participants' subjective ratings in a pre-study, we selected eight one-page human anatomy lessons. In the main study, participants learned these eight human anatomy lessons; four were accompanied by…
Assessment and Program Accountability in Early Childhood Education: Lessons Learned in Ohio
ERIC Educational Resources Information Center
Boat, Mary; Zorn, Debbie; Austin, James T.
2005-01-01
Ensuring that children, especially those from disadvantaged backgrounds, start school ready to learn is an important goal. This paper presents lessons learned from the state of Ohio's multi-year program to develop a standards-based assessment system for programs delivering state-funded early childhood education (ECE) through programs receiving…
The Cispus Experience: A Curriculum Guide for the Cispus Learning Center.
ERIC Educational Resources Information Center
Association of Washington School Principals, Olympia.
This curriculum guide presents lesson plans for outdoor and environmental education at the Cispus Learning Center, a camp in Randle, Washington. Objectives for the Cispus experience cover student learning of content, socialization as a team member, development of aesthetic awareness of nature and art, and increased physical wellness. Lesson plans…
Creating Teacher Communities of Inquiry through Lesson Study
ERIC Educational Resources Information Center
Widjaja, Wanty
2013-01-01
Opportunities for teachers to engage in collaborative learning to examine and reflect on their practice are vital for sustained professional learning. Lesson Study centres on teachers coming together with colleagues to plan, observe, and reflect on classroom teaching and learning as a Community of Inquiry. In this project, six teachers from three…
ERIC Educational Resources Information Center
Troyan, Francis John; Peercy, Megan Madigan
2016-01-01
Although scholars working in core practices have put forth lesson rehearsals as central to novice teachers' learning and development, there is little work on how novice teachers experience rehearsals. This qualitative research investigated learning opportunities for novice teachers of language learners during rehearsals. The analysis examines two…
The Effects of Variations in Lesson Control and Practice on Learning from Interactive Video.
ERIC Educational Resources Information Center
Hannafin, Michael J.; Colamaio, MaryAnne E.
1987-01-01
Discussion of the effects of variations in lesson control and practice on the learning of facts, procedures, and problem-solving skills during interactive video instruction focuses on a study of graduates and advanced level undergraduates learning cardiopulmonary resuscitation (CPR). Embedded questioning methods and posttests used are described.…
What Positive Lessons Have You Learned from English Class about Working with Other People?
ERIC Educational Resources Information Center
Cook, Bailey; Keefe, Bailey; Gray, Angela; Li, Justin; Miller, Kevin
2010-01-01
This article provides a forum for students to share their experiences and lessons learned from English class about working with other people. The first author thinks it is a good idea to have split-level classes because it opens up new opportunities to meet people and teaches one many good lessons about working with other people. The second author…
E-Learning and the iNtegrating Technology for InQuiry (NTeQ) Model Lesson Design
ERIC Educational Resources Information Center
Flake, Lee Hatch
2017-01-01
The author reflects on the history of technology in education and e-learning and introduces the iNtegrating Technology for inQuiry (NTeQ) model of lesson design authored by Morrison and Lowther (2005). The NTeQ model lesson design is a new pedagogy for academic instruction in response to the growth of the Internet and technological advancements in…
NASA Astrophysics Data System (ADS)
Chamrat, Suthida; Apichatyotin, Nattaya; Puakanokhirun, Kittaporn
2018-01-01
The quality of lesson design is essential to learning effectiveness. Research shows some characteristics of lessons have strong effect on learning which were grouped into "High Impact Practices or HIPs. This research aims to examine the use of HIPs on chemistry lesson design as a part of Teaching Science Strand in Chemistry Concepts course. At the first round of lesson design and implementing in classroom, 14 chemistry pre-services teachers freely selected topics, designed and implemented on their own ideas. The lessons have been reflected by instructors and their peers. High Impact Practices were overtly used as the conceptual framework along with the After-Action Review and Reflection (AARR). The selected High Impact practice in this study consisted of 6 elements: well-designed lesson, vary cognitive demand/academic challenge, students center approach, opportunity of students to reflect by discussion or writing, the assignment of project based learning or task, and the lesson reflects pre-service teachers' Technological Pedagogical Content Knowledge (TPACK). The second round, pre-service teachers were encouraged to explicitly used 6 High Impact Practices in cooperated with literature review specified on focused concepts for bettering designed and implemented lessons. The data were collected from 28 lesson plans and 28 classroom observations to compare and discuss between the first and second lesson and implementation. The results indicated that High Impact Practices effect on the quality of delivered lesson. However, there are some elements that vary on changes which were detailed and discussed in this research article.
ERIC Educational Resources Information Center
Chan, Man Ching Esther; Clarke, David J.; Clarke, Doug M.; Roche, Anne; Cao, Yiming; Peter-Koop, Andrea
2018-01-01
The major premise of this project is that teachers learn from the act of teaching a lesson. Rather than asking "What must a teacher already know in order to practice effectively?", this project asks "What might a teacher learn through their activities in the classroom and how might this learning be optimised?" In this project,…
ERIC Educational Resources Information Center
Jewpanich, Chaiwat; Piriyasurawong, Pallop
2015-01-01
This research aims to 1) develop the project-based learning using discussion and lesson-learned methods via social media model (PBL-DLL SoMe Model) used for enhancing problem solving skills of undergraduate in education student, and 2) evaluate the PBL-DLL SoMe Model used for enhancing problem solving skills of undergraduate in education student.…
ERIC Educational Resources Information Center
Towaf, Siti Malikhah
2016-01-01
Learning can be observed from three-dimensions called: effectiveness, efficiency, and attractiveness of learning. Careful study carried out by analyzing the learning elements of the system are: input, process, and output. Lesson study is an activity designed and implemented as an effort to improve learning in a variety of dimensions. "Lesson…
He, Ying; Johnson, Chris
2015-11-01
The recurrence of past security breaches in healthcare showed that lessons had not been effectively learned across different healthcare organisations. Recent studies have identified the need to improve learning from incidents and to share security knowledge to prevent future attacks. Generic Security Templates (GSTs) have been proposed to facilitate this knowledge transfer. The objective of this paper is to evaluate whether potential users in healthcare organisations can exploit the GST technique to share lessons learned from security incidents. We conducted a series of case studies to evaluate GSTs. In particular, we used a GST for a security incident in the US Veterans' Affairs Administration to explore whether security lessons could be applied in a very different Chinese healthcare organisation. The results showed that Chinese security professional accepted the use of GSTs and that cyber security lessons could be transferred to a Chinese healthcare organisation using this approach. The users also identified the weaknesses and strengths of GSTs, providing suggestions for future improvements. Generic Security Templates can be used to redistribute lessons learned from security incidents. Sharing cyber security lessons helps organisations consider their own practices and assess whether applicable security standards address concerns raised in previous breaches in other countries. The experience gained from this study provides the basis for future work in conducting similar studies in other healthcare organisations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Implementing the Japanese Problem-Solving Lesson Structure
ERIC Educational Resources Information Center
Groves, Susie
2013-01-01
While there has been worldwide interest in Japanese Lesson Study as a model for teacher professional learning, there has been less research into authentic implementation of the problem-solving lesson structure that underpins mathematics research lessons in Japan. Findings from a Lesson Study project involving teachers from three Victorian primary…
Development of concept-based physiology lessons for biomedical engineering undergraduate students.
Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T
2013-06-01
Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
NASA Astrophysics Data System (ADS)
Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall
2013-10-01
The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Governmental Affairs.
The focus of this hearing was on lessons learned in the District of Columbia public schools in the year preceding the hearing. In his opening remarks, Senator Brownback (Kansas) remarked that one of the first lessons is that the academic quality of the schools is not good enough and is in dire need of improvement. A second set of lessons focuses…
A theory-based approach to teaching young children about health: A recipe for understanding
Nguyen, Simone P.; McCullough, Mary Beth; Noble, Ashley
2011-01-01
The theory-theory account of conceptual development posits that children’s concepts are integrated into theories. Concept learning studies have documented the central role that theories play in children’s learning of experimenter-defined categories, but have yet to extensively examine complex, real-world concepts such as health. The present study examined whether providing young children with coherent and causally-related information in a theory-based lesson would facilitate their learning about the concept of health. This study used a pre-test/lesson/post-test design, plus a five month follow-up. Children were randomly assigned to one of three conditions: theory (i.e., 20 children received a theory-based lesson); nontheory (i.e., 20 children received a nontheory-based lesson); and control (i.e., 20 children received no lesson). Overall, the results showed that children in the theory condition had a more accurate conception of health than children in the nontheory and control conditions, suggesting the importance of theories in children’s learning of complex, real-world concepts. PMID:21894237
CYGNSS: Lessons We are Learning from a Class D Mission
NASA Technical Reports Server (NTRS)
Tumlinson, Jessica
2015-01-01
CYGNSS: Lessons Learned from NASA Class D Mission and how they selected their parts for the program to include balance between cost, risk, schedule and technology available as well as balancing cost restraints with mission risk profile.
Project #OA-FY12-0360, March 5, 2012. The Recovery Funds Working Group of the Recovery Accountability and Transparency Board has initiated a project to capture lessons learned from Recovery Act implementation.
IVHS Institutional Issues and Case Studies, Analysis and Lessons Learned, Final Report
DOT National Transportation Integrated Search
1994-04-01
This 'Analysis and Lessons Learned' report contains observations, conclusions, and recommendations based on the performance of six case studies of Intelligent Vehicle-Highway Systems (IVHS) projects. Information to support the development of the case...
Multi-Modal Traveler Information System - Lessons Learned
DOT National Transportation Integrated Search
1997-05-19
The purpose of this working paper is to provide an information base of lessons learned from activities similar to the design of the Gary Chicago Milwaukee (GCM) Corridor Architecture and the Gateway Traveler Information System (TIS). Many similar act...
DOT National Transportation Integrated Search
2002-06-01
The purpose of this lessons learned is to document the experience with Intelligent Transportation Systems (ITS) : implementation at the Santee Wateree Regional Transportation authority (SWRTA). SWRTA is a public : transportation provider servin...
Lessons learned on the Skylab program
NASA Technical Reports Server (NTRS)
1974-01-01
Lessons learned in the Skylab program and their application and adaptation to other space programs are summarized. Recommendations and action taken on particular problems are described. The use of Skylab recommendations to identify potential problems of future space programs is discussed.
Gemini Observatory base facility operations: systems engineering process and lessons learned
NASA Astrophysics Data System (ADS)
Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo
2016-08-01
Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.
Periscope: Looking into Learning in Best-Practices Physics Classrooms
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Goertzen, Renee Michelle
2018-02-01
Periscope is a set of lessons to support learning assistants, teaching assistants, and faculty in learning to notice and interpret classroom events the way an accomplished teacher does. Periscope lessons are centered on video episodes from a variety of best-practices university physics classrooms. By observing, discussing, and reflecting on teaching situations similar to their own, instructors practice applying lessons learned about teaching to actual teaching situations and develop their pedagogical content knowledge. Instructors also get a view of other institutions' transformed courses, which can support and expand the vision of their own instructional improvement and support the transfer of course developments among faculty. Periscope is available for free to educators at http://physport.org/periscope.
Applying lessons learned in communities to programs and policies at the federal level.
Chang, Debbie I
2006-01-01
As solutions to the problems of the uninsured are debated, there are lessons to be learned from community-based initiatives. Such efforts can provide information on different models as well as key political lessons. Defining the specific role that community efforts play is also critical. Actively involving community stakeholders of such community initiatives in health care policy debates will result in more workable policies.
ERIC Educational Resources Information Center
Santagata, Rossella; Zannoni, Claudia; Stigler, James W.
2007-01-01
A video-based program on lesson analysis for pre-service mathematics teachers was implemented for two consecutive years as part of a teacher education program at the University of Lazio, Italy. Two questions were addressed: What can preservice teachers learn from the analysis of videotaped lessons? How can preservice teachers' analysis ability,…
ERIC Educational Resources Information Center
Berkant, Hasan Güner; Baysal, Seda
2017-01-01
The changes which occur during the learning process have been explained by many teaching-learning models and theories. One of these models is allosteric learning model (ALM) which was developed by André Giordan in 1989. This model was derived from a biological metaphor related to proteins. The interaction between individual and environment in a…
ERIC Educational Resources Information Center
Conole, Grainne; Carusi, Annamaria; de Laat, Maarten; Wilcox, Pauline; Darby, Jonathan
2006-01-01
This paper presents some of the initial findings of a series of studies documenting the UK eUniversity (UKeU) approach to and experience of e-learning. It will focus on the experiences and lessons learned of members of the learning technology team within the UKeU or people working closely with them. Our particular interest is to describe the…
2008-01-01
cases on human cognition and performance. For instance, when you learn to fly an airplane, you will be instructed to use a simple rule to avoid...Existing Training Technologies; First Responders; Katrina; Lesson Learned 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER... student . Based in Maryland, the training institute prepares first responders using online learning courses or training exercises. Such topics
ERIC Educational Resources Information Center
Suh, Jennifer; Seshaiyer, Padmanabhan
2015-01-01
This study examines elementary- and middle-grade teachers' understanding of the mathematical learning progression as they participated in a 6-month professional learning project. Teachers participated in a professional development project that consisted of a 1-week summer content-focused institute with school-based follow-up Lesson Study cycles in…
From Lessons Learned the Hard Way to Lessons Learned the Harder Way
ERIC Educational Resources Information Center
Schwegler, Andria Foote
2013-01-01
My departure from traditional methods of teaching and assessment (i.e., lecture and close-ended exams) was prompted years ago by a "gut feeling" that has morphed into an explicit examination of my teaching practice and students' reactions to it. The scholarly approach and empirical evidence in "Teachers and Learning"…
ERIC Educational Resources Information Center
Yilmaz, Rezan
2014-01-01
This study aims to present the cognitive competences of the pre-service teacher about discovery learning approach in mathematical education. The study was conducted with 37 mathematics pre-service teachers who study Special Teaching Methods lesson in a state university in Turkey. Throughout the lesson, the approaches used in learning were examined…
Let's Cooperate! Integrating Cooperative Learning Into a Lesson on Ethics.
Reineke, Patricia R
2017-04-01
Cooperative learning is an effective teaching strategy that promotes active participation in learning and can be used in academic, clinical practice, and professional development settings. This article describes that strategy and provides an example of its use in a lesson about ethics. J Contin Nurs Educ. 2017;48(4):154-156. Copyright 2017, SLACK Incorporated.
NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions
NASA Technical Reports Server (NTRS)
Snoddy, Jimmy R.
2006-01-01
In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system, with a philosophy of "test what you fly, and fly what you test". These and other active risk management strategies are in place to deliver the J-2X engine for LEO and lunar return missions as outlined in the U.S. Vision for Space Exploration.
Commissioning MMS: Challenges and Lessons Learned
NASA Technical Reports Server (NTRS)
Wood, Paul; Gramling, Cheryl; Reiter, Jennifer; Smith, Patrick; Stone, John
2016-01-01
This paper discusses commissioning of NASA's Magnetospheric MultiScale (MMS) Mission. The mission includes four identical spacecraft with a large, complex set of instrumentation. The planning for and execution of commissioning for this mission is described. The paper concludes by discussing lessons learned.
The lift-fan aircraft: Lessons learned
NASA Technical Reports Server (NTRS)
Deckert, Wallace H.
1995-01-01
This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.
Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission
NASA Technical Reports Server (NTRS)
Anselm, William
2003-01-01
Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.
Hodgetts, Darrin; Chamberlain, Kerry; Tankel, Yadena; Groot, Shiloh
2014-01-01
Urban poverty and health inequalities are inextricably intertwined. By working in partnership with service providers and communities to address urban poverty, we can enhance the wellness of people in need. This article reflects on lessons learned from the Family100 project that explores the everyday lives, frustrations and dilemmas faced by 100 families living in poverty in Auckland. Lessons learned support the need to bring the experiences and lived realities of families to the fore in public deliberations about community and societal responses to urban poverty and health inequality.
NASA Astrophysics Data System (ADS)
Limatahu, I.; Sutoyo, S.; Wasis; Prahani, B. K.
2018-03-01
In the previous research, CCDSR (Condition, Construction, Development, Simulation, and Reflection) learning model has been developed to improve science process skills for pre-service physics teacher. This research is aimed to analyze the effectiveness of CCDSR learning model towards the improvement skills of creating lesson plan and worksheet of Science Process Skill (SPS) for pre-service physics teacher in academic year 2016/2017. This research used one group pre-test and post-test design on 12 pre-service physics teacher at Physics Education, University of Khairun. Data collection was conducted through test and observation. Creating lesson plan and worksheet SPS skills of pre-service physics teacher measurement were conducted through Science Process Skill Evaluation Sheet (SPSES). The data analysis technique was done by Wilcoxon t-test and n-gain. The CCDSR learning model consists of 5 phases, including (1) Condition, (2) Construction, (3) Development, (4) Simulation, and (5) Reflection. The results showed that there was a significant increase in creating lesson plan and worksheet SPS skills of pre-service physics teacher at α = 5% and n-gain average of moderate category. Thus, the CCDSR learning model is effective for improving skills of creating lesson plan and worksheet SPS for pre-service physics teacher.
Lessons Learned from Developing a Patient Engagement Panel: An OCHIN Report.
Arkind, Jill; Likumahuwa-Ackman, Sonja; Warren, Nate; Dickerson, Kay; Robbins, Lynn; Norman, Kathy; DeVoe, Jennifer E
2015-01-01
There is renewed interest in patient engagement in clinical and research settings, creating a need for documenting and publishing lessons learned from efforts to meaningfully engage patients. This article describes early lessons learned from the development of OCHIN's Patient Engagement Panel (PEP). OCHIN supports a national network of more than 300 community health centers (CHCs) and other primary care settings that serve over 1.5 million patients annually across nearly 20 states. The PEP was conceived in 2009 to harness the CHC tradition of patient engagement in this new era of patient-centered outcomes research and to ensure that patients were engaged throughout the life cycle of our research projects, from conception to dissemination. Developed by clinicians and researchers within our practice-based research network, recruitment of patients to serve as PEP members began in early 2012. The PEP currently has a membership of 18 patients from 3 states. Over the past 24 months, the PEP has been involved with 12 projects. We describe developing the PEP and challenges and lessons learned (eg, recruitment, funding model, creating value for patient partners, compensation). These lessons learned are relevant not only for research but also for patient engagement in quality improvement efforts and other clinical initiatives. © Copyright 2015 by the American Board of Family Medicine.
Lessons Learned from the Wide Field Camera 3 TV1 and TV2 Thermal Vacuum Test Campaigns
NASA Technical Reports Server (NTRS)
Peabody, Hume; Stavely, Richard; Bast, William
2008-01-01
The Wide Field Camera 3 (WFC3) instrument has undergone two complete thermal vacuum tests (TV1 and TV2), during which valuable lessons were learned regarding test configuration, test execution, model capabilities, and modeling practices. The very complex thermal design of WFC3 produced a number of challenging aspects to ground testing with numerous ThermoElectric Coolers and heat pipes, not all of which were functional. Lessons learned during TV1 resulted in significant upgrades to the model capabilities and a change in the test environment approach for TV2. These upgrades proved invaluable during TV2 when pretest modeling assumptions proved to be false. Each of the lessons learned relate to one of two following broad statements: 1. Ensure the design can be tested and that the effect of non-flight like conditions is well understood, particularly with respect to non passive devices (TECs, Heat Pipes, etc) 2. Ensure that the model is sufficiently detailed and is capable of predicting off-nominal behavior and the power dissipation of any thermal devices, especially TECs This paper outlines a number of the lessons learned over these two test campaigns with respect to the thermal design, model, and test configuration and presents recommendations for future tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Charles Frederick
Lessons learned are more in vogue today than at any time in our history. You can’t tune into a news broadcast without hearing a reference to the concept – and for good reason. People are finally accepting the idea that they may be able to benefit from the experiences of others. Corporations, government departments, and even the military are actively using lessons learned information to help them to achieve their varied goals. The Department of Energy is one of the government departments that has a Lessons Learned Program and requires its contractors to develop a program of their own. Unfortunately,more » adequate guidance is not available to enable contractors to design a fully mature program (i.e., a program that will immediately meet their every need) and to ensure that it is implemented such that it will be deemed acceptable during subsequent assessments. The purpose of this paper is to present the reader with information that might help him or her better plan and develop a new or upgraded Lessons Learned Program. The information is based on the actual development and implementation of a “second generation” lessons learned program and is presented as a chronicle of the steps taken to build the rudimentary system and the subsequent events and problems that led to the programs present-day configuration.« less
NASA Astrophysics Data System (ADS)
Park, Jisun; Song, Jinwoong; Abrahams, Ian
2016-03-01
This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term `unintended' learning to distinguish it from `intended' learning that appears in teachers' learning objectives. Data were collected using video and audio recordings of a sample of twenty-four whole class practical science lessons, taught by five teachers, in Korean primary schools with 10- to 12-year-old students. In addition, video and audio recordings were made for each small group of students working together in order to capture their activities and intra-group discourse. Pre-lesson interviews with the teachers were undertaken and audio-recorded to ascertain their intended learning objectives. Selected key vignettes, including unintended learning, were analysed from the perspective of intellectual passion developed by Polanyi. What we found in this study is that unintended learning could occur when students got interested in something in the first place and could maintain their interest. In addition, students could get conceptual knowledge when they tried to connect their experience to their related prior knowledge. It was also found that the processes of intended learning and of unintended learning were different. Intended learning was characterized by having been planned by the teacher who then sought to generate students' interest in it. In contrast, unintended learning originated from students' spontaneous interest and curiosity as a result of unplanned opportunities. Whilst teachers' persuasive passion comes first in the process of intended learning, students' heuristic passion comes first in the process of unintended learning. Based on these findings, we argue that teachers need to be more aware that unintended learning, on the part of individual students, can occur during their lesson and to be able to better use this opportunity so that this unintended learning can be shared by the whole class. Furthermore, we argue that teachers' deliberate action and a more interactive classroom culture are necessary in order to allow students to develop, in addition to heuristic passion, persuasive passion towards their unintended learning.
Lotrecchiano, G R; McDonald, P L; Lyons, L; Long, T; Zajicek-Farber, M
2013-11-01
This field report outlines the goals of providing a blended learning model for an interdisciplinary training program for healthcare professionals who care for children with disabilities. The curriculum blended traditional face-to-face or on-site learning with integrated online interactive instruction. Credit earning and audited graduate level online coursework, community engagement experiences, and on-site training with maternal and child health community engagement opportunities were blended into a cohesive program. The training approach emphasized adult learning principles in different environmental contexts integrating multiple components of the Leadership Education in Neurodevelopmental and Related Disabilities Program. This paper describes the key principles adopted for this blended approach and the accomplishments, challenges, and lessons learned. The discussion offers examples from training content, material gathered through yearly program evaluation, as well as university course evaluations. The lessons learned consider the process and the implications for the role of blended learning in this type of training program with suggestions for future development and adoption by other programs.
Chinese Lessons from Other Peoples’ Wars
2011-11-01
have a unified center for lessons learned (key U.S. examples are the Joint Center for Operational Analy- 8 sis, the Center for Army Lessons Learned...complete publicly available docu- mentary and analytical record in Chinese on the wars might present. Readers are advised to bear these chal- lenges...guided missiles (PGM). Indeed, there are 14 many PLA studies about the PGM and its employment in the U.S. joint and integrated operations in the
ERIC Educational Resources Information Center
Marsick, Victoria J.; Volpe, F. Marie; Brooks, Ann; Cseh, Maria; Lovin, Barbara Keelor; Vernon, Sally; Watkins, Karen E.; Ziegler, Mary
The concept of the free agent learner, which has roots in self-directed and informal learning theory, has recently emerged as a factor important to attracting, developing, and keeping knowledge workers. The literature on free agent learning holds important lessons for today's free agent learners, human resource developers, and work organizations.…
76 FR 81516 - Homeland Security Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... security; and provide information on the threat of an electromagnetic pulse attack and its associated... Operational Update. Electromagnetic Pulse (EMP) Threat--Lessons Learned and Areas of Vulnerability, and... and the potential threat of an electromagnetic pulse attack. Both will include lessons learned and...
The Status of Ubiquitous Computing.
ERIC Educational Resources Information Center
Brown, David G.; Petitto, Karen R.
2003-01-01
Explains the prevalence and rationale of ubiquitous computing on college campuses--teaching with the assumption or expectation that all faculty and students have access to the Internet--and offers lessons learned by pioneering institutions. Lessons learned involve planning, technology, implementation and management, adoption of computer-enhanced…
NASA Technical Reports Server (NTRS)
Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
ERIC Educational Resources Information Center
Scholz, Markus; Niesch, Harald; Steffen, Olaf; Ernst, Baerbel; Loeffler, Markus; Witruk, Evelin; Schwarz, Hans
2008-01-01
The aim of this study is to evaluate the benefit of chess in mathematics lessons for children with learning disabilities based on lower intelligence (IQ 70-85). School classes of four German schools for children with learning disabilities were randomly assigned to receive one hour of chess lesson instead of one hour of regular mathematics lessons…
Evaluating Primary School Student's Deep Learning Approach to Science Lessons
ERIC Educational Resources Information Center
Ilkörücü Göçmençelebi, Sirin; Özkan, Muhlis; Bayram, Nuran
2012-01-01
This study examines the variables which help direct students to a deep learning approach to science lessons, with the aim of guiding programmers and teachers in primary education. The sample was composed of a total of 164 primary school students. The Learning Approaches to Science Scale developed by Ünal (2005) for Science and Technology lessons…
Lessons that Last: Former Youth Organizers' Reflections on What and How They Learned
ERIC Educational Resources Information Center
Conner, Jerusha
2014-01-01
This study examines the learning outcomes and learning environment of a youth organizing program that has been effective in promoting individual as well as social change. Drawing on interviews with 25 former youth organizers from the program, this study explores the lessons that stay with them as they transition to young adulthood and the factors…
Dynamic Lesson Planning in EFL Reading Classes through a New e-Learning System
ERIC Educational Resources Information Center
Okada, Takeshi; Sakamoto, Yasunobu
2015-01-01
This paper illustrates how lesson plans, teaching styles and assessment can be dynamically adapted on a real-time basis during an English as a Foreign Language (EFL) reading classroom session by using a new e-learning system named iBELLEs (interactive Blended English Language Learning Enhancement system). iBELLEs plays a crucial role in filling…
ERIC Educational Resources Information Center
Lovvorn, Al S.; Barth, Michael M.; Morris, R. Franklin, Jr.; Timmerman, John E.
2009-01-01
Schools of all types and sizes are exploring the merits and facets of online learning approaches; but, the online delivery literature has focused on "best practices" generated primarily through the experiences of larger schools that are on the leading edge of this innovation. Small public schools, on the other hand, are faced with unique…
1984-05-01
Satisfaction Measures Between Clinics.... 39 Lessons Learned From the Pilot Studies ...................... 42 Telephonic Versus Clinic Survey...Between Clinics. 63 Comments from Survey Participants ....................... 64 Lessons Learned from the Study ............................. 67...attempted to apply principles learned from a review of the multitude of studies conducted in the area of patient satisfaction. Validated dimensions of
ERIC Educational Resources Information Center
Denbel, Dejene Girma
2015-01-01
Students learning experiences were investigated in geometry lesson when using Dynamic Geometry Software (DGS) tool in geometry learning in 25 Ethiopian secondary students. The research data were drawn from the used worksheets, classroom observations, results of pre- and post-test, a questionnaire and interview responses. I used GeoGebra as a DGS…
How Is the Learning Environment in Physics Lesson with Using 7E Model Teaching Activities
ERIC Educational Resources Information Center
Turgut, Umit; Colak, Alp; Salar, Riza
2017-01-01
The aim of this research is to reveal the results in the planning, implementation and evaluation of the process for learning environments to be designed in compliance with 7E learning cycle model in physics lesson. "Action research", which is a qualitative research pattern, is employed in this research in accordance with the aim of the…
ERIC Educational Resources Information Center
Babu, Suresh Chandra; Ferguson, Jenna; Parsai, Nilam; Almoguera, Rose
2013-01-01
This paper documents the experience and lessons from implementing an e-learning program aimed at creating research capacity for gender, crisis prevention, and recovery. It presents a case study of bringing together a multidisciplinary group of women professionals through both online and face-to-face interactions to learn the skills needed to be a…
NASA Technical Reports Server (NTRS)
Taylor, Gary O.
2001-01-01
John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.
Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.
2007-01-01
It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.
Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations
NASA Technical Reports Server (NTRS)
Gonzalez, Steven A.
2002-01-01
The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.
The Sensor Test for Orion RelNav Risk Mitigation Development Test Objective
NASA Technical Reports Server (NTRS)
Christian, John A.; Hinkel, Heather; Maguire, Sean
2011-01-01
The Sensor Test for Orion Relative-Navigation Risk Mitigation (STORRM) Development Test Objective (DTO) ew aboard the Space Shuttle Endeavour on STS-134, and was designed to characterize the performance of the ash LIDAR being developed for the Orion. This ash LIDAR, called the Vision Navigation Sensor (VNS), will be the primary navigation instrument used by the Orion vehicle during rendezvous, proximity operations, and docking. This paper provides an overview of the STORRM test objectives and the concept of operations. It continues with a description of the STORRM's major hardware compo nents, which include the VNS and the docking camera. Next, an overview of crew and analyst training activities will describe how the STORRM team prepared for flight. Then an overview of how insight data collection and analysis actually went is presented. Key ndings and results from this project are summarized, including a description of "truth" data. Finally, the paper concludes with lessons learned from the STORRM DTO.
A Summary of NASA and USAF Hypergolic Propellant Related Spills And Fires
NASA Technical Reports Server (NTRS)
Nufer, B. M.
2009-01-01
Hypergolic fluids are toxic liquids that react spontaneously and violently when they contact each other. These fluids are used in many different rocket and aircraft systems for propulsion and hydraulic power including, orbiting satellites, manned spacecraft, military aircraft, and deep space probes. Hypergolic fuels include hydrazine (N 2H4) and its derivatives including monomethylhydrazine (MMH), unsymmetrical di-methylhydrazine (UDMH), and Aerozine 50 (A-50), which is an equal mixture of N2H4 and UDMH. The oxidizer used with these fuels is usually nitrogen tetroxide (N2O4), also known as di-nitrogen tetroxide or NTO, and various blends of N2O4 with nitric oxide (NO). Several documented, unintentional hypergolic fluid spills and fires related to the Apollo Program, the Space Shuttle Program, and several other programs from approximately 1968 through the spring of 2009 have been studied for the primary purpose of extracting the lessons learned. Spill sites include KSC, JSC, WSTF, CCAFS, EAFB, McConnell AFB, and VAFB.
NASA Technical Reports Server (NTRS)
Campbell, Colin; Cox, Marlon; Meginnis, Carly; Falconi, Eric
2017-01-01
The Variable Oxygen Regulator (VOR), a stepper actuated two-stage mechanical regulator, is being developed for the purpose of serving as the Primary Oxygen Regulator (POR) and Secondary Oxygen Regulator (SOR) within the Advanced EMU PLSS, now referred to as the xEMU and xPLSS. Three prototype designs have been fabricated and tested as part of this development. Building upon the lessons learned from the 35 years of Shuttle/ISS EMU Program operation including the fleet-wide EMU Secondary Oxygen Pack (SOP) contamination failure that occurred in 2000, the VOR is being analyzed, designed, and tested for oxygen compatibility with controlled Non-Volatile Residue (NVR) and a representative worst-case hydro-carbon system contamination event (>100mg/sq ft dodecane). This paper discusses the steps taken in testing of VOR 2.0 with for oxygen compatibility and then discusses follow-on design changes implemented in the VOR 3.0 (3rd prototype) as a result.
Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Tuan, George C.
2007-01-01
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student's interest in and goals toward STEM related careers.
Teachers' learning on the workshop of STS approach as a way of enhancing inventive thinking skills
NASA Astrophysics Data System (ADS)
Ngaewkoodrua, Nophakun; Yuenyong, Chokchai
2018-01-01
To improve science teachers to develop the STS lesson plans for enhancing the students' inventive thinking skills, the workshop of improving science teachers to develop the STS lesson plans for enhancing the Inventive thinking skills were organized. The paper aimed to clarify what teachers learn from the workshop. The goal of the activity of the workshop aimed to: 1) improve participants a better understanding of the relationship between the Inquiry based learning with STS approach, 2) understand the meaning and importance of the STS approach and identify the various stages of Yuenyong (2006) STS learning process, 3) discuss what they learned from the examples of Yuenyong (2006) lesson plan, 4) develop some activities for each stage of Yuenyong (2006) STS approach, and 5) ideas of providing STS approach activities for enhancing inventive thinking skills. Participants included 3 science teachers who work in Khon Kaen, Thailand. Methodology regarded interpretive paradigm. Teachers' learning about pedagogy of enhancing the students' inventive thinking skills will be interpreted through participant observation, teachers' tasks, and interview. The finding revealed that all participants could demonstrate their ideas how to generate the STS lesson plans as a way of enhancing inventive thinking skills. Teachers could mention some element of inventive thinking skills which could be generated on their STS learning activities.
Thisgaard, Malene; Makransky, Guido
2017-01-01
The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student’s interest in and goals toward STEM related careers. PMID:28611701
Novice High School Science Teachers: Lesson Plan Adaptations
ERIC Educational Resources Information Center
Scharon, Aracelis Janelle
2013-01-01
The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…
ERIC Educational Resources Information Center
Bauml, Michelle
2016-01-01
Whether a teacher loves it or dreads it, lesson planning is a crucial step in the teaching process. Done effectively, collaborative lesson planning--in which teachers work together to design lessons--leads to increased professional learning, higher job satisfaction for teachers, and better lesson plans. The process poses challenges for both…
Life After Being a Pathology Department Chair II: Lessons Learned.
Bailey, David N; Lipscomb, Mary F; Gorstein, Fred; Wilkinson, David; Sanfilippo, Fred
2017-01-01
The 2016 Association of Pathology Chairs annual meeting featured a discussion group of Association of Pathology Chairs senior fellows (former chairs of academic departments of pathology who have remained active in Association of Pathology Chairs) that focused on how they decided to transition from the chair, how they prepared for such transition, and what they did after the transition. At the 2017 annual meeting, the senior fellows (encompassing 481 years of chair service) discussed lessons they learned from service as chair. These lessons included preparation for the chairship, what they would have done differently as chair, critical factors for success as chair, factors associated with failures, stress reduction techniques for themselves and for their faculty and staff, mechanisms for dealing with and avoiding problems, and the satisfaction they derived from their service as chair. It is reasonable to assume that these lessons may be representative of those learned by chairs of other specialties as well as by higher-level academic administrators such as deans, vice presidents, and chief executive officers. Although the environment for serving as a department chair has been changing dramatically, many of the lessons learned by former chairs are still valuable for current chairs of any length of tenure.
NASA Astrophysics Data System (ADS)
Ellis, T. D.; TeBockhorst, D.
2013-12-01
Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.
Online Conferencing: Lessons Learned.
ERIC Educational Resources Information Center
Green, Lyndsay
This guide summarizes lessons learned from the author's experience of organizing and moderating five non-pedagogical online conferences that use World Wide Web-based conferencing software, whether synchronous or asynchronous. Seven sections cover the following topics: (1) the pros and cons of online conferencing; (2) setting objectives; (3)…
The Virginia Generalist Initiative: Lessons Learned in a Statewide Consortium.
ERIC Educational Resources Information Center
Morse, R. Michael; Plungas, Gay S.; Duke, Debra; Rollins, Lisa K.; Barnes, H. Verdain; Brinson, Betsy K.; Martindale, James R.; Marsland, David W.
1999-01-01
To increase supply of generalist physicians, three state-supported Virginia medical schools formed a partnership with governmental stakeholders in the Generalist Physician Initiative. Lessons learned concerning stakeholder participation in planning, shared philosophical commitment, support for risk-taking, attitudes toward change, and trust are…
MINE WASTE TECHNOLOGY PROGRAM: RECENT RESULTS: LESSONS LEARNED AND FUTURE OPPORTUNITIES
In the EPA sponsored AML workshop, a number of Mine Waste Technology Program (MWTP) projects will be presented in order to highlight the most successful technology demonstrations. Recent results, lesson learned and future opportunities will be presented. The MWTP projects includ...
Research Administration: Lessons Learned.
ERIC Educational Resources Information Center
Dummer, George H.
1995-01-01
The ways in which accountability issues have affected federal-university relationships, particularly in the area of academic research, are examined. Lessons university administrators have learned since issuance of Office of Management and Budget Circular A-21 in 1958, Congressional hearings on the operations of the National Institutes of Health…
Two Approaches to Distance Education: Lessons Learned.
ERIC Educational Resources Information Center
Sedlak, Robert A.; Cartwright, G. Phillip
1997-01-01
Outlines lessons learned by the University of Wisconsin-Stout in implementing two distance education programs, a technology program using interactive television and a hospitality program using Lotus Notes to deliver courses. Topics discussed include program concept vs. technology as stimulus for innovation, program planning/administration,…
Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned
NASA Technical Reports Server (NTRS)
Housch, Helen
2008-01-01
This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?
Whitmore, Corrie B; Sarche, Michelle; Ferron, Cathy; Moritsugu, John; Sanchez, Jenae G
2018-05-16
Authors in this Special Issue of the Infant Mental Health Journal shared the work of the first three cohorts of Tribal Maternal, Infant, and Early Childhood Home Visiting (MIECHV) grantees funded by the Administration for Children and Families. Since 2010, Tribal MIECHV grantees have served families and children prenatally to kindergarten entry in American Indian and Alaska Native (AI/AN) communities across the lower 48 United States and Alaska. Articles highlighted challenges and opportunities that arose as grantees adapted, enhanced, implemented, and evaluated their home-visiting models. This article summarizes nine lessons learned across the articles in this Special Issue. Lessons learned address the importance of strengths-based approaches, relationship-building, tribal community stakeholder involvement, capacity-building, alignment of resources and expectations, tribal values, adaptation to increase cultural and contextual attunement, indigenous ways of knowing, community voice, and sustainability. Next steps in Tribal MIECHV are discussed in light of these lessons learned. © 2018 Michigan Association for Infant Mental Health.
The role of failure/problems in engineering: A commentary of failures experienced - lessons learned
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1992-01-01
The written version of a series of seminars given to several aerospace companies and three NASA centers are presented. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been mission technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhanced philosophy. Fourteen principles are addressed with problems experienced and are used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM).
Lessons learned in the development of the STOL intelligent tutoring system
NASA Technical Reports Server (NTRS)
Seamster, Thomas; Baker, Clifford; Ames, Troy
1991-01-01
Lessons learned during the development of the NASA Systems Test and Operations Language (STOL) Intelligent Tutoring System (ITS), being developed at NASA Goddard Space Flight Center are presented. The purpose of the intelligent tutor is to train STOL users by adapting tutoring based on inferred student strengths and weaknesses. This system has been under development for over one year and numerous lessons learned have emerged. These observations are presented in three sections, as follows. The first section addresses the methodology employed in the development of the STOL ITS and briefly presents the ITS architecture. The second presents lessons learned, in the areas of: intelligent tutor development; documentation and reporting; cost and schedule control; and tools and shells effectiveness. The third section presents recommendations which may be considered by other ITS developers, addressing: access, use and selection of subject matter experts; steps involved in ITS development; use of ITS interface design prototypes as part of knowledge engineering; and tools and shells effectiveness.
Webb, Travis P; Merkley, Taylor R
2011-03-01
The Accreditation Council for Graduate Medical Education (ACGME) Learning Portfolio is recommended as a tool to develop and document reflective, practice-based learning and improvement. There is no consensus regarding the appropriate content of a learning portfolio in medical education. Studying lessons selected for inclusion in their learning portfolios by surgical trainees could help identify useful subject matter for this purpose. Each month, all residents in our surgery residency program submit entries into their individual Surgical Learning and Instructional Portfolio (SLIP). The SLIP entries from July 2008 to 2009 (n = 420) were deidentified and randomized using a random number generator. We conducted a thematic content analysis of 50 random portfolio entries to identify lessons learned. Two independent raters analyzed the "3 lessons learned" portion of the portfolio entries and identified themes and subthemes using the constant comparative method used in grounded theory. The collaborative coding process resulted in theme saturation after the identification of 7 themes and their subthemes. Themes in decreasing order of frequency included complications, disease epidemiology, disease presentation, surgical management of disease, medical management of disease, operative techniques, and pathophysiology. Junior residents chose to focus on a broad array of foundational topics including disease presentation, epidemiology, and overall management of diseases, whereas postgraduate year-4 (PGY-4) and PGY-5 residents most frequently chose to focus on complications as learning points. Lessons learned reflect perceived needs of the trainees based on training year. When given a template to follow, junior and senior residents choose to reflect on different subject matter to meet their learning goals.
Preparing for Change: Strategic Lessons from the Space Coast and Its Largest Employer
NASA Technical Reports Server (NTRS)
Anania, Tracy L.
2011-01-01
This slide presentation reviews some of the impact that the changes that NASA has planned will have on the area surrounding the Kennedy Space Center. The presenter discusses the potential changes with the retirement of the space shuttle and some of the adaptations that companies in the region can make in response.
Deterrence & Influence in Counterterrorism. A Component in the War on al Qaeda
2002-02-01
13, 2001). Summary xv There is a lesson to learn from this for he who wishes to learn . . . . The Soviet Union entered Afghanistan in the last week of...subject needs urgent attention. Placing at Risk What the Terrorists Hold Dear: Convincing Regional Allies to Act One of the lessons learned from...formal reviews of the draft manuscript by Jerrold Green and Ambassador L. Paul Bremer. Although we learned a great deal from interactions with our
Government Accountability Office Bid Protests in Air Force Source Selections: Evidence and Options
2012-01-01
chapter, we focus on the sustained protests and lessons that can be learned from them. Th is chapter does not off er complete case histories of these...resulting research project, “Air Force Source Selections: Lessons Learned and Best Practices,” which was conducted within the Resource Management...Program of PAF in fiscal year (FY) 2009. This project studied the Air Force’s recent experience with bid protests before GAO and documented lessons that
Music: Comprehensive Musicianship Program. Grade 6.
ERIC Educational Resources Information Center
Burton, Leon H., Ed.; Thomson, William, Ed.
Forty-nine music lessons for use in sixth grade classes are presented. A number of these lessons feature songs and musical instruments from or about Hawaii, and lessons stress learning about tempos, accents, meters, notes, and rhythm patterns. The lessons introduce the history of instruments such as the ukulele, recorder, rhythm instruments, and…
ERIC Educational Resources Information Center
Al-Kuwari, Najat Saad
2007-01-01
"Animals" is a three-part lesson plan for young learners with a zoo animal theme. The first lesson is full of activities to describe animals, with Simon Says, guessing games, and learning stations. The second lesson is about desert animals, but other types of animals could be chosen depending on student interest. This lesson teaches…
Inductive & Deductive Science Thinking: A Model for Lesson Development
ERIC Educational Resources Information Center
Bilica, Kim; Flores, Margaret
2009-01-01
Middle school students make great learning gains when they participate in lessons that invite them to practice their developing scientific reasoning skills; however, designing developmentally appropriate, clear, and structured lessons about scientific thinking and reasoning can be difficult. This challenge can be met through lessons that teach…
ERIC Educational Resources Information Center
Schumm, Walter R.; Webb, Farrell J.; Castelo, Carlos S.; Akagi, Cynthia G.; Jensen, Erick J.; Ditto, Rose M.; Spencer Carver, Elaine; Brown, Beverlyn F.
2002-01-01
Discusses the use of historical events as examples for teaching college level statistics courses. Focuses on examples of the space shuttle Challenger, Pearl Harbor (Hawaii), and the RMS Titanic. Finds real life examples can bridge a link to short term experiential learning and provide a means for long term understanding of statistics. (KDR)
SOCAP: Lessons learned in applying SIPE-2 to the military operations crisis action planning domain
NASA Technical Reports Server (NTRS)
Desimone, Roberto
1992-01-01
This report describes work funded under the DARPA Planning and Scheduling Initiative that led to the development of SOCAP (System for Operations Crisis Action Planning). In particular, it describes lessons learned in applying SIPE-2, the underlying AI planning technology within SOCAP, to the domain of military operations deliberate and crisis action planning. SOCAP was demonstrated at the U.S. Central Command and at the Pentagon in early 1992. A more detailed report about the lessons learned is currently being prepared. This report was presented during one of the panel discussions on 'The Relevance of Scheduling to AI Planning Systems.'
ERIC Educational Resources Information Center
Libby, Amanda
This document presents eight lesson plans designed to teach self-determination and Arizona academic standards to students with disabilities in grades K-12. The lesson plans include: (1) an oral language lesson plan for students with learning disabilities in grades 1-2; (2) a reading acquisition lesson that teaches color words to students with…
Hunter-Killer Teams: Attacking Enemy Safe Havens
2010-01-01
previous practitioners through the venue of lessons learned passed on generationally. U.S. Army operations against the Southwest Indians, the Texas...much had been learned by the Office of Strategic Services (OSS) conducting guerrilla warfare activities. Prior to the Vietnam War, it was the...type formations throughout U.S. history to derive the advantages and disadvantages of their use, to capture key lessons learned about their
ERIC Educational Resources Information Center
Ciampa, Katia
2017-01-01
This single-site case study describes the outcomes and lessons learned from the implementation of a technology professional development initiative aimed at helping three special education teachers from an urban elementary school learn how to infuse technology in their content literacy instruction. Three types of qualitative data were collected:…
Lift-fan aircraft: Lessons learned-the pilot's perspective
NASA Technical Reports Server (NTRS)
Gerdes, Ronald M.
1993-01-01
This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.
[Looking back but facing ahead: implementing lessons learned from the 2nd Lebanon War].
Adini, Bruria; Laor, Danny; Lev, Boaz; Israeli, Avi
2010-07-01
The medical system utilizes a structured culture for learning lessons in order to improve the supply of services. Various tools are utilized to evaluate performance. The aim of the article is to describe the processes for learning lessons which were carried out following the Second Lebanon War and the major lessons that were identified and implemented. Three processes were performed: a process of learning Lessons of the heaLthcare system, initiated and led by the Supreme HeaLth Authority (SHA); After action review (AAR), initiated and led by the military Medical Corps and; at a later stage, a critique, initiated and led by the State Comptroller, that examined the performance of the medical system, as part of a critique on the preparedness of the home front. The following elements were defined as highly prioritized for improvement to elevate the preparedness for a future war: (1) deployment of unified clinics in conflict areas; (2) supply of medical services to the population in shelters; (3) deploying emergency medicine services, including the relationship between the Ministry of Health (MOH) and the Home Front Command (HFC); (4) defining the relationships between the MOH and HFC in deploying the community health services in emergencies; (5) protecting medical facilities and personal protection equipment for medical teams and; (6) treating acute stress reactions. The AAR, critique and learning lessons signify three different processes that can sometimes be contradictory. Nevertheless, it is possible to achieve organizational improvement white integrating between these three processes, as was displayed by the SHA.
Operational Philosophy Concerning Manned Spacecraft Cabin Leaks
NASA Technical Reports Server (NTRS)
DeSimpelaere, Edward
2011-01-01
The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a cabin leak occurring. The paper also offers a look at how different equipment configurations on future spacecraft impact the previously defined cabin leak operational philosophy and includes additional operational methods and considerations that result due to various configurations. The intent is to showcase these various considerations and highlight the variability they allow. The paper concludes with a selection of the author s personal observations from a spacecraft operator's point of view and recommendations with the goal of improving the design and operations of future spacecraft.
Lessons learned from public health campaigns and applied to anti-DWI norms development
DOT National Transportation Integrated Search
1995-05-01
The purpose of this study was to examine norms development in past public health campaigns to direct lessons learned from those efforts to future anti-DNN'l programming. Three campaigns were selected for a multiple case study. The anti-smoking, anti-...