Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
An investigation of pre-launch and in-flight STS range safety radio signal degradation and dropout
NASA Technical Reports Server (NTRS)
Mcdonald, Malcolm W.
1991-01-01
The range safety system (RSS) transmitters operate at a frequency of 416.500 MHz. The transmitting antennas transmit left circularly polarized waves, and the shuttle range safety system (SRSS) receiving antennas onboard the shuttle vehicle receive left circular polarization. Preliminary explanations are proposed for many of the observed fluctuations in signal levels. It is recommended that experiments and further investigation be performed to test the validity of certain of these explanations.
2006 NASA Range Safety Annual Report
NASA Technical Reports Server (NTRS)
TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda
2007-01-01
Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.
NASA Technical Reports Server (NTRS)
Paschal, L. E.
1977-01-01
Three 18 AH Li-CF batteries with a polypropylene separator and using dimethyl sulfite in Li as F6 for the electrolyte will be placed in each shuttle solid rocket booster for range safety and frustrum location aid. Mechanical vibration, acceleration, random and design vibration, and discharge evaluation tests are discussed.
Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan; Davis, Jerel; Glenn, Christopher
2011-01-01
For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.
Post-Challenger evaluation of space shuttle risk assessment and management
NASA Technical Reports Server (NTRS)
1988-01-01
As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.
Range safety signal propagation through the SRM exhaust plume of the space shuttle
NASA Technical Reports Server (NTRS)
Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.
1977-01-01
Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.
NASA Technical Reports Server (NTRS)
Pennington, D. F.; Man, T.; Persons, B.
1977-01-01
The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.
1981-03-01
overcome the shortcomings of this system. A phase III study develops the breakup model of the Space Shuttle clus’ter at various times into flight. The...2-1 ROCKET MODEL ..................................................... 2-5 COMBUSTION CHAMBER OPERATION ................................... 2-5...2-19 RESULTS .......................................................... 2-22 ROCKET MODEL
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
Simulation of Range Safety for the NASA Space Shuttle
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert
2005-01-01
This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.
NASA Technical Reports Server (NTRS)
Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert
2005-01-01
This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.
Workers inspect the range safety cable between the ET and SRBs
NASA Technical Reports Server (NTRS)
1999-01-01
Terry Kent (left), United Space Alliance, and James Silviano (right), NASA, inspect the range safety cable between the external tank and solid rocket boosters (SRB) on Space Shuttle Discovery. The cable, which relays a redundant emergency destruction signal between the SRBs in the unlikely event of a contingency, was damaged during close-out operations and is being replaced. Discovery's processing schedule leads to a target launch date of Dec. 6.
Internet Based Simulations of Debris Dispersion of Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.
Loads and low frequency dynamics data base: Version 1.1 November 8, 1985. [Space Shuttles
NASA Technical Reports Server (NTRS)
Garba, J. A. (Editor)
1985-01-01
Structural design data for the Shuttle are presented in the form of a data base. The data can be used by designers of Shuttle experiments to assure compliance with Shuttle safety and structural verification requirements. A glossary of Shuttle design terminology is given, and the principal safety requirements of Shuttle are summarized. The Shuttle design data are given in the form of load factors.
NASA Range Safety Annual Report 2007
NASA Technical Reports Server (NTRS)
Dumont, Alan G.
2007-01-01
As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1992-01-01
The results of the Panel's activities are presented in a set of findings and recommendations. Highlighted here are both improvements in NASA's safety and reliability activities and specific areas where additional gains might be realized. One area of particular concern involves the curtailment or elimination of Space Shuttle safety and reliability enhancements. Several findings and recommendations address this area of concern, reflecting the opinion that safety and reliability enhancements are essential to the continued successful operation of the Space Shuttle. It is recommended that a comprehensive and continuing program of safety and reliability improvements in all areas of Space Shuttle hardware/software be considered an inherent component of ongoing Space Shuttle operations.
NASA's post-Challenger safety program - Themes and thrusts
NASA Technical Reports Server (NTRS)
Rodney, G. A.
1988-01-01
The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.
Ablative performance of uncoated silicone-modified and shuttle baseline reinforced carbon composites
NASA Technical Reports Server (NTRS)
Dicus, D. L.; Hopko, R. N.; Brown, R. D.
1976-01-01
The relative ablative performance of uncoated silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline RCC substrates was investigated. The test specimens were 13 plies (5.3 to 5.8 millimeters) thick and had a 25-millimeter-diameter test face. Prior to arc tunnel testing, all specimens were subjected to a heat treatment simulating the RCC coating process. During arc tunnel testing, the specimens were exposed to cold wall heating rates of 178 to 529 kilowatts/sq m and stagnation pressures ranging from 0.015 to 0.046 atmosphere at Mach 4.6 in air, with and without preheating in nitrogen. The results show that the ablative performance of uncoated silicone-modified RCC substrates is significantly superior to that of uncoated shuttle baseline RCC substrates over the range of heating conditions used. These results indicate that the silicone-modified RCC substrate would yield a substantially greater safety margin in the event of complete coating loss on the shuttle orbiter.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the nuclear safety aspects (design and operational considerations) in the transport of nuclear payloads to and from earth orbit by the space shuttle is presented. Three representative nuclear payloads used in the study were: (1) the zirconium hydride reactor Brayton power module, (2) the large isotope Brayton power system and (3) small isotopic heat sources which can be a part of an upper stage or part of a logistics module. Reference data on the space shuttle and nuclear payloads are presented in an appendix. Safety oriented design and operational requirements were identified to integrate the nuclear payloads in the shuttle mission. Contingency situations were discussed and operations and design features were recommended to minimize the nuclear hazards. The study indicates the safety, design and operational advantages in the use of a nuclear payload transfer module. The transfer module can provide many of the safety related support functions (blast and fragmentation protection, environmental control, payload ejection) minimizing the direct impact on the shuttle.
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
NASA Technical Reports Server (NTRS)
1986-01-01
The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.
In-space propellant logistics and safety
NASA Technical Reports Server (NTRS)
1971-01-01
Preliminary guidelines for the basic delivery system and safety aspects of the space shuttle configuration in connection with the transport, handling, storage, and transfer of propellants are developed. It is shown that propellants are the major shuttle space load and influence shuttle traffic modeling significantly.
1981-03-01
1210 59188E.03 1.661E.08 l.b60E.ol 5o344E*11 1.070 .1801 BEGIN SONIC FLOW . 1307 5.2301.03 l.612E.08 1.724E.01 5.2271.11 1.066 .1912 ,1387 b.218E.03...1.625E+11 .607 90201 * 0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400 .0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593 *0600 .0870 6.635E+03 3.787E...03 39998E+07 8.715E+01 1.625E+11 .607 90201 * 0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400 .0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593
NASA Technical Reports Server (NTRS)
Ralph, John
1992-01-01
Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.
NASA Technical Reports Server (NTRS)
Henderson, Edward
2001-01-01
The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.
NASA Technical Reports Server (NTRS)
Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben
2012-01-01
The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.
NASA Technical Reports Server (NTRS)
1986-01-01
The status of the implementation of the recommendations of the Presidential Commission on the Space Shuttle Challenger Accident is reported. The implementation of recommendations in the following areas is detailed: (1) solid rocket motor design; (2) shuttle management structure, including the shuttle safety panel and astronauts in management; (3) critical item review and hazard analysis; (4) safety organization; (5) improved communication; (6) landing safety; (7) launch abort and crew escape; (8) flight rate; and (9) maintenance safeguards. Supporting memoranda and communications from NASA are appended.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 David Brown chats with the Closeout Crew during final preparations of his launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Laurel Clark waves to a camera out of view during final preparations of her launch and entry suit in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla gets help with her launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. The hatch is seen in the background right. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Behind him is Pilot William "Willie" McCool. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William "Willie" McCool (center) gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. In the foreground, left, is Mission Specialist David Brown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
NASA Technical Reports Server (NTRS)
1972-01-01
Safety requirements and guidelines are listed for the sortie module, upper stage vehicle, and space station for the earth orbit operations of the space shuttle program. The requirements and guidelines are for vehicle design, safety devices, warning devices, operational procedures, and residual hazards.
Safety, reliability, maintainability and quality provisions for the Space Shuttle program
NASA Technical Reports Server (NTRS)
1990-01-01
This publication establishes common safety, reliability, maintainability and quality provisions for the Space Shuttle Program. NASA Centers shall use this publication both as the basis for negotiating safety, reliability, maintainability and quality requirements with Shuttle Program contractors and as the guideline for conduct of program safety, reliability, maintainability and quality activities at the Centers. Centers shall assure that applicable provisions of the publication are imposed in lower tier contracts. Centers shall give due regard to other Space Shuttle Program planning in order to provide an integrated total Space Shuttle Program activity. In the implementation of safety, reliability, maintainability and quality activities, consideration shall be given to hardware complexity, supplier experience, state of hardware development, unit cost, and hardware use. The approach and methods for contractor implementation shall be described in the contractors safety, reliability, maintainability and quality plans. This publication incorporates provisions of NASA documents: NHB 1700.1 'NASA Safety Manual, Vol. 1'; NHB 5300.4(IA), 'Reliability Program Provisions for Aeronautical and Space System Contractors'; and NHB 5300.4(1B), 'Quality Program Provisions for Aeronautical and Space System Contractors'. It has been tailored from the above documents based on experience in other programs. It is intended that this publication be reviewed and revised, as appropriate, to reflect new experience and to assure continuing viability.
Aerospace Safety Advisory Panel Annual Report February 1996
NASA Technical Reports Server (NTRS)
1996-01-01
The Aerospace Safety Advisory Panel (ASAP) presents its annual report covering February through December 1995. Findings and recommendations include the areas of the Space Shuttle Program, the International Space Station, Aeronautics, and Other. Information to support these findings is included in this report. NASA's response to last year's annual report is included as an appendix. With regards to the Space Shuttle Program, the panel addresses the potential for safety problems due to organizational changes by increasing its scrutiny of Space Shuttle operations and planning.
CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis
NASA Astrophysics Data System (ADS)
Fang, Xianjie; Cacherat, Bastien; Morandi, Bill
2017-11-01
The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.
Space shuttle orbit maneuvering engine reusable thrust chamber
NASA Technical Reports Server (NTRS)
1972-01-01
A data dump is presented containing space shuttle orbiter maneuvering engine performance, weight, envelope, and interface pressure requirements for candidate propellant combinations (NTO/MMH, NTO50-50, LOX/MMH, LOX/50-50, LOX/N2H4, LOX/C3H8, and LOX/RP-1) and cooling concepts (regenerative and dump/film). These data are presented parametrically for the thrust, chamber pressure, nozzle expansion ratio, and engine mixture ratio ranges of interest. Also included is information describing sensitivity to system changes; reliability, maintainability and safety; development programs and associated critical technology areas; engine cost comparisons during development and operation; and ecological effects.
NASA Technical Reports Server (NTRS)
1975-01-01
The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.
Shuttle data book: SRM fragment velocity model. Presented to the SRB Fragment Model Review Panel
NASA Technical Reports Server (NTRS)
1989-01-01
This study was undertaken to determine the velocity of fragments generated by the range safety destruction (RSD) or random failure of a Space Transportation System (STS) Solid Rocket Motor (SRM). The specific requirement was to provide a fragment model for use in those Galileo and Ulysses RTG safety analyses concerned with possible fragment impact on the spacecraft radioisotope thermoelectric generators (RTGS). Good agreement was obtained between predictions and observations for fragment velocity, velocity distributions, azimuths, and rotation rates. Based on this agreement with the entire data base, the model was used to predict the probable fragment environments which would occur in the event of an STS-SRM RSD or randon failure at 10, 74, 84 and 110 seconds. The results of these predictions are the basis of the fragment environments presented in the Shuttle Data Book (NSTS-08116). The information presented here is in viewgraph form.
Safety in earth orbit study. Volume 1: Technical summary
NASA Technical Reports Server (NTRS)
1972-01-01
A summary of the technical results and conclusions is presented of the hazards analyses of earth orbital operations in conjunction with the space shuttle program. The space shuttle orbiter and a variety of manned and unmanned payloads delivered to orbit by the shuttle are considered. The specific safety areas examined are hazardous payloads, docking, on-orbit survivability, tumbling spacecraft, and escape and rescue.
2003-10-15
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right) presents a plaque to Conrad Nagel who organized the Spaceport Super Safety and Health Day at KSC, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce. Nagel is chief of the Shuttle Project Office, Shuttle Processing.
NASA Technical Reports Server (NTRS)
1975-01-01
An abbreviated version of the conclusions dealing with the safety implications of using liquid fluorinated oxidizers on space shuttle launched spacecraft was presented. The complete version was presented in volume 1.
Challenges of assuring crew safety in space shuttle missions with international cargoes.
Vongsouthy, C; Stenger-Nguyen, P A; Nguyen, H V; Nguyen, P H; Huang, M C; Alexander, R G
2004-02-01
The top priority in America's manned space flight program is the assurance of crew and vehicle safety. This priority gained greater focus during and after the Space Shuttle return-to-flight mission (STS-26). One of the interesting challenges has been to assure crew safety and adequate protection of the Space Shuttle, as a national resource, from increasingly diverse cargoes and operations. The control of hazards associated with the deployment of complex payloads and cargoes has involved many international participants. These challenges are examined in some detail along with examples of how crew safety has evolved in the manned space program and how the international partners have addressed various scenarios involving control and mitigation of potential hazards to crew and vehicle safety. c2003 Published by Elsevier Ltd.
Plume interference with space shuttle range safety signals
NASA Technical Reports Server (NTRS)
Boynton, F. P.; Rajaseknar, P. S.
1979-01-01
The computational procedure for signal propagation in the presence of an exhaust plume is presented. Comparisons with well-known analytic diffraction solutions indicate that accuracy suffers when mesh spacing is inadequate to resolve the first unobstructed Fresnel zone at the plume edge. Revisions to the procedure to improve its accuracy without requiring very large arrays are discussed. Comparisons to field measurements during a shuttle solid rocket motor (SRM) test firing suggest that the plume is sharper edged than one would expect on the basis of time averaged electron density calculations. The effects, both of revisions to the computational procedure and of allowing for a sharper plume edge, are to raise the signal level near tail aspect. The attenuation levels then predicted are still high enough to be of concern near SRM burnout for northerly launches of the space shuttle.
NASA Astrophysics Data System (ADS)
Robertson, Donald F.
1989-12-01
The use of liquid rocket boosters (LRBs) for the Space Shuttle is proposed. The advantages LRBs provide are improved flight safety due to the use of four engines instead of two and less environmental pollution than solid rocket boosters because LRBs utilize clean-burning fuels. The LRBs also permit very high launch rates and increased safety in assembly and mating of the Shuttle. Concerns about LRBs such as costs, diameter, support capability, and water recovery are examined.
NASA Technical Reports Server (NTRS)
1976-01-01
Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2002-01-01
This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the Space Shuttle certification criteria closely. Based on this analysis, NASA can determine the need to receritfy the vehicles and to incorporate more stringent inspections throughout the process to minimize launch schedule impact. A highly skilled and experience workforce will be increasingly important for safe and reliable operations as the Space Shuttle vehicles and infrastructure continue to age.
2003-03-26
KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
Willams, M. C.
1985-01-01
Assuring personnel and equipment are fully protected during the Space Shuttle launch and landing operations has been a primary concern of NASA and its associated contractors since the inception of the program. A key factor in support of this policy has been the area access safety training requirements for badging of employees assigned to work on Space Shuttle Launch and Facilities. This requirement was targeted for possible cost savings and the transition of physical on-site walkdowns to the use of television tapes has realized program cost savings while continuing to fully satisfy the area access safety training requirements.
NASA Technical Reports Server (NTRS)
Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert
1990-01-01
A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.
Analysis of microgravity space experiments Space Shuttle programmatic safety requirements
NASA Technical Reports Server (NTRS)
Terlep, Judith A.
1996-01-01
This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.
Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection
NASA Technical Reports Server (NTRS)
Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.
2009-01-01
The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.
Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.;
1996-01-01
At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.
Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan D.
2011-01-01
Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.
1999-11-09
KENNEDY SPACE CENTER, FLA. -- Rodney Wilson, with United Space Alliance, inspects the range safety cable between the external tank and solid rocket boosters (SRB) on Space Shuttle Discovery. The cable, which relays a redundant emergency destruction signal between the SRBs in the unlikely event of a contingency, was damaged during close-out operations and is being replaced. Discovery's processing schedule leads to a target launch date of Dec. 6
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2001-01-01
This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.
Annual Report by Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1980-01-01
Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.
Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2004-01-01
The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.
Space Shuttle GN and C Development History and Evolution
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don
2011-01-01
Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.
1999-11-09
KENNEDY SPACE CENTER, FLA. -- Terry Kent (left), United Space Alliance, and James Silviano (right), NASA, inspect the range safety cable between the external tank and solid rocket boosters (SRB) on Space Shuttle Discovery. The cable, which relays a redundant emergency destruction signal between the SRBs in the unlikely event of a contingency, was damaged during close-out operations and is being replaced. Discovery's processing schedule leads to a target launch date of Dec. 6
Evaluation philosophy for shuttle launched payloads
NASA Technical Reports Server (NTRS)
Heuser, R. E.
1975-01-01
Some approaches to space-shuttle payload evaluation are examined. Issues considered include subsystem replacement in low-cost modular spacecraft (LCMS), validation of spacelab payloads, the use of standard components in shuttle-era spacecraft, effects of shuttle-induced environments on payloads, and crew safety. The LCMS is described, and goals are discussed for its evaluation program. Concepts regarding how the evaluation should proceed are considered.
NASA Technical Reports Server (NTRS)
1975-01-01
The safety implications of space shuttle launched spacecraft using liquid flourine as the oxidizer for spacecraft propulsion were investigated. Feasibility of safe operation was investigated and the equipment and procedures necessary to maximize the chance of success determined. Hazards to the shuttle were found to be similar in kind if not degree to those encountered in use of nitrogen tetroxide (also toxic oxidizer). It was concluded that residual risks from spacecraft using fluorine and nitrogen tetroxide during ground and flight handling may be reduced by isolation of the oxidizer to only its tank. Operation of planetary spacecraft propulsion in the vicinity of the shuttle in earth orbit is not required. The primary hazard to personnel was identified as propellant loading operations, which should be accomplished in an area reasonably remote from personnel and facilities concentrations. Clearing the pad during spacecraft mating with the shuttle orbiter is recommended.
Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization
NASA Technical Reports Server (NTRS)
1974-01-01
An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.
Report of the Shuttle Processing Review Team
NASA Technical Reports Server (NTRS)
1993-01-01
The intent of this report is to summarize the assessment of the shuttle processing operations at the Kennedy Space Center (KSC) as requested by the NASA Administrator. He requested a team reaffirmation that safety is the number one priority and review operations to ensure confidence in the shuttle processing procedures at KSC.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Guidelines and general requirements applicable to the development of instrument flight hardware intended for use on the GSFC Shuttle Scientific Payloads Program are given. Criteria, guidelines, and an organized approach to specifying the appropriate level of requirements for each instrument in order to permit its development at minimum cost while still assuring crew safety, are included. It is recognized that the instruments for these payloads will encompass wide ranges of complexity, cost, development risk, and safety hazards. The flexibility required to adapt the controls, documentation, and verification requirements in accord with the specific instrument is provided.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1984-01-01
An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.
NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative
NASA Technical Reports Server (NTRS)
Glover, Steve E.; McCool, Alex (Technical Monitor)
2002-01-01
The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.
1999-11-09
KENNEDY SPACE CENTER, FLA. -- James Silviano (bottom), NASA, examines the range safety cable between the external tank and solid rocket boosters (SRB) on Space Shuttle Discovery, while Terry Kent (above), United Space Alliance, looks on. The cable, which relays a redundant emergency destruction signal between the SRBs in the unlikely event of a contingency, was damaged during close-out operations and is being replaced. Discovery's processing schedule leads to a target launch date of Dec. 6
Maintaining space shuttle safety within an environment of change
NASA Astrophysics Data System (ADS)
Greenfield, Michael A.
1999-09-01
In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.
Sietzen, Frank
2002-01-01
NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.
The Space Shuttle Columbia Preservation Project - The Debris Loan Process
NASA Technical Reports Server (NTRS)
Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan
2005-01-01
The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster
NASA Technical Reports Server (NTRS)
Craft, Joe; Ess, Robert; Sauvageau, Don
2003-01-01
The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.
2010-01-01
High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.
A Hazardous Gas Detection System for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L. - Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.
1998-01-01
The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrogation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.
A Hazardous Gas Detection System for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.
1998-01-01
The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being, developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrocation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being, applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Changing the S and MA [Safety and Mission Assurance] Paradigm
NASA Technical Reports Server (NTRS)
Malone, Roy W., Jr.
2010-01-01
Objectives: 1) Optimize S&MA organization to best facilitate Shuttle transition in 2010, successfully support Ares developmental responsibilities, and minimize the impacts of the gap between last Shuttle flight and start of Ares V Project. 2) Improve leveraging of critical skills and experience between Shuttle and Ares. 3) Split technical and supervisory functions to facilitate technical penetration. 4) Create Chief Safety and Mission Assurance Officer (CSO) stand-alone position for successfully implementation of S&MA Technical Authority. 5) Minimize disruption to customers. 6) Provide early involvement of S&MA leadership team and frequent/open communications with S&MA team members and steak-holders.
NASA Technical Reports Server (NTRS)
Helms, William R.; Starr, Stanley O.
1997-01-01
Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.
Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)
2001-01-01
A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options. Performance and configuration comparison illustrations and tables will be included to provide a comprehensive survey for the paper.
Aerospace safety advisory panel
NASA Technical Reports Server (NTRS)
1995-01-01
The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).
Investigation of structural factors of safety for the space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.
14 CFR 1214.608 - Safety requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...
14 CFR 1214.608 - Safety requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...
Implementation of Programmatic Quality and the Impact on Safety
NASA Astrophysics Data System (ADS)
Huls, Dale T.; Meehan, Kevin M.
2005-12-01
The implementation of an inadequate programmatic quality assurance discipline has the potential to adversely affect safety and mission success. This is best demonstrated in the lessons provided by the Apollo 1 Apollo 13 Challenger, and Columbia accidents; NASA Safety and Mission Assurance (S&MA) benchmarking exchanges; and conclusions reached by the Shuttle Return-to-Flight Task Group established following the Columbia Shuttle accident. Examples from the ISS Program demonstrate continuing issues with programmatic quality. Failure to adequately address programmatic quality assurance issues has a real potential to lead to continued inefficiency, increases in program costs, and additional catastrophic accidents.
NASA Technical Reports Server (NTRS)
Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William
1999-01-01
Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.
14 CFR § 1214.608 - Safety requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aboard Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using...
Range safety signal attenuation by the Space Shuttle main engine exhaust plumes
NASA Technical Reports Server (NTRS)
Pearce, B. E.
1983-01-01
An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.
NASA Technical Reports Server (NTRS)
1989-01-01
An assessment of quantitative methods and measures for measuring launch commit criteria (LCC) performance measurement trends is made. A statistical performance trending analysis pilot study was processed and compared to STS-26 mission data. This study used four selected shuttle measurement types (solid rocket booster, external tank, space shuttle main engine, and range safety switch safe and arm device) from the five missions prior to mission 51-L. After obtaining raw data coordinates, each set of measurements was processed to obtain statistical confidence bounds and mean data profiles for each of the selected measurement types. STS-26 measurements were compared to the statistical data base profiles to verify the statistical capability of assessing occurrences of data trend anomalies and abnormal time-varying operational conditions associated with data amplitude and phase shifts.
Analysis of Waves in Space Plasma (WISP) near field simulation and experiment
NASA Technical Reports Server (NTRS)
Richie, James E.
1992-01-01
The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.
The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve
2010-01-01
This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
2003-03-26
KENNEDY SPACE CENTER, FLA. - Steve Altemus, shuttle test director at KSC, provides expert information to the Columbia Accident Investigation Board. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Steve Altemus, shuttle test director at KSC, provides expert information to the Columbia Accident Investigation Board. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
Space Shuttle Program Legacy Report
NASA Technical Reports Server (NTRS)
Johnson, Scott
2012-01-01
Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.
A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.
2003-01-01
The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.
Advanced missions safety. Volume 2: Technical discussion, Part 2: Experiment safety, guidelines
NASA Technical Reports Server (NTRS)
Hinton, M. G., Jr.
1972-01-01
A technical analysis of a portion of the advanced missions safety study is presented. The potential hazards introduced when experimental equipment is carried aboard the Earth Orbit Shuttle are identified. Safety guidelines and requirements for eliminating or reducing these hazards are recommended.
NASA Technical Reports Server (NTRS)
1976-01-01
Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.
Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh
2006-01-01
Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Achieving the Proper Balance between Crew & Public Safety
NASA Astrophysics Data System (ADS)
Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.
2012-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)
NASA Technical Reports Server (NTRS)
Duarte, Alberto
2007-01-01
Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a difference for the safety of the Space Shuttle Vehicle, its crew, and personnel. Because of the MSERP's valuable contribution to the assessment of safety risk for the SSP, this paper also proposes an enhanced Panel concept that takes this successful partnership concept to a higher level of 'true partnership'. The proposed panel is aimed to be responsible for the review and assessment of all risk relative to Safety for new and future aerospace and related programs.
14 CFR 1214.608 - Safety requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Safety requirements. 1214.608 Section 1214... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...
14 CFR 1214.608 - Safety requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Safety requirements. 1214.608 Section 1214... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...
Code of Federal Regulations, 2011 CFR
2011-01-01
... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...
Code of Federal Regulations, 2013 CFR
2013-01-01
... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...
Code of Federal Regulations, 2010 CFR
2010-01-01
... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...
Code of Federal Regulations, 2012 CFR
2012-01-01
... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...
Code of Federal Regulations, 2014 CFR
2014-01-01
... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...
NASA Technical Reports Server (NTRS)
Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.
2007-01-01
The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.
Use of System Safety Risk Assessments for the Space Shuttle Reusable Solid Rocket Motor (RSRM)
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.; McCool, Alex (Technical Monitor)
2001-01-01
This paper discusses the System Safety approach used to assess risk for the Space Shuttle Reusable Solid Rocket Motor (RSRM). Previous to the first RSRM flight in the fall of 1988, all systems were analyzed extensively to assure that hazards were identified, assessed and that the baseline risk was understood and appropriately communicated. Since the original RSRM baseline was established, Thiokol and NASA have implemented a number of initiatives that have further improved the RSRM. The robust design, completion of rigorous testing and flight success of the RSRM has resulted in a wise reluctance to make changes. One of the primary assessments required to accompany the documentation of each proposed change and aid in the decision making process is a risk assessment. Documentation supporting proposed changes, including the risk assessments from System Safety, are reviewed and assessed by Thiokol and NASA technical management. After thorough consideration, approved changes are implemented adding improvements to and reducing risk of the Space Shuttle RSRM.
Conceptual design of liquid droplet radiator shuttle-attached experiment
NASA Technical Reports Server (NTRS)
Pfeiffer, Shlomo L.
1989-01-01
The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew heads for the Astrovan and a ride to Launch Pad 39A for liftoff. From left to right are Payload Commander Michael Anderson, Mission Specialist David Brown, Payload Specialist Ilan Ramon, Mission Specialists Laurel Clark and Kalpana Chawla, Mission Commandaer Rick Husband and Pilot William "Willie" McCool. Ramon is the first astronaut from Israel to fly on a Shuttle. The 16-day mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST. [Photo courtesy of Scott Andrews
Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.
Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?
NASA Technical Reports Server (NTRS)
2005-01-01
Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Rosati, Paul; Silvestri, Ray; Stahl, Ben; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. Historical examples and lessons learned from both the Space Shuttle and Constellation Programs will be presented. Using these examples as context, the paper will discuss some operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the FAA and Air Force organizations that oversee public safety will also be summarized. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
NASA Technical Reports Server (NTRS)
1972-01-01
A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.
NASA's Advanced solid rocket motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1993-01-01
The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.
Structural Safety of a Hubble Space Telescope Science Instrument
NASA Technical Reports Server (NTRS)
Lou, M. C.; Brent, D. N.
1993-01-01
This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson is happy to being suiting up for launch on mission STS-107. The mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
Modeling and Simulation of Shuttle Launch and Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (foreground) cheers over the successful liftoff of Space Shuttle Discovery, watching it rocket through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. At far left is Stephanie Stilson, NASA flow director in the Process Integration Branch of the Shuttle Processing Directorate, who began conducting Discovery's processing operations in December 2000. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve J.
2007-01-01
Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) and Center Director Jim Kennedy congratulate the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, the launch team stands to view the liftoff of Space Shuttle Discovery on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Workers in Firing Room 4 of the Launch Control Center take advantage of the view as Space Shuttle Discovery lifts off on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) congratulates the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. At far right is Center Director Jim Kennedy. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1986-01-01
NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.
STS-99 Mission Specialist Thiele and Commander Kregel DEPART from SLF
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
2000-02-02
STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
NASA Technical Reports Server (NTRS)
Picco, C. E.; Shavers, M. R.; Victor, J. M.; Duron, J. L.; Bowers, W. h.; Gillis, D. B.; VanBaalen, M.
2009-01-01
LIDAR systems that maintain a constant beam spot size on a retroreflector in order to increase the accuracy of bearing and ranging data must use a software controlled variable position lens. These systems periodically update the estimated range and set the position of the focusing lens accordingly. In order to precisely calculate the r NOHD for such a system, the software method for setting the variable position lens and gaussian laser propagation can be used to calculate the irradiance at any point given the range estimation. NASA s Space Shuttle LIDAR, called the Trajectory Control Sensor (TCS), uses this configuration. Analytical tools were developed using Excel and VBA to determine the radiant energy to the International Space Station (ISS) crewmembers eyes while viewing the shuttle on approach and departure. Various viewing scenarios are considered including the use of through-the-lens imaging optics and the window transmissivity at the TCS wavelength. The methodology incorporates the TCS system control logic, gaussian laser propagation, potential failure mode end states, and guidance from American National Standard for the Safe Use of Lasers (ANSI Z136.1-2007). This approach can be adapted for laser safety analyses of similar LIDAR systems.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Astrophysics Data System (ADS)
Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.
2005-12-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Technical Reports Server (NTRS)
Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso
2005-01-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
NASA Technical Reports Server (NTRS)
Crosby, Robert H.
1992-01-01
The Integrated Receiver/Decoder (IRD) currently used on the Space Shuttle was designed in the 1980 and prior time frame. Over the past 12 years, several parts have become obsolete or difficult to obtain. As directed by the Marshall Space Flight Center, a primary objective is to investigate updating the IRD design using the latest technology subsystems. To take advantage of experience with the current designs, an analysis of failures and a review of discrepancy reports, material review board actions, scrap, etc. are given. A recommended new design designated as the Advanced Receiver/Decoder (ARD) is presented. This design uses the latest technology components to simplify circuits, improve performance, reduce size and cost, and improve reliability. A self-test command is recommended that can improve and simplify operational procedures. Here, the new design is contrasted with the old. Possible simplification of the total Range Safety System is discussed, as is a single-step crypto technique that can improve and simplify operational procedures.
Overview of NASA's microgravity combustion science and fire safety program
NASA Technical Reports Server (NTRS)
Ross, Howard D.
1993-01-01
The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity -- in the form of long duration microgravity laboratories -- and need -- in the form of spacecraft fire safety and a variety of terrestrial applications -- to pursue fresh insight into the basic physics of combustion. Through microgravity, a new range of experiments can be performed since: (1) Buoyancy-induced flows are nearly eliminated; (2) Normally obscured forces and flows may be isolated; (3) Gravitational settling or sedimentation is nearly eliminated; and (4) Larger time or length scales in experiments become permissible.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Program manager Wayne Hale (far left), NASA Associate Administrator for Space Operations Mission Bill Gerstenmaier (third from left) and Center Director Jim Kennedy (far right) watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2003-03-26
KENNEDY SPACE CENTER, FLA. - Appearing before the Columbia Accident Investigation Board are (left Michael Rudolphi, deputy director of NASA's Stennis Space Center in Bay St. Louis, Miss., and (right) Steve Altemus, shuttle test director at KSC. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Appearing before the Columbia Accident Investigation Board are (left Michael Rudolphi, deputy director of NASA's Stennis Space Center in Bay St. Louis, Miss., and (right) Steve Altemus, shuttle test director at KSC. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
76 FR 22152 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Mine, MSHA I.D. No. 36-08850. Regulation Affected: 30 CFR 75.503 (Permissible electric face equipment... Mobile Bridge Conveyors, Dual Boom Roof Bolters, Continuous Miners, and Shuttle Cars. The petitioner... current to Roof Bolters and Shuttle Cars. The cables will have a 90 degree insulation rating. Additionally...
77 FR 812 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... (Permissible electric face equipment; maintenance). Modification Request: The petitioner requests a... its shuttle cars, roof bolters, and mobile roof supports at the Campbells Creek No. 7 Mine and Blue...-volt shuttle cars, 480-volt roof bolters, and 480-volt mobile roof supports will not exceed 900 feet...
Backstop: Shuttle Will Fly with Outstanding Waivers; New Oversight Eases Conflicts on Safety
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2005-01-01
he space shuttle Discovery is carrying some 300 waivers to technical specifications as it enters the home stretch of its planned return to flight next month. There were about 6,000 waivers in place when Columbia crashed. Shuttle managers say they are working to reduce the number of waivers remaining by fixing the problems they highlight, a change prompted by the Columbia Accident Investigation Board. In the wake of the accident, NASA has heeded the CAWS recommendation that waivers be the responsibility of an "independent technical authority" (ITA), rather than the shuttle program itself. To carry out the recommendation of the CAIB-which found an inherent conflict of interest in having the same managers make decisions about cost, schedule and safety-then-Administrator Sean O'Keefe designated the agency's chief engineer as the formal ITA. He is responsible for setting, maintaining and granting waivers across the agency. In mid-January, Fred Gregory, then O'Keefe's deputy and now his acting replacement, launched the ITA within NASA under Chief Engineer Rex Geveden, the former program manager on the Gravity Probe B experiment.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Members of the launch team in Firing Room 4 of the Launch Control Center watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Goldstein, H. W.; Grenda, R. N.
1977-01-01
The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided.
Aerospace Safety Advisory Panel Annual Report for 1999
NASA Technical Reports Server (NTRS)
Blomberg, Richard D.
2000-01-01
This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for the calendar year 1999.This was a year of notable achievements and significant frustrations. Both the Space Shuttle and International Space Station (ISS) programs were delayed.The Space Shuttle prudently postponed launches after the occurrence of a wiring short during ascent of the STS-93 mission. The ISS construction schedule slipped as a result of the Space Shuttle delays and problems the Russians experienced in readying the Service Module and its launch vehicle. Each of these setbacks was dealt with in a constructive way. The STS-93 short circuit led to detailed wiring inspections and repairs on all four orbiters as well as analysis of other key subsystems for similar types of hidden damage. The ISS launch delays afforded time for further testing, training, development, and contingency planning. The safety consciousness of the NASA and contractor workforces, from hands-on labor to top management, continues high. Nevertheless, workforce issues remain among the most serious safety concerns of the Panel. Cutbacks and reorganizations over the past several years have resulted in problems related to workforce size, critical skills, and the extent of on-the-job experience. These problems have the potential to impact safety as the Space Shuttle launch rate increases to meet the demands of the ISS and its other customers. As with last year's report, these work- force-related issues were considered of sufficient import to place them first in the material that follows. Some of the same issues of concern for the Space Shuttle and ISS arose in a review of the launch vehicle for the Terra mission that the Panel was asked by NASA to undertake. Other areas the Panel was requested to assess included the readiness of the Inertial Upper Stage for the deployment of the Chandra X-ray Observatory and the possible safety impact of electromagnetic effects on the Space Shuttle. The findings and recommendations in this report do not highlight any major, immediate issues that might compromise the safe pursuit of the various NASA programs. They do, however, cover concerns that the Panel believes should be addressed in the interest of maintaining NASA's excellent safety record.The Panel is pleased to note that remedial efforts for some of the findings raised are underway. Given appropriate funding and cooperative efforts among the Administration, the Congress and the various contractors, the Panel is convinced that safety problems can be avoided or solved resulting in lower risk for NASA's human space and aeronautics programs. Section II of this report contains specific findings and recommendations generated by Panel activities during the calendar year 1999. Section III presents more detailed information in support of these findings and recommendations. A current roster of Panel members, consultants, and staff is included as Appendix A. Appendix B contains NASA's response to the findings and recommendations from the 1998 annual report. It has been augmented this year to include brief explanations of why the Panel classified the NASA response as " open,""continuing," or "closed." Appendix C lists the fact-finding activities of the Panel in 1999.
NASA Technical Reports Server (NTRS)
Johnson, Teresa A.
2006-01-01
Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center employees hold up signs showing their commitment to safety after crossing the finish line at the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options on the Shuttle Landing Facility runway in the spirit of friendly competition.
Hard and Soft Safety Verifications
NASA Technical Reports Server (NTRS)
Wetherholt, Jon; Anderson, Brenda
2012-01-01
The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.
Risk management in international manned space program operations.
Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N
2004-02-01
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.
Achieving Space Shuttle ATO Using the Five-Segment Booster (FSB)
NASA Technical Reports Server (NTRS)
Sauvageau, Donald R.; McCool, Alex (Technical Monitor)
2001-01-01
As part of the continuing effort to identify approaches to improve the safety and reliability of the Space Shuttle system, a Five-Segment Booster (FSB) design was conceptualized as a replacement for the current Space Shuttle boosters. The FSB offers a simple, unique approach to improve astronaut safety and increase performance margin. To determine the feasibility of the FSB, a Phase A study effort was sponsored by NASA and directed by the Marshall Space Flight Center. This study was initiated in March of 1999 and completed in December of 2000. The basic objective of this study was to assess the feasibility of the FSB design concept and also estimate the cost and scope of a full-scale development program for the FSB. In order to ensure an effective and thorough evaluation of the FSB concept, four team members were put on contract to support various areas of importance in assessing the overall feasibility of the design approach.
Study of solid rocket motor for space shuttle booster, volume 2, book 2
NASA Technical Reports Server (NTRS)
1972-01-01
A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.
The challenging scales of the bird: Shuttle tile structural integrity
NASA Technical Reports Server (NTRS)
Schneider, W. C.; Miller, G. J.
1985-01-01
The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
1991-01-01
The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.
Wire insulation degradation and flammability in low gravity
NASA Technical Reports Server (NTRS)
Friedman, Robert
1994-01-01
This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.
An Analysis of Shuttle Crew Scheduling Violations
NASA Technical Reports Server (NTRS)
Bristol, Douglas
2012-01-01
From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.
Shuttle bus services quality assessment Tangerang Selatan toward smart city
NASA Astrophysics Data System (ADS)
Fassa, Ferdinand; Sitorus, Fredy Jhon Philip; Adikesuma, Tri Nugraha
2017-11-01
Around the world, shuttle bus operation played the significant role to accommodate transportation for commuting bus passengers. Shuttle Bus services in cities are provided by various bus agencies with kinds of own specific purposes. For instance, at Tangerang Selatan, Indonesia, it was said that shuttle bus In Trans Bintaro is run and operated by private bus companies hire by Bintaro developer. The aim of this research is to identify factors of satisfaction of shuttle bus service in Kota Tangerang Selatan, Indonesia. Several factors are used to analyze sums of 20 parameters performance indicators of Shuttle Bus. A face to face interview using a questionnaire (N=200) was used to collect data on October and March 2017. Likert and diagram Cartesian were used to model the all the parameters. This research succeeded in finding some categories of Shuttle bus service attributes such as accessibility, comfort, and safety. Users agreed that eight indicators in shuttle bus have the excellent achievement, while three indicators on performance remain low and should receive more attention especially punctuality of the bus.
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation of the compatibility of the space shuttle and Agena rocket vehicle was conducted. The Agena space tug configuration design is described in terms of the total vehicle system as well as the individual subsystems and major assemblies and components. The complete interface between the Agena space tug and the space shuttle orbiter is defined for in-flight and ground operations. The derivation and design of an evolutionary stage is also presented. This vehicle conforms to the same guidelines and interface requirements as the Agena space tug. Performance data developed for both vehicles for each of the three study baseline missions are included.
NASA Astrophysics Data System (ADS)
Demeis, Richard
1989-02-01
After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the waning twilight, the service structures on Launch Pad 39B (left) and the Mobile Launcher Platform carrying Space Shuttle Discovery glow with lights. The Shuttle began rollout to the pad at 2:04 p.m. EDT from the Vehicle Assembly Building at NASAs Kennedy Space Center, marking a major milestone in the Space Shuttle Programs Return to Flight. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
Shuttle Liquid Fly Back Booster Configuration Options
NASA Technical Reports Server (NTRS)
Healy, T. J., Jr.
1998-01-01
This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.
Advanced missions safety. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
Three separate studies were performed under the general category of advanced missions safety. Each dealt with a separate issue, was a self-contained effort, and was independent of the other two studies. The studies are titled: (1) space shuttle rescue capability, (2) experiment safety, and (3) emergency crew transfer. A separate discussion of each study is presented.
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Safety Engineer Dwayne Thompson, left, and NASA Safety Engineer Dallas McCarter rehearse procedures for the liftoff of space shuttle Discovery's final mission with other STS-133 launch team members in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Suva, Domizio; Poizat, Germain
2015-02-04
For many years hospitals have been implementing crew resource management (CRM) programs, inspired by the aviation industry, in order to improve patient safety. However, while contributing to improved patient care, CRM programs are controversial because of their limited impact, a decrease in effectiveness over time, and the underinvestment by some caregivers. By analyzing the space shuttle Challenger accident, the objective of this article is to show the potential impact of the professional culture in decision-making processes. In addition, to present an approach by cultural factors which are an essential complement to current CRM programs in order to enhance the safety of care.
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto latenext week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto latenext week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
Safety Concept for a Modern Get Away Special Power Supply
NASA Astrophysics Data System (ADS)
Rieger, T.
2002-01-01
orbiter, providing their own power supply, experiment controls etc. In order to offer a low-cost flight opportunity, the GAS safety review process has been developed, which is not so stringent as the shuttle safety certification process. As a consequence, mainly approved standard components are used in a GAS experiment to ensure safety. This is particularly true for the battery systems of GAS payloads. Many of the modern high power batteries have exhibited hazards. Especially, NASA recommends against the use of Lithium cells in GAS Payloads, which shortens the prospects of extensive experiments due to their power consumption. Considering an experiment with a power consumption of about 100 W, an e.g. standard silver-zinc battery system provides an operating time of typically below 20 h during the complete shuttle mission. Therefore, to take better advantage of the shuttle capabilities, the need for a certified standard Lithium based battery system in the GAS program is given. During the development of the GAS payload G-146, a safe Lithium based battery system has been constructed. This system could be a potential candidate to become such a safe standard component for GAS payloads. Its modular assembly could support various payload designs. The paper states the boundary conditions of the G-146 payload, that led to the design and the safety concept of the Lithium battery system for GAS payloads. The construction is described, considering the influences of safety aspects on the design of the system. The resulting variation possibilities for different GAS- Payloads are described against the background of the retention of the achieved safety level. A further emphasis of the paper is the chosen safety concept during qualification, integration and test of the battery system. Finally, a suggestion for a simple quality assurance concept and an outline of the future applications of the battery system is given.
Independent verification and validation for Space Shuttle flight software
NASA Technical Reports Server (NTRS)
1992-01-01
The Committee for Review of Oversight Mechanisms for Space Shuttle Software was asked by the National Aeronautics and Space Administration's (NASA) Office of Space Flight to determine the need to continue independent verification and validation (IV&V) for Space Shuttle flight software. The Committee found that the current IV&V process is necessary to maintain NASA's stringent safety and quality requirements for man-rated vehicles. Therefore, the Committee does not support NASA's plan to eliminate funding for the IV&V effort in fiscal year 1993. The Committee believes that the Space Shuttle software development process is not adequate without IV&V and that elimination of IV&V as currently practiced will adversely affect the overall quality and safety of the software, both now and in the future. Furthermore, the Committee was told that no organization within NASA has the expertise or the manpower to replace the current IV&V function in a timely fashion, nor will building this expertise elsewhere necessarily reduce cost. Thus, the Committee does not recommend moving IV&V functions to other organizations within NASA unless the current IV&V is maintained for as long as it takes to build comparable expertise in the replacing organization.
NASA Technical Reports Server (NTRS)
Chapman, A. J.
1973-01-01
Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.
1970-01-01
A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.
1998-07-06
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
STS-70 Discovery launch before tower clear (fish eye view)
NASA Technical Reports Server (NTRS)
1995-01-01
The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.
Synthesis and analysis of precise spaceborne laser ranging systems, volume 2. [Spacelab payload
NASA Technical Reports Server (NTRS)
Paddon, E. A.
1978-01-01
The performance capabilities of specific shuttle-based laser ranging systems were evaluated, and interface and support requirements were determined. The preliminary design of a shuttle-borne laser ranging experiment developed as part of the Spacelab program is discussed.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Launch Pad 39B, the Orbiter Boom Sensor System (OBSS) sensor package is viewed before the orbiter's payload bay doors are closed for launch. Payload bay door closure is a significant milestone in the preparations of Discovery for the first Return to Flight mission, STS-114. This sensor package will provide surface area and depth defect inspection for all the surfaces of the orbiter. It includes an intensified television camera (ITVC) and a laser dynamic range imager, which are mounted on a pan and tilt unit, and a laser camera system (LCS) mounted on a stationary bracket. The package is part of the new safety measures added for all future Space Shuttle missions. During its 12-day mission, Discoverys seven- person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discoverys payloads include the Multi-Purpose Logistics Module Raffaello, the Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC), and the External Stowage Platform-2 (ESP-2). Raffaello will deliver supplies to the International Space Station including food, clothing and research equipment. The LMC supports a replacement Control Moment Gyroscope and a tile repair sample box. The ESP-2 is outfitted with replacement parts. Launch of mission STS-114 was set for July 13 at the conclusion of the Flight Readiness Review yesterday.
Safety aspects of nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Compton, P. R.
1981-01-01
Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.
Architecting Integrated System Health Management for Airworthiness
2013-09-01
aircraft safety and reliability through condition-based maintenance [Miller et al., 1991]. With the same motivation, Integrated System Health Management...diagnostics and prognostics algorithms. 2.2.2 Health and Usage Monitoring System (HUMS) in Helicopters Increased demand for improved operational safety ...offshore shuttle helicopters traversing the petrol installations in the North Sea, and increased demand for improved operational safety and reduced
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Space Shuttle Discovery lingers at the foot of Launch Pad 39B in the evening twilight. First motion from the Vehicle Assembly Building was at 2:04 p.m. EDT April 6, and the Shuttle was hard down on the pad at 1:16 a.m. EDT April 7. The Shuttle sits atop a Mobile Launcher Platform transported by a Crawler-Transporter underneath. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Photo courtesy of Scott Andrews.
2007-07-03
KENNEDY SPACE CENTER, FLA. -- The main engines on the orbiter Endeavour (upper right) are seen as Endeavour is lowered into high bay 1 of the Vehicle Assembly Building for stacking with the external tank (seen at left) and solid rocket boosters on the mobile launcher platform. Endeavour will be launched on mission STS-118, its first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Endeavour is targeted for launch on Aug. 7. Photo credit: NASA/Troy Cryder
STS-114 Flight Day 13 and 14 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
On Flight Day 13, the crew of Space Shuttle Discovery on the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) hear a weather report from Mission Control on conditions at the shuttle's possible landing sites. The video includes a view of a storm at sea. Noguchi appears in front of a banner for the Japanese Space Agency JAXA, displaying a baseball signed by Japanese MLB players, demonstrating origami, displaying other crafts, and playing the keyboard. The primary event on the video is an interview of the whole crew, in which they discuss the importance of their mission, lessons learned, shuttle operations, shuttle safety and repair, extravehicular activities (EVAs), astronaut training, and shuttle landing. Mission Control dedicates the song "A Piece of Sky" to the Shuttle crew, while the Earth is visible below the orbiter. The video ends with a view of the Earth limb lit against a dark background.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center employees and guests cross the finish line during the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center employees and guests approach the finish line during the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center Director Bob Cabana approaches the finish line at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
SLF Run/Walk for Safety and Health Month
2018-03-13
A line of Kennedy Space Center employees and guests stretches down the Shuttle Landing Facility Runway during the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
2003-02-05
KENNEDY SPACE CENTER, FLA. - Don Maxwell, Safety, United Space Alliance, checks a map of Texas during a meeting of the Recovery Management Team at KSC. The team is part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, Chris Hasselbring, Landing Operations, USA; and Larry Ulmer, Safety, NASA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .
2003-02-05
KENNEDY SPACE CENTER, FLA. - Two members of the Recovery Management Team at KSC are at work in the Operations Support Building. At left is Don Maxwell, Safety, United Space Alliance, and at right is Larry Ulmer, Safety, NASA. They are part of the investigation into the accident that claimed orbiter Columbia and her crew of seven on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Other team members are Russ DeLoach, chief, Shuttle Mission Assurance Branch, NASA; George Jacobs, Shuttle Engineering; Jeff Campbell, Shuttle Engineering; Dave Rainer, Launch and Landing Operations; and the two co-chairs of the Response Management Team, Denny Gagen, Landing Recovery Manager, and Chris Hasselbring, Landing Operations, USA. The team is coordinating KSC technical support and assets to the Mishap Investigation Team in Barksdale, La., and providing support for the Recovery teams in Los Angeles, Texas, New Mexico, Arizona and California. In addition, the team is following up on local leads pertaining to potential debris in the KSC area. .
STS-114: Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Paul Hill, STS-114 Lead Shuttle Flight Director, and Wayne Hill, Deputy Manager for the Space Shuttle Program and Chair of the Mission Management Team, discusses with the News media the complete operational success of the STS-114 Flight. Paul Hill mentioned the undocking and flight around did occur right on time that day, and checking out Discovery's entry system in preparation for de-orbit on Monday morning. He summarized the long list of flight operations and activities demonstrated like various forms of inspections on RCC and tile, gap fillers and blanket, imagery and photography, three space walks and re-supply. Wayne Hill talked about flight control check out, pre-entry plans, opportunity landing in Cape Carneval, Florida and back-up landing operations in Edwards Air Force Base, California. He emphasized the concern for crew and public safety during landing. News media focused their questions on public expectations and feelings about the return of the Shuttle to Earth, analysis of mechanical and technical failures, safety of dark or daylight landings.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
Study of solid rocket motor for space shuttle booster, volume 2, book 1
NASA Technical Reports Server (NTRS)
1972-01-01
The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Making history with the first-ever launch on Independence Day, Space Shuttle Discovery rockets into the blue sky on mission STS-121, trailing fiery exhaust and blue mach diamonds from the main engine nozzles. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Regina Mitchell-Ryall & Don Kight
2006-07-04
KENNEDY SPACE CENTER, FLA. - Making history with the first-ever launch on Independence Day, Space Shuttle Discovery rockets into the blue sky on mission STS-121, trailing fiery exhaust and blue mach diamonds from the main engine nozzles. Liftoff from Launch Pad 39B (seen below) was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Tony Gray & Tim Powers
2006-07-04
KENNEDY SPACE CENTER, FLA. - Making history with the first-ever launch on Independence Day, Space Shuttle Discovery rockets into the blue sky on mission STS-121, trailing fiery exhaust and blue mach diamonds from the main engine nozzles. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Regina Mitchell-Ryall & Don Kight
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Kennedy Space Center Director Jim Kennedy watches one of the computer screens as the countdown heads for launch of Space Shuttle Discovery on mission STS-121. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Cryogenic Heat Pipe Experiment (CRYOHP)
NASA Technical Reports Server (NTRS)
Mcintosh, Roy
1992-01-01
The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.
Space shuttle safety - A hybrid vehicle breeds new problems.
NASA Technical Reports Server (NTRS)
Pinkel, I. I.
1971-01-01
Discussion of a few novel problems raised by the design and flight plan of the space shuttle and by the dangerous cargos it might carry. Among the problems cited are those connected with the inspection of the bearings of the propellant turbopumps, particularly those of the hydrogen pump, for evidence of spalling, as well as problems arising in the inspection of the high-temperature parts of the combustor and turbine section of the airbreathing turbofan for shuttle booster and orbiter, and problems resulting from the possibility of fire hazard due to spontaneous ignition of fuel vapor in the fuel tank vapor space.
Launch view of the STS-70 space shuttle Discovery
1995-07-13
STS070-S-003 (13 JULY 1995) --- Framed by Florida foliage, the Space Shuttle Discovery begins its 21st Spaceflight. Five NASA astronauts and a Tracking and Data Relay Satellite (TDRS) were aboard for the liftoff, which occurred at 9:41:55 a.m. (EDT), July 13, 1995 from Launch Pad 39B. Onboard were astronauts Terence T. (Tom) Henricks, Kevin R. Kregel, Nancy J. Curie, Donald A. Thomas and Mary Ellen Weber. This mission also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.
Stuffed Snoopy wearing cap and sporting a Space Shuttle emblem
2000-02-22
JSC2000-01580 (22 February 2000) --- Snoopy, who has had a long history with the astronauts and Houston's Mission Control Center, showed up in the Shuttle Flight Control Room on one of the consoles during the STS-99 mission. The NASA Astronaut personal safety award -- called the Silver Snoopy -- is given for outstanding performance by NASA employees or NASA contractors who contribute to flight safety or mission success. Snoopy is a product of the imagination of the late cartoonist Charles Schulz. Schulz died on Saturday, Feb. 12, 2000, the second day of the 11-day SRTM mission and on the eve of his final color strip appearing in Sunday newspapers on February 13, 2000.
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
Advanced technology and the Space Shuttle /10th Von Karman Lecture/.
NASA Technical Reports Server (NTRS)
Love, E. S.
1973-01-01
Selected topics in technology advancement related to the space shuttle are examined. Contributions from long-range research prior to the advent of the 'shuttle-focused technology program' of the past 3 years are considered together with highlights from the latter. Attention is confined to three of the shuttle's seven principal technology areas: aerothermodynamics/configurations, dynamics/aeroelasticity, and structures/materials. Some observations are presented on the shuttle's origin, the need to sustain advanced research, and future systems that could emerge from a combination of shuttle and non-shuttle technology advancements.
Nanosecond time transfer via shuttle laser ranging experiment
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Premo, D. A.; Fitzmaurice, M. W.; Wardrip, S. C.; Cervenka, P. O.
1978-01-01
A method is described to use a proposed shuttle laser ranging experiment to transfer time with nanosecond precision. All that need be added to the original experiment are low cost ground stations and an atomic clock on the shuttle. It is shown that global time transfer can be accomplished with 1 ns precision and transfer up to distances of 2000 km can be accomplished with better than 100 ps precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-15
This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in thesemore » appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.« less
Report by the Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1981-01-01
The process of preparation for the first two shuttle flights was observed and information from both flights was gathered in order to confirm the concept and performance of the major elements of the space transportation system. To achieve truly operational operating safety, regularity, and minimum practical cost, the organization of efforts between the R&D community and any transportation service organization should be clearly separated with the latter organization assuming responsibilities for marketing its services; planning and acquiring prime hardware and spares; maintainance; certification of procedures; training; and creation of requirements for future development. A technical audit of the application of redundancy concepts to shuttle systems is suggested. The state of the art of space transportation hardware suggests that a number of concept changes may improve reliability, costs, and operational safety. For the remaining R&D flights, it is suggested that a redline audit be made of limits that should not be exceeded for ready to launch.
NASA Technical Reports Server (NTRS)
Fodroci, Michael P.; Schwartz, MaryBeth
2008-01-01
As we complete the preparations for the fourth Hubble Space Telescope (HST) servicing mission, we note an anniversary approaching: it was 30 years ago in July that the first HST payload safety review panel meeting was held. This, in turn, was just over a year after the very first payload safety review, a Phase 0 review for the Tracking and Data Relay Satellite and its Inertial Upper Stage, held in June of 1977. In adapting a process that had been used in the review and certification of earlier Skylab payloads, National Aeronautics and Space Administration (NASA) engineers sought to preserve the lessons learned in the development of technical payload safety requirements, while creating a new process that would serve the very different needs of the new space shuttle program. Their success in this undertaking is substantiated by the fact that this process and these requirements have proven to be remarkably robust, flexible, and adaptable. Furthermore, the payload safety process has, to date, served us well in the critical mission of safeguarding our astronauts, cosmonauts, and spaceflight participants. Both the technical requirements and their interpretation, as well as the associated process requirements have grown, evolved, been streamlined, and have been adapted to fit multiple programs, including the International Space Station (ISS) program, the Shuttle/Mir program, and most recently the United States Constellation program. From its earliest days, it was anticipated that the payload safety process would be international in scope, and so it has been. European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), German Space Agency (DLR), Canadian Space Agency (CSA), Russian Space Agency (RSA), and many additional countries have flown payloads on both the space shuttle and on the ISS. Our close cooperation and long-term working relationships have culminated in the franchising of the payload safety review process itself to our partners in ESA, which in turn will serve as a roadmap for extending the franchise to other Partners.
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
Advanced missions safety. Volume 3: Appendices. Part 2: Experiment
NASA Technical Reports Server (NTRS)
Hinton, M. G., Jr.
1972-01-01
Supporting documentation pertaining to the hazards of transporting experimental equipment on the Earth Orbit Shuttle is presented. The subjects discussed are: (1) experiment and hardware definition, (2) hazard analysis, (3) preventive measure assessment, (4) preventive measures statements, (5) remedial measure assessment, and (6) experiment interaction safety considerations.
Program Environmental Assurance: Shuttle Environmental Assurance and the Future
NASA Technical Reports Server (NTRS)
Glover, Steve E.
2008-01-01
Material availability continues to be impacted by domestic and international environmental health and safety (EH&S) regulations, industrial pollution prevention goals and related vendor economics. SEA is an integrated team that works to identify, communicate and address safety and environmentally driven materials obsolescence issues and pollution prevention opportunities.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center Director Bob Cabana speaks to center employees and guests before the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
SLF Run/Walk for Safety and Health Month
2018-03-13
Kennedy Space Center employees and guests head toward the start line for the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2008-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) are located in a region of Florida that experiences the highest area density of lightning strikes to ground in the United States, with values approaching 16 fl/km 2/yr when accumulated in 10x10 km (100 sq km) grids (see Figure 1). Consequently, the KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks to detect hazardous weather, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) that is owned and operated by the Air Force and the U.S. National Lightning Detection Network (NLDN) that is owned and operated by Vaisala, Inc. These systems are used to provide lightning warnings for ground operations and to insure mission safety during space launches at the KSC-ER. In order to protect the rocket and shuttle fleets, NASA and the Air Force follow a set of lightning safety guidelines that are called the Lightning Launch Commit Criteria (LLCC). These rules are designed to insure that vehicles are not exposed to the hazards of natural or triggered lightning that would in any way jeopardize a mission or cause harm to the shuttle astronauts. Also, if any CG lightning strikes too close to a vehicle on a launch pad, it can cause time-consuming mission delays due to the extensive retests that are often required for vehicles and/or payloads when this occurs. If any CG lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail.
MEMS earthworm: a thermally actuated peristaltic linear micromotor
NASA Astrophysics Data System (ADS)
Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek
2011-03-01
This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
2011-08-31
CAPE CANAVERAL, Fla. -- Smoke billows from a Huey II helicopter supporting the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- The Cape Canaveral Spaceport Mobile Command Center vehicle participates in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
Space Station Freedom altitude strategy
NASA Technical Reports Server (NTRS)
Mcdonald, Brian M.; Teplitz, Scott B.
1990-01-01
The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed.
Space Shuttle orbiter Columbia on the ground at Edwards Air Force Base
1981-04-14
S81-30749 (14 April 1981) --- This high angle view shows the scene at Edwards Air Force Base in southern California soon after the successful landing of the space shuttle orbiter Columbia to end STS-1. Service vehicles approach the spacecraft to perform evaluations for safety, egress preparedness, etc. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, are still inside the spacecraft. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. 'Hal' Gehman Jr., chairman of the Columbia Accident Investigation Board, checks his notes during the third public hearing of the board, held in Cape Canaveral, Fla. Over the course of two days, Gehman and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-26
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for a second day for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. "Hal" Gehman Jr., chairman of the Columbia Accident Investigation Board, checks his notes during the third public hearing of the board, held in Cape Canaveral, Fla. Over the course of two days, Gehman and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
Advanced missions safety. Volume 2: Technical discussion. Part 3: Emergency crew transfer
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation of methods for emergency rescue of space crews using the Earth Orbit Shuttle was conducted. Emergency situations were analyzed for the mission categories of extravehicular activity, space shuttle orbiter, space station, and research applications module (RAM). Five different transfer concept categories were analyzed and each was scored on the basis of its operational effectiveness. A cost analysis of the transfer operations was developed.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for a second day for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth
2006-02-28
KENNEDY SPACE CENTER, FLA. - NASA managers brief the media about the Space Shuttle Program and mission STS-121 from the press site at NASA's Kennedy Space Center in Florida. Public Information Officer Jessica Rye moderated. Seated at her right are Space Shuttle Program Manager Wayne Hale, NASA Launch Director Mike Leinbach and STS-114 External Tank Tiger Team lead Tim Wilson, with the NASA Engineering & Safety Center. Photo credit: NASA/Jack Pfaller
Food and medical sample freezer kit concept for Shuttle
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Jaax, J. R.; Proctor, B. W.
1977-01-01
A variety of food and storage of samples can be provided by a Space Shuttle Orbiter Freezer Kit. The proposed concept is an integrated package consisting of four -23 C (-10 F) storage compartments and a Stirling cycle refrigeration unit. The Stirling cycle mechanical refrigeration was selected over alternative systems for superior efficiency and safety. The trade-offs and a conceptual design of the system are presented.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container transporting part of the new Orbiter Boom Sensor System (OBSS) is delivered by truck to the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot-long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) is congratulated by NASA Administrator Mike Griffin (right) for the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. Behind Leinbach are David R. Mould, assistant administrator for Public Affairs NASA, and Lisa Malone, director of External Relations at Kennedy. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Space Shuttle Main Engine (SSME) Evolution
NASA Technical Reports Server (NTRS)
Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)
2001-01-01
The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.
STS-7 crew training in the shuttle mission simulator
NASA Technical Reports Server (NTRS)
1983-01-01
STS-7 crew training in the shuttle mission simulator (SMS). Astronaut Frederick H. Hauck, STS-7 pilot, gets some assistance with his safety helmet from Alan M. Rochford, a suit specialist, during a training session in the JSC mission simulations and training facility (32722); Four of the five STS-7 crewmembers train in the shuttle mission simulator (SMS), taking the same seats they will occupy during launch and landing. Pictured, left to right, are Astronauts Robert L. Crippen, commander; Frederick H. Hauck, pilot; Dr. Sally K. Ride and John M. Fabian (almost totally obscured), mission specialists. The crew is wearing civilian clothes and their shuttle helmets (32723); Portrait view of Dr. Ride exiting the SMS (32724); Dr. Ride and other crew preparing to leave the SMS (32725).
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) gather to talk inside the facility following the ceremony. From left, they are Robert B. Sieck, director of Shuttle Processing; KSC Center Director Roy D. Bridges Jr.; U.S. Congressman Dave Weldon; John Plowden, vice president of Rocketdyne; and Donald R. McMonagle, manager of Launch Integration. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1982-01-01
The Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) family of spacecraft are intended to operate with minimum interfaces with the U.S. Space Shuttle in order to increase flight opportunities. The SPARTAN I Spacecraft was designed to enhance structural capabilities and increase reliability. The approach followed results from work experience which evolved from sounding rocket projects. Structural models were developed to do the analyses necessary to satisfy safety requirements for Shuttle hardware. A loads analysis must also be performed. Stress analysis calculations will be performed on the main structural elements and subcomponents. Attention is given to design considerations and program definition, the schematic representation of a finite element model used for SPARTAN I spacecraft, details of loads analysis, the stress analysis, and fracture mechanics plan implications.
STS-99 M.S. Thiele and Voss, Pilot Gorie and Commander Kregel before DEPARTure
NASA Technical Reports Server (NTRS)
2000-01-01
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late- next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 M.S. Thiele and Voss, Pilot Gorie and Commander Kregel before DEPARTure
NASA Technical Reports Server (NTRS)
2000-01-01
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
Aerospace safety advisory panel
NASA Technical Reports Server (NTRS)
1994-01-01
This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA launch team members cheer and wave American flags at the successful launch of Space Shuttle Discovery on mission STS-121. The launch made history as the first to occur on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Bill Ingalls
2006-07-04
KENNEDY SPACE CENTER, FLA. - From Firing Room 4 of the Launch Control Center, NASA Administrator Mike Griffin uses binoculars to view of the launch of Space Shuttle Discovery (in the background) on mission STS-121. The launch made history as the first to occur on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Bill Ingalls
2006-07-04
KENNEDY SPACE CENTER, FLA. - All eyes, and lenses, focus on the perfect launch of Space Shuttle Discovery on its third attempt in four days. Kicking off the Fourth of July with its own fireworks, the launch made history as it was the first ever launch on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Carl Winebarger
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist a volunteer portraying an injured Huey II helicopter crew member participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- An ambulance and several NASA Fire Rescue Services vehicles arrive to assist a Huey II helicopter participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- A NASA Fire Rescue Services vehicle and a Huey II helicopter support the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- A NASA Fire Rescue Services vehicle, ambulance and Huey II helicopter take part in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- Volunteers portraying injured Huey II helicopter crew members are assisted by NASA Fire Rescue personnel in support of the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
Fire safety practices in the Shuttle and the Space Station Freedom
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
The Shuttle reinforces its policy of fire-preventive measures with onboard smoke detectors and Halon 1301 fire extinguishers. The forthcoming Space Station Freedom will have expanded fire protection with photoelectric smoke detectors, radiation flame detectors, and both fixed and portable carbon dioxide fire extinguishers. Many design and operational issues remain to be resolved for Freedom. In particular, the fire-suppression designs must consider the problems of gas leakage in toxic concentrations, alternative systems for single-failure redundancy, and commonality with the corresponding systems of the Freedom international partners. While physical and engineering requirements remain the primary driving forces for spacecraft fire-safety technology, there are, nevertheless, needs and opportunities for the application of microgravity combustion knowledge to improve and optimize the fire-protective systems.
Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2004-01-01
Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.
Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities
NASA Technical Reports Server (NTRS)
Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin
2001-01-01
In order to meet the applications for Space Shuttle in the future, Samsung 18650 cylindrical Li-ion cells with two different capacities have been evaluated. The capacities are 1800 mAh, and 2000 mAh. The studies focused on the performance and safety tests of the cells.
Space safety and rescue 1984-1985
NASA Astrophysics Data System (ADS)
Heath, G. W.
The present conference on spacecraft crew safety and rescue technologies and operations considers safety aspects of Space Shuttle ground processing, the Inmarsat and COSPAS/SARSAT emergency location satellite systems, emergency location and rescue communications using Geosat, the use of the Manned Maneuvering Unit for on-orbit rescue operations, NASA Space Station safety design and operational considerations, and the medico-legal implications of space station operation. Also discussed are the operational and environmental aspects of EPIRBS, mobile satellites for safety and disaster response, Inmarsat's role in the Future Global Maritime Distress and Safety System, and test results of the L-band satellite's EPIRB system.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
2007-07-08
KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
2007-07-08
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
Expert panel answers questions for Super Safety and Health Day at KSC.
NASA Technical Reports Server (NTRS)
1999-01-01
A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safety- and health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space- related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board (left) listens to Center Director Roy Bridges at the third public hearing of the Board, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board (left) listens to Center Director Roy Bridges at the third public hearing of the Board, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
2003-03-25
KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. "Hal" Gehman Jr., chairman of the Columbia Accident Investigation Board, and board member Dr. John Logsdon, director of the Space Policy Institute, George Washington University, listen to expert information about the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy. This was the third public hearing of the board, which was held in Cape Canaveral, Fla.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. 'Hal' Gehman Jr., chairman of the Columbia Accident Investigation Board, and board member Dr. John Logsdon, director of the Space Policy Institute, George Washington University, listen to expert information about the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy. This was the third public hearing of the board, which was held in Cape Canaveral, Fla.
Forward Skirt Structural Testing on the Space Launch System (SLS) Program
NASA Technical Reports Server (NTRS)
Lohrer, J. D.; Wright, R. D.
2016-01-01
Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.
2002-12-18
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2002-01-01
This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting material applicable to specific program areas. Appendix A presents a list of Panel members. Appendix B contains the reaction of the ASAP to NASA's response to the calendar year 2000 findings and recommendations. In accordance with a practice started last year, this Appendix includes brief narratives as well as classifications of the responses as 'open,' 'closed,' or 'continuing.' Appendix C details the Panel's activities during the reporting period.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2008-01-01
The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.
Tactile display landing safety and precision improvements for the Space Shuttle
NASA Astrophysics Data System (ADS)
Olson, John M.
A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1999-01-01
This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning. For example, the section on computer hardware and software contains specific findings related to required longer range safety-related actions. NASA can be proud of its accomplishments this past year, but must remain ever vigilant, particularly as ISS assembly begins to accelerate. The Panel will continue to focus on both the short- and long-term aspects of risk management and safety planning. This task continues to be made manageable and productive by the excellent cooperation the Panel receives from both NASA and its contractors. Particular emphasis will continue to be directed to longer term workforce and program planning issues as well as the immediate risks associated with ISS assembly and the initial flights of the X-33 and X-34. Section 2 of this report presents specific findings and recommendations generated by ASAP activities during 1998. Section 3 contains more detailed information in support of these findings and recommendations. Appendix A is a current roster of Panel members, consultants, and staff. Appendix B contains NASA's response to the findings and recommendations from the 1997 ASAP Annual Report. Appendix C details the fact-finding activities of the Panel in 1998. During the year, Mr. Richard D. Blomberg was elected chair of the Panel and Vice Admiral (VADM) Robert F Dunn was elected deputy chair. VADM Bernard M. Kauderer moved from consultant to member. Mr. Charles J. Donlan retired from the Panel after many years of meritorious service. Ms. Shirley C. McCarty and Mr. Robert L. ('Hoot') Gibson joined the Panel as consultants.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container housing part of the new Orbiter Boom Sensor System (OBSS) is lifted from a truck into the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot- long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
Shuttle communications design study
NASA Technical Reports Server (NTRS)
Cartier, D. E.
1975-01-01
The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.
Shuttle program: Ground tracking data program document shuttle OFT launch/landing
NASA Technical Reports Server (NTRS)
Lear, W. M.
1977-01-01
The equations for processing ground tracking data during a space shuttle ascent or entry, or any nonfree flight phase of a shuttle mission are given. The resulting computer program processes data from up to three stations simultaneously: C-band station number 1; C-band station number 2; and an S-band station. The C-band data consists of range, azimuth, and elevation angle measurements. The S-band data consists of range, two angles, and integrated Doppler data in the form of cycle counts. A nineteen element state vector is used in Kalman filter to process the measurements. The acceleration components of the shuttle are taken to be independent exponentially-correlated random variables. Nine elements of the state vector are the measurement bias errors associated with range and two angles for each tracking station. The biases are all modeled as exponentially-correlated random variables with a typical time constant of 108 seconds. All time constants are taken to be the same for all nine state variables. This simplifies the logic in propagating the state error covariance matrix ahead in time.
NASA Technical Reports Server (NTRS)
Yalowitz, Jeffrey S.; Schroer, Michael A.; Dickson, John E., Jr.
1992-01-01
This final report describes work performed by SRS Technologies for the NASA Marshall Space Flight Center under Contract NAS8-39077, entitled 'Integrated Receiver-Decoder Dropout Study'. The purpose of the study was to determine causes of signal fading effects on ultra-high-frequency (UHF) range safety transmissions to the Space Shuttle during flyout. Of particular interest were deep fades observed at the External Tank (ET) Integrated Receiver-Decoder (IRD) during the flyout interval between solid rocket booster separation and ET separation. Analytical and simulation methods were employed in this study to assess observations captured in flight telemetry data records. Conclusions based on the study are presented in this report, and recommendations are given for future experimental validation of the results.
Final safety analysis report for the Galileo Mission: Volume 2: Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less
NASA Technical Reports Server (NTRS)
Rush, John; Israel, David; Harlacher, Marc; Haas, Lin
2003-01-01
The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.
STS-107 Payload Specialist Ilan Ramon during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Rodela, Chris
2006-01-01
Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
2006-07-04
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak is happy to be making a third launch attempt on the mission. She is suiting up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Thomas Reiter, happy to be making a third launch attempt on mission STS-121, is suited up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Cameras are the accessory of the day at the Kennedy Space Center's Banana River viewing site. All eyes and lenses are focused on Launch Pad 39B and the successful launch of Space Shuttle Discovery on mission STS-121. It was the third launch attempt in four days; the others were scrubbed due to weather concerns. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Louie Roguevert
A mobile robot system for ground servicing operations on the space shuttle
NASA Astrophysics Data System (ADS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-11-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
A mobile robot system for ground servicing operations on the space shuttle
NASA Technical Reports Server (NTRS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-01-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Shooting like a roman candle into Florida's blue sky, Space Shuttle Discovery kicks off the Fourth of July fireworks with its own fiery display and makes history with the first ever launch on Independence Day. It was the third launch attempt in four days; the others were scrubbed due to weather concerns. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Gianni Woods
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, NASA Aviation Safety Officer Joe Torsani, at left, speaks with students and their flight instructors after they arrived in Cherokee Warrior and Cessna 172S lightweight aircraft from Florida Tech, FIT, in Melbourne. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
2012-07-20
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, NASA Aviation Safety Officer Joe Torsani, at right, speaks with students and their flight instructors after they arrived in Cherokee Warrior and Cessna 172S lightweight aircraft from Florida Tech, or FIT, in Melbourne. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Rapp, Douglas C.
1987-01-01
A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, the nose cap of space shuttle Endeavour is prepared for installation of thermal protection system blankets. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
Software Reliability Issues Concerning Large and Safety Critical Software Systems
NASA Technical Reports Server (NTRS)
Kamel, Khaled; Brown, Barbara
1996-01-01
This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.
Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2011-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1998-01-01
During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other changes to the Panel composition during the past year were: the resignation of Mr. Dennis E. Fitch as a Consultant; the appointment of Mr. Roger D. Schaufele as a Consultant; and the assignment of Ms. Susan M. Smith as Staff Assistant.
Evaluation of a Shuttle Derived Vehicle (SDV) for Cargo Transportation
NASA Technical Reports Server (NTRS)
Roman, Jose M.; Meacham, Stephen B.; Krupp, Donald R.; Threet, G. E.; Best, Joel; Davis, Stephan R.; Crumbly, Christopher; Olsen, Ronald A.; Engler, Leah M.; Garner, Tim
2005-01-01
In this new era of space exploration, a host of launch vehicles are being examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize non-recurring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safety reliability, cost, operations, and evolution. The purpose of this paper is to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options. The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear process and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both families of vehicles, Solid Rocket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessary to transform the Space Shuttle into an SDV. Deltas from the first derivate were also formulated to study more SDV options. Examples of deltas include replacing the SRBs with larger and/or more SRBs, adding an upper stage, increasing the size of the ET, changing the engines, and modifying the elements. Challenges for SDV range from tailoring infrastructure to meeting the exploration schedule. Although SDV is based on the Space Shuttle, it still includes development risk for designing and building a Cargo Carrier. There are also performance challenges in that Shuttle is not optimized for cargo-only missions, but it is a robust system built on reusability. Balancing the strengths and weaknesses of the Shuttle to meet Lunar and Mars mission objectives provides the framework for an informative trade study. SDV was carefully analyzed and the results of the study provide invaluable data for use in the new exploration initiative.
2011-08-31
CAPE CANAVERAL, Fla. -- Volunteers, portraying their individual roles, stand beside a NASA Fire Rescue Services vehicle and a Huey II helicopter in support of the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
Investigations of Shuttle Main Landing Gear Door Environmental Seals
NASA Technical Reports Server (NTRS)
Finkbeiner, Joshua; Dunlap, Pat; Steinetz, Bruce; DeMango, Jeff; Newswander, Daniel
2005-01-01
The environmental seals for the main landing gear doors of the Shuttle Orbiters were raised by the Columbia Accident Investigation Board as a potential safety concern. Inspections of seals installed on the Shuttle Discovery revealed that they were permanently deformed and no longer met certified seal compression requirements. Replacement of the seals led to the inability to fully close the main landing gear doors. Johnson Space Center requested that Glenn Research Center conduct tests on the main landing gear door environmental seals to assist in installing the seals in a manner to allow the main landing gear doors to fully close. Further testing was conducted to fill out the seal performance database. Results from the testing indicated that the method of bonding the seals was important in reducing seal loads on the main landing gear doors. Also, the replacement seals installed in Shuttle Discovery were found to have leakage performance sufficient to meet the certification requirements.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA Administrator Mike Griffin congratulates the launch team on the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. Others next to Griffin are (left to right) David R. Mould, assistant administrator for NASA Public Affairs ; Lisa Malone, director of External Relations at Kennedy; Bruce Buckingham, news chief at the NASA News Center at Kennedy; and Mike Leinbach, Shuttle Program director. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Buchholz, R.; Allen, E. C. JR.; Dehart, J.
1973-01-01
Wind tunnel tests were conducted to determine the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 to plus 10 degrees at zero degree sideslip. A sideslip range of minus 10 to plus 10 degrees at zero degree angle of attack was also tested. The Mach number range was varied from 0.6 to 4.96 with Reynolds number varying between 4.9 and 6.8 times one million per foot.
NASA Technical Reports Server (NTRS)
Siders, Jeffrey A.; Smith, Robert H.
2004-01-01
The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
Runway drainage characteristics related to tire friction performance
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1991-01-01
The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.
2003-03-25
KENNEDY SPACE CENTER, FLA. - At the third public hearing of the Columbia Accident Investigation Board, held in Cape Canaveral, Fla., reporters listen intently to Center Director Roy Bridges (background, right). Board members are in the background, left. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
STS-107 Pilot William McCool in the cockpit of Columbia during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William 'Willie' McCool checks instructions in the cockpit of Space Shuttle Columbia during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .
NASA Technical Reports Server (NTRS)
1975-01-01
An analysis of Manned Maneuvering Units (MMU) ancillary support equipment and attachment concepts is presented. The major objectives of the study are defined as: (1) identifying MMU applications which would supplement space shuttle safety and effectiveness, (2) to define general MMU performance and control requirements to satisfy candidate shuttle applications, (3) to develop concepts for attaching MMUs to various worksites and equipment, and (4) to identify requirements and develop concepts for MMU ancillary equipment.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - At the third public hearing of the Columbia Accident Investigation Board, held in Cape Canaveral, Fla., reporters listen intently to Center Director Roy Bridges (background, right). Board members are in the background, left. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.
Automation of Space Processing Applications Shuttle payloads
NASA Technical Reports Server (NTRS)
Crosmer, W. E.; Neau, O. T.; Poe, J.
1975-01-01
The Space Processing Applications Program is examining the effect of weightlessness on key industrial materials processes, such as crystal growth, fine-grain casting of metals, and production of unique and ultra-pure glasses. Because of safety and in order to obtain optimum performance, some of these processes lend themselves to automation. Automation can increase the number of potential Space Shuttle flight opportunities and increase the overall productivity of the program. Five automated facility design concepts and overall payload combinations incorporating these facilities are presented.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.
SLF Run/Walk for Safety and Health Month
2018-03-13
From his vantage point atop a stepladder near the finish line, Kennedy Space Center Director Bob Cabana speaks to center employees and guests before the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
RL10 ignition limits test for Shuttle Centaur
NASA Technical Reports Server (NTRS)
1987-01-01
During routine development testing of the RL10A-3-3B engine a potential no-ignition condition was encountered when operating at certain propellant inlet conditions within the Shuttle Centaur G operating region. The conditions, the resulting investigative program, and methods to correct the potential problem are discussed. The Shuttle Centaur program was cancelled prior to completion of this effort. Although the RL10 engine in the Atlas Centaur vehicle is required by specification to operate over a wide range of propellant inlet conditions. The vehicle actually operates over a narrow range of conditions. This factor, combined with configuration differences between Atlas Centaur (or Titan Centaur) and the Shuttle Centaur RL10 engines, indicates the ignition problem does not exist for these vehicles. As a precautionary measure the vehicle manufacturer was requested to coordinate with Pratt and Whitney any anticipated changes in propellant inlet conditions from the current narrow range. An engineering change will be proposed for future RL10 deliveries to provide more consistent propellant flow to the igniter. This will permit operation of the engine throughout the wide range specification inlet conditions if desired.
STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
NASA Technical Reports Server (NTRS)
2002-01-01
Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.
NASA Engineering Excellence: A Case Study on Strengthening an Engineering Organization
NASA Technical Reports Server (NTRS)
Shivers, C. Herbert; Wessel, Vernon W.
2006-01-01
NASA implemented a system of technical authority following the Columbia Accident Investigation Board (CAE) report calling for independent technical authority to be exercised on the Space Shuttle Program activities via a virtual organization of personnel exercising specific technical authority responsibilities. After the current NASA Administrator reported for duty, and following the first of two planned "Shuttle Return to Flight" missions, the NASA Chief Engineer and the Administrator redirected the Independent Technical Authority to a program of Technical Excellence and Technical Authority exercised within the existing engineering organizations. This paper discusses the original implementation of technical authority and the transition to the new implementation of technical excellence, including specific measures aimed at improving safety of future Shuttle and space exploration flights.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers is happy to be making a third launch attempt on mission STS-121. Here, he fixes one of his gloves during suitup before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Bithell, R. A.; Pence, W. A., Jr.
1972-01-01
The effect of two sets of performance requirements, commercial and military, on the design and operation of the space shuttle booster is evaluated. Critical thrust levels are established according to both sets of operating rules for the takeoff, cruise, and go-around flight modes, and the effect on engine requirements determined. Both flyback and ferry operations are considered. The impact of landing rules on potential shuttle flyback and ferry bases is evaluated. Factors affecting reserves are discussed, including winds, temperature, and nonstandard flight operations. Finally, a recommended set of operating rules is proposed for both flyback and ferry operations that allows adequate performance capability and safety margins without compromising design requirements for either flight phase.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2, United Space Alliance technician Michael Vanwart prepares to install thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
Shuttle/Agena study. Volume 2, part 3: Preliminary test plans
NASA Technical Reports Server (NTRS)
1972-01-01
Proposed testing for the Agena tug program is based upon best estimates of shuttle and Agena tug requirements and upon the Agena configuration currently envisioned to meet these requirements. The proposed tests are presented in development, qualification, system, and launch base test plans. These plans are based upon generalized requirements and assumed situations. The limitations of this study precluded all but minimal consideration of related shuttle orbiter and shuttle ground systems. The test plans include provisions for all testing from major component to systems level, identified as necessary to aid in confirmation of the modified Agena configuration for the space tug; considerations that crew safety requirements and new environmental conditions from shuttle interface effects do impose some new Agena testing requirements; considerations that many existing Agena flight-qualified components will be utilized and qualification testing will be minimal; testing not only for the Agena tug but also for new or modified items of handling or servicing equipment for supporting the Agena factory-to-launch sequence; and the assembly of required testing into a sequence-ordered series of events.
NASA Technical Reports Server (NTRS)
Parazynski, Scott
2012-01-01
Dr. Parazynski focused on the Shuttle Transportation System (STS)-120 Solar Array Repair Extravehicular Activity (EVA) with personal anecdotes and then spoke about what it takes to have a successful EVA during the event, what types of problems can occur during an EVA, particularly with the spacesuit and the safety of the crew, and how to resolve these quickly, safely, and efficiently. He also described the participants and the types of decisions and actions each had to take to ensure success. He described "Team 4," in Houston and on-orbit, as well as anecdotes from his STS-86 and STS-100 missions. Parazynski provided a retrospective on the EVA tools and procedures NASA used in the aftermath of Columbia for shuttle Thermal Protection System (TPS) inspection and repair. He described his role as the lead astronaut during this effort, and covered all the Neutral Buoyancy Laboratory (NBL), KC-135, precision air-bearing floor (PABF), vacuum chamber, and 1-G testing performed to develop the tools and techniques that were flown. Parazynski discussed how the EVA community worked together to resolve a huge safety issue, and how his work in the spacesuit was critical to overcoming a design limitation of the Space Shuttle.
Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.
1993-01-01
The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.
Improving Performance of the System Safety Function at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Kiessling, Ed; Tippett, Donald D.; Shivers, Herb
2004-01-01
The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.
Spaceflight Safety on the North Coast of America
NASA Technical Reports Server (NTRS)
Ciancone, Michael L.; Havenhill, Maria T.; Terlep, Judith A.
1996-01-01
Spaceflight Safety (SFS) engineers at NASA Lewis Research Center (LeRC) are responsible for evaluating the microgravity fluids and combustion experiments, payloads and facilities developed at NASA LeRC which are manifested for spaceflight on the Space Shuttle, the Russian space station Mir, and/or the International Space Station (ISS). An ongoing activity at NASA LeRC is the comprehensive training of its SFS engineers through the creation and use of safety tools and processes. Teams of SFS engineers worked on the development of an Internet website (containing a spaceflight safety knowledge database and electronic templates of safety products) and the establishment of a technical peer review process (known as the Safety Assurance for Lewis Spaceflight Activities (SALSA) review).
Cornering characteristics of the nose-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Vogler, W. A.; Tanner, J. A.
1981-01-01
An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.
A high resolution ultraviolet Shuttle glow spectrograph
NASA Technical Reports Server (NTRS)
Carruthers, George R.
1993-01-01
The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.
NASA Astrophysics Data System (ADS)
Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.
2008-02-01
There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.
2007-01-01
There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.
2006-07-17
KENNEDY SPACE CENTER, FLA. - Vapor trails flow from Discovery's wing tips as it makes a speedy approach to Runway 15 at NASA's Shuttle Landing Facility, completing mission STS-121 to the International Space Station. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. The returning crew members aboard are Commander Steven Lindsey, Pilot Mark Kelly and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Mission Specialist Thomas Reiter, who launched with the crew on July 4, remained on the station to join the Expedition 13 crew there. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Tony Gray & Tim Powers
2006-07-17
KENNEDY SPACE CENTER, FLA. - Vapor trails flow from Discovery's wing tips as it makes a speedy approach to Runway 15 at NASA's Shuttle Landing Facility, completing mission STS-121 to the International Space Station. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. The returning crew members aboard are Commander Steven Lindsey, Pilot Mark Kelly and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Mission Specialist Thomas Reiter, who launched with the crew on July 4, remained on the station to join the Expedition 13 crew there. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Tony Gray & Tim Powers
STS-99 Mission Specialist Mohri waves before DEPARTing from PAFB
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
2000-02-02
STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
STS-99 Mission Specialist Mamoru Mohri of Japan and his wife, Akiko, wave before their departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
STS-99 Mission Specialist Mamoru Mohri of Japan and his wife, Akiko, wave before their departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
Investigation of sonic boom for the Space Shuttle: Low cross-range orbiter
NASA Technical Reports Server (NTRS)
Levy, Lionel L., Jr.; Hicks, Raymond M.; Mendoza, Joel P.
1993-01-01
It is desired that the Space Shuttle Orbiter be capable of landing at airports equipped to handle present-day jet transports. Since the majority of such airports are located near heavily populated areas, an investigation has been undertaken to determine whether or not the sonic boom generated during reentry of Space Shuttle Orbiters is potentially a serious problem. The investigation was concerned with the low cross-range orbiter and reentry concept proposed by Faget of the Manned Spacecraft Center (MSC). This report describes the approach used and presents the results obtained to date.
NASA Technical Reports Server (NTRS)
Yager, T. J.; Horne, W. B.
1980-01-01
Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.
Large Deployable Reflector (LDR) Requirements for Space Station Accommodations
NASA Technical Reports Server (NTRS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-01-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
Large Deployable Reflector (LDR) requirements for space station accommodations
NASA Astrophysics Data System (ADS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-04-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
STS users study (study 2.2). Volume 2: STS users plan (user data requirements) study
NASA Technical Reports Server (NTRS)
Pritchard, E. I.
1975-01-01
Pre-flight scheduling and pre-flight requirements of the space transportation system are discussed. Payload safety requirements, shuttle flight manifests, and interface specifications are studied in detail.
1999-06-17
A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safetyand health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, "Safety and Health Go Hand in Hand," emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space-related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television
NASA Technical Reports Server (NTRS)
Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.
1998-01-01
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.
NASA Technical Reports Server (NTRS)
Little, G. R.
1976-01-01
The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.
Acoustic Emission Detection of Impact Damage on Space Shuttle Structures
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.
2004-01-01
The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.
NASA Technical Reports Server (NTRS)
Brody, Adam R.
1988-01-01
The anticipated increase in rendezvous and docking activities in the various space programs in the Space Station era necessitates a renewed interest in manual docking procedures. Ten test subjects participated in computer simulated docking missions in which the influence of initial velocity was examined. All missions started from a resting position of 304.8 meters (1000 feet) along the space station's +V-bar axis. Test subjects controlled their vehicle with a translational hand controller and digital auto pilot which are both virtually identical to their space shuttle counterparts. While the 0.1 percent rule (range rate is equal to 0.1 percent of the range) used by space shuttle pilots is comfortably safe, it is revealed to be extremely inefficient in terms of time and not justifiable in terms of marginal safety. Time is worth money, not only because of training and launch costs, but because the sooner a pilot and spacecraft return from a mission, the sooner they can begin the next one. Inexperienced test subjects reduced the costs of simulated docking by close to a factor of 2 and achieved safe dockings in less than 4 percent of the time the baseline approach would entail. This reduction in time can be used to save lives in the event of an accident on orbit, and can tremendously reduce docking costs if fuel is produced from waste water on orbit.
Mission safety evaluation report for STS-39, postflight edition
NASA Technical Reports Server (NTRS)
Hardie, Kenneth O.; Hill, William C.; Finkel, Seymour I.
1991-01-01
After a delay of approximately 2 months due to a rollback from the pad to replace the External Tank door lug housing, Space Shuttle Discovery was launched from NASA-Kennedy at 7:33 a.m. Eastern Daylight Time on 28 April 1991. STS-39 was the first unclassified DoD Shuttle mission. On 28 April, countdown proceeded normally through the T-20 minute hold. No significant problems were encountered except for the Operations Sequence-2 recorder starting unexpectedly; it was stopped by an uplink command. Discovery landed on KSC runway 15 at 2:55 p.m. EDT on 6 May 1991. This was the second time in 6 months that the Space Shuttle was diverted to KSC for landing because of high winds at Edwards AFB, Calif. This was also the 7th of 40 Shuttle missions to land at KSC in the history of the Space Shuttle Program. The Main Landing Gear outer right tire shredded 3 of the 16 cords due to either an uneven landing or a maximum force breaking test during rollout. Contributing factors to the tire cord shredding were the development of last minute crosswinds and reluctance of the ground controllers to distract the Shuttle pilots with warnings of the low flight path. As a corrective action, communication procedures will be modified for future flights.
Directional control-response compatibility of joystick steered shuttle cars.
Burgess-Limerick, Robin; Zupanc, Christine M; Wallis, Guy
2012-01-01
Shuttle cars are an unusual class of vehicle operated in underground coal mines, sometimes in close proximity to pedestrians and steering errors may have very serious consequences. A directional control-response incompatibility has previously been described in shuttle cars which are controlled using a steering wheel oriented perpendicular to the direction of travel. Some other shuttle car operators are seated perpendicular to the direction of travel and steer the car via a seat mounted joystick. A virtual simulation was utilised to determine whether the steering arrangement in these vehicles maintains directional control-response compatibility. Twenty-four participants were randomly assigned to either a condition corresponding to this design (consistent direction), or a condition in which the directional steering response was reversed while driving in-bye (visual field compatible). Significantly less accurate steering performance was exhibited by the consistent direction group during the in-bye trials only. Shuttle cars which provide the joystick steering mechanism described here require operators to accommodate alternating compatible and incompatible directional control-response relationships with each change of car direction. A virtual simulation of an underground coal shuttle car demonstrates that the design incorporates a directional control-response incompatibility when driving the vehicle in one direction. This design increases the probability of operator error, with potential adverse safety and productivity consequences.
Space Shuttle Solid Rocket Booster Debris Assessment
NASA Technical Reports Server (NTRS)
Kendall, Kristin; Kanner, Howard; Yu, Weiping
2006-01-01
The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.
Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge
2011-01-01
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS
NASA Technical Reports Server (NTRS)
Cook, Robert P.; Lostroscio, Charles T.
2005-01-01
The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.
Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS
NASA Technical Reports Server (NTRS)
Cook Robert P.; Lostroscio, Charles T.
2005-01-01
The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.
Flame resistant fibrous structures development
NASA Technical Reports Server (NTRS)
Coskren, Robert J.
1992-01-01
The purpose of the current program was (1) to investigate potentially useful new polymers, both for fire safety and mechanical properties, (2) to produce fibers from these polymers if necessary, and (3) to produce sufficient quantities of qualified fibrous structures, composites, or laminates for use in various areas of the Space Shuttle and Space Station Programs. During the past six years, development efforts have been expended in several major areas in support of Space Shuttle missions and Space Station Freedom projects. The summarized results of several of these major efforts are included in this report.
2006-07-01
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak shows she is happy and excited to be preparing for launch with the fitting of her launch and entry suit. Nowak is making her first space flight. The launch is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)
1990-01-01
Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing
Hardware interface unit for control of shuttle RMS vibrations
NASA Technical Reports Server (NTRS)
Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran
1994-01-01
Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.
NASA Technical Reports Server (NTRS)
Sheppard, Albert P.; Wood, Joan M.
1976-01-01
Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.
Shuttle Hitchhiker Experiment Launcher System (SHELS)
NASA Technical Reports Server (NTRS)
Daelemans, Gerry
1999-01-01
NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.
Electric Trams : Lessons Learned at Cape Cod National Seashore
DOT National Transportation Integrated Search
2005-08-31
In seeking to obtain environmentally friendly replacement vehicles for its parking shuttle service, Cape Cod National Seashore set out to procure two hybrid-electric trams in 1998. Ultimately, battery-powered trams were delivered with multiple safety...
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Schreiner, John
2002-01-01
This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.
Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom
NASA Technical Reports Server (NTRS)
Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.
1990-01-01
The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.
2002-10-18
KENNEDY SPACE CENTER, FLA. - A fire rescue truck stands by for safety reasons as Space Shuttle Atlantis slows to a stop on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .
Putting the Power of Configuration in the Hands of the Users
NASA Technical Reports Server (NTRS)
Al-Shihabi, Mary-Jo; Brown, Mark; Rigolini, Marianne
2011-01-01
Goal was to reduce the overall cost of human space flight while maintaining the most demanding standards for safety and mission success. In support of this goal, a project team was chartered to replace 18 legacy Space Shuttle nonconformance processes and systems with one fully integrated system Problem Reporting and Corrective Action (PRACA) processes provide a closed-loop system for the identification, disposition, resolution, closure, and reporting of all Space Shuttle hardware/software problems PRACA processes are integrated throughout the Space Shuttle organizational processes and are critical to assuring a safe and successful program Primary Project Objectives Develop a fully integrated system that provides an automated workflow with electronic signatures Support multiple NASA programs and contracts with a single "system" architecture Define standard processes, implement best practices, and minimize process variations
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Shooting like a roman candle into Florida's blue sky from Launch Pad 39B, Space Shuttle Discovery kicks off the Fourth of July fireworks with its own fiery display, reflected as well in the nearby water. History was made with the first ever launch on Independence Day. It was the third launch attempt in four days; the others were scrubbed due to weather concerns. Liftoff on mission STS-121 was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo courtesy of Nikon/Scott Andrews
1999-05-12
At Launch pad 39B, Mike Barber, with United Space Alliance safety, points to one of the holes caused by hail on Space Shuttle Discovery's external tank (ET). Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m
NASA Technical Reports Server (NTRS)
1983-01-01
Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.
Space experiment development process
NASA Technical Reports Server (NTRS)
Depauw, James F.
1987-01-01
Described is a process for developing space experiments utilizing the Space Shuttle. The role of the Principal Investigator is described as well as the Principal Investigator's relation with the project development team. Described also is the sequence of events from an early definition phase through the steps of hardware development. The major interactions between the hardware development program and the Shuttle integration and safety activities are also shown. The presentation is directed to people with limited Shuttle experiment experience. The objective is to summarize the development process, discuss the roles of major participants, and list some lessons learned. Two points should be made at the outset. First, no two projects are the same so the process varies from case to case. Second, the emphasis here is on Code EN/Microgravity Science and Applications Division (MSAD).
Space Shuttle Corrosion Protection Performance
NASA Technical Reports Server (NTRS)
Curtis, Cris E.
2007-01-01
The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
1998-07-06
KSC Center Director Roy D. Bridges Jr. and U.S. Congressman Dave Weldon (holding scissors) cut the ribbon at a ceremony on July 6 to open KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF). Joining in the ribbon cutting are (left) Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; Marvin L. Jones, director of Installation Operations; Donald R. McMonagle, manager of Launch Integration; (right) Wade Ivey of Ivey Construction, Inc.; Robert B. Sieck, director of Shuttle Processing; and John Plowden, vice president of Rocketdyne. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced nondestructive evaluation (NDE) techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.
2007-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
Status of Thermal NDT of Space Shuttle Materials at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Rweinhardt, Walter W.
2006-01-01
Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.
STS-99 RSS rollback from Space Shuttle Endeavour on Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.
2000-01-27
Center Director Roy Bridges (right) welcomes STS-99 Commander Kevin Kregel (left) and the rest of the crew after their arrival at KSC's Shuttle Landing Facility. Behind them are the T-38 jets that transported the crew, with the mate/demate tower in the background. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-27
Center Director Roy Bridges (right) welcomes STS-99 Commander Kevin Kregel (left) and the rest of the crew after their arrival at KSC's Shuttle Landing Facility. Behind them are the T-38 jets that transported the crew, with the mate/demate tower in the background. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
KSC Center Director Roy D. Bridges Jr. and U.S. Congressman Dave Weldon (holding scissors) cut the ribbon at a ceremony on July 6 to open KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF). Joining in the ribbon cutting are (left) Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; Marvin L. Jones, director of Installation Operations; Donald R. McMonagle, manager of Launch Integration; (right) Wade Ivey of Ivey Construction, Inc.; Robert B. Sieck, director of Shuttle Processing; and John Plowden, vice president of Rocketdyne. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
NASA Technical Reports Server (NTRS)
Houser, J. F.; Runciman, W. H.
1971-01-01
Experimental aerodynamic investigations were made in the Grumman 36-inch hypersonic wind tunnel on a .00435 scale model of the H-32 reusable space shuttle booster. The objectives of the test were to determine the static stability characteristics and control surface effectiveness at hypersonic speeds. Data were taken at M = 8.12 over a range of angles of attack between -5 and 85 deg at beta = 0 deg and over a range of side slip angles between -10 and 10 deg at alpha = 0 and 70 deg. Six component balance data and base-cavity pressure data were recorded.
A hazard control system for robot manipulators
NASA Technical Reports Server (NTRS)
Carter, Ruth Chiang; Rad, Adrian
1991-01-01
A robot for space applications will be required to complete a variety of tasks in an uncertain, harsh environment. This fact presents unusual and highly difficult challenges to ensuring the safety of astronauts and keeping the equipment they depend on from becoming damaged. The systematic approach being taken to control hazards that could result from introducing robotics technology in the space environment is described. First, system safety management and engineering principles, techniques, and requirements are discussed as they relate to Shuttle payload design and operation in general. The concepts of hazard, hazard category, and hazard control, as defined by the Shuttle payload safety requirements, is explained. Next, it is shown how these general safety management and engineering principles are being implemented on an actual project. An example is presented of a hazard control system for controlling one of the hazards identified for the Development Test Flight (DTF-1) of NASA's Flight Telerobotic Servicer, a teleoperated space robot. How these schemes can be applied to terrestrial robots is discussed as well. The same software monitoring and control approach will insure the safe operation of a slave manipulator under teleoperated or autonomous control in undersea, nuclear, or manufacturing applications where the manipulator is working in the vicinity of humans or critical hardware.
Commercial Crew Program Crew Safety Strategy
NASA Technical Reports Server (NTRS)
Vassberg, Nathan; Stover, Billy
2015-01-01
The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.
NASA Technical Reports Server (NTRS)
1977-01-01
The panel focused its attention on those areas that are considered most significant for flight success and safety. Elements required for the Approach and Landing Test Program, the Orbital Flight Test Program, and those management systems and their implementation which directly affect safety, reliability, and quality control, were investigated. Ground facilities and the training programs for the ground and flight crews were studied. Of special interest was the orbiter thermal protection subsystems.
2005-08-14
Lightning strikes in the distance as the Space Shuttle Discovery receives post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-14
A technician leaves the 'white room', the access point for entering the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-14
The sun sets on the Space Shuttle Discovery during post-flight processing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center in California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-11
The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-11
The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
Water absorption and desorption in shuttle ablator and insulation materials
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.
1982-01-01
Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1999-01-01
This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1974-01-01
Data obtained from the wind tunnel tests of a scale model of the space shuttle orbiter configuration 140 A/B are presented. The test was conducted at Mach numbers of 2.5, 3.9, and 4.6 with Reynolds numbers from 1.25 million per foot to 5.0 million per foot. Various control surface settings were used ranging from an angle of attack range from minus 4 to plus 42 degrees at zero angle of yaw. Longitudinal stability and control characteristics of the space shuttle configuration were analyzed.
KU-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Griffin, J. W.
1980-01-01
The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.
The Aerospace Safety Advisory panel's report to Doctor Robert A. Frosch, 1977
NASA Technical Reports Server (NTRS)
1978-01-01
Risks attendant to NASA's operations are identified for the following: mission operations; orbiter readiness for orbital flight tests; space shuttle main engine; avionics; thermal projection system; hazard assessment; human error. Past and future projects are assessed.
NASA Technical Reports Server (NTRS)
Dannenfelser, Robert, Jr.
1986-01-01
Prompted by the attention focused on the Space Shuttle Program's cost and safety problems and the publicity surrounding the intended U.S. space station, a review is given of the status of efforts being made to use space as a commercial manufacturing environment.
The 15th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1981-01-01
Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.
The disposal of nuclear waste in space
NASA Technical Reports Server (NTRS)
Burns, R. E.
1978-01-01
The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.
2000-01-27
STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-27
STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-27
STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-27
STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
2012-07-20
CAPE CANAVERAL, Fla. – Inside the RLV Hangar near NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, flight instructors from Florida Tech, FIT, in Melbourne, listen to NASA Aviation Safety Officer Joe Torsani and view a NASA Huey helicopter. At left, in the red shirt is Glenn Vera, director of FIT Aviation. The flight instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Messer, Bradley P.
2006-01-01
This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
2005-08-12
Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa
2005-08-12
Flight Crew Systems Technicians Ray Smith and Raphael Rodriguez remove one of the Extravehicular Mobility Units, or EMUs, from the Space Shuttle Discovery after it's successful landing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14
NASA Astronauts on Soyuz: Experience and Lessons for the Future
NASA Technical Reports Server (NTRS)
2010-01-01
The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures
STS-36 Commander Creighton in LES outside CCT side hatch during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
Standing on an inflated cushion outside the side hatch of the crew compartment trainer (CCT), STS-36 Commander John O. Creighton, wearing launch and entry suit (LES), smiles before climbing into the shuttle mockup. The crew escape system (CES) pole extends beyond the side hatch opening. Mission Specialist (MS) Richard M. Mullane is seen at the lower corner of the frame rolling on the safety cushion. CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The crewmembers are practicing egress procedures that might be necessary in the event of an emergency aboard the shuttle.
A Cooling System for the EAPU Shuttle Upgrade
NASA Technical Reports Server (NTRS)
Tongue, Stephen; Guyette, Greg; Irbeck, Bradley
2001-01-01
The Shuttle orbiter currently uses hydrazine-powered APU's for powering its hydraulic system pumps. To enhance vehicle safety and reliability, NASA is pursuing an APU upgrade where the hydrazine powered turbine is replaced by an electric motor pump and battery power supply. This EAPU (Electric APU) upgrade presents several thermal control challenges most notably the new requirement for moderate temperature control of high-power electron ics at 132 of (55.6 C). This paper describes how the existing Water Spray Boiler (WSB), which currently cools the hydraulic fluid and APU lubrication oil, is being modified to provide EAPU thermal management.
NASA Technical Reports Server (NTRS)
2006-01-01
These seven astronauts take a break from training to pose for the STS-121 crew portrait. From the left are mission specialists Stephanie D. Wilson, and Michael E. Fossum, Commander Steven W. Lindsey, mission specialist Piers J. Sellers, pilot Mark E. Kelly; European Space Agency (ESA) astronaut and mission specialist Thomas Reiter of Germany; and mission specialist Lisa M. Nowak. The crew members are attired in training versions of their shuttle launch and entry suit. The crew, first ever to launch on Independence Day, tested new equipment and procedures to improve shuttle safety, as well as delivered supplies and made repairs to the space station.
Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1996-01-01
This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.
Continuous Improvements to East Coast Abort Landings for Space Shuttle Aborts
NASA Technical Reports Server (NTRS)
Butler, Kevin D.
2003-01-01
Improvement initiatives in the areas of guidance, flight control, and mission operations provide increased capability for successful East Coast Abort Landings (ECAL). Automating manual crew procedures in the Space Shuttle's onboard guidance allows faster and more precise commanding of flight control parameters needed for successful ECALs. Automation also provides additional capability in areas not possible with manual control. Operational changes in the mission concept allow for the addition of new landing sites and different ascent trajectories that increase the regions of a successful landing. The larger regions of ECAL capability increase the safety of the crew and Orbiter.
NASA Technical Reports Server (NTRS)
1974-01-01
Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.
2006-06-09
KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett
2006-06-09
KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, seen inside, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank, designated ET-118, was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 1 at NASAs Kennedy Space Center, a worker rolls the plastic cover removed from the Orbital Boom Sensor System (OBSS), at right, which will be installed in the payload bay of Atlantis. The 50- foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission STS-121 has a launch window of July 12 - July 31, 2005.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 3, workers oversee the lowering of the Orbiter Boom Sensor System (OBSS) on the starboard side of Discoverys payload bay. At lower right is the Remote Manipulator System (RMS), or Shuttle robotic arm. The 50-foot-long OBSS attaches to the RMS, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission, STS-114, has a launch window of May 12 to June 3, 2005.
STS-66 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-66 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-04-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
Purpose, Principles, and Challenges of the NASA Engineering and Safety Center
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
2016-01-01
NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.
Thermoregulatory models of safety-for-flight issues for space operations
NASA Astrophysics Data System (ADS)
Pisacane, V. L.; Kuznetz, L. H.; Logan, J. S.; Clark, J. B.; Wissler, E. H.
2006-10-01
This study investigates the use of a mathematical model for thermoregulation as a tool in safety-of-flight issues and proposed solutions for mission operations of the Space Shuttle and the International Space Station. Specifically, this study assesses the effects of elevated cabin temperature and metabolic loads on astronauts wearing the Advanced Crew Escape Suit (ACES) and the Liquid Cooled Ventilation Garment (LCVG). The 225-node Wissler model is validated by comparison with two ground-based human subject tests, firefighters, and surrogate astronauts under anomalous conditions that show good agreement. Subsequent simulations indicate that the performance of the ACES/LCVG is marginal. Increases in either workload or cabin temperature from the nominal will increase rectal temperature, stored heat load, heart rate, and sweating leading to possible deficits in the ability of the astronauts to perform cognitive and motor tasks that could affect the safety of the mission, especially the safe landing of the Shuttle. Specific relationships are given between cabin temperature and metabolic rate that define the threshold for decreased manual dexterity and loss of tracking skills. Model results indicate that the most effective mitigation strategy would be to decrease the LCVG inlet temperature. Methods of accomplishing this are also proposed.
2005-08-09
The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005. From left to right: Mission Specialist Stephen Robinson, Commander Eileen Collins, Mission Specialists Andrew Thomas, Wendy Lawrence, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John
2004-01-01
Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.
2005-08-18
NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-18
NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
2005-08-19
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
STS-99 Mission Specialist Mohri and his wife get ready to DEPART from PAFB
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri of Japan and his wife, Akiko, wave before their departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85
NASA Technical Reports Server (NTRS)
Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.
2004-01-01
Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.
2018-03-13
Kennedy Space Center Director Bob Cabana approaches the finish line at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
2018-03-13
A line of Kennedy Space Center employees and guests stretches down the Shuttle Landing Facility Runway during the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
NASA Technical Reports Server (NTRS)
1994-01-01
This is an overview of the White Sands Test Facility's role in ensuring the safety and reliability of materials and hardware slated for launch aboard the Space Shuttle. Engine firings, orbital flights debris impact tests, and propulsion tests are featured as well as illustrating how they provide flight safety testing for the Johnson Space Center, other NASA centers, and various government agencies. It also contains a historical perspective and highlights of major programs that have been participated in as part of NASA.
Performance and Safety Tests on Samsung 18650 Li-ion Cells: Two Cell Designs
NASA Technical Reports Server (NTRS)
Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin
2002-01-01
In order to meet the applications for space shuttle in future, two types of Samsung cells, with capacity 1800 mAh and 2000 mAh, have been investigated. The studies focused on: (1) Performance tests: completed 250 cycles at various combinations of charge/discharge C rates and discharge capacity measurements at various temperatures; and (2) Safety tests: overcharge and overdischarge, heat abuse, short circuit, internal and external short, and vibration, vacuum, and drop tests
Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2003-01-01
The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be larger. Jimsphere radar tracking noise increases as a function of balloon displacement downrange. The Jimsphere data processing compensates for tracking signal/noise degradation by increasing the smoothing interval. The Jimsphere wind profile effective resolution is a function of downrange distance and altitude, whereas the effective resolution of the HRAMPS should be independent of those variables. The procedure used for editing Jimsphere spikes in Shuttle DOL profiles was not implemented for the Jimsphere profile measurements during the AMPS field tests. For this analysis a code was developed that essentially mimics DOL Jimsphere spike editing. Jimsphere profiles have somewhat more noise in the wavelength range less than 200m defined as the noise floor. No differences between Jimsphere and HRAMPS wind profile pairs have been found that would support denial of HRAMPS certification for application in Shuttle DOL applications. The reliability of the HRAMPS system, which is an important certification issue, is not addressed in this study.
Taking the Risk Out of Risk Assessment
NASA Technical Reports Server (NTRS)
2005-01-01
The ability to understand risks and have the right strategies in place when risky events occur is essential in the workplace. More and more organizations are being confronted with concerns over how to measure their risks or what kind of risks they can take when certain events transpire that could have a negative impact. NASA is one organization that faces these challenges on a daily basis, as effective risk management is critical to the success of its missions especially the Space Shuttle missions. On July 29, 1996, former NASA Administrator Daniel Goldin charged NASA s Office of Safety and Mission Assurance with developing a probabilistic risk assessment (PRA) tool to support decisions on the funding of Space Shuttle upgrades. When issuing the directive, Goldin said, "Since I came to NASA [in 1992], we've spent billions of dollars on Shuttle upgrades without knowing how much they improve safety. I want a tool to help base upgrade decisions on risk." Work on the PRA tool began immediately. The resulting prototype, the Quantitative Risk Assessment System (QRAS) Version 1.0, was jointly developed by NASA s Marshall Space Flight Center, its Office of Safety and Mission Assurance, and researchers at the University of Maryland. QRAS software automatically expands the reliability logic models of systems to evaluate the probability of highly detrimental outcomes occurring in complex systems that are subject to potential accident scenarios. Even in its earliest forms, QRAS was used to begin PRA modeling of the Space Shuttle. In parallel, the development of QRAS continued, with the goal of making it a world-class tool, one that was especially suited to NASA s unique needs. From the beginning, an important conceptual goal in the development of QRAS was for it to help bridge the gap between the professional risk analyst and the design engineer. In the past, only the professional risk analyst could perform, modify, use, and perhaps even adequately understand PRA. NASA wanted to change this by developing a PRA tool that would be friendlier, more understandable, and more useful to the broader engineering community. This concept ultimately led to the look, feel, and functionality that QRAS has today.
Orbiter Atlantis (STS-110) Launch With New Block II Engines
NASA Technical Reports Server (NTRS)
2002-01-01
Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.
STS-99 Mission Specialists Thiele and Mohri greet the media at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.
Utilizing HDTV as Data for Space Flight
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Lindblom, Walt
2006-01-01
In the aftermath of the Space Shuttle Columbia accident February 1, 2003, the Columbia Accident Investigation Board recognized the need for better video data from launch, on-orbit, and landing to assess the status and safety of the shuttle orbiter fleet. The board called on NASA to improve its imagery assets and update the Agency s methods for analyzing video. This paper will feature details of several projects implemented prior to the return to flight of the Space Shuttle, including an airborne HDTV imaging system called the WB-57 Ascent Video Experiment, use of true 60 Hz progressive scan HDTV for ground and airborne HDTV camera systems, and the decision to utilize a wavelet compression system for recording. This paper will include results of compression testing, imagery from the launch of STS-114, and details of how commercial components were utilized to image the shuttle launch from an aircraft flying at 400 knots at 60,000 feet altitude. The paper will conclude with a review of future plans to expand on the upgrades made prior to return to flight.
Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.
2006-01-01
Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.
2000-01-27
After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST
Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
NASA Technical Reports Server (NTRS)
2000-01-01
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
2000-02-03
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
Shuttle Upgrade Using 5-Segment Booster (FSB)
NASA Technical Reports Server (NTRS)
Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)
2000-01-01
In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.
NASA/MOD Operations Impacts from Shuttle Program
NASA Technical Reports Server (NTRS)
Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly
2011-01-01
Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. From inside the viewing room of the Launch Control Center, KSC employees watch Space Shuttle Discovery as it creeps along the crawlerway toward the horizon, and Launch Pad 39B at NASAs Kennedy Space Center. First motion of the Shuttle out of the Vehicle Assembly Building (VAB) was at 2:04 p.m. EDT. The Mobile Launcher Platform is moved by the Crawler-Transporter underneath. The Crawler is 20 feet high, 131 feet long and 114 feet wide. It moves on eight tracks, each containing 57 shoes, or cleats, weighing one ton each. Loaded with the Space Shuttle, the Crawler can move at a maximum speed of approximately 1 mile an hour. A leveling system in the Crawler keeps the Shuttle vertical while negotiating the 5 percent grade leading to the top of the launch pad. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discovery was moved on March 29 from the Orbiter Processing Facility to the VAB and attached to its propulsion elements, a redesigned ET and twin SRBs.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. As Space Shuttle Discovery creeps along the crawlerway toward the horizon, and Launch Pad 39B at NASAs Kennedy Space Center, media and workers in the foreground appear as ants. First motion of the Shuttle out of the Vehicle Assembly Building (VAB) was at 2:04 p.m. EDT. The Mobile Launcher Platform is moved by the Crawler-Transporter underneath. The Crawler is 20 feet high, 131 feet long and 114 feet wide. It moves on eight tracks, each containing 57 shoes, or cleats, weighing one ton each. Loaded with the Space Shuttle, the Crawler can move at a maximum speed of approximately 1 mile an hour. A leveling system in the Crawler keeps the Shuttle vertical while negotiating the 5 percent grade leading to the top of the launch pad. Launch of Discovery on its Return to Flight mission, STS- 114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discovery was moved on March 29 from the Orbiter Processing Facility to the VAB and attached to its propulsion elements, a redesigned ET and twin SRBs.
2018-03-13
Kennedy Space Center employees and guests are off to a running start at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.
Applying formal methods and object-oriented analysis to existing flight software
NASA Technical Reports Server (NTRS)
Cheng, Betty H. C.; Auernheimer, Brent
1993-01-01
Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.
Holographic flow diagnostics for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
1992-01-01
Summarized here are the results of an effort to produce holograms of the exhaust from the Space Shuttle Main Engine (SSME) being tested on a test stand at the Marshall Space Flight Center (MSFC). The effort took place from December 1990 to January 1992, during which seven trips were made from MetroLaser to MSFC. A brief outline of each trip is given. Due to the suspension of the SSME program in Huntsville and unexpected complications in resolving safety issues, the proposed holography system was not operated until November 1991. A NASA 100 mW Argon laser was installed in the holography system for an October engine test while these safety issues were being resolved. A video camera shadowgraph was made during this test, which was shut down prematurely after 20 seconds. System problems precluded successful operation of the holography system until the January 1992 engine test. No hologram resulted during this test due to heavy fog conditions around the engine.
ASAP Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
2004-01-01
This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
2006-05-17
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads is lifted toward the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett
Shuttle freezer conceptual design
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Russell, D. J.
1975-01-01
A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.
2000-01-27
STS-99 Mission Specialist Janice Voss (Ph.D.) looks happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
Noise Control in Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.
2009-01-01
Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.
STS-99 Mission Specialist Kavandi arrives for launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) looks surprised and happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 Commander Kregel arrives for launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Commander Kevin Kregel arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 Pilot Gorie arrives for launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Pilot Dominic Gorie arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 Mission Specialist Thiele arrives for launch
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
2000-01-14
STS-99 Pilot Dominic Gorie goes through countdown procedures on the flight deck aboard the Space Shuttle Endeavour as part of Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
1999-12-13
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is viewed atop the mobile launcher platform on its way to Launch Pad 39A for launch of mission STS-99. Named the Shuttle Radar Topography Mission (SRTM), STS-99 involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000
2000-01-14
STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) settles into her seat inside Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-27
STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves on his arrival at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-14
STS-99 Mission Specialist Mamoru Mohri (Ph.D.) takes his seat inside Space Shuttle Endeavour for a practice launch countdown during Terminal Countdown Demonstration Test (TCDT) activities for the mission. Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
1999-12-13
KENNEDY SPACE CENTER, Fla. -- Under breaking clouds, Space Shuttle Endeavour, atop the mobile launcher platform and crawler-transporter, crawls its way to Launch Pad 39A for mission STS-99. Named the Shuttle Radar Topography Mission (SRTM), STS-99 involves an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from its payload bay, to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. STS-99 is scheduled for launch in January 2000
2000-01-14
STS-99 Commander Kevin Kregel goes through countdown procedures on the flight deck aboard the Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-14
STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, goes through countdown procedures aboard the Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-27
STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves on his arrival at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-27
STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-01-27
STS-99 Mission Specialist Janice Voss (Ph.D.) looks happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.
2009-01-01
The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.
2006-07-04
KENNEDY SPACE CENTER, FLA. - Trying a third time for launch, and still smiling, the STS-121 crew gathers again for the traditional breakfast before suiting up. Seated left to right are Mission Specialists Piers Sellers and Michael Fossum, Pilot Mark Kelly, Commander Steven Lindsey, and Mission Specialists Lisa Nowak, Stephanie Wilson and Thomas Reiter, who represents the European Space Agency. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A serene scene surrounds Space Shuttle Atlantis as it begins rolling off Launch Pad 39B to return to the Vehicle Assembly Building. First motion off the pad was at 10:04 a.m. EDT. The crawler is 131 feet long, 113 feet wide and 20 feet high. It weights 5.5 million pounds unloaded. The combined weight of crawler, mobile launcher platform and a space shuttle is 12 million pounds. Unloaded, the crawler moves at 2 mph. Loaded, the snail's pace slows to 1 mph. The rollback is a safety precaution as the area waits for the arrival of Tropical Storm Ernesto. The storm is forecast to be bringing 58-mph to 70-mph winds in the next 24 hours. The shuttle will be moved into high bay 2, on the southwest side of the VAB, for protection from the storm. Photo credit: NASA/Ken Thornsley
Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.
2009-01-01
Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.
2005-08-12
Todd Viddle; APU advanced systems technician, Robert 'Skip' Garrett; main propulsion advanced systems technician, and Dan McGrath; main propulsion systems engineer technician, remove a servicing unit from the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items
NASA Technical Reports Server (NTRS)
James. John T.
2010-01-01
The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (13C-acetone, fluorobenzene, and chlorobenzene) from the 2 Shuttle GSCs averaged 93, 85%, and 88%, respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration. The toxicological assessment of 7 GSCs from the ISS is also shown. The recoveries of the 3 standards (as listed above) from the GSCs averaged 78, 96 and 90%, respectively. Recovery from formaldehyde control badges ranged from 90 to 112%.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.
NASA Technical Reports Server (NTRS)
Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert
2010-01-01
Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.
NASA's Space Launch Initiative Targets Toxic Propellants
NASA Technical Reports Server (NTRS)
Hurlbert, Eric; McNeal, Curtis; Davis, Daniel J. (Technical Monitor)
2001-01-01
When manned and unmanned space flight first began, the clear and overriding design consideration was performance. Consequently, propellant combinations of all kinds were considered, tested, and, when they lifted the payload a kilometer higher, or an extra kilogram to the same altitude, they became part of our operational inventory. Cost was not considered. And with virtually all of the early work being performed by the military, safety was hardly a consideration. After all, fighting wars has always been dangerous. Those days are past now. With space flight, and the products of space flight, a regular part of our lives today, safety and cost are being reexamined. NASA's focus turns naturally to its Shuttle Space Transportation System. Designed, built, and flown for the first time in the 1970s, this system remains today America's workhorse for manned space flight. Without its tremendous lift capability and mission flexibility, the International Space Station would not exist. And the Hubble telescope would be a monument to shortsighted management, rather than the clear penetrating eye on the stars it is today. But the Shuttle system fully represents the design philosophy of its period: it is too costly to operate, and not safe enough for regular long term access to space. And one of the key reasons is the utilization of toxic propellants. This paper will present an overview of the utilization of toxic propellants on the current Shuttle system.
Rocketdyne Safety Algorithm: Space Shuttle Main Engine Fault Detection
NASA Technical Reports Server (NTRS)
Norman, Arnold M., Jr.
1994-01-01
The Rocketdyne Safety Algorithm (RSA) has been developed to the point of use on the TTBE at MSFC on Task 4 of LeRC contract NAS3-25884. This document contains a description of the work performed, the results of the nominal test of the major anomaly test cases and a table of the resulting cutoff times, a plot of the RSA value vs. time for each anomaly case, a logic flow description of the algorithm, the algorithm code, and a development plan for future efforts.
Liquid flyback booster pre-phase: A study assessment
NASA Technical Reports Server (NTRS)
Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.
1994-01-01
The concept of a flyback booster has been around since early in the shuttle program. The original two-stage shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current shuttle uses two Redesigned Solid Rocket Motors (RSRM's), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBB's. The study provides an expansion of the recommendations made during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reduction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBB's requires a commitment to the shuttle program for 20 to 30 years. LFBB's also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic, since there are no intact abort capabilities during the burn of the RSRM's. The performance goal of the LFBB's was to lift a fully loaded orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the shuttle. In addition, a final benefit is the availability of growth paths for applications other than shuttle.
Liquid Flyback Booster Pre-Phase A Study Assessment. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.;
1994-01-01
Mw concept of a flyback booster has been around since early in the Shuttle program. The original two-stage Shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current Shuttle uses two Redesigned Solid Rocket Motors (RSRMs), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBBs. The study provides an expansion of the recommendations made during the during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reuction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBBs requires a commitment to the Shuttle program for 20 to 30 years. LFBBs also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic since them we no intact abort capabilities during the burn of the RSRMS. The performance goal of the LFBBs was to lift a fully loaded Orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the Shuttle. In addition, a final benefit is the availability of growth paths for applications other than the Shuttle.
Safety and Abuse Testing of Energizer LiFeS2 AA Cells
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Baldwin, Laura; Bragg, Bobby J.
2003-01-01
The LiFeS2 test program was part of the study on state-of-the-art batteries/cells available in the commercial market. It was carried out in an effort to replace alkaline AA cells for Shuttle and Station applications. A large number of alkaline cells are used for numerous Shuttle and Station applications as loose cells. Other government agencies reported good performance and abuse tolerance of the AA LiFeS2 cells. In this study, only abuse testing was performed on the cells to determine their tolerance. The tests carried out were over-discharge, external short circuit, heat-to-vent, vibration and drop.
NASA Technical Reports Server (NTRS)
Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.
1973-01-01
The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.