Sample records for shuttle rocket booster

  1. Study of solid rocket motor for a space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study of solid rocket motors for a space shuttle booster was directed toward definition of a parallel-burn shuttle booster using two 156-in.-dia solid rocket motors. The study effort was organized into the following major task areas: system studies, preliminary design, program planning, and program costing.

  2. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  3. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  4. Viscoelastic propellant effects on Space Shuttle Dynamics

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1981-01-01

    The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.

  5. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  6. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  7. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  8. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  9. Solid rocket booster thermal protection system materials development. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1978-01-01

    A complete run log of all tests conducted in the NASA-MSFC hot gas test facility during the development of materials for the space shuttle solid rocket booster thermal protection system are presented. Lists of technical reports and drawings generated under the contract are included.

  10. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  11. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  12. Liquid boosters for Shuttle?

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1989-12-01

    The use of liquid rocket boosters (LRBs) for the Space Shuttle is proposed. The advantages LRBs provide are improved flight safety due to the use of four engines instead of two and less environmental pollution than solid rocket boosters because LRBs utilize clean-burning fuels. The LRBs also permit very high launch rates and increased safety in assembly and mating of the Shuttle. Concerns about LRBs such as costs, diameter, support capability, and water recovery are examined.

  13. Solid Rocket Booster Separation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Quick Time movie shows the Space Shuttle Solid Rocket Booster (SRB) separation from the external tank (ET). After separation, the boosters fall to the ocean from which they are retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  14. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  15. Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.

  16. Study of solid rocket motors for a space shuttle booster. Appendix E: Environmental impact statement, solid rocket motor, space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the combustion products resulting from the solid propellant rocket engines of the space shuttle booster is presented. Calculation of the degree of pollution indicates that the only potentially harmful pollutants, carbon monoxide and hydrochloric acid, will be too diluted to constitute a hazard. The mass of products ejected during a launch within the troposphere is insignificant in terms of similar materials that enter the atmosphere from other sources. Noise pollution will not exceed that obtained from the Saturn 5 launch vehicle.

  17. Space Shuttle Project

    NASA Image and Video Library

    1972-03-07

    This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.

  18. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  19. Liquid lift for the Shuttle

    NASA Astrophysics Data System (ADS)

    Demeis, Richard

    1989-02-01

    After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

  20. Space shuttle system program definition. Volume 4: Cost and schedule report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The supporting cost and schedule data for the second half of the Space Shuttle System Phase B Extension Study is summarized. The major objective for this period was to address the cost/schedule differences affecting final selection of the HO orbiter space shuttle system. The contending options under study included the following booster launch configurations: (1) series burn ballistic recoverable booster (BRB), (2) parallel burn ballistic recoverable booster (BRB), (3) series burn solid rocket motors (SRM's), and (4) parallel burn solid rocket motors (SRM's). The implications of varying payload bay sizes for the orbiter, engine type for the ballistics recoverable booster, and SRM motors for the solid booster were examined.

  1. Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.

  2. Study of solid rocket motors for a space shuttle booster. Appendix B: Prime item development specification

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The specifications for the performance, design, development, and test requirements of the P2-156, S3-156, and S6-120 space shuttle booster solid rocket motors are presented. The applicable documents which form a part of the specifications are listed.

  3. Aerodynamic characteristics of a 142-inch diameter solid rocket booster, configuration 139 (SA2FA/SA2FB)

    NASA Technical Reports Server (NTRS)

    Radford, W. D.; Johnson, J. D.

    1974-01-01

    Tests of a 2.112 percent scale model of the space shuttle solid rocket booster model were conducted in a transonic pressure tunnel. Tests were conducted at Mach numbers ranging from 0.4 to 1.2, angles of attack from minus one degree to plus 181 degrees, and Reynolds numbers from 0.6 million to 6.1 million per foot. The model configurations investigated were as follows: (1) solid rocket booster without external protuberances, (2) solid rocket booster with an electrical tunnel and a solid rocket booster/external tank thrust attachment structure, and (3) solid rocket booster with two body strakes.

  4. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  5. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    The factors affecting the choice of the 156 inch diameter, parallel burn, solid propellant rocket engine for use with the space shuttle booster are presented. Primary considerations leading to the selection are: (1) low booster vehicle cost, (2) the largest proven transportable system, (3) a demonstrated design, (4) recovery/reuse is feasible, (5) abort can be easily accomplished, and (6) ecological effects are minor.

  6. Study of solid rocket motors for a space shuttle booster. Volume 2, book 3: Cost estimating data

    NASA Technical Reports Server (NTRS)

    Vanderesch, A. H.

    1972-01-01

    Cost estimating data for the 156 inch diameter, parallel burn solid rocket propellant engine selected for the space shuttle booster are presented. The costing aspects on the baseline motor are initially considered. From the baseline, sufficient data is obtained to provide cost estimates of alternate approaches.

  7. Control techniques to improve Space Shuttle solid rocket booster separation

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.

    1983-01-01

    The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.

  8. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  9. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  10. Liquid rocket booster study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The purpose of this study was to determine the feasibility of Liquid Rocket Boosters (LRBs) replacing Solid Rocket Boosters on the Space Shuttle program. The major findings are given. The most significant conclusion is that LRBs offer significantly safety and performance advantages over the SRBs currently used by the STS without major impact to the ongoing program.

  11. Technical report analysis and design: Study of solid rocket motors for a space shuttle booster, volume 2, book 1, supplement 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and design effort was conducted as part of the study of solid rocket motor for a space shuttle booster. The 156-inch-diameter, parallel burn solid rocket motor was selected as its baseline because it is transportable and is the most cost-effective, reliable system that has been developed and demonstrated. The basic approach was to concentrate on the selected baseline design, and to draw from the baseline sufficient data to describe the alternate approaches also studied. The following conclusions were reached with respect to technical feasibility of the use of solid rocket booster motors for the space shuttle vehicle: (1) The 156-inch, parallel-burn baseline SRM design meets NASA's study requirements while incorporating conservative safety factors. (2) The solid rocket motor booster represents a cost-effective approach. (3) Baseline costs are conservative and are based on a demonstrated design. (4) Recovery and reuse are feasible and offer substantial cost savings. (5) Abort can be accomplished successfully. (6) Ecological effects are acceptable.

  12. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  13. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1977-12-01

    The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  15. Space Shuttle Project

    NASA Image and Video Library

    1977-11-18

    This photograph shows Solid Rocket Booster segments undergoing stacking operations in Marshall Space Flight Center's Building 4707. The Solid Rocket Boosters were designed in-house at the Marshall Center with the Thiokol Corporation as the prime contractor.

  16. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  17. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  18. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  19. KSC-2012-4455

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load the aft skirt for a space shuttle solid rocket booster on a truck. A twin set of space shuttle solid rocket boosters and an external fuel tank are being prepared for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  20. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  1. Lithium cell tests at Marshall Space Flight Center. [batteries for range safety and frustrum location aid in the shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1977-01-01

    Three 18 AH Li-CF batteries with a polypropylene separator and using dimethyl sulfite in Li as F6 for the electrolyte will be placed in each shuttle solid rocket booster for range safety and frustrum location aid. Mechanical vibration, acceleration, random and design vibration, and discharge evaluation tests are discussed.

  2. Water absorption and desorption in shuttle ablator and insulation materials

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  3. STS-55 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

  4. Feasibility study using large ribbon parachutes, retrorockets, and hydrodynamic attenuation to recover liquid rocket boosters for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pepper, William B.; Wailes, William K.

    1989-01-01

    A new three-phase approach to recovery of the large liquid rocket boosters being studied for the Space Shuttle is proposed. The concept consists of a cluster of larger ribbon parachutes, retrorockets, and spar mode flotation. The two inert liquid rocket boosters weighing 115,000 lb to 183,000 lb descend from high altitude in a side-on coning attitude to 16,000 ft altitude where a cluster of large ribbon parachutes are deployed. The terminal velocity near water landing is 80 ft/sec. Retrorockets are used to decrease the velocity to about 40 ft/sec. The third phase is opening of the front end of the cylindrical rocket case to allow flooding to cushion impact and allow vertical flotation in the spar mode keeping the four expensive liquid rocket engines dry.

  5. Economics of the solid rocket booster for space shuttle

    NASA Technical Reports Server (NTRS)

    Rice, W. C.

    1979-01-01

    The paper examines economics of the solid rocket booster for the Space Shuttle. Costs have been held down by adapting existing technology to the 146 in. SRB selected, with NASA reducing the cost of expendables and reusing the expensive nonexpendable hardware. Drop tests of Titan III motor cases and nozzles proved that boosters can survive water impact at vertical velocities of 100 ft/sec so that SRB components can be reused. The cost of expendables was minimized by selecting proven propellants, insulation, and nozzle ablatives of known costs; the propellant has the lowest available cost formulation, and low cost ablatives, such as pitch carbon fibers, will be used when available. Thus, the use of proven technology and low cost expendables will make the SRB an economical booster for the Space Shuttle.

  6. Space Shuttle Project

    NASA Image and Video Library

    1978-01-18

    Pictured is an early testing of the Solid Rocket Motor (SRM) at the Thiokol facility in Utah. The SRMs later became known as Solid Rocket Boosters (SRBs) as they were more frequently used on the Space Shuttles.

  7. KSC-2011-1878

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. KSC-2011-1873

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  9. KSC-2011-1879

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  10. KSC-2011-1874

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  11. KSC-2011-1877

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  12. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  13. Space shuttle solid rocket booster sting interference wind tunnel test analysis

    NASA Technical Reports Server (NTRS)

    Conine, B.; Boyle, W.

    1981-01-01

    Wind tunnel test results from shuttle solid rocket booster (SRB) sting interference tests were evaluated, yielding the general influence of the sting on the normal force and pitching moment coefficients and the side force and yawing moment coefficients. The procedures developed to determine the sting interference, the development of the corrected aerodynamic data, and the development of a new SRB aerodynamic mathematical model are documented.

  14. Liquid rocket booster study addendum

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Liquid rocket booster study (LRB) addendum to final report is presented in the form of the view-graphs. The following subject areas are covered: LRB launch vehicle concepts; LRB design; propulsion system configurations; LRB boattail for Shuttle-C application; and manned transportation systems.

  15. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  17. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  18. Study of solid rocket motor for space shuttle booster, volume 2, book 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.

  19. KSC-2011-1871

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members and divers in skiffs from Liberty Star, one of NASA's solid rocket booster retrieval ships, are prepared to retrieve the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  20. KSC-2011-1869

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, use skiffs to approach the right spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's final launch. Divers are already in the water. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  1. KSC-2011-1910

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-1918

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch hangs in a hoisting device at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-1909

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is moved into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-1921

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, accompany the left spent booster, used during space shuttle Discovery's final launch, into the building for processing. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-1912

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The left spent booster used during space shuttle Discovery's final launch is guided into a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-1870

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Liberty Star, one of NASA's solid rocket booster retrieval ships, attach a tow rope to the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  7. KSC-2011-1875

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, monitors the progress as the massive parachute from the right spent booster from space shuttle Discovery's final launch is hauled on board. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. KSC-2011-1913

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- Workers in a small raft, guide the left spent booster used during space shuttle Discovery's final launch into position in a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  9. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. Space shuttle propulsion systems

    NASA Technical Reports Server (NTRS)

    Bardos, Russell

    1991-01-01

    This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.

  11. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  12. KSC-2011-5496

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – At Hangar AF at Cape Canaveral Air Force Station in Florida, a booster retrieval ship delivers a frustum from one of space shuttle Atlantis' spent solid rocket boosters, beginning the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. Study of solid rocket motors for a space shuttle booster. Volume 2, book 1: Analysis and design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the factors which determined the selection of the solid rocket propellant engines for the space shuttle booster is presented. The 156 inch diameter, parallel burn engine was selected because of its transportability, cost effectiveness, and reliability. Other factors which caused favorable consideration are: (1) recovery and reuse are feasible and offer substantial cost savings, (2) abort can be easily accomplished. and (3) ecological effects are acceptable.

  14. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material

    NASA Technical Reports Server (NTRS)

    Nelson, Linda; Jarzen, David

    2008-01-01

    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  15. KSC-2011-1894

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  16. KSC-2011-1891

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  17. KSC-2011-1898

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- At the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is moved to a tracked dolly for processing. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  18. KSC-2011-1892

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  19. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  20. KSC-08pd1093

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd1096

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd1090

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd1094

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd1091

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  5. STS-26 solid rocket booster post flight structural assessment

    NASA Technical Reports Server (NTRS)

    Herda, David A.; Finnegan, Charles J.

    1988-01-01

    A post flight assessment of the Space Shuttle's Solid Rocket Boosters was conducted at the John F. Kennedy Space Center in Florida after the launch of STS-26. The two boosters were inspected for structural damage and the results of this inspection are presented. Overall, the boosters were in good condition. However, there was some minor damage attributed to splash down. Some of this damage is a recurring problem. Explanations of these problems are provided.

  6. KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. Engineering design manual of parachute decelerator characteristics for space shuttle solid rocket booster recovery

    NASA Technical Reports Server (NTRS)

    Mansfield, D. L.

    1973-01-01

    The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.

  8. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. KSC-2009-3138

    NASA Image and Video Library

    2009-05-13

    CAPE CANAVERAL, Fla. – In Launch Pad 39A lame trench at NASA's Kennedy Space Center in Florida, workers document damage found after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett

  10. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  11. STS-80 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1997-01-01

    The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).

  12. KSC-08pd1095

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd1088

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd1092

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd1089

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-6026

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket through the Banana River, delivers the booster to Hangar AF at Cape Canaveral Air Force Station in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd1044

    NASA Image and Video Library

    2007-05-02

    KENNEDY SPACE CENTER, FLA. -- A train carrying space shuttle reusable solid rocket motor segments from the ATK Launch Systems manufacturing site in Brigham City,Utah, to NASA’s Kennedy Space Center in Florida was derailed May 2. At the site of the train mishap involving eight NASA solid rocket booster segment cars, a handling fixture has been attached to a box car being used as a spacer between the segment cars so that it can be removed from the rails. The solid rocket booster cars can be seen behind it. The train was traveling over the Meridian & Bigbee railroad near Pennington, Ala., at the time of the mishap.. The hardware was intended for use on shuttle Discovery's STS-120 mission in October and shuttle Atlantis's STS-122 mission in December. These segments are interchangeable, and ATK Launch Systems has replacement units that could be used for the shuttle flights, if necessary.

  18. Solid rocket booster thermal radiation model, volume 1

    NASA Technical Reports Server (NTRS)

    Watson, G. H.; Lee, A. L.

    1976-01-01

    A solid rocket booster (SRB) thermal radiation model, capable of defining the influence of the plume flowfield structure on the magnitude and distribution of thermal radiation leaving the plume, was prepared and documented. Radiant heating rates may be calculated for a single SRB plume or for the dual SRB plumes astride the space shuttle. The plumes may be gimbaled in the yaw and pitch planes. Space shuttle surface geometries are simulated with combinations of quadric surfaces. The effect of surface shading is included. The computer program also has the capability to calculate view factors between the SRB plumes and space shuttle surfaces as well as surface-to-surface view factors.

  19. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  20. Space Shuttle Propulsion System Reliability

    NASA Technical Reports Server (NTRS)

    Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David

    2011-01-01

    This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.

  1. Materials and processes for shuttle engine, external tank, and solid rocket booster

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1977-01-01

    The Shuttle flight system is composed of the Orbiter, an External Tank (ET) that contains the ascent propellant to be used by the Space Shuttle Main Engines (SSME), and two Solid Rocket Boosters (SRB). The ET is expended on each launch; the Orbiter and SRB's are reusable. It is the requirement for reuse which poses the exciting new materials and processes challenges in the development of the Space Shuttle. A brief description of the Space Shuttle and the mission profile is given. The Shuttle configuration is then described with emphasis on the SSME, ET, and SRB. The materials selection, tracking, and control system used to assure reliability and to minimize cost are described, and salient features and challenges in materials and processes associated with the SSME, ET, and SRB are subsequently discussed.

  2. KSC-2011-5495

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – A frustum from one of space shuttle Atlantis' two spent solid rocket boosters is lowered toward the dock at Hangar AF at Cape Canaveral Air Force Station in Florida to begin the safing process. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by the booster retrieval ships Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  3. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  4. KSC-2009-3137

    NASA Image and Video Library

    2009-05-13

    CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-3136

    NASA Image and Video Library

    2009-05-13

    CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett

  6. KSC-2009-3135

    NASA Image and Video Library

    2009-05-13

    CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett

  7. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  8. Study of solid rocket motors for a space shuttle booster. Appendix C: Recovery and reuse 120-inch diameter solid rocket motor boosters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A baseline for a space shuttle configuration utilizing four parallel-burn 120-in. diameter SRMS is presented. Topics discussed include parachute system sequence, recovery system development profile, parachute container, and segment and closure recovery operations. A cost analysis for recovery of the SRM stage is presented. It is concluded that from the standpoint of minimum cost and development, parachutes are the best means of achieving SRM recovery. Major SRM components can be reused safely.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  10. KSC00pp1913

    NASA Image and Video Library

    2000-12-14

    A KSC solid rocket booster worker inspects the reusable cables and connectors located inside the external tank attachment ring on the STS-98 left-hand solid rocket booster. Inspection and X-ray analysis of the ordnance-related cable connectors is required as part of an evaluation of their flight readiness before Space Shuttle Atlantis can rollout to Launch Pad 39A

  11. KSC-00pp1913

    NASA Image and Video Library

    2000-12-14

    A KSC solid rocket booster worker inspects the reusable cables and connectors located inside the external tank attachment ring on the STS-98 left-hand solid rocket booster. Inspection and X-ray analysis of the ordnance-related cable connectors is required as part of an evaluation of their flight readiness before Space Shuttle Atlantis can rollout to Launch Pad 39A

  12. KSC-2009-6029

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket is secured in a slip. The solid rocket booster recovery ship Freedom Star recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-6024

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket, passes through Port Canaveral in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-6032

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket, secured in a slip, awaits inspection. The booster was recovered by the solid rocket booster recovery ship Freedom Star after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-6027

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star delivers the spent first stage of NASA's Ares I-X rocket to Hangar AF at Cape Canaveral Air Force Station in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-6028

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers guide the spent first stage of NASA's Ares I-X rocket into a slip. The solid rocket booster recovery ship Freedom Star, in the background, recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  17. KSC-2009-6030

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket is secured in a slip. The solid rocket booster recovery ship Freedom Star recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  18. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. Space shuttle: Determination of the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.; Buchholz, R.; Allen, E. C. JR.; Dehart, J.

    1973-01-01

    Wind tunnel tests were conducted to determine the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 to plus 10 degrees at zero degree sideslip. A sideslip range of minus 10 to plus 10 degrees at zero degree angle of attack was also tested. The Mach number range was varied from 0.6 to 4.96 with Reynolds number varying between 4.9 and 6.8 times one million per foot.

  20. Liquid rocket booster study. Volume 2, book 6, appendix 10: Vehicle systems effects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three tasks were undertaken by Eagle Engineering as a part of the Liquid Rocket Booster (LRB) study. Task 1 required Eagle to supply current data relative to the Space Shuttle vehicle and systems affected by an LRB substitution. Tables listing data provided are presented. Task 2 was to evaluate and compare shuttle impacts of candidate LRB configuration in concert with overall trades of analysis activity. Three selected configurations with emphasis on flight loads, separation dynamics, and cost comparison are presented. Task 3 required the development of design guidelines and requirements to minimize impacts to the Space Shuttle system from all LRB substitution. Results are presented for progress to date.

  1. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  2. Solid Rocket Boosters Separation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This view, taken by a motion picture tracking camera for the STS-3 mission, shows both left and right solid rocket boosters (SRB's) at the moment of separation from the external tank (ET). After impact to the ocean, they were retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  3. Development and evaluation of an ablative closeout material for solid rocket booster thermal protection system

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1979-01-01

    A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.

  4. KSC-2011-1806

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A worker on Freedom Star, one of NASA's solid rocket booster retrieval ships, manipulates a crane to recover the left solid rocket booster from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.

    2015-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.

  6. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1978-11-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  8. Space shuttle booster separation motor design

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  9. KSC-07pd0011

    NASA Image and Video Library

    2007-01-05

    KENNEDY SPACE CENTER, FLA. -- Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007. Photo credit: NASA/George Shelton

  10. Shuttle Propulsion Overview - The Design Challenges

    NASA Technical Reports Server (NTRS)

    Owen, James W.

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.

  11. PHOTOGRAPHER: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and

    NASA Technical Reports Server (NTRS)

    1980-01-01

    PHOTOGRAPHER: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  12. Photographer: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photographer: KSC The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  13. Space Shuttle Project

    NASA Image and Video Library

    1978-10-04

    The Shuttle Orbiter Enterprise inside of Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement including Orbiter, external tank, and solid rocket boosters were vertically mated.

  14. Study of solid rocket motors for a space shuttle booster. Volume 2, book 3, addendum 1: Cost estimating data

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    A second iteration of the program baseline configuration and cost for the solid propellant rocket engines used with the space shuttle booster system is presented. The purpose of the study was to ensure that total program costs were complete and to review areas where costs might be overly conservative and could be reduced. Labor and material were analyzed in more depth, more definition was prepared to separate recurring from nonrecurring costs, and the operations portions of the engine and stage were separated into more identifiable activities.

  15. Preflight transient dynamic analyses of B-52 aircraft carrying Space Shuttle solid rocket booster drop-test vehicle

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Schuster, L. S.

    1984-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  16. Recession Curve Generation for the Space Shuttle Solid Rocket Booster Thermal Protection System Coatings

    NASA Technical Reports Server (NTRS)

    Kanner, Howard S.; Stuckey, C. Irvin; Davis, Darrell W.; Davis, Darrell (Technical Monitor)

    2002-01-01

    Ablatable Thermal Protection System (TPS) coatings are used on the Space Shuttle Vehicle Solid Rocket Boosters in order to protect the aluminum structure from experiencing excessive temperatures. The methodology used to characterize the recession of such materials is outlined. Details of the tests, including the facility, test articles and test article processing are also presented. The recession rates are collapsed into an empirical power-law relation. A design curve is defined using a 95-percentile student-t distribution. based on the nominal results. Actual test results are presented for the current acreage TPS material used.

  17. Pre-flight transient dynamic analysis of B-52 carrying Space Shuttle solid rocket booster drop-test vehicle

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Schuster, L. S.

    1983-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  18. General view of a Solid Rocket Motor Nozzle in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Solid Rocket Motor Nozzle in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center, being prepared to be mated with the Aft Skirt. In this view you can see the attach brackets where the Thrust Vector Control System actuators connect to the nozzle which can swivel the nozzle up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. KSC-08pd0258

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters retrieved after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  20. KSC-08pd0260

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  1. KSC-08pd0259

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- Spectators watch as the solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  2. KSC-08pd0261

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows toward Port Canaveral one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  3. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  4. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  6. Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Graves, Stan R.; McCool, Alex (Technical Monitor)

    2001-01-01

    An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).

  7. On the Wings of a Dream: The Space Shuttle.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. National Air And Space Museum.

    This booklet describes the development, training, and flight of the space shuttle. Topics are: (1) "National Aeronautics and Space Administration"; (2) "The Space Transportation System"; (3) "The 'Enterprise'"; (4) "The Shuttle Orbiter"; (5) "Solid Rocket Boosters"; (6) "The External…

  8. Study of solid rocket motor for a space shuttle booster. Appendix A: SRM water entry loads

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the water entry loads imposed on the reusable solid propellant rocket engine of the space shuttle following parachute descent is presented. The cases discussed are vertical motion, horizontal motion, and motion after penetration. Mathematical models, diagrams, and charts are included to support the theoretical considerations.

  9. Study of solid rocket motor for space shuttle booster. Volume 4: Cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The cost data for solid propellant rocket engines for use with the space shuttle are presented. The data are based on the selected 156 inch parallel and series burn configurations. Summary cost data are provided for the production of the 120 inch and 260 inch configurations. Graphs depicting parametric cost estimating relationships are included.

  10. Thermal design of the space shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Fisher, R. R.; Vaniman, J. L.; Patterson, W. J.

    1985-01-01

    The thermal protection systems (TPS) to meet the quick turnaround and low cost required for reuse of the solid rocket booster (SRB) hardware. The TPS development considered the ease of application, changing ascent/reentry environments, and the problem of cleaning the residual insulation upon recovery. A sprayable ablator TPS material was developed. The challenges involved in design and development of this thermal system are discussed.

  11. KSC-07pd3457

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- Workers oversee the placement of a solid rocket booster segment onto a railroad car at the railroad yard at NASA's Kennedy Space Center. The spent segment is part of the booster used to launch space shuttle Discovery in October. The segment will be placed on the car and covered for the long trip back to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused after each launch. After hydrolasing the interior of each segment, they are placed on flatbed trucks. The individual booster segments are transferred to a railhead located at the railroad yard at NASA's Kennedy Space Center. The long train of segments is part of the twin solid rocket boosters used to launch space shuttle Discovery in October. The NASA Railroad locomotive backs up the rail cars and the segment is lowered onto the car. The covered segments are moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Amanda Diller

  12. Space Shuttle Projects

    NASA Image and Video Library

    1979-07-13

    This is a photograph of the solid rocket booster's (SRB's) Qualification Motor-1 (QM-1) being prepared for a static firing in a test stand at the Morton Thiokol Test Site in Wasatch, Utah, showing the aft end of the booster. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  13. KSC-2009-6031

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers prepare to inspect the spent first stage of NASA's Ares I-X rocket, secured in a slip. The booster was recovered by the solid rocket booster recovery ship Freedom Star after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. Space Shuttle Project

    NASA Image and Video Library

    1978-04-21

    The Shuttle Orbiter Enterprise is lowered into the Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT) at the Marshall Space Flight Center. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  15. Space Shuttle Project

    NASA Image and Video Library

    1978-10-04

    The Shuttle Orbiter Enterprise is being installed into liftoff configuration at Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  16. KSC-08pd0263

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star is temporarily docked at Port Canaveral while the booster it was towing is moved alongside for the remainder of the trip upriver to Cape Canaveral Air Force Station. Freedom Star retrieved the booster after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  17. KSC-08pd0262

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star is temporarily docked at Port Canaveral while the booster it was towing is moved alongside for the remainder of the trip upriver to Cape Canaveral Air Force Station. Freedom Star retrieved the booster after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  18. KSC-2011-8163

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A pair of 149-foot-long, space shuttle solid rocket booster, or SRB, displays from the Kennedy Space Center Visitor Complex sit inside a temporary storage area at NASA's Kennedy Space Center. The SRBs were part of a display of the external tank and two SRBs at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The SRBs burned out after about two-and-a-half minutes of flight. After recovery from the ocean, the boosters could be used repeatedly. Photo credit: NASA/ Dmitri Gerondidakis

  19. Space Shuttle Project

    NASA Image and Video Library

    1988-01-01

    Marshall Space Flight Center workers install Structural Test Article Number Three (STA-3) into a Center test facility. From December 1987 to April 1988, STA-3 (a test model of the Redesigned Solid Rocket Motor) underwent a series of six tests at the Marshall Center designed to demonstrate the structural strength of the Space Shuttle's Solid Rocket Booster, redesigned after the January 1986 Challenger accident.

  20. The Silver Bird story: A memoir

    NASA Technical Reports Server (NTRS)

    Saenger-Bredt, I.

    1977-01-01

    A manned recoverable flying machine that operates both in air and space was discussed. This space shuttle precursor was proposed in the early 1900's by Eugen Sanger. The vehicle was especially to be used as the first stage of booster rockets or to ferry, supply and furnish rescue equipment for manned space stations. Basic concepts of the space aircraft, a cross between a powered booster rocket and an aerodynamic glider, are presented.

  1. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare the right hand aft skirt for NASA’s SLS rocket for primer and painting inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  2. Solid rocket booster performance evaluation model. Volume 1: Engineering description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle solid rocket booster performance evaluation model (SRB-II) is made up of analytical and functional simulation techniques linked together so that a single pass through the model will predict the performance of the propulsion elements of a space shuttle solid rocket booster. The available options allow the user to predict static test performance, predict nominal and off nominal flight performance, and reconstruct actual flight and static test performance. Options selected by the user are dependent on the data available. These can include data derived from theoretical analysis, small scale motor test data, large motor test data and motor configuration data. The user has several options for output format that include print, cards, tape and plots. Output includes all major performance parameters (Isp, thrust, flowrate, mass accounting and operating pressures) as a function of time as well as calculated single point performance data. The engineering description of SRB-II discusses the engineering and programming fundamentals used, the function of each module, and the limitations of each module.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1982-04-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1982-11-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  5. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    As early as September 1972, the Marshall Space Flight Center arnounced plans for a series of 20 water-entry simulation tests with a solid-fueled rocket casing assembly. The tests would provide valuable data for assessment of solid rocket booster parachute water recovery and aid in preliminary solid rocket motor design.

  7. A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Bowman, Lynn M.; Hughes, Robert M., IV; Jackson, Brian J.

    1990-01-01

    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.

  8. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1979-01-01

    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  9. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  10. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  11. KSC-2011-5507

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. - Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-5518

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-5508

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, maneuvers the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-5515

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-5368

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-5512

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-5505

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-5511

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – The right spent booster from space shuttle Atlantis' final launch is towed by the Liberty Star, one of NASA's solid rocket booster retrieval ships to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-5517

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-5369

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-5519

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-5506

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-5365

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-5516

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-5366

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-1848

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, tows the left spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  7. KSC-2011-1815

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  8. KSC-2011-1849

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, reaches Port Canaveral, Florida with the left spent booster from space shuttle Discovery's final launch, in tow. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. Quality assurance and control in the production and static tests of the solid rocket boosters for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cerny, O. F.

    1979-01-01

    The paper surveys the various aspects of design and overhaul of the solid rocket boosters. It is noted that quality control is an integral part of the design specifications. Attention is given to the production process which is optimized towards highest quality. Also discussed is the role of the DCA (Defense Contract Administration) in inspecting the products of subcontractors, noting that the USAF performs this role for prime contractors. Fabrication and construction of the booster is detailed with attention given to the lining of the booster cylinder and the mixing of the propellant and the subsequent X-ray inspection.

  10. KSC-08pd0736

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, motors through Port Canaveral with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd0741

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, nears Hangar AF at Cape Canaveral Air Force Station with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  12. KSC-08pd0738

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, crosses through the drawbridge over the Haulover Canal into the Banana River. The ship is towing a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  13. KSC-08pd0740

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  14. KSC-08pd0737

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, motors through Port Canaveral with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  15. KSC-2012-4454

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  16. KSC-2012-4453

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  17. KSC-2012-4448

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on to trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  18. KSC-2012-4449

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  19. KSC-2012-4450

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  20. KSC-2012-4452

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  1. KSC-2012-4451

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a space shuttle solid rocket booster and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  2. KSC-2012-4444

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, preparations are underway to load a twin set of space shuttle solid rocket boosters and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  3. Liquid rocket booster study. Volume 2, book 3, appendices 2-5: PPIP, transition plan, AMOS plan, and environmental analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Preliminary Project Implementation Plan (PPIP) was used to examine the feasibility of replacing the current Solid Rocket Boosters on the Space Shuttle with Liquid Rocket Boosters (LRBs). The need has determined the implications of integrating the LRB with the Space Transportation System as the earliest practical date. The purpose was to identify and define all elements required in a full scale development program for the LRB. This will be a reference guide for management of the LRB program, addressing such requirement as design and development, configuration management, performance measurement, manufacturing, product assurance and verification, launch operations, and mission operations support.

  4. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  5. KSC-2009-3314

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann

  6. KSC-2009-3313

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann

  7. KSC-2009-3312

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann

  8. Space Shuttle redesign status

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1986-01-01

    NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.

  9. Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.

  10. KSC-08pd3730

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – NASA's Solid Rocket Booster Retrieval Ship Freedom Star tows along its side one of the spent booster rockets from the space shuttle Endeavour launch Nov. 14 on the STS-126 mission. The ship is returning the spent rocket to Hangar AF at Cape Canaveral Air Force Station in Florida. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-5510

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – A crane working from the dock at Hangar AF at Cape Canaveral Air Force Station in Florida removes one of the spools holding the parachutes and lines from the right spent boosters from space shuttle Atlantis' final launch. The parachutes and booster were gathered by the crews from the Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-1886

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star tows a booster to the dock at Hangar AF on Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  13. KSC-2011-1859

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- The right spent booster from shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean. Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, will recover the parachute and tow the booster back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  14. KSC-2009-2144

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – The Solid Rocket Booster Retrieval Ship Liberty Star tows a booster to the dock at Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-2141

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – The Solid Rocket Booster Retrieval Ship Liberty Star tows a booster to the dock at Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  16. Study of solid rocket motors for a space shuttle booster, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Additional technical data have been prepared to supplement the data supplied in the SRM shuttle booster final report. These data cover performance characteristics utilizing motor efficiencies of 0.960 and 0.947 with nozzle divergence half angles of 15 deg and 20 deg, respectively; PBAN propellant characteristics; parametric data to extend baseline designs to varying states of SRM's; summary of SRM mass properties; and SRM exhaust plume profiles.

  17. Shuttle rocket booster computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.

  18. Space shuttle solid rocket booster recovery system definition. Volume 2: SRB water impact Monte Carlo computer program, user's manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HD 220 program was created as part of the space shuttle solid rocket booster recovery system definition. The model was generated to investigate the damage to SRB components under water impact loads. The random nature of environmental parameters, such as ocean waves and wind conditions, necessitates estimation of the relative frequency of occurrence for these parameters. The nondeterministic nature of component strengths also lends itself to probabilistic simulation. The Monte Carlo technique allows the simultaneous perturbation of multiple independent parameters and provides outputs describing the probability distribution functions of the dependent parameters. This allows the user to determine the required statistics for each output parameter.

  19. Probabilistic Structural Analysis of the Solid Rocket Booster Aft Skirt External Fitting Modification

    NASA Technical Reports Server (NTRS)

    Townsend, John S.; Peck, Jeff; Ayala, Samuel

    2000-01-01

    NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.

  20. KSC-2009-6025

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket, traverses the Banana River along the shore of Cape Canaveral Air Force Station in Florida. Across the river, in the background, is the Vehicle Assembly Building at NASA's Kennedy Space Center. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  1. CFD Assessment of Forward Booster Separation Motor Ignition Overpressure on ET XT 718 Ice/Frost Ramp

    NASA Technical Reports Server (NTRS)

    Tejnil, Edward; Rogers, Stuart E.

    2012-01-01

    Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.

  2. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  3. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A paint technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, uses an air gun to apply paint to the right hand aft skirt for NASA’s SLS rocket inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected and resurfaced to prepare it for primer and paint. The aft skirt will be used on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  4. KSC-2011-1817

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. KSC-2011-1809

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  6. KSC-2011-1822

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  7. KSC-2011-1813

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crew member from Freedom Star, one of NASA's solid rocket booster retrieval ships, throws a tow line into the Atlantic Ocean in order to capture the left spent booster nose cap after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  8. KSC-2011-1814

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, prepare to recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-2011-1825

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  10. KSC-2011-1808

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  11. KSC-2011-1833

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves a spent booster nose cap from the from out of the Atlantic Ocean and onto the deck after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  12. KSC-2011-1868

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The sun dawns over the Atlantic Ocean and Liberty Star, one of NASA's solid rocket booster retrieval ships, stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  13. KSC-2011-1823

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1856

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Captain Bren Wade is steering Liberty Star, one of NASA's solid rocket booster retrieval ships in the direction of the right spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  15. KSC-2011-1820

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members on Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  16. KSC-2011-1867

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Dusk descends on the Freedom Star, one of NASA's solid rocket booster retrieval ships stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  17. KSC-2011-1819

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  18. KSC-2011-1818

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  19. KSC-2011-1816

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  20. KSC-2011-1824

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach and inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  1. KSC-2011-1805

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Part of a spent booster is seen in the background bobbing in the Atlantic Ocean as deck hands on Freedom Star, one of NASA's solid rocket booster retrieval vessel prepare to recover it after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  2. KSC-2011-1835

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster nose cap from space shuttle Discovery's final launch is secured to a pallet on Freedom Star, one of NASA's solid rocket booster retrieval ships and will be returned to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  3. KSC-2011-1812

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- After splashing down, the nose cap of the left spent booster bobs in the Atlantic Ocean as Freedom Star, one of NASA's solid rocket booster retrieval ships makes its way closer for recovery following space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  4. KSC-2012-4442

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a twin set of space shuttle solid rocket boosters and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  5. KSC-2012-4438

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load a twin set of space shuttle solid rocket boosters and an external fuel tank on trucks for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  6. STS-86 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-86 Atlantis Shuttle, Commander James D. Wetherbee, Pilot Michael J. Bloomfield, Mission Specialists Vladimar G. Titov, Scott E. Parazynski, Jean-Loup J. M. Chretien, Wendy Lawrence, and David Wolf, narrate the footage of their mission to the Mir International Space Station. Scenes include crew suit up, walk out to the transfer vehicle, strap-in into the shuttle, start of the main engine, ignition of the rocket boosters, and separation of the solid rocket boosters. The crew of Atlantis participates in an exchange of gifts with the members of Mir, and a space walk to recover experiments outside the Mir Space Station. A beautiful panoramic view of Mir above South America is seen. Scenes also depict the closing of Mir's hatch, Atlantis' separation from Mir, and the reentry of the Atlantis Space Shuttle into the Earth's atmosphere.

  7. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-29

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's Space Launch System rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  8. KSC-2009-2142

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the solid rocket booster is lifted out of the water by the straddle crane. The booster, used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119, will be placed on a transporter. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  9. KSC-2009-2143

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lowers a solid rocket booster onto a transporter. The booster was used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-2140

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the frustum of a solid rocket booster is moved onto a transporter. The booster was used during space shuttle Discovery's launch on mission STS-119 from NASA's Kennedy Space Center in Florida March 15. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd3733

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, workers move the spent solid rocket booster to an area beneath the straddle crane that will lift it out of the water. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd3734

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lifts a spent solid rocket booster to allow saltwater contamination to be rinsed off. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  13. Space Shuttle Project

    NASA Image and Video Library

    1998-03-24

    The roman candle effect as seen in this picture represents the testing of a solid rocket booster (SRB) for unexplained corrosion conditions (EUCC) which have occurred on the nozzles of redesigned solid rocket motors (RSRM). The motor being tested in this photo is a 48 M-NASA motor.

  14. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    Shown is an illustration of the Ares I concept. The first stage will be a single, five-segment solid rocket booster derived from the space shuttle programs reusable solid rocket motor. The first stage is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama for NASA's Constellation program.

  15. KSC-2011-5363

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-5513

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. – A water-spraying tugboat escorts the Liberty Star as it tows the right spent booster from space shuttle Atlantis' final to Port Canaveral in Florida. The Liberty Star is one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-5509

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – Crews from the Liberty Star, one of NASA's solid rocket booster retrieval ships, inspect the end of the right spent booster from space shuttle Atlantis' final launch, as it is taken to a berth at Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-5367

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-5514

    NASA Image and Video Library

    2011-07-10

    CAPE CANAVERAL, Fla. – A team oversees the return of the right spent booster from space shuttle Atlantis' final to Port Canaveral in Florida. The boat and team are from the Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-5364

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. A Cape Canaveral Port Authority tug sends a spray of water through its cannon as a welcome back to the Port. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd0739

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. Barely visible in the background at right is the Vehicle Assembly Building at NASA's Kennedy Space Center. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  2. Space Shuttle Project

    NASA Image and Video Library

    1978-04-21

    This is an interior ground level view of the Shuttle Orbiter Enterprise being lowered for mating to External Tank (ET) inside Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  3. KSC-08pd0284

    NASA Image and Video Library

    2008-02-12

    KENNEDY SPACE CENTER, FLA. -- A view from above shows space shuttle Endeavour lowered onto the mobile launcher platform next to the external tank flanked by two solid rocket boosters. The shuttle will be mated to the tank and boosters in preparation for launch on the STS-123 mission, targeted for March 11. The mission will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-08pd1859

    NASA Image and Video Library

    2008-07-01

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, a crane is lowered over the aft skirt for the Ares 1-X rocket. The segment is being lifted into a machine shop work stand for drilling modifications. The modifications will prepare it for the installation of the auxiliary power unit controller, the reduced-rate gyro unit, the booster decelerator motors and the booster tumble motors. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. Ares I-X is a test rocket. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Jim Grossmann

  5. SRB Environment Evaluation and Analysis. Volume 3: ASRB Plume Induced Environments

    NASA Technical Reports Server (NTRS)

    Bender, R. L.; Brown, J. R.; Reardon, J. E.; Everson, J.; Coons, L. W.; Stuckey, C. I.; Fulton, M. S.

    1991-01-01

    Contract NAS8-37891 was expanded in late 1989 to initiate analysis of Shuttle plume induced environments as a result of the substitution of the Advanced Solid Rocket Booster (ASRB) for the Redesigned Solid Rocket Booster (RSRB). To support this analysis, REMTECH became involved in subscale and full-scale solid rocket motor test programs which further expanded the scope of work. Later contract modifications included additional tasks to produce initial design cycle environments and to specify development flight instrumentation. Volume 3 of the final report describes these analyses and contains a summary of reports resulting from various studies.

  6. KSC-2011-8167

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck positions a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex at a temporary storage area at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2013-2996

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella counted down for the ceremonial opening of the new "Space Shuttle Atlantis" facility. Smoke bellows near a full-scale set of space shuttle twin solid rocket boosters and external fuel tank at the entrance to the exhibit building. Guests may walk beneath the 184-foot-tall boosters and tank as they enter the facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  8. KSC-2011-1845

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen floating on the water's surface while pumps on Freedom Star, one of NASA's solid rocket booster retrieval ships, push debris and water out of the booster, replacing with air to facilitate floating for its return to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-2011-1882

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, passes through Port Canaveral on its journey to Hangar AF at Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  10. KSC-2009-2139

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's launch March 15 on mission STS-119 is moved to an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-2145

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, a solid rocket boosters used during space shuttle Discovery's launch from NASA's Kennedy Space Center in Florida March 15 on mission STS-119 waits in an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea after a launch. The spent rockets were recovered by NASA's Solid Rocket Booster Retrieval Ships Freedom Star and Liberty Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  12. KSC-08pd3732

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the spent solid rocket booster from space shuttle Endeavour's launch Nov. 14 on mission STS-126 is moved to an area beneath the straddle crane that will lift it out of the water. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The spent rocket was recovered by NASA's Solid Rocket Booster Retrieval Ship Freedom Star. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  13. KSC-03pd2211

    NASA Image and Video Library

    2003-07-23

    KENNEDY SPACE CENTER, FLA. - An aerial view of the KSC Visitor Complex shows the Shuttle Plaza at left, with the solid rocket boosters and external tank and a model of an orbiter; the Astronaut Memorial Mirror in the center alongside the lake; and the Rocket Garden at right, center.

  14. Space shuttle program solid rocket booster decelerator subsystem

    NASA Technical Reports Server (NTRS)

    Barnard, J. W.

    1985-01-01

    The recovery of the Solid Rocket Boosters presented a major challenge. The SRB represents the largest payload ever recovered and presents the added complication that it is continually emitting hot gases and burning particles of insulation and other debris. Some items, such as portions of the nozzle, are large enough to burn through the nylon parachute material. The SRB Decelerator Subsystem program was highly successful in that no SRB has been lost as a result of inadequate performance of the DSS.

  15. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket arrives at the Booster Fabrication Facility at the agency’s Kennedy Space Center in Florida, from the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  16. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    NASA Technical Reports Server (NTRS)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1987-05-27

    This photograph is a long shot view of a full scale solid rocket motor (SRM) for the solid rocket booster (SRB) being test fired at Morton Thiokol's Wasatch Operations in Utah. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  18. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  19. Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.

  20. Structural analysis of the space shuttle solid rocket booster/external tank attach ring

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1988-01-01

    An External Tank (ET) attach ring is used in the Space Shuttle System to transfer lateral loads between the ET and the Solid Rocket Booster (SRB). Following the Challenger (51-L) accident, the flight performance of the ET attach ring was reviewed, and negative margins of safety and failed bolts in the attach ring were subsequently identified. The analyses described in this report were performed in order to understand the existing ET attach ring structural response to motor case internal pressurization as well as to aid in an ET attach ring redesign effort undertaken by NASA LaRC. The finite element model as well as the results from linear and nonlinear static structural analyses are described.

  1. Methods for data reduction and loads analysis of Space Shuttle Solid Rocket Booster model water impact tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.

  2. KSC-2011-1847

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, monitor the progress of the left spent booster from space shuttle Discovery's final launch, as it is towed toward the vessel for its return trip to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  3. KSC-2011-1826

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, make their way back to the vessel after inspecting the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  4. KSC-2011-1850

    NASA Image and Video Library

    2011-02-27

    CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, is docked at Port Canaveral, Florida. The left spent booster from space shuttle Discovery's final launch is being positioned along side the vessel before continuing on to Hangar AF at Cape Canaveral Air Force Station. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  5. KSC-2011-1803

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Rubber bumpers are stowed on the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  6. KSC-2011-1811

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, has sailed to a position in the Atlantic Ocean to recover the left spent booster after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  7. KSC-2011-1842

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on Freedom Star, one of NASA's solid rocket booster retrieval ships, monitor the progress of the left spent booster from space shuttle Discovery's final launch, as it is elevated out of the water so it can float horizontally for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  8. KSC-2011-1802

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  9. KSC-2011-1857

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Liberty Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  10. KSC-2011-1804

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  11. KSC-2011-1828

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- This image taken from the bow of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows crew members in a skiff attaching flotation devices, or buoys, to the parachute lines from the left spent booster from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  12. KSC-2011-1854

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Liberty Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  13. KSC-2011-1858

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  14. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  15. Pretest Plan for a Quarter Scale AFT Segment of the SRB Filament Wound Case in the NSWC Hydroballistics Facility. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Adoue, J. A.

    1984-01-01

    In support of preflight design loads definition, preliminary water impact scale model are being conducted of space shuttle rocket boosters. The model to be used as well as the instrumentation, test facilities, and test procedures are described for water impact tests being conducted at test conditions to simulate full-scale initial impact at vertical velocities from 65 to 85 ft/sec. zero horizontal velocity, and angles of 0,5, and 10 degrees.

  16. KSC-08pd3731

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – NASA's Solid Rocket Booster Retrieval Ship Freedom Star arrives at the dock at Hangar AF, Cape Canaveral Air Force Station in Florida, with a spent solid rocket booster alongside. The booster is from space shuttle Endeavour's launch Nov. 14 on mission STS-126. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  17. Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains all the hearings of the Presidential Commission on the Space Shuttle Challenger accident from 26 February to 2 May 1986. Among others is the testimony of L. Mulloy, Manager, Space Shuttle Solid Rocket Booster Program, Marshall Space Flight Center and G. Hardy, Deputy Director, Science and Engineering, Marshall Space Flight Center.

  18. Study of solid rocket motors for a space shuttle booster. Appendix D: Recovery and reuse 156-inch diameter solid rocket motor booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The baseline for a space shuttle configuration utilizing two parallel-burn, 156-in.-diameter SRMs with three segments and techroll seal movable nozzles is presented. The concept and general economic benefits of SRM recovery are equally valid for the series-burn SRMs, provided that those SRMs are also designed for the same strength, stiffness, segmentation, and interchangeability as the present design, and that those SRMs are also recovered as individual units. Feasibility studies were initiated to investigate SRM recoverability. These studies were based upon recovery of the SRM boosters for the Titan 3C. Ground rules precluded SRM modification that required significant changes in motor qualification or schedule. Even with this restriction, the study determined that the recoverable booster concept was completely feasible, both technically and economically. Parachute recovery has been selected as the best method, principally because it can accomplish the task with a minimum development cost and time to achieve operational recovery status. This system affords the highest probability for achieving large cost reductions.

  19. STS-96 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-96 Discovery Shuttle, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev, are shown narrating the mission highlights. Scenes include walk out to the transfer vehicle, and launch of the shuttle. Also presented are scenes of the start of the main engine, ignition of the solid rocket boosters, and the separation of the solid rocket boosters. Footage of Payette preparing the on-board camera equipment, while Barry and Jernigan perform routine checks of the equipment is seen. Also presented are various pictures of the shuttle in its orbit, the docking of the shuttle with the Mir International Space Station, and crewmembers during their space walk. Beautiful panoramic views of the Great Lake, Houston, and a combined view of Italy and Turkey are seen. The crew of Discovery is shown performing a juice ball experiment, tumbling, undocking, performing transfer operations, and deploying the STARSHINE educational satellite. The film ends with the reentry of the Discovery Space Shuttle into the Earth's atmosphere.

  20. Space shuttle solid rocket booster recovery subsystem

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.

    1981-01-01

    The studies, the development, and the testing program that led to the design and delivery of all flight hardware are described. Special emphasis was placed on the recovery parachutes. The parachutes were designed to deploy in a severe environment and safely lower to Earth an 85 ton rocket motor casing.

  1. KSC-2011-1880

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-1881

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star, with a booster in tow, is docked in Port Canaveral in Florida before continuing on to Hangar AF at Cape Canaveral Air Force Station. A cruise ship is seen in the background. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  3. Environmental Impact Statement Space Shuttle Advanced Solid Rocket Motor Program

    DTIC Science & Technology

    1989-03-01

    Space Shuttle solid rocket boosters are currently retrieved from the Atlantic Ocean after a launch and disassembled at KSC. It is assumed that the...testing is not anticipated to impact aquatic resources. The exhaust plume will be directed over the ocean , which has a high buffering capacity and mixing...approximately 30 miles. After being slowed by parachutes, the spent motors will fall into the ocean where they will be recovered and towed to a dock at

  4. STS-4 test mission simulates operational flight: President terms success golden spike in space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The fourth Space Shuttle flight is summarized. STS certification as operational, applications experiments, experiments involving crew, the first Getaway Special, a lightning survey. Shuttle environment measurement, prelaunch rain and hail, loss of solid rocket boosters, and modification of the thermal test program are reviewed.

  5. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  6. The liquid rocket booster as an element of the U.S. national space transportation system

    NASA Astrophysics Data System (ADS)

    Bialla, Paul H.; Simon, Michael C.

    Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined through these trade studies that several options exist for designing a LRB that can be integrated into the STS with manageable impacts on STS facilities and operational procedures. While LRBs offer a potential 40% improvement in Shuttle performance, their most significant benefit is the potential improvements they offer in the area of Shuttle safety. This begins during ground handling operations, where LRBs eliminate the need for large quantities of hazardous solid propellants to be emplaced in the Kennedy Space Center Vehicle Assembly Building. In the pre-launch phase, all LRB engines can be ignited on the launch pad and verified prior to release of the STS. During flight, LRB engines can be shut down on command should the need arise. Further, missions could be aborted safely during the boost phase—an option not available with SRBs. A related benefit of LRBs is their ability to accomplish a mission even if one engine fails, assuming the LRB is designed with sufficient performance margin. An implementation plan has been developed which indicates that LRBs can be operational by 1997. The attractive features of the LRB have prompted NASA to include this booster as a principal element of the agency's long range plan for enhancing STS capabilities through an evolutionary program of block changes. The implementation of LRBs offers an attractive option for developing a safer, more reliable, and better performing STS.

  7. Study of solid rocket motors for a space shuttle booster. Volume 2 book 2: Supporting research and technology

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    The baseline SRM design for the space shuttle employs proven technology based on actual motor firings. Supporting research and technology are therefore required only to address system technology that is specific to the shuttle requirements, and that is needed for optimization of design features. Eight programs are recommended to meet these requirements.

  8. Space shuttle solid rocket booster main parachute damage reduction team report

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1993-01-01

    This report gives the findings of the space shuttle solid rocket booster main parachute damage reduction team. The purpose of the team was to investigate the causes of main parachute deployment damage and to recommend methods to eliminate or substantially reduce the damage. The team concluded that the two primary causes of significant damage during deployment are vent entanglement and contact of the parachutes with the main parachute support structure. As an inexpensive but effective step towards damage reduction, the team recommends modification of the parachute packing procedure to eliminate vent entanglement. As the most effective design change, the team recommends a pilot chute-deployed soft-pack system. Alternative concepts are also recommended that provide a major reduction in damage at a total cost lower than the pilot chute-deployed soft pack.

  9. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- NASA and United Space Alliance SRB technicians hook up solid rocket booster cables to a Cirris Signature Touch 1 cable tester. From left are Loren Atkinson and Steve Swichkow, with NASA, and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  10. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, United Space Alliance SRB technician Frank Meyer pulls cables out of the solid rocket booster system tunnel. Cable end covers are in a box near his feet. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  11. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  12. KSC-2011-1841

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean as air is pumped into it to lift it out of the water so it can float horizontally for towing back to Port Canaveral, Florida by Freedom Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  13. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket arrives at the agency’s Kennedy Space Center in Florida, from the Hangar AF facility at Cape Canaveral Air Force Station. The aft skirt will be transported to the Booster Fabrication Facility. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  14. Aft Skirt Move from Hangar AF to BFF

    NASA Image and Video Library

    2016-09-08

    The left hand aft skirt for NASA’s Space Launch System (SLS) rocket is transported across the Roy D. Bridges Bridge from the Hangar AF facility at Cape Canaveral Air Force Station in Florida, on its way to the Booster Fabrication Facility at the agency’s Kennedy Space Center. The space shuttle-era aft skirt, was inspected, resurfaced, primed and painted for use on the left hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  15. KSC-04pd0523

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - At the SRB Assembly and Refurbishment Facility, STS-114 crew members look at the booster separation motors (BSM) on a solid rocket booster aft skirt. The BSMs have had booster trowlable ablative removed by liquid nitrogen cutting. The STS-114 crew is at KSC for familiarization with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.

  16. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  17. Finite Element Simulation of Solid Rocket Booster Separation Motors During Motor Firing

    NASA Technical Reports Server (NTRS)

    Yu. Weiping; Crane, Debora J.

    2007-01-01

    One of the toughest challenges facing Solid Rocket Booster (SRB) engineers is to ensure that any design changes made to the Shuttle-Derived Booster Separation Motors (BSM) for future space exploration vehicles is able to withstand the increasingly hostile motor firing environment without cracking its critical component - the graphite throat. This paper presents a critical analysis methodology and techniques for assessing effects of BSM design changes with great accuracy and precision. For current Space Shuttle operation, the motor firing occurs at SRB separation - approximately 125 seconds after Shuttle launch at an altitude of about 28 miles. The motor operation event lasts about two seconds, however, the surface temperature of the graphite throat increases approximately 3400 F in less than one second with a corresponding increase in surface pressure of approximately 2200 pounds per square inch (psi) in less than one-tenth of a second. To capture this process fully and accurately, a two-phase sequentially coupled thermal-mechanical finite element approach was developed. This method allows the time- and location-dependent pressure fields to interact with the spatial-temporal thermal fields throughout the operation. The material properties of graphite throat are orthotropic and temperature-dependent. The analysis involves preload and multiple body contacts.

  18. Space Shuttle Solid Rocket Booster Lightweight Recovery System

    NASA Technical Reports Server (NTRS)

    Wolf, Dean; Runkle, Roy E.

    1995-01-01

    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.

  19. KSC-2010-5333

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann

  20. KSC-2010-5334

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann

  1. KSC-2010-5336

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Ben Cooper

  2. KSC-2010-5337

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Ben Cooper

  3. KSC-2010-5335

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crawler-transporter moves a mobile launcher platform with two solid rocket boosters perched on top from the Vehicle Assembly Building's (VAB) High Bay 1 to High Bay 3. Inside the VAB, the boosters will be joined to an external fuel tank next month in preparation for space shuttle Endeavour's STS-134 mission to the International Space Station targeted to launch in February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html Photo credit: NASA/Jim Grossmann

  4. EDIN design study alternate space shuttle booster replacement concepts. Volume 2: Design simulation results

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.

  5. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix G: LRB for the STS system study level 2 requirements, revision 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.

  6. Mission Report: STS-4 Test Mission Simulates Operational Flight. President Terms Success Golden Spike in Space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The fourth space shuttle flight is summarized. An onboard electrophoresis experiment is reviewed. Crew physiology, the first getaway special, a lightning survey, shuttle environment measurement, prelaunch weather conditions, loss of solid rocket boosters, modification of thermal test program, and other events are also reviewed.

  7. Preliminary 2-D shell analysis of the space shuttle solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, Ronnie E.; Nemeth, Michael P.

    1987-01-01

    A two-dimensional shell model of an entire solid rocket booster (SRB) has been developed using the STAGSC-1 computer code and executed on the Ames CRAY computer. The purpose of these analyses is to calculate the overall deflection and stress distributions for the SRB when subjected to mechanical loads corresponding to critical times during the launch sequence. The mechanical loading conditions for the full SRB arise from the external tank (ET) attachment points, the solid rocket motor (SRM) pressure load, and the SRB hold down posts. The ET strut loads vary with time after the Space Shuttle main engine (SSME) ignition. The SRM internal pressure varies axially by approximately 100 psi. Static analyses of the full SRB are performed using a snapshot picture of the loads. The field and factory joints are modeled by using equivalent stiffness joints instead of detailed models of the joint. As such, local joint behavior cannot be obtained from this global model.

  8. Reentry static stability characteristics of a (Model 471) .005479-scale 146-inch solid rocket booster tested in the NASA/MSFC 14 by 14 inch TWT (SA8F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.; Praharaj, S. C.

    1975-01-01

    A force test of a scale model of the Space Shuttle Solid Rocket Booster was conducted in a trisonic wind tunnel. The model was tested with such protuberances as a camera capsule, electrical tunnel, attach rings, aft separation rockets, ET attachment structure, and hold-down struts. The model was also tested with the nozzle at gimbal angles of 0, 2.5, and 5 degrees. The influence of a unique heat shield configuration was also determined. Some photographs of model installations in the tunnel were taken and are included. Schlieren photography was utilized for several angles of attack.

  9. Qualitative investigation of booster recovery in open sea

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1973-01-01

    Limited tests were conducted using 1/27 scale model of a Titan 3C booster plus 1/32.9 and 1/15.6 scale models of a solid rocket booster case to establish some of the characteristics that will effect recovery operations in open seas. This preliminary effort was designed to provide additional background information for conceptual development of a waterborne recovery system for space shuttle boosters, pending initiation of comprehensive studies. The models were not instrumented; therefore, all data are qualitative (approximations) and are based on observations plus photographic coverage.

  10. Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1989-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.

  11. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  12. KSC-2011-5476

    NASA Image and Video Library

    2011-07-11

    CAPE CANAVERAL, Fla. – Liberty Star, one of NASA’s solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis’ final launch, to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff, and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight, STS-135, at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-1830

    NASA Image and Video Library

    2011-02-25

    CAPE CANAVERAL, Fla. -- Captain Michael Nicholas mans the helm of Freedom Star, one of NASA's solid rocket booster retrieval ships, while John Fischbeck, Manager of Vessel Operations and Senior SRB Retrieval Supervisor, and Walt Adams, SRB Retrieval and Dive Supervisor, assist. The ship's crew members are recovering the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  14. KSC-2011-1810

    NASA Image and Video Library

    2011-02-24

    CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris works at the chart table on the bridge at night under a red light so as not to compromise night vision on Freedom Star, one of NASA's solid rocket booster retrieval ships plotting a course in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky

  15. KSC-2011-1890

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star leaves the dock at Hangar AF at Cape Canaveral Air Force Station and heads back to its home base at the Turn Basin at NASA's Kennedy Space Center in Florida. The ship recently retrieved a booster that was used during space shuttle Discovery's STS-133 launch from Kennedy's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  16. SRB water impact velocity trade study

    NASA Technical Reports Server (NTRS)

    Counter, D. N.; Crockett, C. D.

    1976-01-01

    The results of the attrition/cost studies which formulated the data base for the recommendation to reduce the Space Shuttle Solid Rocket Booster's nominal vertical water impact velocity to 85 feet per second is presented.

  17. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  18. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a Cirris Signature Touch 1 cable tester. From left are Steve Swichkow, with NASA, and Jim Silviano (back to camera) and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  19. An investigation to determine the static pressure distribution of the 0.00548 scale shuttle solid rocket booster (MSFC model number 468) during reentry in the NASA/MSFC 14 inch trisonic wind tunnel (SA28F)

    NASA Technical Reports Server (NTRS)

    Braddock, W. F.; Streby, G. D.

    1977-01-01

    The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.

  20. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  1. KSC-2011-3051

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  2. KSC-2011-3053

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  3. KSC-2011-3049

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is being lowered between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  4. Asymmetrical booster guidance and control system design study. Volume 3: Space shuttle vehicle SRB actuator failure study. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The investigation of single actuator failures on the space shuttle solid rocket booster required the analysis of both square pattern and diamond pattern actuator configurations. It was determined that for failures occuring near or prior to the region of maximum dynamic pressure, control gain adjustments can be used to achieve virtually nominal mid-boost vehicle behavior. A distinct worst case failure condition was established near staging that could significantly delay staging. It is recommended that the square pattern be retained as a viable alternative to the baseline diamond pattern because the staging transient is better controlled resulting in earlier staging.

  5. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  6. Effects of damping on mode shapes, volume 2

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Merchant, D. H.; Arnquist, J. L.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.

  7. Analysis of SRB reentry acoustic environments. [aeroacoustic spectra determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Coffin, T.; Dandridge, R. E.; Haddock, U. W.

    1979-01-01

    Space shuttle solid rocket booster reentry aeroacoustic environments were estimated. Particular emphasis was given to the aft skirt/exit plane region for the Mach number regime 0.6 = or greater than M infinity = or less than 3.5. The analysis is based on the evaluation of wind tunnel model results in conjunction with Monte Carlo simulation of trajectory parameters. The experimental approach is described as well as the evaluation process utilized. Predicted environments are presented in terms of one-third octave band spectra representing space averaged values for critical regions on the solid rocket booster.

  8. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  9. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, preps a section of the right hand aft skirt for primer and paint in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  10. KSC-2011-8247

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida travels along Schwartz Road on its way toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The Assembly and Refurbishment Facility, formerly used to process components of space shuttle solid rocket boosters, is in the background at right. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2011-8144

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  12. KSC-2011-8159

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  13. KSC-2011-8142

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  14. KSC-2011-8140

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  15. KSC-2011-8165

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  16. KSC-2011-8135

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  17. KSC-2011-8137

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – A technician works on the removal of a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  18. KSC-2011-8141

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  19. KSC-2011-8146

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  20. KSC-2011-8166

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  1. KSC-2011-8145

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  2. KSC-2011-8164

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  3. KSC-2011-8134

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  4. KSC-2011-8162

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  5. KSC-2011-8160

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  6. KSC-2011-8161

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2011-8143

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  8. KSC-2011-8139

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  9. KSC-2011-8136

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  10. KSC-2011-8138

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  11. KSC-2011-8147

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. – Cranes remove a full-size replica of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a mockup of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Jim Grossman

  12. Annual Report by Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.

  13. KSC-03PD-0573

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis rolls toward Bay 1 in the Vehicle Assembly Building. There Atlantis will be demated with the external tank and solid rocket boosters in anticipation of its transfer to the Orbiter Processing Facility.

  14. KSC-03PD-0572

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis rolls toward Bay 1 in the Vehicle Assembly Building. There Atlantis will be demated with the external tank and solid rocket boosters in anticipation of its transfer to the Orbiter Processing Facility.

  15. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  16. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  17. Shuttle: forever young?

    PubMed

    Sietzen, Frank

    2002-01-01

    NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.

  18. Atlantis begins rolling back to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Perched atop its Mobile Launcher Platform, Space Shuttle Atlantis moves back to the Vehicle Assembly Building, via the crawler- transporter underneath, along the crawlerway. The water in the background is part of the Banana River. Atlantis' return to the VAB was determined by Shuttle managers so that inspections, continuity checks and X-ray analysis can be conducted on the 36 solid rocket booster cables located inside each booster's system tunnel. An extensive evaluation of NASA's SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. The launch has been rescheduled no earlier than Feb. 6.

  19. Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case

    NASA Technical Reports Server (NTRS)

    Kapp, J. R.

    1978-01-01

    The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.

  20. STS-51 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.

  1. STS-49: Space shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

  2. STS-49: Space shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-07-01

    The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.

  3. KSC-06pd1492

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star tows a spent solid rocket booster toward Port Canaveral. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  4. KSC-06pd1497

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star heads up the Banana River to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  5. KSC-06pd1491

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star tows a spent solid rocket booster back to Port Canaveral. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  6. KSC-08pd3735

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, the straddle crane lowers a spent solid rocket booster onto a transporter. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The booster is from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd3738

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At Hangar AF at Cape Canaveral Air Force Station in Florida, two spent solid rocket boosters move into the washing bay for a cleaning and rinsing. The boosters are from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  8. Liquid flyback booster pre-phase: A study assessment

    NASA Technical Reports Server (NTRS)

    Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.

    1994-01-01

    The concept of a flyback booster has been around since early in the shuttle program. The original two-stage shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current shuttle uses two Redesigned Solid Rocket Motors (RSRM's), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBB's. The study provides an expansion of the recommendations made during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reduction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBB's requires a commitment to the shuttle program for 20 to 30 years. LFBB's also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic, since there are no intact abort capabilities during the burn of the RSRM's. The performance goal of the LFBB's was to lift a fully loaded orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the shuttle. In addition, a final benefit is the availability of growth paths for applications other than shuttle.

  9. Liquid Flyback Booster Pre-Phase A Study Assessment. Volume 1

    NASA Technical Reports Server (NTRS)

    Peterson, W.; Ankney, W.; Bell, J.; Berning, M.; Bryant, L.; Bufkin, A.; Cain, L.; Caram, J.; Cockrell, B.; Curry, D.; hide

    1994-01-01

    Mw concept of a flyback booster has been around since early in the Shuttle program. The original two-stage Shuttle concepts used a manned flyback booster. These boosters were eliminated from the program for funding and size reasons. The current Shuttle uses two Redesigned Solid Rocket Motors (RSRMs), which are recovered and refurbished after each flight; this is one of the major cost factors of the program. Replacement options have been studied over the past ten years. The conclusion reached by the most recent study is that the liquid flyback booster (LFBB) is the only competitive option from a life-cycle cost perspective. The purpose of this study was to assess the feasibility and practicality of LFBBs. The study provides an expansion of the recommendations made during the during the aforementioned study. The primary benefits are the potential for enhanced reusability and a reuction of recurring costs. The potential savings in vehicle turnaround could offset the up-front costs. Development of LFBBs requires a commitment to the Shuttle program for 20 to 30 years. LFBBs also offer enhanced safety and abort capabilities. Currently, any failure of an RSRM can be considered catastrophic since them we no intact abort capabilities during the burn of the RSRMS. The performance goal of the LFBBs was to lift a fully loaded Orbiter under optimal conditions, so as not to be the limiting factor of the performance capability of the Shuttle. In addition, a final benefit is the availability of growth paths for applications other than the Shuttle.

  10. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  11. The aerodynamic challenges of SRB recovery

    NASA Technical Reports Server (NTRS)

    Bacchus, D. L.; Kross, D. A.; Moog, R. D.

    1985-01-01

    Recovery and reuse of the Space Shuttle solid rocket boosters was baselined to support the primary goal to develop a low cost space transportation system. The recovery system required for the 170,000-lb boosters was for the largest and heaviest object yet to be retrieved from exoatmospheric conditions. State-of-the-art design procedures were ground-ruled and development testing minimized to produce both a reliable and cost effective system. The ability to utilize the inherent drag of the boosters during the initial phase of reentry was a key factor in minimizing the parachute loads, size and weight. A wind tunnel test program was devised to enable the accurate prediction of booster aerodynamic characteristics. Concurrently, wind tunnel, rocket sled and air drop tests were performed to develop and verify the performance of the parachute decelerator subsystem. Aerodynamic problems encountered during the overall recovery system development and the respective solutions are emphasized.

  12. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a CIRRUS computer for testing. From left are Jim Glass, with USA, performing a Flex test on the cable; Steve Swichkow, with NASA, and Jim Silviano, with USA, check the results on a computer. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  13. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  14. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  15. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  16. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

  17. KSC-2010-4885

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett

  18. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-29

    This photo depicts the installation of an External Tank (ET) into the Marshall Space Flight Center Dynamic Test Stand, building 4550. It is being mated to the Solid Rocket Boosters (SRB's) for a Mated Vertical Ground Vibration Test (MVGVT). At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable.

  19. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1989-01-20

    This photograph shows a static firing test of the Solid Rocket Qualification Motor-8 (QM-8) at the Morton Thiokol Test Site in Wasatch, Utah. The twin solid rocket boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  1. Probabilistic failure assessment with application to solid rocket motors

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.

    1990-01-01

    A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.

  2. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 4: System models and data analysis

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    In this volume, volume 4 (of five volumes), the discussion is focussed on the system models and related data references and has the following subsections: space shuttle main engine, integrated solid rocket booster, orbiter auxiliary power units/hydraulics, and electrical power system.

  3. Shuttle SRB preflight/post-flight thermal assessment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The development of the thermal protection system for the Solid Rocket Booster is reported. Tests and analytical efforts were conducted and new problems are continually attacked and solved. During the first six Shuttle flights it was necessary to make a final thermal assessment of the TPS and structural systems temperatures. The thermal assessments were made and are compared with post flight data.

  4. Lightning protection for shuttle propulsion elements

    NASA Technical Reports Server (NTRS)

    Goodloe, Carolyn C.; Giudici, Robert J.

    1991-01-01

    The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.

  5. Control of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  6. KSC-2011-3035

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank for space shuttle Atlantis' STS-135 mission, ET-138, is prepared for transfer from its test cell to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  7. KSC-2011-3043

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  8. KSC-2011-3038

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  9. KSC-2011-3050

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  10. KSC-2011-3045

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  11. KSC-2011-3041

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  12. KSC-2011-3044

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  13. KSC-2011-3040

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  14. KSC-2011-3034

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank for space shuttle Atlantis' STS-135 mission, ET-138, is prepared for transfer from its test cell to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  15. KSC-2011-3052

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is positioned between the twin solid rocket boosters on the mobile launcher platform in high bay-1. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  16. KSC-2011-3046

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  17. KSC-2011-3042

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  18. KSC-2011-3037

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  19. KSC-2011-3039

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is transferred to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  20. KSC-2011-3048

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  1. KSC-2011-3047

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers guide external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lowered into high bay-1 between the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  2. KSC-2011-8157

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A crane positions a full-size display of a space shuttle external fuel tank onto a truck to move it from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  3. KSC-2011-8158

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A crane positions a full-size display of a space shuttle external fuel tank onto a truck to move it from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  4. Reentry aerodynamic characteristics of a space shuttle solid rocket booster model 449 tested in MSFC 14 by 14 inch TWT (SA26F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1974-01-01

    Force tests of a 0.563 percent scale space shuttle solid rocket booster (SRB) model, MSFC Model 449, were conducted at the Marshall Space Flight Center 14 x 14 inch Trisonic Wind Tunnel. There were a total of 134 runs (pitch polars) made. Test Mach numbers were 0.6, 0.9, 1.2, 1.96, 2.74, 3.48, 4.00, 4.45, and 4.96; test angles of attack ranged from minus 10 degrees to 190 degrees; test Reynolds numbers ranged from 4.9 million per foot to 7.1 million per foot; and test roll angles were 0, 45, 90, and 135 degrees. The model was tested with three different engine nozzle/skirts. Two of these engine configurations differed from each other in the magnitude of the volume inside the nozzle and skirt. The third engine configuration had part of the nozzle removed. The model was tested with an electrical tunnel in combination with separation rockets of two different heights.

  5. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study. Amendment 13: Orientation meeting

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: LRB study results summary -- Feb. 1989; LRB study results -- Jan. 1990; Shuttle configuration with booster options; LRB study results -- Sept. 1990; LRB statement of work tasks; ground rules and assumptions; study flow of design, manufacturing/production, and test program/certification; study products; study schedule; and candidate 1.5 stage engine arrangements.

  6. PRESIDENTIAL COMMISSION - STS-33/51L - KSC

    NASA Image and Video Library

    1986-03-07

    S86-28889 (14 Feb. 1986) --- Kennedy Space Center Director Richard Smith points out a portion of a solid rocket booster segment to astronaut Sally Ride and to the chairman of the Presidential Commission on the Space Shuttle Challenger Accident, William P. Rogers. The commission was taken to various booster storage and handling facilities at KSC on Feb. 14, 1986 as part of the failure investigation. Photo credit: NASA

  7. The production of nitric oxide in the troposphere as a result of solid-rocket-motor afterburning

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Gomberg, R. I.

    1976-01-01

    As part of an ongoing assessment of the environmental effects of solid-rocket-motor operations in the troposphere, estimates were made of the nitric oxide produced in the troposphere by the space shuttle and Titan 3-C boosters. Calculations were made with the low-altitude plume computer program and included the effects of coupled finite-rate chemistry and turbulent mixing. A recent measurement of nitric oxide taken in the effluent cloud of a Titan 3-C booster is compared with calculations made with this computer code. The various chemical reactions of the exhaust gases are listed in tabular form.

  8. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A mockup of a solid rocket booster nozzle is lowered into the waters of the Atlantic during a test of a new booster retrieval method. A one-man submarine known as DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  9. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare a paint mixture for the right hand aft skirt for NASA’s SLS in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced, and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the Journey to Mars.

  10. View of the launch of STS 51-A shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).

  11. Liftoff of shuttle Challenger and mission STS 51-B

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Liftoff of shuttle Challenger and mission STS 51-B. The shuttle orbiter, its external tank and one of the solid rocket boosters (SRB) are still visible as it leaves the pad. This photo was taken from across the water over the top of a grove of trees (051); Photo taken from camera on the launch complex, showing the orbiter just clearing the tower (052); Side view of the liftoff as the SRBs begin to fire (053).

  12. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

  13. STS-56 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.

  14. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    NASA Technical Reports Server (NTRS)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  15. Providing a Turn for the Better

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Engineers are tasked with designing new systems every day to meet changing or unexpected technical requirements. After the tragic explosion of the Space Shuttle Challenger on January 28, 1986, NASA engineers embarked on a complete overhaul of many of their long-standing quality systems and procedures. When the official cause of the accident was determined to be an O-ring failure in the right Solid Rocket Booster, NASA's Shuttle Program initiated a thorough redesign of the rocket boosters' clevis ends, which are the O-ring's mating surfaces. One of the unique systems that NASA engineers developed as a result of this effort included a heating assembly that is coupled to the outside of the rocket boosters. When the assembly is affixed to the external surface of the boosters, the very nature of its design allows for the warming of the O-rings prior to launch. After the engineers completed the assembly's design, however, they found that it was nearly impossible to tighten the spanner nuts required for attaching the system, given the minimum amount of clearance they had in the limited and confined space. Under these circumstances, the standard wrenches typically used for tightening these types of nuts did not work, and there were no other existing devices to solve the problem. NASA engineers embraced the challenge, developing a torque wrench tool adapter that allowed for a full rotation of spanner nuts in confined spaces. The tool, which is similar to an open-ended crowfoot wrench and a fixed-face spanner wrench, contains two dowel pins that center and lock the wrench onto the nut.

  16. KSC-06pd1494

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At a dock in Port Canaveral, the SRB Retrieval Ship Liberty Star has successfully transferred its tow cargo, a spent solid rocket booster, to a starboard position for the balance of its journey to Cape Canaveral Air Force Station. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  17. KSC-06pd1498

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - With the Vehicle Assembly Building in the background, the SRB Retrieval Ship Liberty Star nears Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  18. KSC-06pd1500

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  19. KSC-06pd1502

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star arrives at the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  20. KSC-06pd1499

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  1. KSC-06pd1503

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, the SRB Retrieval Ship Liberty Star gets ready to transfer the spent solid rocket booster to a straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  2. KSC-06pd1493

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At a dock in Port Canaveral, the SRB Retrieval Ship Liberty Star transfers its tow cargo, a spent solid rocket booster, to a starboard position for the balance of its journey to Cape Canaveral Air Force Station. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  3. KSC-06pd1495

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star begins the rest of its journey to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  4. KSC-06pd1501

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star closes in on the dock at Hangar AF, Cape Canaveral Air Force Station, with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  5. KSC-06pd1506

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - At the dock at Hangar AF, Cape Canaveral Air Force Station, workers move the spent solid rocket booster underneath the straddle crane that will lift it out of the water. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  6. KSC-06pd1496

    NASA Image and Video Library

    2006-07-06

    KENNEDY SPACE CENTER, FLA. - The SRB Retrieval Ship Liberty Star begins the rest of its journey to Cape Canaveral Air Force Station with a spent solid rocket booster alongside. The booster is from Space Shuttle Discovery, which launched on July 4. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and ,after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/George Shelton

  7. KSC-08pd3737

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – At the dock at Hangar AF at Cape Canaveral Air Force Station in Florida, two spent solid rocket boosters begin moving to the hangar for the safing process. They will be driven through the washing bay for a cleaning and rinsing. The boosters are from space shuttle Endeavour, which launched Nov. 14 on the STS-126 mission. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about six by nine nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship’s tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Kim Shiflett

  8. ARC-1980-AC80-0107-2

    NASA Image and Video Library

    1980-02-06

    The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  9. ARC-1980-AC80-0107-3

    NASA Image and Video Library

    1980-02-06

    The first solid rocket booster solid motor segemnts to arrive at KSC, the left and right hand aft segments are off-loaded into High Bay 4 in the Vehicle Assembly Building and mated to their respective SRB aft skirts. The two aft assemblies will support the entire 150 foot tall solid boosters, in turn supporting the external tank and Orbiter Columbia on the Mobile Launcher Platform, for the first orbital flight test of the Space Shuttle.

  10. KSC-2009-5950

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Nearly twice as tall as the space shuttle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  11. KSC-2011-3036

    NASA Image and Video Library

    2011-04-25

    CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress of external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, as it is lifted from its test cell for transfer to high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  12. KSC-04PD-2561

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers monitor the movement of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  13. KSC-04PD-2562

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  14. KSC-04PD-2565

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment which has been lowered onto an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.

  15. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  16. Test report for 120-inch-diameter Solid Rocket Booster (SRB) model tests. [floating and towing characteristics of space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Jones, W. C.

    1973-01-01

    The space shuttle solid rocket boosters (SRB's) will be jettisoned to impact in the ocean within a 200-mile radius of the launch site. Tests were conducted at Long Beach, California, using a 12-inch diameter Titan 3C model to simulate the full-scale characteristics of the prototype SRB during retrieval operations. The objectives of the towing tests were to investigate and assess the following: (1) a floating and towing characteristics of the SRB; (2) need for plugging the SRB nozzle prior to tow; (3) attach point locations on the SRB; (4) effects of varying the SRB configuration; (5) towing hardware; and (6) difficulty of attaching a tow line to the SRB in the open sea. The model was towed in various sea states using four different types and varying lengths of tow line at various speeds. Three attach point locations were tested. Test data was recorded on magnetic tape for the tow line loads and for model pitch, roll, and yaw characteristics and was reduced by computer to tabular printouts and X-Y plots. Profile and movie photography provided documentary test data.

  17. KSC-03PD-0571

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis rolls away from Bay 3 in the Vehicle Assembly Building to move it to Bay 1. There Atlantis will be demated with the external tank and solid rocket boosters in anticipation of its transfer to the Orbiter Processing Facility.

  18. Around Marshall

    NASA Image and Video Library

    1988-09-19

    Marshall's fifth Center Director, James R. Thompson (1986-1989), in the control room of the Solid Rocket Booster (SRB)automated thermal protection system (TPS) removal facility. Under Dr. Thompson's leadership, the shuttle program was rekindled after the Challenger explosion. Return to Flight kept NASA 's future programs alive.

  19. n/a

    NASA Image and Video Library

    2004-04-15

    Alabama Department of Transportation workers utilize Convergent Spray Technology to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.

  20. n/a

    NASA Image and Video Library

    2004-04-15

    A workman inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.

  1. n/a

    NASA Image and Video Library

    2004-04-15

    Alabama Department of Transportation workers utilize Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.

  2. ARC-1980-AC80-0107-19

    NASA Image and Video Library

    1980-02-06

    Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.

  3. ARC-1980-AC80-0107-14

    NASA Image and Video Library

    1980-02-06

    SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.

  4. ARC-1980-AC80-0107-17

    NASA Image and Video Library

    1980-02-06

    SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.

  5. Redesign of solid rocket booster/external tank attachment ring for the space transportation system

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G., Jr. (Compiler)

    1987-01-01

    An improved design concept is presented for the Space Shuttle solid rocket booster (SRB)/external tank (ET) attachment ring structural component. This component picks up three struts which attach the aft end of each SRB to the ET. The concept is a partial ring with carefully tapered ends to distribute fastener loads safely into the SRB. Extensive design studies and analyses were performed to arrive at the concept. Experiments on structural elements were performed to determine material strength and stiffness characteristics. Materials and fabrication studies were conducted to determine acceptable tolerances for the design concept. An overview is provided of the work along with conclusions and major recommendations.

  6. Liquid rocket booster study. Volume 2, book 5, appendix 9: LRB alternate applications and evolutionary growth

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The analyses performed in assessing the merit of the Liquid Rocket Booster concept for use in alternate applications such as for Shuttle C, for Standalone Expendable Launch Vehicles, and possibly for use with the Air Force's Advanced Launch System are presented. A comparison is also presented of the three LRB candidate designs, namely: (1) the LO2/LH2 pump fed, (2) the LO2/RP-1 pump fed, and (3) the LO2/RP-1 pressure fed propellant systems in terms of evolution along with design and cost factors, and other qualitative considerations. A further description is also presented of the recommended LRB standalone, core-to-orbit launch vehicle concept.

  7. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The one-man submarine dubbed DeepWorker 2000 sits on the deck of Liberty Star, one of two KSC solid rocket booster recovery ships. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  8. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the deck of Liberty Star, one of two KSC solid rocket booster recovery ships, a crane lowers a one-man submarine into the ocean near Cape Canaveral, Fla. Called DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  9. STS-48 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

  10. Preliminary nondestructive evaluation manual for the space shuttle. [preliminary nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Pless, W. M.

    1974-01-01

    Nondestructive evaluation (NDE) requirements are presented for some 134 potential fracture-critical structural areas identified, for the entire space shuttle vehicle system, as those possibly needing inspection during refurbishment/turnaround and prelaunch operations. The requirements include critical area and defect descriptions, access factors, recommended NDE techniques, and descriptive artwork. Requirements discussed include: Orbiter structure, external tank, solid rocket booster, and thermal protection system (development area).

  11. KSC-03pd0215

    NASA Image and Video Library

    2003-01-30

    KENNEDY SPACE CENTER, FLA. -- Atlantis is seen after attachment of the orange external tank and solid rocket boosters. Space Shuttle Atlantis will be flying on mission STS-114, a Utilization Logistics Flight-1 to the International Space Station. Along with a Multi-Purpose Logistics Module, Atlantis will also transport the next resident ISS crew, Expedition 7. The Shuttle is scheduled to launch March 1, 2003, on the 12-day STS-114 mission.

  12. KSC-2010-4883

    NASA Image and Video Library

    2010-09-28

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett

  13. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  14. The qualification of the shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Chase, C. A.; Fisher, K. M.; Eoff, W.

    1978-01-01

    Four booster separation motors (BSM) located at each end of every solid rocket booster (SRB) provide the needed side force to separate the boosters from the external tank at booster burnout. Four BSMs at the top of the SRB are located in a box pattern in the nose cone frustum. The four BSMs at the aft end of the SRB are arranged side-by-side on the SRB aft skirt. Aspects of BSM design and performance are considered, taking into account a motor design/performance summary, the case design, the insulation, the grain design, the nozzle/aft closure design, the ignition system, the propellant, and the motor assembly. Details of motor testing are also discussed, giving attention to development testing, qualification testing, and flight testing.

  15. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-31

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  16. STS-98 U.S. Lab Destiny is moved out of Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to be moved from Atlantis''' payload bay into the Payload Changeout Room. After the move, Atlantis will roll back to the Vehicle Assembly Building to allow workers to conduct inspections, continuity checks and X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis.

  17. EM-1 Booster Prep, Right Aft Skirt Work-In-Progress

    NASA Image and Video Library

    2016-10-30

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is ready for the assembly process in the Booster Fabrication Facility at the agency's Kennedy Space Center in Florida. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  18. Photo of family members of STS-5 commander, Vance D. Brand

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Erik Brand and his mother Beverly are seen in a photo of family members of STS-5 commander Vance D. Brand. Erik holds a small model of the space shuttle with its solid rocket boosters and external fuel tank still attached.

  19. KSC-03pd0250

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- Approximately 33 seconds after T-0 and liftoff of Space Shuttle Columbia, several particles are observed falling away from the -Z portion of the LH solid rocket booster ETA ring. Particles were identified later as probably pieces of the instafoam closeout on the ETA ring.

  20. Atlantis is lowered to external stack in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In Vehicle Assembly Building high bay 1, the orbiter Atlantis is being lowered into position for mating to its external tank/solid rocket booster stack. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  1. n/a

    NASA Image and Video Library

    2004-04-15

    A NASA official inspects the results of Convergent Spray Technology used to resurface a bridge on Interstate 65 near Lacon, Alabama. Originally developed by USBI to apply a heat resistant coating to the Space Shuttle's Solid Rocket Boosters, the environment-friendly technology reduces the required worktime from days to hours.

  2. KSC-97PC1725

    NASA Image and Video Library

    1997-11-21

    KENNEDY SPACE CENTER, FLA. -- Seen carrying a spent solid rocket booster (SRB) from the STS-87 launch on Nov. 19 is the solid rocket booster recovery ship Liberty Star as it reenters the Hangar AF area at Cape Canaveral Air Station. Hangar AF is a building originally used for Project Mercury, the first U.S. manned space program. The SRBs are the largest solid propellant motors ever flown and the first designed for reuse. After a Shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, weighing about 165,000 lb., have slowed their descent speed to about 62 mph and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future Shuttle flights. Once at Hangar AF, the SRBs are unloaded onto a hoisting slip and mobile gantry cranes lift them onto tracked dollies where they are safed and undergo their first washing

  3. KSC-97PC1727

    NASA Image and Video Library

    1997-11-21

    KENNEDY SPACE CENTER, FLA. -- Seen carrying a spent solid rocket booster (SRB) from the STS-87 launch on Nov. 19 is the solid rocket booster recovery ship Liberty Star as it reenters the Hangar AF area at Cape Canaveral Air Station. Hangar AF is a building originally used for Project Mercury, the first U.S. manned space program. The SRBs are the largest solid propellant motors ever flown and the first designed for reuse. After a Shuttle is launched, the SRBs are jettisoned at two minutes, seven seconds into the flight. At six minutes and 44 seconds after liftoff, the spent SRBs, weighing about 165,000 lb., have slowed their descent speed to about 62 mph and splashdown takes place in a predetermined area. They are retrieved from the Atlantic Ocean by special recovery vessels and returned for refurbishment and eventual reuse on future Shuttle flights. Once at Hangar AF, the SRBs are unloaded onto a hoisting slip and mobile gantry cranes lift them onto tracked dollies where they are safed and undergo their first washing

  4. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-Eulerian Approach

    NASA Astrophysics Data System (ADS)

    Melis, Matthew E.

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

  5. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  6. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  7. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-eulerian Approach

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

  8. Reentry aerodynamic characteristics of a space shuttle solid rocket booster (MSFC model 454) at high angles of attack and high Mach number in the NASA/Langley four-foot unitary plan wind tunnel (SA25F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1975-01-01

    A force test of a 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB), MSFC Model 454, was conducted in test section no. 2 of the Unitary Plan Wind Tunnel. Sixteen (16) runs (pitch polars) were performed over an angle of attack range from 144 through 179 degrees. Test Mach numbers were 2.30, 2.70, 2.96, 3.48, 4.00 and 4.63. The first three Mach numbers had a test Reynolds number of 1.5 million per foot. The remaining three were at 2.0 million per foot. The model was tested in the following configurations: (1) SRB without external protuberances, and (2) SRB with an electrical tunnel and a SRB/ET thrust attachment structure. Schlieren photographs were taken during the testing of the first configuration. The second configuration was tested at roll angles of 45, 90, and 135 degrees.

  9. Early Program Development

    NASA Image and Video Library

    1989-01-01

    This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.

  10. Early Program Development

    NASA Image and Video Library

    1989-01-01

    In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.

  11. Effects of damping on mode shapes, volume 1

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.

  12. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  13. Insulation Reformulation Development

    NASA Technical Reports Server (NTRS)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  14. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  15. KSC-99pp0531

    NASA Image and Video Library

    1999-05-16

    KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, with its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93, which was moved out of High Bay 1 to make room for Discovery, can be seen in the background between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment

  16. KSC-99pp0530

    NASA Image and Video Library

    1999-05-16

    KENNEDY SPACE CENTER, FLA. -- On a beautiful Florida morning, a crawler transporter moves Space Shuttle Discovery (right, nearly hidden behind its external tank and solid rocket boosters) from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93 was moved out of High Bay 1, which awaits Discovery's arrival with its door open. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment

  17. KSC-99pp0529

    NASA Image and Video Library

    1999-05-16

    KENNEDY SPACE CENTER, FLA. -- A crawler transporter moves Space Shuttle Discovery, hidden by its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) for repair of damage to the external tank foam insulation caused by hail. The external tank/solid rocket booster stack for mission STS-93 was moved out of High Bay 1 to make room for Discovery and can be seen on the horizon between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment

  18. Space Shuttle SRM development. [Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Brinton, B. C.; Kilminster, J. C.

    1979-01-01

    The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.

  19. KSC-2010-4366

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a technician is applying HD calcium grease to the field joint along the base of the left forward center solid rocket booster segment to inhibit rust and corrosion from occurring in the area. The booster along with its twin will be stacked on the mobile launcher platform along with an external fuel tank awaiting the arrival of space shuttle Endeavour for its flight to the International Space Station. As the final planned mission of the Space Shuttle Program, Endeavour and its crew will deliver the Alpha Magnetic Spectrometer, as well as critical spare components to the station on the STS-134 mission targeted for launch Feb. 26, 2011. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett

  20. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

Top