Lehmann, H P
1979-01-01
The development of the International System of Units (Systeme International d'Unites--SE Units), based on seven fundamental quantities--length, mass, time, electric current, thermodynamic temperature, luminous intensity, and amount of substance is described. Units (coherent and noncoherent) for other measurable quantities that are derived from the seven basic quantities are reviewed. The rationale for the use of SE units in medicine, primarily as applied to clinical laboratory data, is discussed, and arguments are presented for the rigid adoption of SI units in medicine and for exceptions. Tables are given for the basic and derived SI units used in medicine and for conversion factors from the quantities and units in current use to those in SI units.
Coralloid-like Nanostructured c-nSi/SiOx@Cy Anodes for High Performance Lithium Ion Battery.
Zhuang, Xianhuan; Song, Pingan; Chen, Guorong; Shi, Liyi; Wu, Yuan; Tao, Xinyong; Liu, Hongjiang; Zhang, Dengsong
2017-08-30
Balancing the size of the primary Si unit and void space is considered to be an effective approach for developing high performance silicon-based anode materials and is vital to create a lithium ion battery with high energy density. We herein have demonstrated the facile fabrication of coralloid-like nanostructured silicon composites (c-nSi/SiO x @Cy) via sulfuric acid etching the Al 60 Si 40 alloy, followed by a surface growth carbon layer approach. The HRTEM images of pristine and cycled c-nSi/SiO x @Cy show that abundant nanoscale internal pores and the continuous conductive carbon layer effectively avoid the pulverization and agglomeration of Si units during multiple cycles. It is interesting that the c-nSi/SiO x @C 4.0 anode exhibits a high initial Coulombic efficiency of 85.53%, and typical specific capacity of over 850 mAh g -1 after deep 500 cycles at a current density of 1 A g -1 . This work offers a facile strategy to create silicon-based anodes consisting of highly dispersed primary nano-Si units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben
Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though themore » principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.« less
The International System of Units and Its Use in Geography and Related Disciplines.
ERIC Educational Resources Information Center
Lee, Jeffrey A.
1995-01-01
Introduces college level geography students to the International System of Units (SI), a standardized set of units used in science, engineering, and commerce. Identifies the SI base units as meter, kilogram, second, kelvin, ampere, mole, and candela. Includes geographically relevant examples of each. (MJP)
The Current SI Seen From the Perspective of the Proposed New SI
Taylor, Barry N.
2011-01-01
A revised International System of Units (SI) proposed by the International Committee for Weights and Measures is under consideration by the General Conference on Weights and Measures for eventual adoption. Widely recognized as a significant advance for both metrology and science, it is defined via statements that explicitly fix the numerical values of a selected set of seven reference constants when the values of these constants are expressed in certain specified units. At first sight this approach to defining a system of units appears to be quite different from that used to define the current SI. However, by showing how the definitions of the seven base units of the current SI also fix the numerical values of a set of seven reference constants (broadly interpreted) when the values of these constants are expressed in their coherent SI units, and how the definition of the current SI can be recast into the same form as that of the revised SI under consideration, we show that the revision is not as radical a departure from the current SI as it might initially seem. PMID:26989600
Atmospheric Science Data Center
2013-03-12
Metric Weights and Measures The metric system is based on 10s. For example, 10 millimeters = 1 centimeter, 10 ... Special Publications: NIST Guide to SI Units: Conversion Factors NIST Guide to SI Units: Conversion Factors listed ...
NASA Astrophysics Data System (ADS)
Wisniewski, H.; Gourdain, P.-A.
2017-10-01
APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.
Yoshikawa, Masashi; Tamura, Yasuhiro; Wakabayashi, Ryutaro; Tamai, Misa; Shimojima, Atsushi; Kuroda, Kazuyuki
2017-11-06
The concept of protecting groups and leaving groups in organic synthesis was applied to the synthesis of siloxane-based molecules. Alkoxy-functionalized siloxane oligomers composed of SiO 4 , RSiO 3 , or R 2 SiO 2 units were chosen as targets (R: functional groups, such as Me and Ph). Herein we describe a novel synthesis of alkoxysiloxane oligomers based on the substitution reaction of trimethylsilyl (TMS) groups with alkoxysilyl groups. Oligosiloxanes possessing TMS groups were reacted with alkoxychlorosilane in the presence of BiCl 3 as a catalyst. TMS groups were substituted with alkoxysilyl groups, leading to the synthesis of alkoxysiloxane oligomers. Siloxane oligomers composed of RSiO 3 and R 2 SiO 2 units were synthesized more efficiently than those composed of SiO 4 units, suggesting that the steric hindrance around the TMS groups of the oligosiloxanes makes a difference in the degree of substitution. This reaction uses TMS groups as both protecting and leaving groups for SiOH/SiO - groups. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Units for quantities of dimension one
NASA Astrophysics Data System (ADS)
Dybkaer, René
2004-02-01
All quantities of dimension one are said to have the SI coherent derived unit "one" with the symbol '1'. (Single quotation marks are used here sometimes to indicate a quote, name, term or symbol; double quotation marks flag a concept when necessary.) Conventionally, the term and symbol may not be combined with the SI prefixes (except for the special terms and symbols for one and 1: radian, rad, and steradian, sr). This restriction is understandable, but leads to correct yet impractical alternatives and ISO deprecated symbols such as ppm or in some cases redundant combinations of units, such as mg/kg. "Number of entities" is dimensionally independent of the current base quantities and should take its rightful place among them. The corresponding base unit is "one". A working definition is given. Other quantities of dimension one are derived as fraction, ratio, efficiency, relative quantity, relative increment or characteristic number and may also use the unit "one", whether considered to be base or derived. The special term 'uno' and symbol 'u' in either case are proposed, allowing combination with SI prefixes.
Prediction of novel stable Fe-V-Si ternary phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
Prediction of novel stable Fe-V-Si ternary phase
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin; ...
2018-10-28
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
Synthesis and Materials Design for Heteroanion Compounds
NASA Astrophysics Data System (ADS)
Machida, K.
2011-02-01
Oxynitride phosphors, SrSi2O2N2:Eu2+ were synthesized through a conventional solid state reaction between Sr2SiO4:Eu2+ precursor and Si3N4 by using NH4Cl flux, and their luminescence properties were characterized from a viewpoint of the ionic and covalent bond natures as the "heteroanion compound" containing O2- and N3- anions. The structural framework of host lattice is constructed by covalently bonded layers of SiON3 units, suggesting that the rearrangement of O2- and N3- anions effectively takes place between isolated SiO44-anions of the Sr2SiO4:Eu2+ precursor and SiN4 units of the Si3N4 raw material. Furthermore, the layered structure consisting of (Si2O2N2)n2n- polyanions as tightly connected by Si-N-Si covalent bonds depresses the lattice vibration of Sr(Eu)-O or Si-O bond, so that the temperature quenching effect is lowered to give the intense emission for LED-based illumination lamps.
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni; Sevick-Muraca, Eva M.
2017-03-01
All medical devices for Food and Drug market approval require specifications of performance based upon International System of Units (SI) or units derived from SI for reasons of traceability. Recently, near-infrared fluorescence (NIRF) imaging devices of a variety of designs have emerged on the market and in investigational clinical studies. Yet the design of devices used in the clinical studies vary widely, suggesting variable device performance. Device performance depends upon optimal excitation of NIRF imaging agents, rejection of backscattered excitation and ambient light, and selective collection of fluorescence emanating from the fluorophore. There remains no traceable working standards with SI units of radiance to enable prediction that a given molecular imaging agent can be detected in humans by a given NIRF imaging device. Furthermore, as technologies evolve and as NIRF imaging device components change, there remains no standardized means to track device improvements over time and establish clinical performance without involving clinical trials, often costly. In this study, we deployed a methodology to calibrate luminescent radiance of a stable, solid phantom in SI units of mW/cm2/sr for characterizing the measurement performance of ICCD and IsCMOS camera based NIRF imaging devices, such as signal-to-noise ratio (SNR) and contrast. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS system; comparable contrast of ICCD and IsCMOS depending upon binning strategies.
Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.
Caffrey, Leah M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N
2016-10-10
A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.
A LEGO Watt balance: An apparatus to determine a mass based on the new SI
NASA Astrophysics Data System (ADS)
Chao, L. S.; Schlamminger, S.; Newell, D. B.; Pratt, J. R.; Seifert, F.; Zhang, X.; Sineriz, G.; Liu, M.; Haddad, D.
2015-11-01
A global effort to redefine our International System of Units (SI) is underway, and the change to the new system is expected to occur in 2018. Within the newly redefined SI, the present base units will still exist but be derived from fixed numerical values of seven reference constants. In particular, the unit of mass (the kilogram) will be realized through a fixed value of the Planck constant h. A so-called watt balance, for example, can then be used to realize the kilogram unit of mass within a few parts in 108. Such a balance has been designed and constructed at the National Institute of Standards and Technology. For educational outreach and to demonstrate the principle, we have constructed a LEGO tabletop watt balance capable of measuring a gram-level masses to 1% relative uncertainty. This article presents the design, construction, and performance of the LEGO watt balance and its ability to determine h.
Schwartz, Mark D.; Ault, Toby R.; Betancourt, Julio L.
2012-01-01
Phenological data are simple yet sensitive indicators of climate change impacts on ecosystems, but observations have not been made routinely or extensively enough to evaluate spatial and temporal patterns across most continents, including North America. As an alternative, many studies use weather-based algorithms to simulate specific phenological responses. Spring Indices (SI) are a set of complex phenological models that have been successfully applied to evaluate variations and trends in the onset of spring across the Northern Hemisphere’s temperate regions. To date, SI models have been limited by only producing output in locations where both the plants’ chilling and warmth requirements are met. Here, we develop an extended form of the SI (abbreviated SI-x) that expands their application into the subtropics by ignoring chilling requirements while still retaining the utility and accuracy of the original SI (now abbreviated SI-o). The validity of the new indices is tested, and regional SI anomalies are explored across the data-rich continental United States. SI-x variations from 1900 to 2010 show an abrupt and sustained delay in spring onset of about 4–8 d (around 1958) in parts of the Southeast and southern Great Plains, and a comparable advance of 4–8 d (around 1984) in parts of the northern Great Plains and the West. Atmospheric circulation anomalies, linked to large-scale modes of variability, exert modest but significant roles in the timing of spring onset across the United States on interannual and longer timescales. The SI-x are promising metrics for tracking spring onset variations and trends in mid-latitudes, relating them to relevant ecological, hydrological, and socioeconomic phenomena, and exploring connections between atmospheric drivers and seasonal timing.
Varma, Rohit; Bressler, Neil M; Doan, Quan V; Danese, Mark; Dolan, Chantal M; Lee, Abraham; Turpcu, Adam
2015-05-01
To estimate visual impairment (VI) and blindness avoided with intravitreal ranibizumab 0.3 mg treatment for central-involved diabetic macular edema (DME) among Hispanic and non-Hispanic white individuals in the United States. Population-based model simulating visual acuity (VA) outcomes over 2 years after diagnosis and treatment of DME. Visual acuity changes with and without ranibizumab were based on data from the RISE, RIDE, and DRCR Network trials. For the better-seeing eye, VA outcomes included VI, defined as worse than 20/40 in the better-seeing eye, and blindness, defined as VA of 20/200 or worse in the better-seeing eye. Incidence of 1 or both eyes with central-involved DME in 2010 were estimated based on the 2010 United States population, prevalence of diabetes mellitus, and 1-year central-involved DME incidence rate. Sixty-one percent of incident individuals had bilateral DME and 39% had unilateral DME, but DME could develop in the fellow eye. Cases of VI and blindness avoided with ranibizumab treatment. Among approximately 102 million Hispanic and non-Hispanic white individuals in the United States 45 years of age and older in 2010, an estimated 37 274 had central-involved DME and VI eligible for ranibizumab treatment. Compared with no ranibizumab treatment, the model predicted that ranibizumab 0.3 mg every 4 weeks would reduce the number of individuals with VI from 11 438 (95% simulation interval [SI], 7249-16 077) to 6304 (95% SI, 3921-8981), a 45% (95% SI, 36%-53%) reduction at 2 years. Ranibizumab would reduce the number of incident eyes with VA worse than 20/40 from 16 910 (95% SI, 10 729-23 577) to 9361 (95% SI, 5839-13 245), a 45% (95% SI, 38%-51%) reduction. Ranibizumab was estimated to reduce the number of individuals with legal blindness by 75% (95% SI, 58%-88%) and the number of incident eyes with VA of 20/200 or worse by 76% (95% SI, 63%-87%). This model suggests that ranibizumab 0.3 mg every 4 weeks substantially reduces prevalence of VI and legal blindness 2 years after initiating treatment among Hispanic and non-Hispanic white individuals in the United States with central-involved DME that has caused vision loss. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
The Metric System of Measurement (SI). Federal Register Notice of December 10, 1976.
ERIC Educational Resources Information Center
National Bureau of Standards (DOC), Washington, DC.
This document provides a diagram illustrating the relationships between base units in the metric system and derived units with special names. Twenty-one derived units are included. The base units used are: measures of mass, length, time, amount of substance, electric current, thermo-dynamic temperature, luminous intensity, and plane and solid…
Allu, Amarnath R; Gaddam, Anuraag; Ganisetti, Sudheer; Balaji, Sathravada; Siegel, Renée; Mather, Glenn C; Fabian, Margit; Pascual, Maria J; Ditaranto, Nicoletta; Milius, Wolfgang; Senker, Jürgen; Agarkov, Dmitrii A; Kharton, Vladislav V; Ferreira, José M F
2018-05-03
Aluminosilicate glasses are considered to follow the Al-avoidance principle, which states that Al-O-Al linkages are energetically less favorable, such that, if there is a possibility for Si-O-Al linkages to occur in a glass composition, Al-O-Al linkages are not formed. The current paper shows that breaching of the Al-avoidance principle is essential for understanding the distribution of network-forming AlO 4 and SiO 4 structural units in alkaline-earth aluminosilicate glasses. The present study proposes a new modified random network (NMRN) model, which accepts Al-O-Al linkages for aluminosilicate glasses. The NMRN model consists of two regions, a network structure region (NS-Region) composed of well-separated homonuclear and heteronuclear framework species and a channel region (C-Region) of nonbridging oxygens (NBOs) and nonframework cations. The NMRN model accounts for the structural changes and devitrification behavior of aluminosilicate glasses. A parent Ca- and Al-rich melilite-based CaO-MgO-Al 2 O 3 -SiO 2 (CMAS) glass composition was modified by substituting MgO for CaO and SiO 2 for Al 2 O 3 to understand variations in the distribution of network-forming structural units in the NS-region and devitrification behavior upon heat treating. The structural features of the glass and glass-ceramics (GCs) were meticulously assessed by advanced characterization techniques including neutron diffraction (ND), powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR), and in situ Raman spectroscopy. ND revealed the formation of SiO 4 and AlO 4 tetrahedral units in all the glass compositions. Simulations of chemical glass compositions based on deconvolution of 29 Si MAS NMR spectral analysis indicate the preferred formation of Si-O-Al over Si-O-Si and Al-O-Al linkages and the presence of a high concentration of nonbridging oxygens leading to the formation of a separate NS-region containing both SiO 4 and AlO 4 tetrahedra (Si/Al) (heteronuclear) in addition to the presence of Al [4] -O-Al [4] bonds; this region coexists with a predominantly SiO 4 -containing (homonuclear) NS-region. In GCs, obtained after heat treatment at 850 °C for 250 h, the formation of crystalline phases, as revealed from Rietveld refinement of XRD data, may be understood on the basis of the distribution of SiO 4 and AlO 4 structural units in the NS-region. The in situ Raman spectra of the GCs confirmed the formation of a Si/Al structural region, as well as indicating interaction between the Al/Si region and SiO 4 -rich region at higher temperatures, leading to the formation of additional crystalline phases.
Metrication of clinical laboratory data in SI units.
Lehmann, H P
1976-01-01
The development and general concepts of the Système International d'Unités (SI units) are discussed. The basic and derived quantities and units of the SI used for clinical laboratory data are reviewed. Ranges of normal values for a number of body fluid constituents are given in the units in current general use and in SI units, with corresponding conversion factors.
ERIC Educational Resources Information Center
Nelson, Robert A.
1983-01-01
Discusses legislation related to SI (International Systems of Units) in the United States. Indicates that although SI metric units have been officially recognized by law in the United States, U.S. Customary Units have never received a statutory basis. (JN)
Quentzel, H L; Nadelman, R B; Ng, J; Wormser, G P
1989-01-01
Over the next few years, le Système international d'Unités or SI units may replace the presently used metric system in reporting laboratory data. The change to SI units will likely result in some confusion among clinicians who are not well versed in the new system. Application of SI units to the clinical practice of infectious diseases is discussed, including changes in drug dosages, serum drug levels, and minimum inhibitory concentrations. A table is presented to facilitate conversion of metric units to SI units and vice versa.
Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister
2014-05-01
The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.
NASA Astrophysics Data System (ADS)
Dykema, John A.; Anderson, James G.
2006-06-01
A methodology to achieve spectral thermal radiance measurements from space with demonstrable on-orbit traceability to the International System of Units (SI) is described. This technique results in measurements of infrared spectral radiance R(\\tilde {\\upsilon }) , with spectral index \\tilde {\\upsilon } in cm-1, with a relative combined uncertainty u_c[R(\\tilde {\\upsilon })] of 0.0015 (k = 1) for the average mid-infrared radiance emitted by the Earth. This combined uncertainty, expressed in brightness temperature units, is equivalent to ±0.1 K at 250 K at 750 cm-1. This measurement goal is achieved by utilizing a new method for infrared scale realization combined with an instrument design optimized to minimize component uncertainties and admit tests of radiometric performance. The SI traceability of the instrument scale is established by evaluation against source-based and detector-based infrared scales in defined laboratory protocols before launch. A novel strategy is executed to ensure fidelity of on-orbit calibration to the pre-launch scale. This strategy for on-orbit validation relies on the overdetermination of instrument calibration. The pre-launch calibration against scales derived from physically independent paths to the base SI units provides the foundation for a critical analysis of the overdetermined on-orbit calibration to establish an SI-traceable estimate of the combined measurement uncertainty. Redundant calibration sources and built-in diagnostic tests to assess component measurement uncertainties verify the SI traceability of the instrument calibration over the mission lifetime. This measurement strategy can be realized by a practical instrument, a prototype Fourier-transform spectrometer under development for deployment on a small satellite. The measurement record resulting from the methodology described here meets the observational requirements for climate monitoring and climate model testing and improvement.
REVIEW ARTICLE: The next 50 years of the SI: a review of the opportunities for the e-Science age
NASA Astrophysics Data System (ADS)
Foster, Marcus P.
2010-12-01
The International System of Units (SI) was declared as a practical and evolving system in 1960 and is now 50 years old. A large amount of theoretical and experimental work has been conducted to change the standards for the base units from artefacts to physical constants, to improve their stability and reproducibility. Less attention, however, has been paid to improving the SI definitions, utility and usability, which suffer from contradictions, ambiguities and inconsistencies. While humans can often resolve these issues contextually, computers cannot. As an ever-increasing volume and proportion of data about physical quantities is collected, exchanged, processed and rendered by computers, this paper argues that the SI definitions, symbols and syntax should be made more rigorous, so they can be represented wholly and unambiguously in ontologies, programs, data and text, and so the SI notation can be rendered faithfully in print and on screen.
Use of SI Metric Units Misrepresented in College Physics Texts.
ERIC Educational Resources Information Center
Hooper, William
1980-01-01
Summarizes results of a survey that examined 13 textbooks claiming to use SI units. Tables present data concerning the SI and non-SI units actually used in each text in discussion of fluid pressure and thermal energy, and data concerning which texts do and do not use SI as claimed. (CS)
Neither a year nor an annus can be a derived unit in the SI
Edwards, Lucy E.
2011-01-01
The year is not a unit of the SI. The only SI unit of measurement for time is the second. The word “annus” or “annum” does not appear anywhere in the current SI document. The word “year” is not in the table of “Non-SI units accepted for use with the International System of Units,” nor in the table of “Non-SI units whose values in SI units must be obtained experimentally,” nor even in the table of “Other non-SI units.” The year can be found, however, through the list of “Other non-SI units not recommended for use.” This heading directs the reader to a National Institute of Standards and Technology (NIST) list where three kinds of year (365 days, sidereal, and tropical) are given with conversion to seconds, but are set in type to indicate “in general not to be used in NIST publications.” Table 1 summarizes some of the uses of the year in other publications. For example, in the IUPAC chemistry document, the year is not a constant; in the International Astronomy Union Style Guide, the year (Julian) is a constant.
Units Based on Constants: The Redefinition of the International System of Units
NASA Astrophysics Data System (ADS)
Stenger, J.; Ullrich, J. H.
2016-03-01
Recent decisions of the General Conference on Weights and Measures of the Metre Convention have opened the door to a fundamental change of the International System of Units, the SI, in 2018. The revised SI will be based on fixing the numerical values of seven defining constants corresponding to the seven traditional base units. This will bring about basic modifications in the definition of the kilogram, the ampere, the kelvin, and the mole and will have consequences for units derived from them. In contrast, the second, the meter, and the candela will not be affected. This paper describes the motivation and rationale behind this endeavor, introduces the new definitions, and reviews the requirements for the redefinitions as well as the status of the experiments that are currently being carried out to fulfill them. Benefits and a wide-reaching impact for the realization and dissemination of the units are anticipated because innovative technologies with ever-increasing accuracy will emerge, enabling the direct realization over widespread measurement ranges without the definitions themselves having to be changed.
Computer Controlled Microwave Oven System for Rapid Water Content Determination
1988-11-01
Codes - .d/or CONTENTS Page PREFACE .................................................................... 1 CONVERSION FACTORS, NON- SI TO SI (METRIC...CONVERSION FACTORS, NON- SI TO SI (METRIC) UNITS OF MEASUREMENT Non- SI units of measurement used in this report can be converted to SI (metric) units as...formula: C = (5/9)(F - 32) . To obtain Kelvin ( K ) readings, use: K = (5/9)(F - 32) + 273.15 3 COMPUTER CONTROLLED MICROWAVE OVEN SYSTEM FOR RAPID WATER
Minato, Takuo; Aravena, Daniel; Ruiz, Eliseo; Yamaguchi, Kazuya; Mizuno, Noritaka; Suzuki, Kosuke
2018-06-01
In this paper, the synthesis and magnetic properties of mononuclear Fe III -containing polyoxometalates (POMs) with different types of heteroatoms, TBA 7 H 10 [(A-α-XW 9 O 34 ) 2 Fe] (II X , X = Ge, Si; TBA = tetra- n-butylammonium), are reported. In these POMs, mononuclear highly distorted six-coordinate octahedral [FeO 6 ] 9- units are sandwiched by two trivacant lacunary units [A-α-XW 9 O 34 ] 10- (X = Ge, Si). These POMs exhibit field-induced slow magnetic relaxation based on the single high-spin Fe III magnetic center ( S = 5/2). Combining experiment and ab initio calculations, we investigated the effect of heteroatoms of the lacunary units on the field-induced slow magnetic relaxation of these POMs. By changing the heteroatoms from Si (II Si ) to Ge (II Ge ), the coordination geometry around the Fe III ion is mildly changed. Concretely, the axial Fe-O bond length in II Ge is shortened compared with that in II Si , and consequently the distortion of the [FeO 6 ] 9- unit in II Ge from the ideal octahedral coordination geometry becomes larger than that in II Si . The effective demagnetization barrier of II Ge (11.4 K) is slightly larger than that of II Si (9.2 K). Multireference ab initio calculations predict zero-field splitting parameters in good agreement with experiment. Although the differences in the coordination geometries and magnetic properties of II Ge and II Si are quite small, ab initio calculations indicate subtle changes in the magnetic anisotropy which are in line with the observed magnetic relaxation properties.
NASA Astrophysics Data System (ADS)
Defilla, Steivan
2006-03-01
Hitherto, the purchasing power of money, i.e. its transaction value, has been measured in terms of inflation index numbers and consumer baskets. Consumer baskets are variable phenomena and their use as measurement units for value confuses the measuring with the measurand. We propose an invariant numeraire, or value unit, based on the market value of a Planck energy (1956 MJ). Planck units form a natural system of units independent of any civilization. The hedonic estimation of the PhPP of a currency differentiates energy by product as well as by thermodynamic quality (exergy). Following SI rules, we propose to name the value unit walras (Wal) in honour of the economist Leon Walras (1834 - 1910). One Wal can also be interpreted as the minimum cost of physiological life of a reference person during one year. The study uses official disaggregated Swiss Producer and Consumer Price Index data and estimates the PhPP of the Swiss franc in 2003.
On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics
Sen, Sabyasachi; Widgeon, Scarlett
2015-01-01
The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems. PMID:28347016
deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N
2016-06-13
Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior siRNA internalization capabilities compared to their more and less hydrophobic counterparts, demonstrating a critical window of relative hydrophobicity for optimal internalization. This better understanding of how hydrophobicity impacts PTDM-induced internalization efficiencies will help guide the development of future delivery reagents.
2013-01-01
Introduction Isolated vital signs (for example, heart rate or systolic blood pressure) have been shown unreliable in the assessment of hypovolemic shock. In contrast, the Shock Index (SI), defined by the ratio of heart rate to systolic blood pressure, has been advocated to better risk-stratify patients for increased transfusion requirements and early mortality. Recently, our group has developed a novel and clinical reliable classification of hypovolemic shock based upon four classes of worsening base deficit (BD). The objective of this study was to correlate this classification to corresponding strata of SI for the rapid assessment of trauma patients in the absence of laboratory parameters. Methods Between 2002 and 2011, data for 21,853 adult trauma patients were retrieved from the TraumaRegister DGU® database and divided into four strata of worsening SI at emergency department arrival (group I, SI <0.6; group II, SI ≥0.6 to <1.0; group III, SI ≥1.0 to <1.4; and group IV, SI ≥1.4) and were assessed for demographics, injury characteristics, transfusion requirements, fluid resuscitation and outcomes. The four strata of worsening SI were compared with our recently suggested BD-based classification of hypovolemic shock. Results Worsening of SI was associated with increasing injury severity scores from 19.3 (± 12) in group I to 37.3 (± 16.8) in group IV, while mortality increased from 10.9% to 39.8%. Increments in SI paralleled increasing fluid resuscitation, vasopressor use and decreasing hemoglobin, platelet counts and Quick’s values. The number of blood units transfused increased from 1.0 (± 4.8) in group I to 21.4 (± 26.2) in group IV patients. Of patients, 31% in group III and 57% in group IV required ≥10 blood units until ICU admission. The four strata of SI discriminated transfusion requirements and massive transfusion rates equally with our recently introduced BD-based classification of hypovolemic shock. Conclusion SI upon emergency department arrival may be considered a clinical indicator of hypovolemic shock in respect to transfusion requirements, hemostatic resuscitation and mortality. The four SI groups have been shown to equal our recently suggested BD-based classification. In daily clinical practice, SI may be used to assess the presence of hypovolemic shock if point-of-care testing technology is not available. PMID:23938104
The SI-Gap: How British Units Are Impeding Advances in STEM
NASA Astrophysics Data System (ADS)
Jones, M. P.; Cook, Courtney J.
2017-11-01
The United States is one of only three countries in the world that remain uncommitted to the metric system. Perhaps to policymakers the decision to hang on to miles, pounds, and gallons is one of tradition. However, as a physics teacher I have seen firsthand how growing up with U.S. Customary Units (commonly called by the pseudonym "British Units") has negatively impacted my students. Sure, they can convert between "British" and SI units; and they can effectively toggle between SI prefixes. However, they typically lack intuition regarding the values they express in SI. This is a major problem, but is by no means a criticism against them. Their disadvantage is the result of a unique learning gap that exists in the United States. I call it the SI(sī)-gap. The SI-gap not only impedes our ability as teachers to inspire students when it comes to science, technology, engineering, and mathematics (STEM); it also prevents our students from properly assessing the validity of their own results. As we shall soon see, the SI-gap carries consequences beyond the classroom. If we are to solve the problems that relate to the SI-gap, we need to reform the way we introduce SI units to the current generation of students.
Changes Coming to the International System of Units
ERIC Educational Resources Information Center
Aubrecht, Gordon J., II
2012-01-01
The International System of Units (SI) is a coherent system based originally on measurements of properties of material objects. In more recent times, the adopted definitions depend on setting values of universal constants wherever possible. The last remaining human-made material object on which a standard is based is a platinum-iridium kilogram…
Synthesis and Crystal Structure of a New Ruthenium Silicophosphate: RuP 3SiO 11
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro
1996-01-01
A new ruthenium silicophosphate RuP3SiO11was obtained and the structure was determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space groupR3cwitha= 8.253(3)Å,c= 39.317(4)Å,V= 2319(2)Å3,Z= 12,R= 0.029, andRW= 0.026. The structure is composed of RuO6, Si2O7, and P2O7units. The Si2O7unit shares the six oxygen atoms with six P2O7units, while the P2O7unit shares the six oxygen atoms with two Si2O7units and four RuO6octahedra. The anionic part forms an infinite three-dimensional network of silicophosphate. RuP3SiO11is isotypic with MoP3SiO11.
Susaeta, Andres; Soto, José R; Adams, Damian C; Hulcr, Jiri
2017-08-01
American sweetgum trees (Liquidambar styraciflua L. [Altingiaceae]) in China are being killed by a newly discovered wood-boring beetle "sweetgum inscriber" (Acanthotomicus sp.). It has not been detected in the United States yet, but given the extent of trade with Asian countries, eventual arrival of this beetle is a serious concern. The American sweetgum is one of the main hardwood species in the southern United States, and provides several economic and ecological benefits to society. We present the first economic analysis of the potential damage from sweetgum inscriber (SI) to timber-based land values in the southern United States. We modeled economic impacts for a range of feasible SI arrival rates that reflect policy interventions: 1) no efforts to prevent arrival (scenario A, once every 14 and 25 yr), 2) partial prevention by complying with ISPM 15 standards (scenario B, once every 33 and 100 yr), and 3) total prevention of arrival (scenario C, zero transmission of SI). Our results indicated much lower land values for sweetgum plantations without the prevention on SI establishment (scenario A, US$1,843-US$4,383 ha-1) compared with partial prevention (scenario B, US$5,426-US$8,050 ha-1) and total eradication of SI (scenario C, US$9,825). Across the region, upper bound timber-based economic losses to plantation owners is US$151.9 million (US$4.6 million annually)-an estimate that can help inform policy decisions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chart of conversion factors: From English to metric system and metric to English system
,
1976-01-01
The conversion factors in the following tables are for conversion of our customary (English) units of measurement to SI*units, and for convenience, reciprocals are shown for converting SI units back to the English system. The first table contains rule-of-thumb figures, useful for "getting the feel" of SI units or mental estimation. The succeeding tables contain factors accurate to 3 or more significant figures. Please refer to known reference volumes for additional accuracy, as well as for factors dealing with other scientific notation involving SI units.
INTERNATIONAL NEWS: CPEM 2006 round table discussion 'Proposed changes to the SI'
NASA Astrophysics Data System (ADS)
Stock, Michael; Witt, Thomas J.
2006-12-01
This report summarizes a round table session held last July at the CPEM 2006 to discuss recently proposed redefinitions of some base units of the International System of Units (SI) based on defined values of some fundamental constants. The aim of the session was to inform CPEM delegates of the various proposals and to promote a wide discussion of the issues arising from them. An interdisciplinary panel of six experts from national metrology institutes, the academic community and the industrial metrology community briefly presented their views and their concerns. The presentations were followed by a session in which the panel answered questions and heard comments from the audience.
ERIC Educational Resources Information Center
Knotts, Sandra; Mohr, Peter J.; Phillips, William D.
2017-01-01
Plans are under way to redefine the International System of Units (SI) around 2018. The new SI specifies the values of certain physical constants to define units. This article explains the new SI in order to provide a resource for high school teachers as well as for advanced students already familiar with the pre-2018 SI.
Network structure of SiO2 and MgSiO3 in amorphous and liquid States
NASA Astrophysics Data System (ADS)
Lan, Mai Thi; Thuy Duong, Tran; Viet Huy, Nguyen; Van Hong, Nguyen
2017-03-01
Network structure of SiO2 and MgSiO3 at 300 K and 3200 K is investigated by molecular dynamics simulation and visualization of simulation data. Structural organization of SiO2 and MgSiO3 is clarified via analysis the short range order (SRO) and intermediate range order (IRO). Network topology is determined via analyzing the bond between structural units, the cluster of structural units as well as spatial distribution of structural units. The polyamorphism as well as structural and dynamic heterogeneities are also discussed in this work.
Technologies of high-performance thermography systems
NASA Astrophysics Data System (ADS)
Breiter, R.; Cabanski, Wolfgang A.; Mauk, K. H.; Kock, R.; Rode, W.
1997-08-01
A family of 2 dimensional detection modules based on 256 by 256 and 486 by 640 platinum silicide (PtSi) focal planes, or 128 by 128 and 256 by 256 mercury cadmium telluride (MCT) focal planes for applications in either the 3 - 5 micrometer (MWIR) or 8 - 10 micrometer (LWIR) range was recently developed by AIM. A wide variety of applications is covered by the specific features unique for these two material systems. The PtSi units provide state of the art correctability with long term stable gain and offset coefficients. The MCT units provide extremely fast frame rates like 400 Hz with snapshot integration times as short as 250 microseconds and with a thermal resolution NETD less than 20 mK for e.g. the 128 by 128 LWIR module. The unique design idea general for all of these modules is the exclusively digital interface, using 14 bit analog to digital conversion to provide state of the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. Device specific features like bias voltages etc. are identified during the final test and stored in a memory on the driving electronics. This concept allows an easy exchange of IDCAs of the same type without any need for tuning or e.g. the possibility to upgrade a PtSi based unit to an MCT module by just loading the suitable software. Miniaturized digital signal processor (DSP) based image correction units were developed for testing and operating the units with output data rates of up to 16 Mpixels/s. These boards provide the ability for freely programmable realtime functions like two point correction and various data manipulations in thermography applications.
SI Units to be Used in Place of Imperial Units and Old Metric Units
ERIC Educational Resources Information Center
Australian Science Teachers Journal, 1975
1975-01-01
A table lists the following quantities in imperial units, old metric units, and SI units: mass, force, energy, torque, power, pressure, temperature, thermal conductivity, frequency, dynamic viscosity, and kinematic viscosity. (MLH)
A natural value unit—Econophysics as arbiter between finance and economics
NASA Astrophysics Data System (ADS)
Defilla, Steivan
2007-08-01
Foreign exchange markets show that currency units ( = accounting or nominal price units) are variables. Technical and economic progress evidences that the consumer baskets ( = purchasing power units or real price units) are also variables. In contrast, all physical measurement units are constants and either defined in the SI (=metric) convention or based upon natural constants ( = “natural” or Planck units). Econophysics can identify a constant natural value scale or value unit (natural numeraire) based upon Planck energy. In honor of the economist L. Walras, this “Planck value” could be called Walras (Wal), thereby using the SI naming convention. One Wal can be shown to have a physiological and an economic interpretation in that it is equal to the annual minimal real cost of physiological life of a reference person at minimal activity. The price of one Wal in terms of any currency can be estimated by hedonic regression techniques used in inflation measurement (axiometry). This pilot research uses official disaggregated Swiss Producer and Consumer Price Index (PPI and CPI) data and estimates the hedonic Walras price (HWP), quoted in Swiss francs in 2003, and its inverse, the physical purchasing power (PhPP) of the Swiss franc in 2003.
NASA Astrophysics Data System (ADS)
Davis, Richard S.
2017-05-01
The revised International System of Units (SI), expected to be approved late in 2018, has implications for physics pedagogy. The ampere definition, which dates from 1948, will be replaced by a definition that fixes the numerical value of the elementary charge e in coulombs. The kilogram definition, which dates from 1889, will be replaced by a definition that fixes the numerical value of the Planck constant h in joule seconds. Existing SI equations will be completely unaffected. However, there will be a largely negligible, but nevertheless necessary, change to published numerical factors relating SI electrical units to their corresponding units in the Gaussian and other CGS systems of units. The implications of the revised SI for electrical metrology are neatly illustrated by considering the interpretation of results obtained from a current balance in the present SI and in the revised SI.
Visible photoluminescence of porous Si(1-x)Ge(x) obtained by stain etching
NASA Technical Reports Server (NTRS)
Ksendzov, A.; Fathauer, R. W.; George, T.; Pike, W. T.; Vasquez, R. P.; Taylor, A. P.
1993-01-01
We have investigated visible photoluminescence (PL) from thin porous Si(1-x)Ge(x) alloy layers prepared by stain etching of molecular-beam-epitaxy-grown material. Seven samples with nominal Ge fraction x varying from 0.04 to 0.41 were studied at room temperature and 80 K. Samples of bulk stain etched Si and Ge were also investigated. The composition of the porous material was determined using X-ray photoemission spectroscopy and Rutherford backscattering techniques to be considerably more Ge-rich than the starting epitaxial layers. While the luminescence intensity drops significantly with the increasing Ge fraction, we observe no significant variation in the PL wavelength at room temperature. This is clearly in contradiction to the popular model based on quantum confinement in crystalline silicon which predicts that the PL energy should follow the bandgap variation of the starting material. However, our data are consistent with small active units containing only a few Si atoms that are responsible for the light emission. Such units are present in many compounds proposed in the literature as the cause of the visible PL in porous Si.
Redetermination of clinobaryl-ite, BaBe(2)Si(2)O(7).
Domizio, Adrien J Di; Downs, Robert T; Yang, Hexiong
2012-10-01
Clinobaryl-ite, ideally BaBe(2)Si(2)O(7) (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl-ite. It belongs to a group of compounds characterized by the general formula BaM(2+) (2)Si(2)O(7), with M(2+) = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl-ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl-ite can be considered as a framework of BeO(4) and SiO(4) tetra-hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO(4) tetra-hedra share corners, forming chains parallel to the c axis, which are inter-linked by the Si(2)O(7) units oriented parallel to the a axis. The Ba(2+) cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si-O(br) (bridging O atom, at site symmetry m..) bond length, the Si-O(nbr) (non-bridging O atoms) bond lengths, and the Si-O-Si angle within the Si(2)O(7) unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373-384].
NASA Astrophysics Data System (ADS)
Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin
2017-12-01
A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.
Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit.
Park, Seongjun; Yeon, Kyung-Min; Moon, Seheum; Kim, Jong-Oh
2018-01-01
Filtration flux is one of the key factors in regulating the performance of membrane bio-reactors (MBRs) for wastewater treatment. In this study, we explore the effectiveness of a mechanical sieve unit for effective flux enhancement through retardation of the fouling effect in a modified MBR system (SiMBR). In brief, the coarse sieve unit having 100 μm and 50 μm permits small size microorganism flocs to adjust the biomass concentration from the suspended basin to the membrane basin. As a result, the reduced biofouling effect due to the lowered biomass concentration from 7800 mg/L to 2400 mg/L, enables higher flux through the membrane. Biomass rejection rate of the sieve is identified to be the crucial design parameter for the flux enhancement through the incorporation of numerical simulations and operating critical-flux measurement in a batch reactor. Then, the sieve unit is prepared for 10 L lab-scale continuous SiMBR based on the correlation between sieve pore size and biomass rejection characteristics. During continuous operation of lab-scale SiMBR, biomass concentration is maintained with a higher biomass concentration in the aerobic basin (7400 mg/L) than that in the membrane basin (2400 mg/L). In addition, the SiMBR operations are conducted using three different commercial hollow fiber membranes to compare the permeability to that of conventional MBR operations. For all cases, the modified MBR having a sieve unit clearly results in enhanced permeability. These results successfully validate that SiMBR can effectively improve flux through direct reduction of biomass concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Units and symbols in solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, W.A.; Bugler, J.W.; Cooper, P.L.
1978-01-01
The application of S.I. units to some common solar energy quantities is discussed and some conversions to S.I. units are given. Then, a list of preferred names, symbols and units is recommended. (SPH)
NASA Astrophysics Data System (ADS)
Stock, M.
2013-02-01
Since 1889 the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 108. The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper the background for the choice of the Planck constant for the kilogram redefinition is discussed and the role of the Planck constant in physics is briefly reviewed. The operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all presently available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. This article is based on a lecture given at the International School of Physics ‘Enrico Fermi’, Course CLXXXV: Metrology and Physical Constants, held in Varenna on 17-27 July 2012. It will also be published in the proceedings of the school, edited by E Bava, M Kühne and A M Rossi (IOS Press, Amsterdam and SIF, Bologna).
Conversion factors: SI metric and U.S. customary units
,
1977-01-01
The policy of the U.S. Geological Survey is to foster use of the International System of Units (SI) which was defined by the 11th General Conference of Weights and Measures in 1960. This modernized metric system constitutes an international "language" by means of which communications throughout the world's scientific and economic communities may be improved. This publication is designed to familiarize the reader with the SI units of measurement that correspond to the common units frequently used in programs of the Geological Survey. In the near future, SI units will be used exclusively in most publications of the Survey; the conversion factors provided herein will help readers to obtain a "feel" for each unit and to "think metric."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Yang, E-mail: yangyangyu0103@sohu.com; Jilin Institute of Chemical Technology, Jilin City, Jilin 132022; Cui, Xiao-Bing
2014-01-15
Five new inorganic–organic hybrids based on 4,4′-bipyridine and Keggin-type polyoxometalate [SiMo{sub 12}O{sub 40}]{sup 4−}, (SiMo{sub 12}O{sub 40})(H{sub 2}bipy){sub 2}·2H{sub 2}O (1), [Cu(Hbipy){sub 4}(HSiMo{sub 12}O{sub 40})(SiMo{sub 12}O{sub 40})](H{sub 2}bipy){sub 0.5}·7H{sub 2}O (2), [Cu{sub 2}(Hbipy){sub 6}(bipy)(SiMo{sub 12}O{sub 40}){sub 3}](Hbipy){sub 2}·6H{sub 2}O (3), [Cu(bipy){sub 2}(SiMo{sub 12}O{sub 40})](H{sub 2}bipy)·2H{sub 2}O (4) and [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}](SiMo{sub 12}O{sub 40})·13H{sub 2}O (5) (bipy=4,4′-bipyridine), have been hydrothermally synthesized. 1 consists of H{sub 2}bipy{sup 2+} and [SiMo{sub 12}O{sub 40}]{sup 4−} units. In 2, two [SiMo{sub 12}O{sub 40}]{sup 4−} are bridged by [Cu(Hbipy){sub 4}]{sup 6+} to form a [Cu(Hbipy){sub 4}(SiMo{sub 12}O{sub 40}){sub 2}]{sup 2−} dimmer. In 3, [SiMo{submore » 12}O{sub 40}]{sup 4−} polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu{sub 2}(Hbipy){sub 6}(bipy)]{sup 8+} units into a 1D zigzag chain. In 4, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions bridge neighboring 1D [Cu(bipy){sub 2}]{sup 2+} double chains into a 2D extended layer. In 5, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}]{sup 4+} layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated. - Graphical abstract: Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been successfully generated. [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the structures of the five compounds. Display Omitted - Highlights: • Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been generated. • [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the five structures. • The electrochemical behaviors of 1, 3 and 4 have been investigated. • The photocatalysis property of 1 has been investigated.« less
Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu
The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.
About the International System of Units (SI) Part II. Organization and General Principles
ERIC Educational Resources Information Center
Aubrecht, Gordon J., II; French, Anthony P.; Iona, Mario
2011-01-01
As all physicists know, all units are arbitrary. The numbering system is anthropocentric; for example, the Celsius scale of temperature has 100 degrees between the boiling point of water at STP and the freezing point of water. The number 100 is chosen because human beings have 10 fingers. The best units might be based on physical constants, for…
Non-strinking siloxane polymers
Loy, Douglas A.; Rahimian, Kamyar
2001-01-01
Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.
Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system
NASA Astrophysics Data System (ADS)
Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko
2018-02-01
In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.
Implications of metric conversion.
Laros, R K
1980-11-01
The international scientific community is rapidly achieving conversion to the metric system, and the Système International (SI system) has been chosen for use by health scientists. Because the United States remains 1 of only 4 countries not now using part or all of the SI system, there is now a systematic effort toward rapid conversion. Although most of the SI system is not controversial, several SI units are highly so. Examples include joules instead of calories, pascals instead of millimeters of mercury, and moles per liter instead of milligrams per 100 milliliters. Obstetrician-gynecologists need to be familiar with the SI units and to voice their feelings about the various controversial units. There are decisions still to be made, and the time for discussion and advice is now.
Coherent manipulation of a Si/SiGe-based singlet-triplet qubit
NASA Astrophysics Data System (ADS)
Gyure, Mark
2012-02-01
Electrically defined silicon-based qubits are expected to show improved quantum memory characteristics in comparison to GaAs-based devices due to reduced hyperfine interactions with nuclear spins. Silicon-based qubit devices have proved more challenging to build than their GaAs-based counterparts, but recently several groups have reported substantial progress in single-qubit initialization, measurement, and coherent operation. We report [1] coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure, forming two levels of a singlet-triplet qubit. We measure a nuclei-induced T2^* of 360 ns, an increase over similar measurements in GaAs-based quantum dots by nearly two orders of magnitude. We also describe the results from detailed modeling of our materials and devices that show this value for T2^* is consistent with theoretical expectations for our estimated dot sizes and a natural abundance of ^29Si. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.[4pt] [1] B. M. Maune et al., ``Coherent Singlet-Triplet Oscillations in a Silicon-based Double Quantum Dot,'' accepted by Nature.
Precise Dimensions; A history of units from 1791-2018
NASA Astrophysics Data System (ADS)
Cooper, Malcolm; Grozier, Jim
2017-11-01
Units are the foundation for all measurement of the natural world, and from which standard, our understanding develops. This book, stemming from a conference on the history of units organised by the editors, provides a detailed and discursive examination of the history of units within physics, in advance of the proposed redefinition of the SI base units at the General Conference on Weights and Measures in 2018. It features contributions from leading researchers in metrology and history.
Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.
2018-01-01
The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with respect to the thin film reference. The results are discussed in the light of the existing literature on nanofilms of amorphous oxides.
The thermal expansion of (Fe1-y Ni y )Si.
Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G
2017-08-23
We have measured the thermal expansion of (Fe 1-y Ni y )Si for y = 0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.
SI quantities and units for American Medicine.
Powsner, E R
1984-10-05
The International System of Units (SI) is an extension of the metric system and was approved by the General Conference on Weights and Measures in 1960. The SI, expanded for the health professions, has been adopted by most European countries and is being adopted by Canada. Proponents of the SI for American medicine see intrinsic merit in its coherent units and believe international communication among physicians requires its adoption. Opponents fear that conversion to the SI is little more than "tinkering" and that any changes from the present system are potentially dangerous. Adoption of some of the less controversial portions of the SI has been recommended by the AMA Council on Scientific Affairs; consideration by the House of Delegates is anticipated.
International Standards. U.S. Metric Study Report.
ERIC Educational Resources Information Center
Huntoon, Robert D.; And Others
In this first interim report on the feasibility of a United States changeover to a metric system stems from the U.S. Metric Study, a series of conclusions and recommendations, based upon a national survey of the role of SI (System's International) units in international trade and other areas of foreign relations, includes the following…
Electronic structure of Pt-substituted clathrate silicides Ba{sub 8}Pt{sub x}Si{sub 46–x}(x = 4–6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, N. A., E-mail: n.a.borshch@ya.ru
The results of calculation of the electronic structure of Si-based Pt-substituted clathrates are reported. Calculation is carried out by the linearized-augmented-plane-wave method. The effect of the number of substitutions and their crystallographic position in the unit cell on the electron-energy spectrum and the electronic properties of Pt-substituted clathrates is analyzed.
Redetermination of clinobarylite, BaBe2Si2O7
Domizio, Adrien J. Di; Downs, Robert T.; Yang, Hexiong
2012-01-01
Clinobarylite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula BaM 2+ 2Si2O7, with M 2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobarylite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobarylite can be considered as a framework of BeO4 and SiO4 tetrahedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetrahedra share corners, forming chains parallel to the c axis, which are interlinked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m..) bond length, the Si—Onbr (non-bridging O atoms) bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373–384]. PMID:23125568
Metastable structure of Li13Si4
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Bahmann, Silvia; Kortus, Jens
2016-04-01
The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.
Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC
NASA Astrophysics Data System (ADS)
Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang
2018-03-01
The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.
Colorful solar selective absorber integrated with different colored units.
Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei
2016-01-25
Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.
Experience with SI units in biochemistry.
Karnauchow, P N; Suvanto, L
1976-03-20
Use of Système International d'Unités (SI) for laboratory measurements was instituted Jan. 1, 1975 at two community hospitals. Beforehand, talks were given, pamphlets, conversion tables, new calibration curves and new master record cards were printed, computer cards were reprogrammed and conversion kits were prepared; the total cost was less than $200. After 6 months 16% of the medical staff had stopped converting SI units into conventional units, 78% were still occasionally converting units and 6% were routinely converting units. Changeover had been difficult for 25%, only a nuisance for 49% and easy for 26%. The patients' lives were not endangered by conversion.
Regli, Laura; Bordiga, Silvia; Busco, Claudia; Prestipino, Carmelo; Ugliengo, Piero; Zecchina, Adriano; Lamberti, Carlo
2007-10-10
Insertion of B atoms into an Al-free zeolitic framework with CHA topology results in the formation of B-SSZ-13 zeotype with Si/B = 11. B K-edge NEXAFS testifies that B forms [B(OSi)4] units in a Td-like geometry (sp3-hybridized B atoms). According to B K-edge NEXAFS and IR, template burning results in the formation of [B(OSi)3] units in a D3h-like geometry (sp2-hybridized B atoms) with a break of a B-O-Si bond and the formation of a Si-OH group. The activated material contains B(III) Lewis acid centers able to specifically coordinate bases like NH3. Such [B(OSi)3] units are reactive toward ammonia, resulting in the formation of B-NH2 surface functionality inside the pores of B-SSZ-13 already under mild conditions, i.e., 35 mbar of NH3 at 373 K for 30 min and without crystallinity degradation. A minor fraction of Si-NH2 cannot be excluded owing to the presence of two IR doublets at 3500 and 3430 cm-1 and at 1600 and 1550 cm-1. Ab initio B3LYP/6-31+G(d,p) calculations on a cluster model, supported by a single-point MP2 on B3LYP/6-31+G(D,P) optimized structures, found the break by NH3 of a B-O-Si bond of the [B(OSi)3] unit with formation of [SiOH] and [H2N-B(OSi)2] species to be energetically favored. Comparison between experimental and computed frequency shifts shows them to be in semiquantitative agreement. The high stability of the B-NH2 surface functionality is probed by N K-edge NEXAFS spectra collected under UHV conditions. These findings can open a new route in the preparation of shape selective solid basic catalysts.
Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency
2014-04-01
ACRONYMS A/C Air Conditioning a-Si Amorphous Silicon AC Alternating Current AFB Air Force Base AHU Air Handing Unit APS Arizona Public...Service ASTM American Society for Testing and Materials AZ Arizona BIPV Building Integrated Photovoltaic BTU British Thermal Units C Celsius CA...AFB) in Arizona (AZ). This site was chosen based on the ESTCP review board’s recommendation, the large size of the BIPV roof, and the age. Site I
The New Kilogram Definition and its Implications for High-Precision Mass Tolerance Classes.
Abbott, Patrick J; Kubarych, Zeina J
2013-01-01
The SI unit of mass, the kilogram, is the only remaining artifact definition in the seven fundamental units of the SI system. It will be redefined in terms of the Planck constant as soon as certain experimental conditions, based on recommendations of the Consultative Committee for Mass and Related Quantities (CCM) are met. To better reflect reality, the redefinition will likely be accompanied by an increase in the uncertainties that National Metrology Institutes (NMIs) pass on to customers via artifact dissemination, which could have an impact on the reference standards that are used by secondary calibration laboratories if certain weight tolerances are adopted for use. This paper will compare the legal metrology requirements for precision mass calibration laboratories after the kilogram is redefined with the current capabilities based on the international prototype kilogram (IPK) realization of the kilogram.
Visible light communication and indoor positioning using a-SiCH device as receiver
NASA Astrophysics Data System (ADS)
Vieira, M. A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A.
2017-08-01
An indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters and an optical processor, based on a-SiC:H technology, as mobile receiver is presented. OOK modulation scheme is used, and it provides a good trade-off between system performance and implementation complexity. The relationship between the transmitted data and the received digital output levels is decoded. The system topology for positioning is a self-positioning system in which the measuring unit is mobile. This unit receives the signals of several transmitters in known locations, and has the capability to compute its location based on the measured signals. LED bulbs work as transmitters, sending information together with different IDs related to their physical locations. A triangular topology for the unit cell is analysed. A 2D localization design, demonstrated by a prototype implementation is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position is estimated through the visible multilateration metodh using several non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target's position but also to infer the motion direction over time, along with the received information in each position.
NASA Astrophysics Data System (ADS)
Hung, Cheng-Chun; Lin, Yow-Jon
2018-01-01
The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.
Foundations of the International System of Units (SI).
ERIC Educational Resources Information Center
Nelson, Robert A.
1981-01-01
Traces the events leading to the creation of the International Bureau of Weights and Measures (BIPM). Discusses how the units have been represented by their standards, and investigates how the original metric system evolved into the International System of Units (SI), focusing on the meter, second, kilogram, and electrical units. (SK)
Unobtrusive monitoring of heart rate using a cost-effective speckle-based SI-POF remote sensor
NASA Astrophysics Data System (ADS)
Pinzón, P. J.; Montero, D. S.; Tapetado, A.; Vázquez, C.
2017-03-01
A novel speckle-based sensing technique for cost-effective heart-rate monitoring is demonstrated. This technique detects periodical changes in the spatial distribution of energy on the speckle pattern at the output of a Step-Index Polymer Optical Fiber (SI-POF) lead by using a low-cost webcam. The scheme operates in reflective configuration thus performing a centralized interrogation unit scheme. The prototype has been integrated into a mattress and its functionality has been tested with 5 different patients lying on the mattress in different positions without direct contact with the fiber sensing lead.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-12
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
The State of the Unit: A documentary film about the kilogram
NASA Astrophysics Data System (ADS)
Young, Amy
2012-02-01
The definition of the SI unit of mass is based on the international prototype of the kilogram, created in 1879 [1]. In the next years, metrologists will redefine the kilogram in relation to fundamental physical constants [2]. Intended for a general audience, the forthcoming documentary, The State of the Unit: The Kilogram, presents the history of the kilogram, interviews with researchers at national metrology institutes in the U.S., France, and Germany, and everyday mass measurement activities at varying scales. Excerpts of the film will be shown, and followed by a discussion with the filmmaker about the project to date. This film is supported in part by the Materials Computation Center at the University of Illinois at Urbana-Champaign, the California Institute of the Arts, Valencia, California, and La F'emis, Paris, France.[4pt] [1] The Kilogram and Measurements of Mass and Force, Z. J. Jabbour and S. L. Yaniv. J. Res. Natl. Inst. Stand. Technol. 106, 25--46 (2001).[0pt] [2] Redefining the SI Base Units, Peter Mohr. National Institute of Standards and Technology website. November 1, 2011. http://www.nist.gov/pml/newsletter/siredef.cfm. Accessed November 3, 2011.
Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, R. D., Jr.; Rabb, S. A.
2016-12-01
Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta-scale artefacts when they run out. Fig. 1 Comparison of absolute isotopic measurements of SRM 990 using two radically different approaches to absolute calibration and mass bias corrections.
Silicon Carbide MOSFET-Based Switching Power Amplifier for Precision Magnet Control
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Picard, Julian
2016-10-01
Eagle Harbor Technologies, Inc. (EHT) is using the latest in solid-state switching technologies to advance the state-of-the-art in magnet control for fusion science. Silicon carbide (SiC) MOSFETs offer advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. To validate the design, EHT has developed a low-power switching power amplifier (SPA), which has been used for precision control of magnetic fields, including rapidly changing the fields in coils. This design has been incorporated in to a high power SPA, which has been bench tested. This high power SPA will be tested at the Helicity Injected Torus (HIT) at the University of Washington. Following successful testing, EHT will produce enough SiC MOSFET-based SPAs to replace all of the units at HIT, which allows for higher frequency operation and an overall increase in pulsed current levels.
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.
2013-01-01
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
Si-O-C materials prepared with a sol-gel method for negative electrode of lithium battery
NASA Astrophysics Data System (ADS)
Liu, Xiang; Xie, Kai; Zheng, Chun-man; Wang, Jun; Jing, Zhaoqing
2012-09-01
A sol-gel method is employed to prepare high capacity Si-O-C materials. A blend of polysiloxane and divinylbenzene is uniformly spread in the ethanol solution of triethoxysilane and diethoxymethylsilane, which is then hydrolyzed, crosslinked and finally pyrolyzed at 1000 °C in a hydrogen atmosphere to obtain the final composite materials. The resultant materials, as indicated by elemental analysis, mainly consist of Si-O-C glass phase, in which the dominant silicon species is identified to SiO4 units by 29Si magic angle spinning nuclear magnetic resonance and Si (2p) X-ray photoelectron spectroscopy. The Si-O-C materials exhibit a stable reversible capacity of ca. 900 mAh g-1, originating from lithium storage in SiO4 units, with a coulombic efficiency of 98.5%.
Bassil, Bassem S; Mal, Sib Sankar; Dickman, Michael H; Kortz, Ulrich; Oelrich, Holger; Walder, Lorenz
2008-05-28
We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.
Silicon Nitride Ceramic Fibers from Preceramic Polymers.
1987-06-01
the preceramic fibers into high strength Si3 N and silicon carbide nitride (SiCN) fibers. In the past year, we have learned to prepare polysilazanes...INTHELOY, Given the Empirical Formula for a Material, It Should be Possible to Prepare a Chemical Analog CERAMC CHMIAL MONOMERIC UNIT MONOMERIC UNIT SI3 N4...e a d e nf u ible B y. POLYSILAZANE PRECURSORS TO Si3 Nj IN PRACTICE: It Is Difficult to Synthesize Even Simple, High Molecular Weight Preceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meng; Zhao, Jian; Li, Zhenjiang, E-mail: zhenjiangli@qust.edu.cn
Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm andmore » 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED). - Graphical abstract: Based on the synergistic growth mechanism from homogeneous substrate and elastic energy, bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. The blue-violet light emission properties of the bamboo-like nanowires have also been investigated for exploring their peculiar optical application. - Highlights: • Bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. • A synergistic growth mechanism from homogeneous substrate and elastic energy has been proposed firstly. • The blue-violet light emission properties of the products displayed peculiar optical application.« less
Time to Ditch Non-SI Units in Physics Teaching?
ERIC Educational Resources Information Center
Atkin, Keith
2015-01-01
The current use of two sets of units in the UK continues to be a source of muddle and confusion. Young people are taught metric (SI) units in school but, in the outside world, still have to contend with units such as inches, feet, pounds, stones and miles. Specialist teachers and practitioners of the sciences are not blameless. This paper…
[Automatic tracing of conversion scales from conventional units to the SI system of units].
Besozzi, M; Bianchi, P; Agrifoglio, L
1988-01-01
American medical journals, as the Journal of the American Medical Association (JAMA), and the American Journal of Clinical Pathology (AJCP), the Journal of the American Society of Clinical Pathologists (ASCP), are shifting to selected SI (Système International d'Unités) units for reporting measurements. Further discussion by the AMA, the ASCP and other organizations is required before consensus in the US medical community can be reached as to the extent of and time frame for conversion to SI for reporting clinical laboratory measurements: however this decision will certainly greatly speed up the process of conversion in European countries too. Transition to SI units will require the use of different reference ranges, and there will be a potential for serious misinterpretation of laboratory data unless well-planned educational programs are instituted before the change. A simple program written in Microsoft Basic for automatically tracing on one's personal computer (PC) monitor a dual scale, in the conventional and in the SI system of units, is presented here. The program may be easily implemented and run on every PC operating under MS-DOS, equipped with a CGA or an AT&T6300 graphic card: through the operating system the scales may also be printed on a dot-matrix graphic printer. We believe that this, and other tools of this kind, will be useful in the thorough educational process of those reading the reports, and will be an important factor in the success of conversion to SI reporting.
An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors.
Lee, Wang Sik; Kang, Taejoon; Kim, Shin-Hyun; Jeong, Jinyoung
2018-01-20
Three-dimensional SiO₂-based inverse opal (SiO₂-IO) nanostructures were prepared for use as biosensors. SiO₂-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO₂-IO using 3-aminopropyl trimethoxysilane (APTMS), a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG₄-maleimide) cross-linker, and protein G. The highly accessible surface and porous structure of SiO₂-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO₂-IO showed high sensitivity in the range of 10³-10⁵ plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus. Due to its structural and optical properties, SiO₂-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures.
NASA Astrophysics Data System (ADS)
Matar, S. F.; Pöttgen, R.
2012-10-01
The electronic structure of U3Si2C2, with the rare [SiC] unit is examined from ab initio with an assessment of the properties of chemical bonding. We show that plain GGA fails describing the experimental lattice parameters and the electronic structure. A better agreement with experiment (crystal determination and magnetic properties) is obtained with the GGA + U method and U = 4 eV. The energy-volume equation of state and the set of elastic constants are obtained showing incompressibility along the c-axis with U-C-Si alignment and a brittle material. Bonding of U1 and U2 selectively with Si and C and Si-C bonds are remarkable
Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel
2013-07-01
We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.
Recommendation for standardization of haematology reporting units used in the extended blood count.
Brereton, M; McCafferty, R; Marsden, K; Kawai, Y; Etzell, J; Ermens, A
2016-10-01
It is desirable in the interest of patient safety that the reporting of laboratory results should be standardized where no valid reason for diversity exists. This study considers the reporting units used for the extended blood cell count and makes a new ICSH recommendation to encourage standardization worldwide. This work is based on a literature review that included the original ICSH recommendations and on data gathered from an international survey of current practice completed by 18 countries worldwide. The survey results show that significant diversity in the use of reporting units for the blood count exists worldwide. The use of either non-SI or other units not recommended by the ICSH in the early 1980s has persisted despite the guidance from that time. The diversity in use of reporting units occurs in three areas: the persistence in use of non-SI units for RBC, WBC and platelet counts, the use of three different units for haemoglobin concentration and the manual reporting of WBC differential, reticulocytes and nucleated RBCs when the latter are available from automated analysis or can be expressed as absolute numbers by calculation. A new recommendation with a rationale for each parameter is made for standardization of the reporting units used for the extended blood count. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurdakul, Hilmi; Idrobo Tapia, Juan C; Pennycook, Stephen J
2011-01-01
Direct visualization of rare earths in {alpha}- and {beta}-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of {beta}-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in {alpha}-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in {beta}-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.
Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel
2017-01-01
Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
ERIC Educational Resources Information Center
Adamson, Arthur W.
1978-01-01
This paper is a summary of remarks made at a recent symposium on new directions in the teaching of physical chemistry. The author takes exception to the claims made for the International System of Units (SI). (HM)
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-01-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H. S.; von Roedern, B.
2007-09-01
We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. Inmore » CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.« less
Theoretical prediction of a novel inorganic fullerene-like family of silicon-carbon materials
NASA Astrophysics Data System (ADS)
Wang, Ruoxi; Zhang, Dongju; Liu, Chengbu
2005-08-01
In an effort to search for new inorganic fullerene-like structures, we designed a series of novel silicon-carbon cages, (SiC) n ( n = 6-36), based on the uniformly hybrid Si-C four- and six-membered-rings, and researched their geometrical and electronic structures, as well as their relative stabilities using the density function theory. Among these cages, the structures for n = 12, 16, and 36 were found to been energetically more favorable. The calculated disproportionation energy and binding energy per SiC unit show that the (SiC) 12 cage is the most stable one among these designed structures. The present calculations not only indicate that silicon-carbon fullerenes are promised to be synthesized in future, but also provide a new way for stabilizing silicon cages by uniformly doping carbon atoms into silicon structures.
Hénin, Emilie; Bergstrand, Martin; Weitschies, Werner; Karlsson, Mats O
2016-03-01
To develop a model predicting movement of non-disintegrating single unit dosage forms (or "tablet") through the gastrointestinal tract and characterizing the effect of food intake, based on Magnetic Marker Monitoring data, allowing real-time location of a magnetically labeled formulation. Five studies including 30 individuals in 94 occasions under 3 food status were considered. The mean residence time (MRT) of the tablet and the effect of food intake in proximal (PS) and distal stomach (DS), small intestine (SI), ascending (AC), transverse (TC) and descending colon (DC) were estimated using a Markov model for probabilities of movement. Under fasting conditions, tablet MRTs were 9.4 min in PS, 10.4 in DS, 246 in SI, 545 in AC, 135 in TC, and 286 in DC. A meal taken simultaneous to tablet intake prolonged tablet MRT to 99 min in PS and to 232 in DS; probability of gastric emptying increased of 89% each hour from 2.25 h after meal. The effect of a gastroileac reflex, caused by a secondary meal, accelerated the transit from terminal SI to AC. This model-based knowledge can be used as a part of mechanism-based models for drug absorption, applied for bottom-up predictions and/or top-down estimation.
Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery
NASA Astrophysics Data System (ADS)
Law, Markas; Ramar, Vishwanathan; Balaya, Palani
2017-08-01
Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.
Revision of the Li13Si4 structure.
Zeilinger, Michael; Fässler, Thomas F
2013-11-06
Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca-lithium tetra-silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.
ERIC Educational Resources Information Center
Hauck, George F.
1981-01-01
Lists engineering textbooks that use SI units. Includes author(s), title, publisher, year, and author's or publisher's comments on the use of the SI units. Books are categorized by topic, such as engineering mechanics, mechanics of materials, fluid mechanics, thermodynamics, structural design, and hydrology. (CS)
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Wang, Hao; Zhang, Zuotai
2018-04-01
In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q 0(Si) and Q 2(Si) decreased, while those of the asymmetric units of Q 1(Si) and Q 3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.
Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes
2015-02-01
We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.
Slot-waveguide biochemical sensor.
Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R
2007-11-01
We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.
Progress in amorphous silicon based large-area multijunction modules
NASA Astrophysics Data System (ADS)
Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.
1996-01-01
Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.
Ni, Dalong; Jiang, Dawei; Ehlerding, Emily B; Huang, Peng; Cai, Weibo
2018-03-20
As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124 I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes ( 64 Cu, 89 Zr, 18 F, 68 Ga, 124 I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO 2 ), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO 2 , MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.
Burnett, R D
1977-05-01
AIHA supports a planned orderly national program for conversion to the metric system and will cooperate with other technical societies and organizations in implementing this voluntary conversion. The Association will use the International System of Units (SI) as modified by the Secretary of Commerce for use in the United States in all official publications, papers and documents. U.S. customary units can be presented in parentheses following the appropriate SI unit, when it is necessary for clarity.
Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe
NASA Astrophysics Data System (ADS)
Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; Janoschek, M.
2015-02-01
We have used specific heat and neutron diffraction measurements on single crystals of URu2 -xFexSi2 for Fe concentrations x ≤0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" Pc h as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011), 10.1103/PhysRevB.84.245122] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x =0.1 , reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px≈0.5 -0.7 GPa in URu2Si2 . Using the unit-cell volume determined from our measurements and an isothermal compressibility κT=5.2 ×10-3 GPa-1 for URu2Si2 , we determine the chemical pressure Pc h in URu2 -xFexSi2 as a function of x . The resulting temperature (T )-chemical pressure (Pc h) phase diagram for URu2 -xFexSi2 is in agreement with the established temperature (T )-external pressure (P ) phase diagram of URu2Si2 .
Growth and properties of silicon heterostructures with buried nanosize Mg2Si clusters
NASA Astrophysics Data System (ADS)
Galkin, N. G.; Galkin, K. N.
2005-06-01
The technology of solid-phase growth of nanosize islands of magnesium suicide on Si (111) 7x7 with narrow distributions of lateral size and height (60 - 80 and 5 - 7 nanometers, respectively) and density of up to 2x 109 sm-2 is proposed. A 20-50 nm thick Si layer has been grown upon these islands. Basing on the data of AES, EELS, AFM and JR spectroscopy, a conclusion is made that the Mg2Si islands remain in depth of the Si layer. The suggestion is made that sizes, density and crystal structure of the buried magnesium suicide clusters preserves. It is shown, that the system of three as-grown layers of buried clusters has smoother surface than the one layer system. The contribution of the Mg2Si clusters into the dielectric function is observed at the energy 0.8-1.2 eV, it is maximal if the clusters are localized on the silicon surface. It is shown, that with increase of the number of Mg2Si cluster layers their contribution increases into the effective number of electrons per a unit cell and effective dielectric function of the sample.
An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors
Lee, Wang Sik; Kim, Shin-Hyun
2018-01-01
Three-dimensional SiO2-based inverse opal (SiO2-IO) nanostructures were prepared for use as biosensors. SiO2-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO2-IO using 3-aminopropyl trimethoxysilane (APTMS), a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG4-maleimide) cross-linker, and protein G. The highly accessible surface and porous structure of SiO2-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO2-IO showed high sensitivity in the range of 103–105 plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus. Due to its structural and optical properties, SiO2-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures. PMID:29361683
The influence of changes in nitrogen: silicon ratios on diatom growth dynamics
NASA Astrophysics Data System (ADS)
Gilpin, L. C.; Davidson, K.; Roberts, E.
2004-02-01
Nitrate loading to coastal waters has increased over recent decades while silicon loading has remained relatively constant or decreased. As the N:Si ratio in coastal waters shifts due to these anthropogenic influences, silicate limitation of diatom biomass may become a feature of the biogeochemistry in coastal waters especially in regions of reduced exchange. Two sets of nutrient enrichment mesocosm experiments were conducted in successive years using a natural planktonic assemblage obtained from the Trondheimsfjord, Norway. The inorganic nutrient concentrations at the start of the experiments were manipulated to give a variety of N:Si concentrations at ratios representative of current and possible future values, should N loading continue. In June 1999 experiments were conducted with a gradient of inorganic N:Si ratios (1:2, 1:1, 2:1, 4:1) to investigate the influence of low and high N:Si ratio conditions and to determine the conditions that would generate Si limitation of diatom growth. In June 2000, based on 1999 data, highly replicated experiments were conducted at N:Si ratios of 1:1 and 4:1 which were expected to result in N and Si limitation of diatom growth, respectively; statistical differences in cellular composition were recorded. N limitation of diatom biomass increase was observed under the three lowest N:Si ratios: particulate carbon (C) accumulation continued to occur following N exhaustion resulting in an increase in the organic C:N ratio. Silicate limitation of diatom biomass increase only occurred at the highest N:Si ratio of 4:1. Silicate exhaustion was followed by continued nitrate uptake for several days, at a slower rate than previously. The resulting increase in organic N was accompanied by an increase in organic C such that the C:N ratio of the organic material at the highest N:Si ratio failed to increase to the extent observed under the N limited conditions. Statistically significant differences in chlorophyll-a yield per unit nitrate, C:chlorophyll-a ratios, C:N ratio and diatom cell yield per unit nitrate or Si were observed in Si compared to N limited conditions. All mesocosms became dominated numerically and in terms of biomass by the diatom Skeletonema costatum. The potential implications of changing N and Si regimes in coastal waters are discussed.
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2013-06-01
Following a sociocultural perspective, this study investigates how students who have grown up using the SI (Système International d'Unités) (metric) or US customary (USC) systems of units for everyday use differ in their knowledge of scale and measurement. Student groups were similar in terms of socioeconomic status, curriculum, native language transparency of number word structure, type of school, and makeup by gender and grade level, while varying by native system of measurement. Their performance on several tasks was compared using binary logistic regression, ordinal logistic regression, and analysis of variance, with gender and grade level as covariates. Participants included 17 USC-native and 89 SI-native students in a school in Mexico, and 31 USC-native students in a school in the Midwestern USA. SI-native students performed at a significantly higher level estimating the length of a metre and a conceptual task (coordinating relative size and absolute size). No statistically significant differences were found on tasks involving factual knowledge about objects or units, scale construction, or estimation of other units. USC-native students in the US school performed at a higher level on smallest known object. These findings suggest that the more transparent SI system better supports conceptual thinking about scale and measurement than the idiosyncratic USC system. Greater emphasis on the SI system and more complete adoption of the SI system for everyday life may improve understanding among US students. Advancing sociocultural theory, systems of units were found to mediate learner's understanding of scale and measurement, much as number words mediate counting and problem solving.
Akatsuka, Junya; Mochizuki, Mie; Musha, Ikuma; Ohtake, Akira; Kobayashi, Kisho; Kikuchi, Toru; Kikuchi, Nobuyuki; Kawamura, Tomoyuki; Urakami, Tatsuhiko; Sugihara, Shigetaka; Hoshino, Tadao; Amemiya, Shin
2015-01-01
The glycation gap (G-gap: difference between measured hemoglobin A1c [A1C] and the value predicted by its regression on the fructosamine level) is stable and associated with diabetic complications. Measuring A1C level in International Federation of Clinical Chemistry (IFCC) units (A1C-SI; mmol/mol) and National Glycohemoglobin Standardization Program units (A1C-NGSP; %) and using glycated albumin (GA) level instead of fructosamine level for calculating the G-gap, we investigated whether the G-gap is better represented by GA/A1C ratio if expressed in SI units (GA/A1C-SI ratio) rather than in NGSP units (GA/A1C-% ratio). We examined 749 Japanese children with type 1 diabetes using simultaneous GA and A1C measurements. Of these, 369 patients were examined more than five times to assess the consistency of the G-gap and the GA/A1C ratio within individuals. The relationship of GA/A1C-% ratio to the corresponding A1C-NGSP was stronger than that of GA/A1C-SI ratio to A1C-IFCC. At enrollment, the inverse relationship between the GA/A1C-SI ratio and G-gap was highly significant (R(2) = 0.95) compared with that between the GA/A1C-% ratio and G-gap (R(2) = 0.69). A highly significant inverse relationship was also observed between the mean GA/A1C-SI ratio and the mean G-gaps obtained individually over time (R(2) = 0.95) compared with that using the corresponding A1C-NGSP (R(2) = 0.67). We conclude that the G-gap is better represented by the GA/A1C-SI ratio. We propose the use of mean GA/A1C-SI ratios easily obtained individually over time as reference values in Japanese children with type 1 diabetes (6.75 ± 0.60 [means ± SD]).
Gurieva, Tanya; Bootsma, Martin C J; Bonten, Marc J M
2013-01-01
Nosocomial infection rates due to antibiotic-resistant bacteriae, e.g., methicillin-resistant Staphylococcus aureus (MRSA) remain high in most countries. Screening for MRSA carriage followed by barrier precautions for documented carriers (so-called screen and isolate (S&I)) has been successful in some, but not all settings. Moreover, different strategies have been proposed, but comparative studies determining their relative effects and costs are not available. We, therefore, used a mathematical model to evaluate the effect and costs of different S&I strategies and to identify the critical parameters for this outcome. The dynamic stochastic simulation model consists of 3 hospitals with general wards and intensive care units (ICUs) and incorporates readmission of carriers of MRSA. Patient flow between ICUs and wards was based on real observations. Baseline prevalence of MRSA was set at 20% in ICUs and hospital-wide at 5%; ranges of costs and infection rates were based on published data. Four S&I strategies were compared to a do-nothing scenario: S&I of previously documented carriers ("flagged" patients); S&I of flagged patients and ICU admissions; S&I of flagged and group of "frequent" patients; S&I of all hospital admissions (universal screening). Evaluated levels of efficacy of S&I were 10%, 25%, 50% and 100%. Our model predicts that S&I of flagged and S&I of flagged and ICU patients are the most cost-saving strategies with fastest return of investment. For low isolation efficacy universal screening and S&I of flagged and "frequent" patients may never become cost-saving. Universal screening is predicted to prevent hardly more infections than S&I of flagged and "frequent" patients, albeit at higher costs. Whether an intervention becomes cost-saving within 10 years critically depends on costs per infection in ICU, costs of screening and isolation efficacy.
Gurieva, Tanya; Bootsma, Martin C. J.; Bonten, Marc J. M.
2013-01-01
Nosocomial infection rates due to antibiotic-resistant bacteriae, e.g., methicillin-resistant Staphylococcus aureus (MRSA) remain high in most countries. Screening for MRSA carriage followed by barrier precautions for documented carriers (so-called screen and isolate (S&I)) has been successful in some, but not all settings. Moreover, different strategies have been proposed, but comparative studies determining their relative effects and costs are not available. We, therefore, used a mathematical model to evaluate the effect and costs of different S&I strategies and to identify the critical parameters for this outcome. The dynamic stochastic simulation model consists of 3 hospitals with general wards and intensive care units (ICUs) and incorporates readmission of carriers of MRSA. Patient flow between ICUs and wards was based on real observations. Baseline prevalence of MRSA was set at 20% in ICUs and hospital-wide at 5%; ranges of costs and infection rates were based on published data. Four S&I strategies were compared to a do-nothing scenario: S&I of previously documented carriers (“flagged” patients); S&I of flagged patients and ICU admissions; S&I of flagged and group of “frequent” patients; S&I of all hospital admissions (universal screening). Evaluated levels of efficacy of S&I were 10%, 25%, 50% and 100%. Our model predicts that S&I of flagged and S&I of flagged and ICU patients are the most cost-saving strategies with fastest return of investment. For low isolation efficacy universal screening and S&I of flagged and “frequent” patients may never become cost-saving. Universal screening is predicted to prevent hardly more infections than S&I of flagged and “frequent” patients, albeit at higher costs. Whether an intervention becomes cost-saving within 10 years critically depends on costs per infection in ICU, costs of screening and isolation efficacy. PMID:23436984
Thompson, Jason; Savino, Giovanni; Stevenson, Mark
2015-01-01
Increasing levels of active transport provide benefits in relation to chronic disease and emissions reduction but may be associated with an increased risk of road trauma. The safety in numbers (SiN) effect is often regarded as a solution to this issue; however, the mechanisms underlying its influence are largely unknown. We aimed to (1) replicate the SiN effect within a simple, simulated environment and (2) vary bicycle density within the environment to better understand the circumstances under which SiN applies. Using an agent-based modeling approach, we constructed a virtual transport system that increased the number of bicycles from 9% to 35% of total vehicles over a period of 1,000 time units while holding the number of cars in the system constant. We then repeated this experiment under conditions of progressively decreasing bicycle density. We demonstrated that the SiN effect can be reproduced in a virtual environment, closely approximating the exponential relationships between cycling numbers and the relative risk of collision as shown in observational studies. The association, however, was highly contingent upon bicycle density. The relative risk of collisions between cars and bicycles with increasing bicycle numbers showed an association that is progressively linear at decreasing levels of density. Agent-based modeling may provide a useful tool for understanding the mechanisms underpinning the relationships previously observed between volume and risk under the assumptions of SiN. The SiN effect may apply only under circumstances in which bicycle density also increases over time. Additional mechanisms underpinning the SiN effect, independent of behavioral adjustment by drivers, are explored.
Heleg-Shabtai, Vered; Aizen, Ruth; Sharon, Etery; Sohn, Yang Sung; Trifonov, Alexander; Enkin, Natalie; Freage, Lina; Nechushtai, Rachel; Willner, Itamar
2016-06-15
Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.
4-d magnetism: Electronic structure and magnetism of some Mo-based alloys
NASA Astrophysics Data System (ADS)
Liu, Yong; Bose, S. K.; Kudrnovský, J.
2017-02-01
We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.
The range of options for handling plane angle and solid angle within a system of units
NASA Astrophysics Data System (ADS)
Quincey, Paul
2016-04-01
The radian and steradian are unusual units within the SI, originally belonging to their own category of ‘supplementary units’, with this status being changed to dimensionless ‘derived units’ in 1995. Recent papers have suggested that angles could be handled in two different ways within the SI, both differing from the present system. The purpose of this paper is to provide a framework for putting such suggestions into context, outlining the range of options that is available, together with the advantages and disadvantages of these options. Although less rigorously logical than some alternatives, the present SI approach is generally supported, but with some changes to the SI brochure to make the position clearer, in particular with regard to the designation of the radian and steradian as derived units.
What Is a Kilogram in the Revised International System of Units (SI)?
ERIC Educational Resources Information Center
Davis, Richard S.
2015-01-01
The definition of the kilogram, the unit of mass in the International System of Units (SI), has not changed in more than 125 years. The kilogram is still defined by the mass of a Pt-Ir cylinder conserved at the International Bureau of Weights and Measures. Science and technology have progressed to the point where it is likely the kilogram will be…
High Power Silicon Carbide (SiC) Power Processing Unit Development
NASA Technical Reports Server (NTRS)
Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.
2015-01-01
NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.
Preliminary Material Properties Handbook. Volume 2: SI Units
2000-07-01
6-1 6.2 Iron- Chromium -Nickel-Base Alloys...iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be further strengthened by heat...6.3.3 6.3.4 6.3.5 6.4 6.5 6.5.1 Iron- Chromium -Nickel-Base Alloys Nickel-Base Alloys AEREX® 350 alloy HAYNES® 230® alloy HAYNES® HR-120® alloy Inconel
Base units of the SI, fundamental constants and modern quantum physics.
Bordé, Christian J
2005-09-15
Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.
Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)].
Frost, Ray L; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes
2015-02-25
We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485°C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm(-1) is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm(-1) are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm(-1) are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Granja, Amanda; Žigovečki Gobac, Željka; Lima, Rosa Malena Fernandes
2013-12-01
We have studied the mineral olmiite CaMn[SiO3(OH)](OH) which forms a series with its calcium analogue poldervaartite CaCa[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502 °C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.
40 CFR 86.405-78 - Measurement system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Measurement system. 86.405-78 Section... 1978 and Later New Motorcycles, General Provisions § 86.405-78 Measurement system. (a) This subpart and subpart F have been written using System International (SI) units. SI units will be used to determine...
40 CFR 86.405-78 - Measurement system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Measurement system. 86.405-78 Section... 1978 and Later New Motorcycles, General Provisions § 86.405-78 Measurement system. (a) This subpart and subpart F have been written using System International (SI) units. SI units will be used to determine...
40 CFR 86.405-78 - Measurement system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Measurement system. 86.405-78 Section... 1978 and Later New Motorcycles, General Provisions § 86.405-78 Measurement system. (a) This subpart and subpart F have been written using System International (SI) units. SI units will be used to determine...
Revision of the Li13Si4 structure
Zeilinger, Michael; Fässler, Thomas F.
2013-01-01
Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5. PMID:24454148
Semiconductor solar cells: Recent progress in terrestrial applications
NASA Astrophysics Data System (ADS)
Avrutin, V.; Izyumskaya, N.; Morkoç, H.
2011-04-01
In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In this article, we discuss the progress, outstanding problems, and environmental issues associated with bulk Si, thin-film, and high-efficiency multi-junction solar cells.
Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei
2017-01-01
In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.
Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip
NASA Technical Reports Server (NTRS)
Mahan, John E.
1990-01-01
Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x 10(exp 4) cm(sup -1) for photon energies above 0.2 eV. CrSi2 is of potential utility for detection at photon energies above approximately 0.3 eV.
NASA Astrophysics Data System (ADS)
Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.
2005-07-01
The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.
Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system
NASA Astrophysics Data System (ADS)
Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa
2018-07-01
The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.
NASA Astrophysics Data System (ADS)
Liang, Dong; Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Bai, Chenguang
2017-02-01
To determine the effect of Al2O3 content and Al2O3/SiO2 mass ratio on the structure of molten aluminosilicate systems, CaO-SiO2-Al2O3-MgO-TiO2 systems were investigated by conducting molecular dynamics (MD) simulation and Raman spectroscopy. The capabilities of different elements to attract O on the basis of bond length are ranked as follows: Si > Al > Ca. The CNSi-O (approximately 4) and the average CNAl-O (approximately 4.09) demonstrate that the [AlO4] tetrahedron is not as stable as the [SiO4] tetrahedron and that some highly coordinated Al units exist in the slags. Non-bridging oxygen prefers to be coordinated with Si, and Al tends to be localized in polymerized environments as a network intermediate phase. In addition, Ca2+ is more energetically active than Mg2+ as the charge compensation ion. MD results and Raman analysis show that an increase in Al2O3 content complicates the structure at a fixed CaO/SiO2 ratio. In addition, the viscosity of the sample may increase with increasing Al2O3 content but is also influenced by polymerization strength. The substitution of Al2O3 for SiO2 simplifies the structure of the slag at a fixed CaO concentration when Al2O3/SiO2 is less than 0.92, as indicated by the (Q4 + Q3)/(Q2 + Q1) ratio of Al and the structure complexity. The results of MD and Raman analysis agree with those of viscosity measurement.
Silicon/Carbon Nanotube Photocathode for Splitting Water
NASA Technical Reports Server (NTRS)
Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan
2013-01-01
A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.
Effect of charging on silicene with alkali metal atom adsorption
NASA Astrophysics Data System (ADS)
Li, Manman; Li, Zhongyao; Gong, Shi-Jing
2018-02-01
Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM-Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM-Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.
Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures
NASA Astrophysics Data System (ADS)
Kavner, A.
2015-12-01
CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)
Local structure order in Pd 78Cu 6Si 16 liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, G. Q.; Zhang, Y.; Sun, Y.
2015-02-05
The short-range order (SRO) in Pd 78Cu 6Si 16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd 9Si 2 motif, namelymore » the structure of which motif is similar to the structure of Pd-centered clusters in the Pd 9Si 2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P., E-mail: dudka@ns.crys.ras.ru
2017-03-15
Accurate X-ray diffraction study of langasite (La{sub 3}Ga{sub 5}SiO{sub 14}) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La{sub 3}Ga{sub 5}SiO{sub 14} model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited bymore » langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å{sup –1}), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).« less
NASA Astrophysics Data System (ADS)
Du, Hang; Song, Ci; Li, Shengyi
2018-01-01
In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Po; Shaddock, David; Sandvik, Peter
2012-11-30
A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can bemore » used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.« less
NASA Astrophysics Data System (ADS)
Brown, Richard J. C.
2018-06-01
This discussion article begins by highlighting the benefits of the mole’s incorporation within the international system of units (SI), in particular by bringing chemical measurement within formal metrology structures. The origins of the confusion that has consistently existed between amount of substance (the base quantity of which the mole is the SI base unit) and counting quantities are examined in detail and their differentiating characteristics fully elaborated on. The importance and benefits of distinguishing between these different quantities and the role that the Avogadro constant plays in doing this are highlighted. It is proposed that these issues are becoming increasingly important for two reasons. First, as chemistry and biology consider increasingly small size domains, measurements are being made of significantly reduced collections of entities. Second, the proposed re-definition of the mole makes the link between amount of substance and the number of elementary entities more transparent. Finally, proposals for new ways of expressing very low amounts of substance in terms of new prefixes based on the numerical value of the Avogadro constant are presented as a way to encourage the use of the mole, when appropriate, even for ultra-low level chemical measurement.
SiC MOSFET Switching Power Amplifier Project Summary
NASA Astrophysics Data System (ADS)
Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex
2017-10-01
Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.
Batch and continuous units are described for separating binary azeotropes consisting of SiCl4 plus acetonitrile(CH3CN) (b.p. 49.1C) and (CH3)3SiCl...separated from the crude SiCl4 and (CH3)3SiCl mixture. In the second and third, SiCl4 and (CH3) 3SiCl are separated. The experimental results were in close agreement (9 to 12 percent deviation) with those calculated. (Author)
NASA Technical Reports Server (NTRS)
Artusa, Elisa A.
1994-01-01
This guide provides information for an understanding of SI units, symbols, and prefixes; style and usage in documentation in both the US and in the international business community; conversion techniques; limits, fits, and tolerance data; and drawing and technical writing guidelines. Also provided is information of SI usage for specialized applications like data processing and computer programming, science, engineering, and construction. Related information in the appendixes include legislative documents, historical and biographical data, a list of metric documentation, rules for determining significant digits and rounding, conversion factors, shorthand notation, and a unit index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughzala, Khaled, E-mail: khaledboughzala@gmail.com; Preparatory Institute for Engineering Studies, 5000 Monastir; Debbichi, Mourad
In this paper, we report the effect of the tunnel anions on the ionic conductivity of Strontium-Lanthanum silicate apatites. The Sr{sub 4}La{sub 6}(SiO{sub 4}){sub 6}F{sub 2} and Sr{sub 4}La{sub 6}(SiO{sub 4}){sub 6}O ceramics were prepared by the solid state reaction method. X-ray diffraction, NMR spectroscopy and Raman measurements were performed to investigate the crystal structure and vibrational active modes. Moreover, the electronic structures of the crystals were evaluated by the first-principles quantum mechanical calculation based on the density functional theory. Finally, the ionic conductivity was studied according to the complex impedance method. - Graphical abstract: The relaxed primitive unit cellmore » for Sr{sub 4}La{sub 6}Fap. Display Omitted.« less
Tice, Jesse B; Chizmeshya, A V G; Tolle, J; D' Costa, V R; Menendez, J; Kouvetakis, J
2010-05-21
The (SiH₃)₃P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH₃)₂P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH₃Br and (Me₃Sn)₃P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me₂M-P(SiH₃)₂ (M = Al, Ga, In) derivatives of Me₃M containing the (SiH₃)₂P ligand for the first time, in analogy to the known Me₂M-P(SiMe₃)₂ counterparts. A dimeric structure of Me₂M-P(SiH₃)₂ is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH₃)₃P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹⁹ atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²⁰ atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si₃P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey; Remo, Timothy; Reese, Samantha
Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less
Time to ditch non-SI units in physics teaching?
NASA Astrophysics Data System (ADS)
Atkin, Keith
2015-08-01
The current use of two sets of units in the UK continues to be a source of muddle and confusion. Young people are taught metric (SI) units in school but, in the outside world, still have to contend with units such as inches, feet, pounds, stones and miles. Specialist teachers and practitioners of the sciences are not blameless. This paper considers the fact that some units commonly used in physics, astronomy, and physics education are unnecessary, involve time-wasting conversions and frequently lead to confusion or even error. This unsatisfactory situation is illustrated by examples, and suggestions are made for a radical improvement.
Green Infrastructure Tool | EPA Center for Exposure ...
2016-03-07
Units option added – SI or US units. Default option is US units Additional options added to FTABLE such as clear FTABLE Significant digits for FTABLE calculations is changed to 5 Previously a default Cd value was used for calculations (under-drain and riser) but now a user-defined value option is given Conversion options added wherever necessary Default values of suction head and hydraulic conductivity are changed based on units selected in infiltration panel Default values of Cd for riser orifice and under-drain textboxes is changed to 0.6. Previously a default increment value of 0.1 is used for all the channel panels but now user can specify the increment
Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.;
2016-01-01
Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.
NASA Astrophysics Data System (ADS)
Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon
2015-10-01
An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.
The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates
NASA Astrophysics Data System (ADS)
Roy, Aditi; Xie, Hongtao; Wang, Shiliang; Huang, Han
2016-12-01
ZnO nanowires were bent on amorphous SiO2 and SiN substrates in an ambient atmosphere using optical nanomanipulation. The kinetic friction between the nanowires and substrate was determined from the bent shape of the nanowires. The kinetic friction force per unit area, i.e. frictional shear stress, for the ZnO/SiO2 and ZnO/SiN nanowire/substrate systems being measured were 1.05 ± 0.28 and 2.08 ± 0.33 MPa, respectively. The surface roughness and the Hamaker constant of SiO2 and SiN substrates had significant effect on the frictional stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shiyan; Mei, Dajiang, E-mail: meidajiang718@pku.edu.cn; Du, Xin
Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} solutions with high Si doping level (x=1/2) are considered and new compound AgGaSiSe{sub 4} has been synthesized. It crystallizes in space group Aea2 and possesses very long axis of a=63.06(1)Å. The three-dimensional framework in AgGaSiSe{sub 4} is composed of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4}(M=Si, Ga) tetrahedra. AgGaSiSe{sub 4} is a congruently melting compound with the melt temperature of 759 °C. The diffuse reflectance measurements reveal the band gap of 2.63 eV in AgGaSiSe{sub 4} and the value is 0.33 eV larger than that of Ag{sub 3}Ga{sub 3}SiSe{sub 8} (2.30more » eV). - Graphical abstract: The Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2) has been studied and the new compound AgGaSiSe{sub 4} was synthesized for the first time. AgGaSiSe{sub 4} crystallizes in a new structure type in space group Aea2 and adopts a three-dimensional framework consisting of AgSe{sub 3} trigonal planar units, AgSe{sub 4} tetrahedra and MSe{sub 4} (M=Si, Ge) tetrahedra. Display Omitted - Highlights: • Study of Ag{sub 1−x}Ga{sub 1−x}Si{sub x}Se{sub 2} with high Si doping level (x=1/2). • Successful synthesis of new compound named AgGaSiSe{sub 4}. • AgGaSiSe{sub 4} crystallizes in space group Aea2 and adopts a three-dimensional framework. • The energy band gap of AgGaSiSe{sub 4} is enlarged compared with Ag{sub 3}Ga{sub 3}SiSe{sub 8}.« less
Gender-related differences in the associations between sexual impulsivity and psychiatric disorders.
Erez, Galit; Pilver, Corey E; Potenza, Marc N
2014-08-01
Sexual impulsivity (SI) has been associated with conditions that have substantial public health costs, such as sexually transmitted infections and unintended pregnancies. However, SI has not been examined systematically with respect to its relationships to psychopathology. We aimed to investigate associations between SI and psychopathology, including gender-related differences. We performed a secondary data analysis of Wave-2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a national sample of 34,653 adults in the United States. DSM-IV-based diagnoses of mood, anxiety, drug and personality disorders were assessed using the Alcohol Use Disorder and Associated Disabilities Interview Scheduled DSM-IV Version. The prevalence of SI was considerable (14.7%), with greater acknowledgment by men than women (18.9% versus 10.9%; p < 0.0001). For both women and men, SI was positively associated with most Axis-I and Axis-II psychiatric disorders (OR range: Women, Axis-I:1.89-6.14, Axis-II:2.10-10.02; Men, Axis-I:1.92-6.21, Axis-II:1.63-6.05). Significant gender-related differences were observed. Among women as compared to men, SI was more strongly associated with social phobia, alcohol abuse/dependence, and paranoid, schizotypal, antisocial, borderline, narcissistic, avoidant and obsessive-compulsive personality disorders. The robust associations between SI and psychopathology across genders suggest the need for screening and interventions related to SI for individuals with psychiatric concerns. The stronger associations between SI and psychopathology among women as compared to men emphasize the importance of a gender-oriented perspective in targeting SI. Longitudinal studies are needed to determine the extent to SI predates, postdates or co-occurs with specific psychiatric conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single In x Ga1-x As nanowire/p-Si heterojunction based nano-rectifier diode.
Sarkar, K; Palit, M; Guhathakurata, S; Chattopadhyay, S; Banerji, P
2017-09-20
Nanoscale power supply units will be indispensable for fabricating next generation smart nanoelectronic integrated circuits. Fabrication of nanoscale rectifier circuits on a Si platform is required for integrating nanoelectronic devices with on-chip power supply units. In the present study, a nanorectifier diode based on a single standalone In x Ga 1-x As nanowire/p-Si (111) heterojunction fabricated by metal organic chemical vapor deposition technique has been studied. The nanoheterojunction diodes have shown good rectification and fast switching characteristics. The rectification characteristics of the nanoheterojunction have been demonstrated by different standard waveforms of sinusoidal, square, sawtooth and triangular for two different frequencies of 1 and 0.1 Hz. Reverse recovery time of around 150 ms has been observed in all wave response. A half wave rectifier circuit with a simple capacitor filter has been assembled with this nanoheterojunction diode which provides 12% output efficiency. The transport of carriers through the heterojunction is investigated. The interface states density of the nanoheterojunction has also been determined. Occurrence of output waveforms incommensurate with the input is attributed to higher series resistance of the diode which is further explained considering the dimension of p-side and n-side of the junction. The sudden change of ideality factor after 1.7 V bias is attributed to recombination through interface states in space charge region. Low interface states density as well as high rectification ratio makes this heterojunction diode a promising candidate for future nanoscale electronics.
Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di
2017-02-22
Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.
High-Temperature Corrosion Behavior of SiBCN Fibers for Aerospace Applications.
Ji, Xiaoyu; Wang, Shanshan; Shao, Changwei; Wang, Hao
2018-06-13
Amorphous SiBCN fibers possessing superior stability against oxidation have become a desirable candidate for high-temperature aerospace applications. Currently, investigations on the high-temperature corrosion behavior of these fibers for the application in high-heat engines are insufficient. Here, our polymer-derived SiBCN fibers were corroded at 1400 °C in air and simulated combustion environments. The fibers' structural evolution after corrosion in two different conditions and the potential mechanisms are investigated. It shows that the as-prepared SiBCN fibers mainly consist of amorphous networks of SiN 3 C, SiN 4 , B-N hexatomic rings, free carbon clusters, and BN 2 C units. High-resolution transmission electron microscopy cross-section observations combined with energy-dispersive spectrometry/electron energy-loss spectroscopy analysis exhibit a trilayer structure with no detectable cracks for fibers after corrosion, including the outermost SiO 2 layer, the h-BN grain-contained interlayer, and the uncorroded fiber core. A high percentage of water vapor contained in the simulated combustion environment triggers the formation of abundant α-cristobalite nanoparticles dispersing in the amorphous SiO 2 phase, which are absent in fibers corroded in air. The formation of h-BN grains in the interlayer could be ascribed to the sacrificial effects of free carbon clusters, Si-C, and Si-N units reacting with oxygen diffusing inward, which protects h-BN grains formed by networks of B-N hexatomic rings in original SiBCN fibers. These results improve our understanding of the corrosion process of SiBCN fibers in a high-temperature oxygen- and water-rich atmosphere.
Conceptual Model of Quantities, Units, Dimensions, and Values
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar
2011-01-01
JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlenberg, Volker, E-mail: volker.kahlenberg@uibk.ac.at; Brunello, Emanuele; Hejny, Clivia
2015-05-15
Synthesis experiments in the system Li{sub 2}O–CaO–SiO{sub 2} resulted in the formation of single-crystals of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7}. Structural investigations were based on single-crystal diffraction. At ambient conditions the compound has the following basic crystallographic data: hexagonal symmetry, space group P6{sub 1}22, a=5.0961(2) Å, c=41.264(2) Å, V=928.07(6) Å{sup 3}, Z=6. Structure solution was performed using direct methods. The final least-squares refinement calculations converged at a residual of R(|F|)=0.0260. From a structural point the lithium calcium silicate belongs to the group of pyrosilicates containing [Si{sub 2}O{sub 7}]-groups. Additional lithium and calcium cations are incorporated between the silicate dimers andmore » are coordinated by four and six nearest oxygen neighbours, respectively. Each [LiO{sub 4}]-tetrahedron shares two common corners with directly neighboring tetrahedra forming zweier single-chains which are running parallel to 〈1 0 0〉 in z-levels defined by the presence of the 6{sub 1}{sup [0} {sup 0} {sup 1]}-screw axes. From the corner-sharing [LiO{sub 4}]- and [SiO{sub 4}]-moieties a three dimensional framework can be constructed. An interesting feature of this framework is the presence of an O{sup [3]}-type bridging oxygen linking three tetrahedra (one [LiO{sub 4}]- and two [SiO{sub 4}]-units). Structural similarities with other silicates are discussed in detail. The high-temperature behavior of the Si–O, Ca–O and Li–O bond distances in Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} was investigated by in{sub -}situ single-crystal X-ray diffraction in the range between 65 and 700 °C. From the evolution of the lattice parameters, the thermal expansion tensor α{sub ij} has been determined. The structural characterization has been supplemented by micro-Raman spectroscopy. Interpretation of the spectroscopic data including the allocation of the bands to certain vibrational species has been aided by DFT-calculations. - Graphical abstract: Framework of [SiO{sub 4}]- and [LiO{sub 4}]-tetrahedra in the crystal structure of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7}. - Highlights: • We report the crystal structure of the sorosilicate Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} at ambient conditions. • The thermal expansion tensor as well as the evolution of the structure between 25 and 700 °C was studied. • A topological analysis of the tetrahedral framework based on [SiO{sub 4}]- and [LiO{sub 4}]-units is presented. • The crystal structure of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} is discussed with respect to related compounds. • Interpretation of the Raman spectra of the crystals has been aided by DFT-calculations.« less
Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, Robert; Rabb, Savelas
2016-04-01
The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.
2001-01-01
with arithmetic average, UPGMA Swofford et al. 1996) using the NEIGHBOR and CONSENSUS programs from PHYLIP version 3.57~ (Felsenstein 1995). To...and Maryland samples). The presence/absence matrix is available (http:/ / wrbu.si.edu/wrbu.html). The trees that resulted from the UPGMA analysis...Ae- j. yaeyamensis (2) I . 0.2 I . 0.1 Genetic distance I 0.0 Fig 5. UPGMA dendrogram based on BAPD loci using Nei’s standard genetic
Structure-topology-property correlations of sodium phosphosilicate glasses.
Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng
2015-08-14
In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.
INTERNATIONAL REPORTS: New International Standards for Quantities and Units
NASA Astrophysics Data System (ADS)
Thor, A. J.
1994-01-01
Each coherent system of units is based on a system of quantities in such a way that the equations between the numerical values expressed in coherent units have exactly the same form, including numerical factors, as the corresponding equations between the quantities. The highest international body responsible for the International System of Units (SI) is the Conférence Générale des Poids et Mesures (CGPM). However, the CGPM is not concerned with quantities or systems of quantities. That question lies within the scope of Technical Committee number twelve of the International Organization for Standardization (ISO/TC 12). Quantities, units, symbols, conversion factors. To fulfil its responsibility, ISO/TC 12 has prepared the International Standard ISO 31, Quantities and Units, which consists of fourteen parts. The new editions of the different parts of the International Standard are briefly presented here.
Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla
2012-01-10
Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local delivery of biologically active siRNA directly to the lung tissue. Copyright © 2011 Elsevier B.V. All rights reserved.
Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard
2018-03-05
Previous experimental and theoretical studies revealed that carbon insertion into the RCr 2 Si 2 compounds drastically affects the magnetic behavior, since chromium does not carry any magnetic moment in RCr 2 Si 2 C (R = Y, La-Sm, Gd-Er) compounds in contrast to RCr 2 Si 2 (R = Y, Sm, Gd-Lu, Th) compounds. In this study, we report on the unexpected magnetic ordering of chromium atoms in the isotype quaternary UCr 2 Si 2 C compound. While specific heat and magnetic measurements suggest a Pauli paramagnetic behavior, neutron powder diffraction reveals an antiferromagnetic ordering of the chromium substructure at high temperature ( T N > 300 K), while that of uranium remains nonmagnetically ordered down to 2 K. Its magnetic behavior, inverse in comparison to the RCr 2 Si 2 C carbides involving a magnetic lanthanide, is discussed in relation with the singularity of its crystal structure among the series. Moreover, the crystallographic structures and the structural stability of UCr 2 Si 2 C and of two other quaternary U-Cr-Si-C compounds (i.e., UCr 3 Si 2 C and U 2 Cr 3 Si 2 C 3 ), based on the full occupancy of interstitial sites by carbon atoms, are discussed and compared to those of the related ternary intermetallics. Finally, the low-temperature form of UCr 2 Si 2 , corresponding to a displacive transformation around 210 K of the ThCr 2 Si 2 -type structure, is reinvestigated by considering a higher symmetry monoclinic unit cell ( C2/ m) instead of the previously reported triclinic cell ( P1̅). The antiferromagnetic ordering at low temperature ( T N = 30(2) K) of the uranium substructure is confirmed, and its magnetic structure is reanalyzed and discussed considering the monoclinic crystal structure.
Acidity of edge surface sites of montmorillonite and kaolinite
NASA Astrophysics Data System (ADS)
Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng
2013-09-01
Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.
Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature
NASA Astrophysics Data System (ADS)
Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe
2017-10-01
Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.
A low cost X-ray imaging device based on BPW-34 Si-PIN photodiode
NASA Astrophysics Data System (ADS)
Emirhan, E.; Bayrak, A.; Yücel, E. Barlas; Yücel, M.; Ozben, C. S.
2016-05-01
A low cost X-ray imaging device based on BPW-34 silicon PIN photodiode was designed and produced. X-rays were produced from a CEI OX/70-P dental tube using a custom made ±30 kV power supply. A charge sensitive preamplifier and a shaping amplifier were built for the amplification of small signals produced by photons in the depletion layer of Si-PIN photodiode. A two dimensional position control unit was used for moving the detector in small steps to measure the intensity of X-rays absorbed in the object to be imaged. An Aessent AES220B FPGA module was used for transferring the image data to a computer via USB. Images of various samples were obtained with acceptable image quality despite of the low cost of the device.
Silicon wafer-based tandem cells: The ultimate photovoltaic solution?
NASA Astrophysics Data System (ADS)
Green, Martin A.
2014-03-01
Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.
Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-Il Dan
2016-12-01
This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 ( rd1 ) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.
Lisnard, Laurent; Mialane, Pierre; Dolbecq, Anne; Marrot, Jérôme; Clemente-Juan, Juan Modesto; Coronado, Eugenio; Keita, Bineta; de Oliveira, Pedro; Nadjo, Louis; Sécheresse, Francis
2007-01-01
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makino, Nobuaki; Toshiba Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017; Shigeta, Yukichi
The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered.more » The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.« less
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Ken
2018-03-01
We studied the initial stage of iron deposition on an ethanol-saturated Si(111)7 × 7 surface at room temperature using scanning tunneling microscopy (STM). The statistical analysis of the Si adatom height at empty states for Si(111)-C2H5OH before and after the Fe deposition showed different types of adatoms: type B (before the deposition) and type B' (after the deposition) assigned to bare adatoms, type D and type D' to C2H5O-terminated adatoms, and type E' to adatoms with Fe. The analysis of the height distribution revealed the protection of the molecule termination for the Fe capture at the initial stage. The analysis also indicated the preferential capture of a single Fe atom to a bare center-adatom rather than a bare corner-adatom which remain after the C2H5OH saturation, but no selectivity was observed in faulted and unfaulted half unit-cells. This is the first STM-based report proving that a remaining bare adatom, but not a molecule-terminated adatom, captures a metal.
A review of the quantum current standard
NASA Astrophysics Data System (ADS)
Kaneko, Nobu-Hisa; Nakamura, Shuji; Okazaki, Yuma
2016-03-01
The electric current, voltage, and resistance standards are the most important standards related to electricity and magnetism. Of these three standards, only the ampere, which is the unit of electric current, is an International System of Units (SI) base unit. However, even with modern technology, relatively large uncertainty exists regarding the generation and measurement of current. As a result of various innovative techniques based on nanotechnology and novel materials, new types of junctions for quantum current generation and single-electron current sources have recently been proposed. These newly developed methods are also being used to investigate the consistency of the three quantum electrical effects, i.e. the Josephson, quantum Hall, and single-electron tunneling effects, which are also known as ‘the quantum metrology triangle’. This article describes recent research and related developments regarding current standards and quantum-metrology-triangle experiments.
NASA Astrophysics Data System (ADS)
Karshenboim, S. G.
2018-03-01
The metric system appeared as the system of units designed for macroscopic (laboratory scale) measurements. The progress in accurate determination of the values of quantum constants (such as the Planck constant) in SI units shows that the capabilities in high-precision measurement of microscopic and macroscopic quantities in terms of the same units have increased substantially recently. At the same time, relative microscopic measurements (for example, the comparison of atomic transition frequencies or atomic masses) are often much more accurate than relative measurements of macroscopic quantities. This is the basis for the strategy to define units in microscopic phenomena and then use them on the laboratory scale, which plays a crucial role in practical methodological applications determined by everyday life and technologies. The international CODATA task group on fundamental constants regularly performs an overall analysis of the precision world data (the so-called Adjustment of the Fundamental Constants) and publishes their recommended values. The most recent evaluation was based on the data published by the end of 2014; here, we review the corresponding data and results. The accuracy in determination of the Boltzmann constant has increased, the consistency of the data on determination of the Planck constant has improved; it is these two dimensional constants that will be used in near future as the basis for the new definition of the kelvin and kilogram, respectively. The contradictions in determination of the Rydberg constant and the proton charge radius remain. The accuracy of determination of the fine structure constant and relative atomic weight of the electron has improved. Overall, we give a detailed review of the state of the art in precision determination of the values of fundamental constants. The mathematical procedure of the Adjustment, the new data and results are considered in detail. The limitations due to macroscopic properties of material standards (such as the International prototype of the kilogram) and the isotopic composition of substances involved in precision studies in general (as standard measures for the triple point of water) and, in particular, in the determination of the fundamental constants are discussed. The perspectives of the introduction of the new quantum units, which will be free from the mentioned problems, are considered. Many physicists feel no sympathy for the International system of units (SI), believing that it does not properly reflect the character of physical laws. In fact, there are three parallel systems, namely the systems of quantities, system of their units and the related standards. The definition of the units, in particular, the SI units, above all, reflects our ability to perform precision measurements of physical values under certain conditions, in particular, to create appropriate standards. This requirement is not related to the beauty of fundamental laws of nature. More accurate determination of the fundamental constants is one of the areas where we accumulate such experience.
NASA Astrophysics Data System (ADS)
Kim, Hidong; Lkhagvasuren, Altaibaatar; Zhang, Rui; Seo, Jae M.
2018-05-01
The alkaline-earth metal adsorption on Si(0 0 1) has attracted much interest for finding a proper template in the growth of high- κ and crystalline films. Up to now on the flat Si(0 0 1) surface with double domains and single-layer steps, the adsorbed Ba atoms are known to induce the 2 × 3 structure through removing two Si dimers and adding a Ba atom per unit cell in each domain. In the present investigation, the Si(0 0 1)-4° off surface with DB steps and single domains has been employed as a substrate and the reconstruction at the initial stage of Ba adsorption has been investigated by scanning tunneling microscopy and synchrotron photoemission spectroscopy. On this vicinal and single domain terrace, a novel 3 × 2 structure rotated by 90° from the 2 × 3 structure has been found. Such a 3 × 2 structure turns out to be formed by adding a Ba atom and a Si dimer per unit cell. This results from the fact that the adsorbed Ba2+ ions with a larger ionic radius relieve tensile stress on the original Si dimers exerted by the rebonded atoms at the DB step.
The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3].
Plajer, Alex J; Colebatch, Annie L; Enders, Markus; García-Romero, Álvaro; Bond, Andrew D; García-Rodríguez, Raúl; Wright, Dominic S
2018-05-22
Difficulties in the preparation of neutral ligands of the type [RSi(2-py)3] (where 2-py is an unfunctionalised 2-pyridyl ring unit) have thwarted efforts to expand the coordination chemistry of ligands of this type. However, simply switching the pyridyl substituents to 6-methyl-pyridyl groups (6-Me-2-py) in the current paper has allowed smooth, high-yielding access to the [PhSi(6-Me-2-py)3] ligand (1), and the first exploration of its coordination chemistry with transition metals. The synthesis, single-crystal X-ray structures and solution dynamics of the new complexes [{PhSi(6-Me-2-py)3}CuCH3CN][PF6], [{PhSi(6-Me-2-py)3}CuCH3CN][CuCl2], [{PhSi(6-Me-2-py)3}FeCl2], [{PhSi(6-Me-2-py)3}Mo(CO)3] and [{PhSi(6-Me-2-py)3}CoCl2] are reported. The paramagnetic Fe2+ and Co2+ complexes show strongly shifted NMR resonances for the coordinated pyridyl units due to large Fermi-contact shifts. However, magnetic anisotropy also leads to considerable pseudo-contact shifts so that both contributions have to be included in the paramagnetic NMR analysis.
Cation mobility and the sorption of chloroform in zeolite NaY: molecular dynamics study.
Ramsahye, Naseem A; Bell, Robert G
2005-03-17
Molecular dynamics simulations at temperatures of 270, 330, and 390 K have been carried out to address the question of cation migration upon chloroform sorption in sodium zeolite Y. The results show that sodium cations located in different sites exhibit different types of mobility. These may be summarized as follows: (1) SII cations migrate toward the center of the supercage upon sorption, due to interactions with the polar sorbate molecules. (2) SI' cations hop from the sodalite cage into the supercage to fill vacant SII sites. (3) SI' cations migrate to other SI' sites within the same sodalite cage. (4) SI cations hop out of the double six-rings into SI' sites. In some instances, concerted motion of cations is observed. Furthermore, former SI' and SI cations, having crossed to SII sites, may then further migrate within the supercage, as in (1). The cation motion is dependent on the level of sorbate loading, with 10 molecules per unit cell not being enough to induce significant cation displacements, whereas the sorption of 40 molecules per unit cell results in a number of cations being displaced from their original positions. Further rearrangement of the cation positions is observed upon evacuation of the simulation cell, with some cations reverting back to sites normally occupied in bare NaY.
NASA Astrophysics Data System (ADS)
Ying, Bo
Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models. Pegylated cationic liposomes (PCLs) were selected as carriers for siRNA. Based on the silencing efficiency of siRNA formulated with different PCLs, DOPC based cationic liposomes, over DOPE based nanosystems, with a modest amount of polyetheleneglycol was selected to deliver KSP siRNA to tumor-bearing mice. Efficacy studies revealed that tumor suppression was observed when KSP siRNA was delivered using PCLs, but not in mice that received naked KSP siRNA or KSP siRNA in commercially available transfecting agents. The results were further supported by MRI (magnetic resonance imaging) analysis. To evaluate the role that vasculature supply plays in the development of the tumor, we also performed tumor response studies using a tumor model consisting of tumor cells which are resistant to KSP siRNA. The results showed that a prolonged suppression of tumor growth was achieved only when a large dose (5mg/kg) KSP siRNA was administered, but not with the administration of a relatively low dose (2mg/kg) of siRNA, suggesting that a combined treatment approach containing both anti-vasculature and anti-cancer agents should be considered to achieve the best treatment outcome. Finally, it was confirmed by qRT-PCR that the tumor growth inhibition was due to the successful knock-down of KSP mRNA.
Smallest fullerene-like silicon cage stabilized by a V(2) unit.
Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun
2014-01-14
We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.
Smallest fullerene-like silicon cage stabilized by a V2 unit
NASA Astrophysics Data System (ADS)
Xu, Hong-Guang; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun
2014-01-01
We conducted a combined anion photoelectron spectroscopy and density functional theory study on V2Si20 cluster. Our results show that the V2Si20 cluster has an elongated dodecahedron cage structure with a V2 unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.
The role of shock index as a predictor of multiple-trauma patients' pathways.
Toccaceli, Andrea; Giampaoletti, Andrea; Dignani, Lucia; Lucertini, Carla; Petrucci, Cristina; Lancia, Loreto
2016-03-01
This research was conducted with the aim of investigating the accuracy of the shock index (SI) in distinguishing which multiple-trauma patients should be admitted to an intensive care unit (ICU) after treatment in an emergency room (ER). The SI is an easily obtained indicator, as it corresponds to an arithmetic ratio between the two parameters that are always measured during the first-aid treatment of multiple-trauma patients: heart rate (HR) and systolic blood pressure (SBP). There are many studies examining the SI in the multiple-trauma patients as a possible predictor of the destination unit. The SI is evaluated both at the trauma scene (pre-hospital SI-pH) and in the emergency room (SI-ER). An observational study with a retrospective approach was conducted on 158 adult patients with multiple trauma. The mean SI-pH and SI-ER values were higher in ICU patients than in-patients discharged or admitted to a normal ward, but the difference between these two patient groups was significant only for the SI-ER. Analysis of the receiver operating characteristic (ROC) curves confirmed that only the SI-ER is significant as a reliable indicator for ICU admission with a best cut-off of 1·05. However, a threshold value of 0·75 was still able to establish the correct type of destination for multiple-trauma patients, with a sensitivity of 57·3% and a specificity of 62·5%. This research showed that the SI-pH and SI-ER values are correlated, but only the SI-ER has shown statistical significance in terms of distinguishing the type of destination of multiple-trauma patient (ICU, ordinary ward or discharge) after initial treatment in the ER. The results of this study suggest the possibility of using SI in multiple-trauma patients as a triage indicator to assess the patients' care complexity and to guide the choice of proper clinical paths. © 2015 British Association of Critical Care Nurses.
Pätzug, Konrad; Friedrich, Nele; Kische, Hanna; Hannemann, Anke; Völzke, Henry; Nauck, Matthias; Keevil, Brian G; Haring, Robin
2017-12-01
The present study investigates potential associations between liquid chromatography-mass spectrometry (LC-MS) measured sex hormones, dehydroepiandrosterone sulphate, sex hormone-binding globulin (SHBG) and bone ultrasound parameters at the heel in men and women from the general population. Data from 502 women and 425 men from the population-based Study of Health in Pomerania (SHIP-TREND) were used. Cross-sectional associations of sex hormones including testosterone (TT), calculated free testosterone (FT), dehydroepiandrosterone sulphate (DHEAS), androstenedione (ASD), estrone (E1) and SHBG with quantitative ultrasound (QUS) parameters at the heel, including broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI) were examined by analysis of variance (ANOVA) and multivariable quantile regression models. Multivariable regression analysis showed a sex-specific inverse association of DHEAS with SI in men (Beta per SI unit = - 3.08, standard error (SE) = 0.88), but not in women (Beta = - 0.01, SE = 2.09). Furthermore, FT was positively associated with BUA in men (Beta per BUA unit = 29.0, SE = 10.1). None of the other sex hormones (ASD, E1) or SHBG was associated with QUS parameters after multivariable adjustment. This cross-sectional population-based study revealed independent associations of DHEAS and FT with QUS parameters in men, suggesting a potential influence on male bone metabolism. The predictive role of DHEAS and FT as a marker for osteoporosis in men warrants further investigation in clinical trials and large-scale observational studies.
NASA Astrophysics Data System (ADS)
Clynne, M. A.
2011-12-01
Cinder Cone, in Lassen Volcanic National Park, has received considerable attention in the literature since its description by Harkness (1875) and Diller (1891) and has provoked considerable controversy concerning its age and eruptive history (e.g. Finch and Anderson, 1930; Finch, 1937). Geologic mapping of the composite cinder cone, an extensive tephra blanket, and 5 lava flows determined the eruptive sequence stratigraphy (Clynne and Muffler, 2010), and tree-ring chronology dated the eruption as 1666 C.E. (Sheppard et al., 2008). Tephra, divided into 3 units by Heiken (1978), accounts for 20% of the 0.36 km3 total volume of the eruption. The lava field consists of 5 block lava flows: Old Bench (OB), Painted Dunes (PD) 1 and 2, and Fantastic Lava Beds (FL) 1 and 2. Magnesian olivine containing inclusions of chromian spinel is the most abundant phenocryst, followed by plagioclase and sparse augite. Xenocrystic quartz is ubiquitous. Three types of inclusions are present: 1) sparse, mostly melted, inclusions of granitic rocks derived from Sierran basement, 2) abundant single crystals of quartz derived from granitic rocks and multicrystalline inclusions of metamorphic quartz from veins, and 3) rare magmatic enclaves of olivine basalt with quenched textures. The tephra and OB, PD, and FL lithologies are olivine basaltic andesite to andesite with subtle differences. Analyses of tephra from a measured section document the compositional evolution of Cinder Cone eruption. Unit 1 tephra contains 55.5% SiO2, 7.9% MgO, and 1.25% K2O. Initial unit 2 tephra contains 54.8% SiO2, 8.2% MgO, and 1.2% K2O. Unit 2 tephra becomes increasing more mafic up section to 53.8% SiO2, 9.0% MgO, and 1.0% K2O and then rapidly more felsic to 56.3% SiO2, 8.0% MgO, and 1.3% K2O. Initial unit 3 tephra contains 58.0% SiO2, 7.5% MgO, and 1.6% K2O but becomes more mafic to 55.0% SiO2, 7.5% MgO, and 1.2% K2O up section. The OB flow and the early PD 1 flow are equivalent in composition to the early unit 2 tephra, and the subsequent late PD 1 flow and PD 2 flows mimic late unit 2 tephra. FL 1 and 2 flows are compositionally equivalent to early and late unit 3 tephra, respectively. A mostly destroyed remnant cinder cone has unit 2 tephra composition, and Cinder Cone has unit 3 composition. The complex compositional variation at Cinder Cone, superficially a monogenetic volcano, is ascribed to the combined effects of fractional crystallization and assimilation and concurrent recharge of the system by a new mafic magma. Variation of the early magmas can be modeled by fractional crystallization and assimilation of granitic xenoliths. The reversal of compositional variation near the unit 2-3 boundary and subsequent decrease in SiO2 can be modeled by mixing with a new mafic magma having the composition of the quenched basaltic enclaves. Details of the mineral compositions are consistent with the stratigraphy and bulk compositional evolution.
Amount of substance and the proposed redefinition of the mole
NASA Astrophysics Data System (ADS)
Milton, M. J. T.; Mills, I. M.
2009-06-01
There has been considerable discussion about the merits of redefining four of the base units of the SI, including the mole. In this paper, the options for implementing a new definition for the mole based on a fixed value for the Avogadro constant are discussed. They are placed in the context of the macroscopic nature of the quantity amount of substance and the opportunity to introduce a system for molar and atomic masses with unchanged values and consistent relative uncertainties.
Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate
NASA Astrophysics Data System (ADS)
Chang, H. W.; Wang, C. L.; Huang, Y. R.; Chen, T. J.; Wang, M. J.
2017-11-01
Superconducting δ-NbN ultrathin film has become a key element in extremely sensitive detector applications in recent decades because of its excellent electronic properties. We have realized the epitaxial growth of ultrathin δ-NbN films on (100)-oriented 3C-SiC/Si substrates by dc reactive magnetron sputtering at 760 °C with a deposition rate of 0.054 nm s-1. High-resolution transmission electron microscope images confirm the excellent epitaxy of these films. Even with a thickness of 1.3 nm (˜3 unit cells), the δ-NbN film shows a superconducting transition above 8 K. Furthermore, our ultrathin δ-NbN films demonstrate a long Ginzburg-Landau superconducting coherent length ({ξ }{{G}{{L}}}(0)> 5 {{nm}}) with a critical current density of about 2.2 MA cm-2, and good stability in an ambient environment.
Lauritzen, Andreas E; Torkkeli, Mika; Bikondoa, Oier; Linnet, Jes; Tavares, Luciana; Kjelstrup-Hansen, Jakob; Knaapila, Matti
2018-05-25
We report on the structure and morphology of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) films in bottom-contact organic field-effect transistors (OFETs) with octadecyltrichlorosilane (OTS) coated SiO 2 gate dielectric, characterized by atomic force microscopy (AFM), grazing-incidence X-ray diffraction (GIXRD), and electrical transport measurements. Three types of devices were investigated with the NaT2 thin-film deposited either on (1) pristine SiO 2 (corresponding to higher surface energy, 47 mJ/m 2 ) or on OTS deposited on SiO 2 under (2) anhydrous or (3) humid conditions (corresponding to lower surface energies, 20-25 mJ/m 2 ). NaT2 films grown on pristine SiO 2 form nearly featureless three-dimensional islands. NaT2 films grown on OTS/SiO 2 deposited under anhydrous conditions form staggered pyramid islands where the interlayer spacing corresponds to the size of the NaT2 unit cell. At the same time, the grain size measured by AFM increases from hundreds of nanometers to micrometers and the crystal size measured by GIXRD from 30 nm to more than 100 nm. NaT2 on OTS/SiO 2 deposited under humid conditions also promotes staggered pyramids but with smaller crystals 30-80 nm. The NaT2 unit cell parameters in OFETs differ 1-2% from those in bulk. Carrier mobilities tend to be higher for NaT2 layers on SiO 2 (2-3 × 10 -4 cm 2 /(V s)) compared to NaT2 on OTS (2 × 10 -5 -1 × 10 -4 cm 2 /(V s)). An applied voltage does not influence the unit cell parameters when probed by GIXRD in operando.
Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.
2016-04-01
In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.
NMR study of methane + ethane structure I hydrate decomposition.
Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy
2007-05-24
The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.
High-contrast imaging with the JWST-NIRSpec Integral Field Unit
NASA Astrophysics Data System (ADS)
Ygouf, M.; Beichman, C.; Hodapp, K.; Roellig, T.
2017-12-01
With its integral field unit, the near-infrared spectrograph NIRSPEC on JWST will allow to measure high-resolution spectra into the 3-\\SI{5}μm range with an increased sensitivity over ground-based systems. This capability will considerably extend our knowledge of brown dwarfs and bright exoplanets at large separations from their host star. But because there is not any coronagraph on NIRSPEC, the performance in term of contrast at close separation will be extremely limited. In this communication, we explore possibilities to further push this limitation by exploiting the wavelength diversity offered by the spectral differential imaging strategy.
Haselton, H.T.; Hemingway, B.S.; Robie, R.A.
1984-01-01
Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.
Studies on the use of supercritical ammonia for ceramic nitride synthesis and fabrication
NASA Technical Reports Server (NTRS)
Cornell, Linda; Lin, Y. C.; Philipp, Warren H.
1990-01-01
The extractability of ammonia halides (including ammonium thiocyanate) formed as byproducts from the synthesis of Si(NH)2 via ammonolysis of the corresponding silicon tetrahalides using supercritical NH3 as the extraction medium was investigated. It was found that the NH4SCN byproduct of ammonolysis of Si(SCN)4 can be almost completely extracted from the insoluble Si(NH)2 forming a promising system for the synthesis of pure Si(NH)2, one of the best precursors for Si3N4. In addition it was found that Si3N4, AlN, BN, and Si(NH)2 are insoluble in SC ammonia. Also discussed are design considerations for a supercritical ammonia extraction unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Kui; Zhao, Yi; Liu, Liangbin
2014-01-20
The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.
Switzer, Jay A.; Hill, James C.; Mahenderkar, Naveen K.; ...
2016-05-27
Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu 2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured bymore » low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiO x layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu 2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu 2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu 2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less
NASA Astrophysics Data System (ADS)
Glass, R. C.; Henshall, D.; Tsvetkov, V. F.; Carter, C. H., Jr.
1997-07-01
The availability of relatively large (30 mm) SiC wafers has been a primary reason for the renewed high level of interest in SiC semiconductor technology. Projections that 75 mm SiC wafers will be available in 2 to 3 years have further peaked this interest. Now both 4H and 6H polytypes are available, however, the micropipe defects that occur to a varying extent in all wafers produced to date are seen by many as preventing the commercialization of many types of SiC devices, especially high current power devices. Most views on micropipe formation are based around Frank's theory of a micropipe being the hollow core of a screw dislocation with a huge Burgers vector (several times the unit cell) and with the diameter of the core having a direct relationship with the magnitude of the Burgers vector. Our results show that there are several mechanisms or combinations of these mechanisms which cause micropipes in SiC boules grown by the seeded sublimation method. Additional considerations such as polytype variations, dislocations and both impurity and diameter control add to the complexity of producing high quality wafers. Recent results at Cree Research, Inc., including wafers with micropipe densities of less than 1 cm - 2 (with 1 cm2 areas void of micropipes), indicate that micropipes will be reduced to a level that makes high current devices viable and that they may be totally eliminated in the next few years. Additionally, efforts towards larger diameter high quality substrates have led to production of 50 mm diameter 4H and 6H wafers for fabrication of LEDs and the demonstration of 75 mm wafers. Low resistivity and semi-insulating electrical properties have also been attained through improved process and impurity control. Although challenges remain, the industry continues to make significant progress towards large volume SiC-based semiconductor fabrication.
Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics
NASA Astrophysics Data System (ADS)
Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.
2018-04-01
Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.
Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics
NASA Astrophysics Data System (ADS)
Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.
2018-07-01
Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.
Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures
NASA Astrophysics Data System (ADS)
Sookchoo, Pornsatit
For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.
Smallest fullerene-like silicon cage stabilized by a V{sub 2} unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hong-Guang, E-mail: xuhong@iccas.ac.cn, E-mail: zhengwj@iccas.ac.cn; Kong, Xiang-Yu; Deng, Xiao-Jiao
We conducted a combined anion photoelectron spectroscopy and density functional theory study on V{sub 2}Si{sub 20} cluster. Our results show that the V{sub 2}Si{sub 20} cluster has an elongated dodecahedron cage structure with a V{sub 2} unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.
A comparison of GaAs and Si hybrid solar power systems
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Roberts, A. S., Jr.
1977-01-01
Five different hybrid solar power systems using silicon solar cells to produce thermal and electric power are modeled and compared with a hybrid system using a GaAs cell. Among the indices determined are capital cost per unit electric power plus mechanical power, annual cost per unit electric energy, and annual cost per unit electric plus mechanical work. Current costs are taken to be $35,000/sq m for GaAs cells with an efficiency of 15% and $1000/sq m for Si cells with an efficiency of 10%. It is shown that hybrid systems can be competitive with existing methods of practical energy conversion. Limiting values for annual costs of Si and GaAs cells are calculated to be 10.3 cents/kWh and 6.8 cents/kWh, respectively. Results for both systems indicate that for a given flow rate there is an optimal operating condition for minimum cost photovoltaic output. For Si cell costs of $50/sq m optimal performance can be achieved at concentrations of about 10; for GaAs cells costing 1000/sq m, optimal performance can be obtained at concentrations of around 100. High concentration hybrid systems offer a distinct cost advantage over flat systems.
Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng
2016-04-28
It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials
NASA Astrophysics Data System (ADS)
Wang, Xiaolin
Synthesis and processing of novel materials with various advanced approaches have attracted much attention of engineers and scientists for the past thirty years. Many advanced materials display a number of exceptional properties and can be produced with different novel processing techniques. For example, AlN is a promising candidate for electronic, optical and opto-electronic applications due to its high thermal conductivity, high electrical resistivity, high acoustic wave velocity and large band gap. Large bulk AlN crystal can be produced by sublimation of AlN powder. Novel nonostructured multicomponent refractory metal-based ceramics (carbides, borides and nitrides) show a lot of exceptional mechanical, thermal and chemical properties, and can be easily produced by pyrolysis of suitable preceramic precursors mixed with metal particles. The objective of this work is to study sublimation and synthesis of AlN powder, and synthesis of SiC-based metal ceramics. For AlN sublimation crystal growth, we will focus on modeling the processes in the powder source that affect significantly the sublimation growth as a whole. To understand the powder porosity evolution and vapor transport during powder sublimation, the interplay between vapor transport and powder sublimation will be studied. A physics-based computational model will be developed considering powder sublimation and porosity evolution. Based on the proposed model, the effect of a central hole in the powder on the sublimation rate is studied and the result is compared to the case of powder without a hole. The effect of hole size on the sublimation rate will be studied. The effects of initial porosity, particle size and driving force on the sublimation rate are also studied. Moreover, the optimal growth condition for large diameter crystal quality and high growth rate will be determined. For synthesis of SiC-based metal ceramics, we will focus on developing a multi-scale process model to describe the dynamic behavior of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.
Turbine design and application volumes 1, 2, and 3
NASA Technical Reports Server (NTRS)
Glassman, Arthur J. (Editor)
1994-01-01
NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
Groves, Kate; Cryar, Adam; Walker, Michael; Quaglia, Milena
2018-01-01
Assessing the recovery of food allergens from solid processed matrixes is one of the most difficult steps that needs to be overcome to enable the accurate quantification of protein allergens by immunoassay and MS. A feasibility study is described herein applying International System of Units (SI)-traceably quantified milk protein solutions to assess recovery by an improved extraction method. Untargeted MS analysis suggests that this novel extraction method can be further developed to provide high recoveries for a broad range of food allergens. A solution of α-casein was traceably quantified to the SI for the content of α-S1 casein. Cookie dough was prepared by spiking a known amount of the SI-traceable quantified solution into a mixture of flour, sugar, and soya spread, followed by baking. A novel method for the extraction of protein food allergens from solid matrixes based on proteolytic digestion was developed, and its performance was compared with the performance of methods reported in the literature.
One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals
NASA Astrophysics Data System (ADS)
Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.
2018-01-01
We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.
Localized defects in radiation-damaged zircon
Rios; Malcherek; Salje; Domeneghetti
2000-12-01
The crystal structure of a radiation-damaged natural zircon, ZrSiO(4) (alpha-decay radiation dose is ca 1.8 x 10(18) alpha-decay events g(-1)), has been determined. The anisotropic unit-cell swelling observed in the early stages of the amorphization process (0.17% along the a axis and 0.62% along the c axis compared with the undamaged material) is a consequence of the anisotropy of the expansion of ZrO(8) polyhedra. Larger anisotropic displacement parameters were found for Zr and O atoms, indicating that the distortion produced by alpha particle-induced localized defects mainly affects the ZrO(8) unit. The overall shape of SiO(4) tetrahedra remains essentially undistorted, while Si-O bonds are found to lengthen by 0.43%.
NASA Astrophysics Data System (ADS)
Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi
2015-12-01
The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.
Report on metric study tour to Republic of South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laner, F. J.
1978-01-01
The modernized metric system, known universally as the International System of Units (abbreviated SI under the French name) was renamed in 1960 by the world body on standards. A map shows 98 percent of the world using or moving toward adoption of SI units. Only the countries of Burma, Liberia, Brunei, and Southern Yemen are nonmetric. The author describes a two-week session in Pretoria and Johannesburg on metrication, followed by additional meetings on metrication in Rhodesia. (MCW)
Anionic silicate organic frameworks constructed from hexacoordinate silicon centres
NASA Astrophysics Data System (ADS)
Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne
2017-10-01
Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.
Short Note on Units: Planetary Units
ERIC Educational Resources Information Center
Huggins, Elisha
2010-01-01
While the emphasis on SI units in introductory physics textbooks has mercifully eliminated the use of English units, the exclusion of other systems of units is not necessary. For years physicists have simplified calculations by doing things like setting [h-bar] = c = 1. We could not imagine putting 4[pi][epsilon][subscript 0] into the formulas for…
Search for unconventional superconductors among the YTE 2Si2 compounds (TE = Cr, Co, Ni, Rh, Pd, Pt)
NASA Astrophysics Data System (ADS)
Pikul, A. P.; Samsel–Czekała, M.; Chajewski, G.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Wiśniewski, P.; Kaczorowski, D.
2017-05-01
Motivated by the recent discovery of exotic superconductivity in YFe2Ge2 we undertook reinvestigation of formation and physical properties of yttrium-based 1:2:2 silicides. Here we report on syntheses and crystal structures of the YTE 2Si2 compounds with TE = Cr, Co, Ni, Rh, Pd and Pt, and their low-temperature physical properties measurements, supplemented by results of fully relativistic full-potential local-orbital minimum basis band structure calculations. We confirm that most of the members of that family crystallize in a tetragonal ThCr2Si2-type structure (space group I4/mmm) and have three-dimensional Fermi surface, while only one of them (YPt2Si2) forms with a closely-related primitive CaBe2Ge2-type unit cell (space group P4/nmm) and possess quasi-two-dimensional Fermi surface sheets. Physical measurements indicated that BCS-like superconductivity is observed only in YPt2Si2 (T c = 1.54 K) and YPd2Si2 (T c = 0.43 K), while no superconducting phase transition was found in other systems at least down to 0.35 K. Thermal analysis showed no polymorphism in both superconducting phases. No clear relation between the superconductivity and the crystal structure (and dimensionality of the Fermi surface) was observed.
NASA Astrophysics Data System (ADS)
Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien
2015-03-01
Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.
Surface structure analysis of BaSi2(100) epitaxial film grown on Si(111) using CAICISS
NASA Astrophysics Data System (ADS)
Okasaka, Shouta; Kubo, Osamu; Tamba, Daiki; Ohashi, Tomohiro; Tabata, Hiroshi; Katayama, Mitsuhiro
2015-05-01
Geometry and surface structure of a BaSi2(100) film on Si(111) formed by reactive deposition epitaxy (RDE) have been investigated using coaxial impact-collision ion scattering spectroscopy and atomic force microscopy. BaSi2(100) film can be grown only when the Ba deposition rate is sufficiently fast. It is revealed that a BaSi2(100) film grown at 600 °C has better crystallinity than a film grown at 750 °C owing to the mixture of planes other than (100) in the RDE process at higher temperatures. The azimuth angle dependence of the scattering intensity from Ba shows sixfold symmetry, indicating that the minimum height of surface steps on BaSi2(100) is half of the length of unit cell. By comparing the simulated azimuth angle dependences for more than ten surface models with experimental one, it is strongly indicated that the surface of a BaSi2(100) film grown on Si(111) is terminated by Si tetrahedra.
NASA Astrophysics Data System (ADS)
Newell, D. B.
2012-12-01
As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of key standards are being performed and similar components used in the operation of the watt balances are being jointly verified. To this end, a comparison between the gravitational measurement systems used in conjunction with the NIST and NRC watt balances was carried out in early 2012. The results of the comparison provide verification of the gravity values used in the recently published Planck constant determinations that play a vital role in the redefinition effort of the SI. [1] Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) 2011 On the possible future revision of the International System of Units, Bureau International des Poids et Mesures, Paris, http://www.bipm.org/en/si/new_si/ [2] Steiner R L, Williams E R, Liu R, and Newell D B 2007 Uncertainty Improvements of the NIST Electronic Kilogram, IEEE Trans. Instrum. Meas., 56 2 592-596 [3] Steele A G, Meija J, Sanchez C A, Yang L, Wood B M, Sturgeon R E, Mester Z and Inglis A D 2012 Reconciling Planck constant determinations via watt balance and enriched-silicon measurements at NRC Canada Metrologia 49 1 L8-L10
Perspectives for a new realization of the pascal by optical methods
NASA Astrophysics Data System (ADS)
Jousten, Karl; Hendricks, Jay; Barker, Daniel; Douglas, Kevin; Eckel, Steve; Egan, Patrick; Fedchak, James; Flügge, Jens; Gaiser, Christof; Olson, Douglas; Ricker, Jacob; Rubin, Tom; Sabuga, Wladimir; Scherschligt, Julia; Schödel, Rene; Sterr, Uwe; Stone, Jack; Strouse, Gregory
2017-12-01
Since the beginning of measurement of pressure in the 17th century, the unit of pressure has been defined by the relationship of force per unit area. The present state of optical technology now offers the possibility of using a thermodynamic definition—specifically the ideal gas law—for the realization of the pressure unit, in the vacuum regime and slightly above, with an accuracy comparable to or better than the traditional methods of force per area. The changes planned for the SI in 2018 support the application of this thermodynamic definition that is based on the ideal gas law with the necessary corrections for real-gas effects. The paper reviews the theoretical and experimental foundations of those optical methods that are considered to be most promising to realize the unit of pressure at the highest level of metrology.
Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos
2011-02-09
We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia N.; Chaika, Alexander N.; Walls, Brian; Murphy, Barry E.; Walshe, Killian; Martin, David P.; Richards, Billy D. O.; Jose, Gin; Fleischer, Karsten; Aristov, Victor Yu; Molodtsova, Olga V.; Shvets, Igor V.; Krasnikov, Sergey A.
2018-07-01
Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.
ERIC Educational Resources Information Center
Wadlinger, Robert L.
1983-01-01
SI units come in two distinct types: fundamental (kilogram, meter) and descriptive (atom, molecule). Proper/improper uses of atom/molecule from historical cases are presented followed by a re-introduction of a light "wave (cycle)" unit and the clearly defined photon model which is deduced. Also examines omission of the fundamental unit "radon."…
Lardier, David T; Barrios, Veronica R; Garcia-Reid, Pauline; Reid, Robert J
2016-10-01
Prior research has identified multiple factors that influence suicidal ideation (SI) among bullied youth. The effects of school bullying on SI cannot be considered in isolation. In this study, we examined the influence of school bullying on SI, through a constellation of risks, which include depressive and anxiety symptoms, family conflict, and alcohol, tobacco, and other drug (ATOD) use. We also provide recommendations for therapists working with bullied youth. Our sample consisted of 488 adolescents (ages 10-18 years) from a northern New Jersey, United States suburban community. Students were recruited through the district's physical education and health classes. Students responded to multiple measures, which included family cohesion/conflict, ATOD use, mental health indicators, SI, and school bullying experiences. Following preliminary analyses, several logistic regression models were used to assess the direct influence of bullying on SI, as well as the unique effects of family conflict, depressive and anxiety symptoms, and substance use. In addition, a parallel multiple mediating model with the PROCESS macro in SPSS was used to further assess mediating effects. Logistic regression results indicated that school bullying increased the odds of SI among males and females and that when mediating variables were added to the model, bullying no longer had a significant influence on SI. Overall, these results display that for both males and females, school bullying was a significant contributor to SI. Results from the parallel multiple mediating model further illustrated the mediating effects that family conflict, depression, and ATOD use had between bullying and SI. Some variation was noted based on gender. This study draws attention to the multiple experiences associated with school bullying on SI, and how these results may differ by gender. The results of this study are particularly important for those working directly and indirectly with bullied youth. Therapists that engage bullied youth need to consider the multiple spheres of influence that may increase SI among male and female clients. To holistically and adequately assess SI among bullied youth, therapists must also consider how these mechanisms vary between gender groups.
p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films
NASA Technical Reports Server (NTRS)
Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)
2000-01-01
A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.
Compressional behavior of omphacite to 47 GPa
Zhang, Dongzhou; Hu, Yi; Dera, Przemyslaw K.
2016-07-08
Omphacite is an important mineral component of eclogite. Single crystal synchrotron X-ray diffraction data on natural (Ca,Na)(Mg,Fe,Al)Si 2O 6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The 3rd order Birch-Murnaghan equation of state (BM3) fit of all data gives V o = 423.9(3) Å3, K To = 116(2) GPa and K To’ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside-jadeite join.more » The eight-coordinated polyhedra (M2 and M21) are the most compressible, and contribute to majority of the unit cell compression, while the SiO 4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM 3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. Here, the axial compressibility of the α-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest compression axis toward the a-axis with the increase of pressure.« less
NASA Astrophysics Data System (ADS)
An, Yuehua; Zhi, Yusong; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Guo, Daoyou; Li, Peigang; Tang, Weihua
2016-12-01
Deep ultraviolet photodetectors based on p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterojunctions were fabricated by laser molecular beam epitaxial (L-MBE), respectively. In compare with p-Si/ n-Ga2O3 heterostructure-based photodetector, the dark current of p-Si/ i-SiC/ n-Ga2O3-based photodetector decreased by three orders of magnitude, and the rectifying behavior was tuned from reverse to forward. In order to improve the quality of the photodetector, we reduced the oxygen vacancies of p-Si/ i-SiC/ n-Ga2O3 heterostructures by changing the oxygen pressure during annealing. As a result, the rectification ratio ( I F/ I R) of the fabricated photodetectors was 36 at 4.5 V and the photosensitivity was 5.4 × 105% under the 254 nm light illumination at -4.5 V. The energy band structure of p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterostructures was schematic drawn to explain the physic mechanism of enhancement of the performance of p-Si/ i-SiC/ n-Ga2O3 heterostructure-based deep UV photodetector by introduction of SiC layer.
Geometric structure of thin SiO xN y films on Si(100)
NASA Astrophysics Data System (ADS)
Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.
1998-05-01
Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.
Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags
NASA Astrophysics Data System (ADS)
Muhmood, Luckman; Seetharaman, Seshadri
2010-08-01
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.
Kortz, Ulrich; Jeannin, Yves P.; Tézé, André; Hervé, Gilbert; Isber, Samih
1999-08-09
The novel dimeric polyoxometalate [{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)](12)(-) (1) has been synthesized and characterized by IR spectroscopy, polarography, elemental analysis, thermogravimetric analysis, and magnetic measurements. An X-ray single-crystal analysis was carried out on K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O, which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.701(4) Å, b = 24.448(11) Å, c = 13.995(5) Å, beta = 99.62(3) degrees, and Z = 4. The anion consists of two [beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)] Keggin moieties linked via two OH bridging groups, leading to a planar Ni(2)(OH)(2) unit. The two half-units are related by an inversion center and each contain one Ni atom in the rotated triad. The formation of the new anion involves insertion, isomerization, and dimerization. Magnetic measurements show that the central Ni(4) unit exhibits ferromagnetic (J' = 4.14 cm(-)(1)) as well as weak antiferromagnetic (J = -0.65 cm(-)(1)) Ni-Ni exchange interactions.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Saccullo, A.; Sheehy, T. W.
1983-01-01
To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.
NASA Astrophysics Data System (ADS)
McRae, E. G.; Petroff, P. M.
1984-11-01
Several structural models of the Si(111)-7 × 7 surface are tested by comparing calculated and observed transmission electron diffraction (TED) patterns. The models comprise "adatom" models where the unit mesh contains 12 adatoms or atom clusters in a locally (2 × 2) arrangement, and "triangle-dimer" models where the unit mesh contains 9 dimers or pairs of dimers bordering a triangular subunit of the unit mesh. The distribution of diffraction intensity among fractional-order spots is calculated kinematically and compared with TED patterns observed by Petroff and Wilson and others. No agreement is found for adatom models. Good but not perfect agreement is found for one triangle-dimer model.
ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
Sarapas, Joel M; Backlund, Coralie M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N
2017-05-17
Cell-penetrating peptides are an important class of molecules with promising applications in bioactive cargo delivery. A diverse series of guanidinium-containing polymeric cell-penetrating peptide mimics (CPPMs) with varying backbone chemistries was synthesized and assessed for delivery of both GFP and fluorescently tagged siRNA. Specifically, we examined CPPMs based on norbornene, methacrylate, and styrene backbones to determine how backbone structure impacted internalization of these two cargoes. Either charge content or degree of polymerization was held constant at 20, with diguanidinium norbornene molecules being polymerized to both 10 and 20 repeat units. Generally, homopolymer CPPMs delivered low amounts of siRNA into Jurkat T cells, with no apparent backbone dependence; however, by adding a short hydrophobic methyl methacrylate block to the guanidinium-rich methacrylate polymer, siRNA delivery to nearly the entire cell population was achieved. Protein internalization yielded similar results for most of the CPPMs, though the block polymer was unable to deliver proteins. In contrast, the styrene-based CPPM yielded the highest internalization for GFP (≈40 % of cells affected), showing that indeed backbone chemistry impacts protein delivery, specifically through the incorporation of an aromatic group. These results demonstrate that an understanding of how polymer structure affects cargo-dependent internalization is critical to designing new, more effective CPPMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure of the Si(111)-(5×2)-Au Surface
NASA Astrophysics Data System (ADS)
Abukawa, Tadashi; Nishigaya, Yoshiki
2013-01-01
The structure of the Si(111)-(5×2)-Au surface, one of the long-standing problems in surface science, has been solved by means of Weissenberg reflection high-energy electron diffraction. The arrangement of the Au atoms and their positions with respect to the substrate were determined from a three-dimensional Patterson function with a lateral resolution of 0.3 Å based on a large amount of diffraction data. The new structural model consists of six Au atoms in a 5×2 unit, which agrees with the recently confirmed Au coverage of 0.6 ML [I. Barke , Phys. Rev. B 79, 155301 (2009).PRBMDO1098-0121]. The model has a distinct ×2 periodicity, and includes a Au dimer. The model is also compatible with previously obtained STM images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Mi; Jung, Min-Sang; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr, E-mail: mcjung@oist.jp
2015-08-15
Using scanning electron microscopy (SEM) and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiO{sub x}-capped Si, and SiO{sub 2}-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.
On twin density and resistivity of nanometric Cu thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmak, Katayun; Liu, Xuan; Darbal, Amith
2016-08-14
Crystal orientation mapping in the transmission electron microscope was used to quantify the twin boundary length fraction per unit area for five Ta{sub 38}Si{sub 14}N{sub 48}/SiO{sub 2} encapsulated Cu films with thicknesses in the range of 26–111 nm. The length fraction was found to be higher for a given twin-excluded grain size for these films compared with previously investigated SiO{sub 2} and Ta/SiO{sub 2} encapsulated films. The quantification of the twin length fraction per unit area allowed the contribution of the twin boundaries to the size effect resistivity to be assessed. It is shown that the increased resistivity of the Ta{submore » 38}Si{sub 14}N{sub 48} encapsulated Cu films compared with the SiO{sub 2} and Ta/SiO{sub 2} encapsulated films is not a result of increased surface scattering, but it is a result of the increase in the density of twin boundaries. With twin boundaries included in the determination of grain size as a mean-intercept length, the resistivity data are well described by 2-parameter Matthiessen's rule summation of the Fuchs-Sondheimer and Mayadas Shatzkes models, with p and R parameters that are within experimental error equal to those in prior reports and are p = 0.48(+0.33/−0.31) and R = 0.27 ± 0.03.« less
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.
2010-01-01
Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.
High performance photovoltaic applications using solution-processed small molecules.
Chen, Yongsheng; Wan, Xiangjian; Long, Guankui
2013-11-19
Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we selected BDT (benzo[1,2-b:4,5-b']dithiophene) and DTS (dithienosilole) to replace the central thiophene unit, leading to a PCE of 8.12%. In addition to our molecules, Bazan and co-workers have developed another excellent system using DTS as the core unit that has also achieved a PCE greater than 8%.
Robust diamond-like Fe-Si network in the zero-strain Na xFeSiO 4 cathode
Ye, Zhuo; Zhao, Xin; Li, Shouding; ...
2016-07-14
Sodium orthosilicates Na 2 MSiO 4 ( M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na 2FeSiO 4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.
FAST TRACK COMMUNICATION: Variation of equation of state parameters in the Mg2(Si1 - xSnx) alloys
NASA Astrophysics Data System (ADS)
Pulikkotil, J. J.; Alshareef, H. N.; Schwingenschlögl, U.
2010-09-01
Thermoelectric performance peaks up for intermediate Mg2(Si1 - xSnx) alloys, but not for isomorphic and isoelectronic Mg2(Si1 - xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green's function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1 - xSnx) but not in the Mg2(Si1 - xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1 - xSnx) is distinguished by a strong renormalization of the anion-anion hybridization.
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.
2010-06-01
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.
Pauling, Linus
1988-01-01
A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 Å is assigned to rapidly solidified Cu5Ni3Si2 and V15Ni10Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45° twinning on the basal plane. PMID:16593915
Pauling, L
1988-04-01
A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 A is assigned to rapidly solidified Cu(5)Ni(3)Si(2) and V(15)Ni(10)Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45 degrees twinning on the basal plane.
New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces
NASA Technical Reports Server (NTRS)
Chadi, D. J.
1985-01-01
A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.
NASA Astrophysics Data System (ADS)
Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina
2018-04-01
In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.
InP-based photonic integrated circuit platform on SiC wafer.
Takenaka, Mitsuru; Takagi, Shinichi
2017-11-27
We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.
NASA Astrophysics Data System (ADS)
Carns, Timothy Keith
With the advent of Si molecular beam epitaxy (Si -MBE), a significant amount of research has occurred to seek alternative high conductivity Si-based materials such as rm Si_{1-x}Ge_ {x} and delta-doped Si. These materials have brought improvements in device speeds and current drives with the added advantage of monolithic integration into Si VLSI circuits. The bulk of research in Si-based materials has been devoted to the implementation of strained rm Si_{1-x}Ge_{x} as the base layer of a rm Si_ {1-x}Ge_{x}/Si heterojunction bipolar transistor (HBT). Because of the valence band offset, the rm Si_{1-x}Ge _{x} layer can be heavily doped, leading to lower base sheet resistances and hence, improved speed performances. The Ge content in the base can also be graded to increase the drift field in the base. However, very few hole mobility measurements have been done in these strained layers, leading to limitations in device modeling and in understanding the transport behavior in this important material. In addition to rm Si_{1 -x}Ge_{x}, much potential also exists in using delta-doping in Si for improved conductivities over those of bulk Si. However, as of yet, delta-doped Si has received little attention. Therefore, this dissertation is dedicated to the investigation of both of these Si-based materials (strained rm Si_{1-x}Ge_{x } and delta-doped Si and rm Si_{1-x}Ge_ {x}) for the purpose of obtaining higher conductivities than comparably doped bulk Si. This work is divided into three parts to accomplish this objective. The first part is contained in Chapter 3 and is comprised of a comprehensive characterization of the hole mobility in compressively strained rm Si_{1 -x}Ge_{x}. Few results have been obtained prior to this research which has led to many inaccuracies in device modeling. The second part of this dissertation in Chapters 4 and 5 is devoted to the study of the mobility behavior in both boron and antimony delta-doped Si and rm Si_ {1-x}Ge_{x}. The important discovery of mobility and conductivity enhancement in coupled delta-doped layers is highlighted in Chapter 5. Finally, the third part of this work discusses the implementation of boron delta -doped layers in Si homojunction bipolar transistors and FETs. Chapter 6 includes the fabrication of the first coupled delta-doped base layer Si BJT, the first p-type Si delta-doped layer MESFET, the first coupled delta -doped layer FET, and the first SiGe delta -FET.
NASA Astrophysics Data System (ADS)
Yongliang, Li; Qiuxia, Xu
2010-03-01
The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.
NASA Astrophysics Data System (ADS)
Galdin, Sylvie; Dollfus, Philippe; Hesto, Patrice
1994-03-01
A theoretical study of a Si/Si1-xGex/Si heterojunction bipolar transistor using Monte Carlo simulations is reported. The geometry and composition of the emitter-base junction are optimized using one-dimensional simulations with a view to improving electron transport in the base. It is proposed to introduce a thin Si-P spacer layer, between the Si-N emitter and the SiGe-P base, which allows launching hot electrons into the base despite the lack of natural conduction-band discontinuity between Si and strain SiGe. The high-frequency behavior of the complete transistor is then studied using 2D modeling. A method of microwave analysis using small signal Monte Carlo simulations that consists of expanding the terminal currents in Fourier series is presented. A cutoff frequency fT of 68 GHz has been extracted. Finally, the occurrence of a parasitic electron barrier at the collector-base junction is responsible for the fT fall-off at high collector current density. This parasitic barrier is lowered through the influence of the collector potential.
The Secret Air War Over France USAAF Special Operations Units in the French Campaign of 1944
1992-05-01
Branch, or SI, and its Special Operations Branch, known as SO. The Secret Intelligence Branch was responsible for collecting foreign intelligence...infiltrating its own intelligence agents into France. The Secret Intelligence Branch staff in London (SI/London) began planning for joint operations
Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments
1993-08-01
1 CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT . . 5 PART I: INTRODUCTION...141 REFERENCES ....................... .............................. 142 TABLES 1 -4 APPENDIX A: IN SITU IMPLEMENTATION CASE STUDIES...TREATMENT RESEARCH: BENCH-SCALE EXPERIMENTS PART I: INTRODUCTION Background 1 . Many US Army installations have areas of contamination requiring
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Xi, Yunfei
2012-08-01
Nekoite Ca3Si6O15·7H2O and okenite Ca10Si18O46·18H2O are both hydrated calcium silicates found respectively in contact metamorphosed limestone and in association with zeolites from the alteration of basalts. The minerals form two-dimensional infinite sheets with other than six-membered rings with 3-, 4-, or 5-membered rings and 8-membered rings. The two minerals have been characterised by Raman, near-infrared and infrared spectroscopy. The Raman spectrum of nekoite is characterised by two sharp peaks at 1061 and 1092 cm-1 with bands of lesser intensity at 974, 994, 1023 and 1132 cm-1. The Raman spectrum of okenite shows an intense single Raman band at 1090 cm-1 with a shoulder band at 1075 cm-1. These bands are assigned to the SiO stretching vibrations of Si2O5 units. Raman water stretching bands of nekoite are observed at 3071, 3380, 3502 and 3567 cm-1. Raman spectrum of okenite shows water stretching bands at 3029, 3284, 3417, 3531 and 3607 cm-1. NIR spectra of the two minerals are subtly different inferring water with different hydrogen bond strengths. By using a Libowitzky empirical formula, hydrogen bond distances based upon these OH stretching vibrations. Two types of hydrogen bonds are distinguished: strong hydrogen bonds associated with structural water and weaker hydrogen bonds assigned to space filling water molecules.
NASA Astrophysics Data System (ADS)
Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.
2017-05-01
A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.
Constraining the Physical Properties of Near-Earth Object 2009 BD
NASA Astrophysics Data System (ADS)
Mommert, M.; Hora, J. L.; Farnocchia, D.; Chesley, S. R.; Vokrouhlický, D.; Trilling, D. E.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.
2014-05-01
We report on Spitzer Space Telescope Infrared Array Camera observations of near-Earth object 2009 BD that were carried out in support of the NASA Asteroid Robotic Retrieval Mission concept. We did not detect 2009 BD in 25 hr of integration at 4.5 μm. Based on an upper-limit flux density determination from our data, we present a probabilistic derivation of the physical properties of this object. The analysis is based on the combination of a thermophysical model with an orbital model accounting for the non-gravitational forces acting upon the body. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9 ± 0.3 m diameter rocky body (ρ = 2.9 ± 0.5 g cm-3) with an extremely high albedo of 0.85_{-0.10}^{+0.20} that is covered with regolith-like material, causing it to exhibit a low thermal inertia (\\Gamma =30_{-10}^{+20} SI units). The second solution suggests 2009 BD to be a 4 ± 1 m diameter asteroid with p_V=0.45_{-0.15}^{+0.35} that consists of a collection of individual bare rock slabs (Γ = 2000 ± 1000 SI units, \\rho = 1.7_{-0.4}^{+0.7} g cm-3). We are unable to rule out either solution based on physical reasoning. 2009 BD is the smallest asteroid for which physical properties have been constrained, in this case using an indirect method and based on a detection limit, providing unique information on the physical properties of objects in the size range smaller than 10 m.
Ackerman, Stacey J; Polly, David W; Knight, Tyler; Schneider, Karen; Holt, Tim; Cummings, John
2014-01-01
Introduction Low back pain is common and treatment costly with substantial lost productivity and lost wages in the working-age population. Chronic low back pain originating in the sacroiliac (SI) joint (15%–30% of cases) is commonly treated with nonoperative care, but new minimally invasive surgery (MIS) options are also effective in treating SI joint disruption. We assessed whether the higher initial MIS SI joint fusion procedure costs were offset by decreased nonoperative care costs from a US commercial payer perspective. Methods An economic model compared the costs of treating SI joint disruption with either MIS SI joint fusion or continued nonoperative care. Nonoperative care costs (diagnostic testing, treatment, follow-up, and retail pharmacy pain medication) were from a retrospective study of Truven Health MarketScan® data. MIS fusion costs were based on the Premier’s Perspective™ Comparative Database and professional fees on 2012 Medicare payment for Current Procedural Terminology code 27280. Results The cumulative 3-year (base-case analysis) and 5-year (sensitivity analysis) differentials in commercial insurance payments (cost of nonoperative care minus cost of MIS) were $14,545 and $6,137 per patient, respectively (2012 US dollars). Cost neutrality was achieved at 6 years; MIS costs accrued largely in year 1 whereas nonoperative care costs accrued over time with 92% of up front MIS procedure costs offset by year 5. For patients with lumbar spinal fusion, cost neutrality was achieved in year 1. Conclusion Cost offsets from new interventions for chronic conditions such as MIS SI joint fusion accrue over time. Higher initial procedure costs for MIS were largely offset by decreased nonoperative care costs over a 5-year time horizon. Optimizing effective resource use in both nonoperative and operative patients will facilitate cost-effective health care delivery. The impact of SI joint disruption on direct and indirect costs to commercial insurers, health plan beneficiaries, and employers warrants further consideration. PMID:24904218
Stabilization of Si_60 Cage Structure: The Agony and the Ecstasy
NASA Astrophysics Data System (ADS)
Kawazoe, Y.; Sun, Q.; Wang, Q.; Rao, B. K.; Jena, P.
2003-03-01
The unique role of silicon in the micro-electronics industry has motivated many researchers to find ways to stabilize Si_60 with fullerene structure. In spite of numerous experimental attempts, synthesis of a theoretically predicted C_60-supported Si_60 cluster (C_60@Si_60) has not been possible. Using a state-of-the-art theoretical method, we provide the first answer for this long-standing contradiction between the experimental observation and the theoretical prediction. The flaws in earlier theoretical works are pointed out, and Si_60 is shown to be unstable in the fullerene structure either on its own or when supported on a C_60 fullerene (C_60@Si_60). On the other hand, we show that Si_60 cage can be stabilized by using magic clusters such as Al_12X (X = Si, Ge, Sn, Pb) as endohedral units, which have been identified in recent experiment as stable clusters and as suitable building blocks for cluster-assembled materials.
NASA Astrophysics Data System (ADS)
Briggs, P. J.; Walker, A. B.; Herbert, D. C.
1998-05-01
A one-dimensional self-consistent bipolar Monte Carlo simulation code has been used to model carrier mobilities in strained doped SiGe and the base-collector region of Si/SiGe/Si and SiC/Si heterojunction bipolar transistors (HBTs) with wide collectors, to study the variation of the cutoff frequency 0268-1242/13/5/005/img6 with collector current density 0268-1242/13/5/005/img7. Our results show that while the presence of strain enhances the electron mobility, the scattering from alloy disorder and from ionized impurities reduces the electron mobility so much that it is less than that of Si at the same doping level, leading to larger base transit times 0268-1242/13/5/005/img8 and hence poorer 0268-1242/13/5/005/img6 performance for large 0268-1242/13/5/005/img7 for an Si/SiGe/Si HBT than for an SiC/Si HBT. At high values of 0268-1242/13/5/005/img7, we demonstrate the formation of a parasitic electron barrier at the base-collector interface which causes a sharp increase in 0268-1242/13/5/005/img8 and hence a dramatic reduction in 0268-1242/13/5/005/img6. Based on a comparison of the height of this parasitic barrier with estimates from an analytical model, we suggest a physical mechanism for base pushout after barrier formation that differs somewhat from that given for the analytical model.
Site Environmental Report for 2005 Volume I and Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggieri, Michael
2006-07-07
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.« less
High-temperature thermal storage systems for advanced solar receivers materials selections
NASA Astrophysics Data System (ADS)
Wilson, D. F.; Devan, J. H.; Howell, M.
1990-09-01
Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.
High-temperature thermal storage systems for advanced solar receivers materials selections
NASA Technical Reports Server (NTRS)
Wilson, D. F.; Devan, J. H.; Howell, M.
1990-01-01
Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.
NASA Astrophysics Data System (ADS)
Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad
2017-08-01
A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu
2016-10-01
SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
Phase diagram and electrical behavior of silicon-rich iridium silicide compounds
NASA Technical Reports Server (NTRS)
Allevato, C. E.; Vining, Cronin B.
1992-01-01
The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.
16 CFR 1203.1 - Scope, general requirements, and effective date.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vision, positional stability, dynamic strength of retention system, and impact-attenuation tests described in §§ 1203.7 through 1203.17. (4) Units. The values stated in International System of Units (“SI...
Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.
Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo
2013-09-01
We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...
2017-01-26
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.
Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less
Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime
Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.; ...
2017-12-08
Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less
ERIC Educational Resources Information Center
Gough, John
2017-01-01
Australia has used SI metric units for measurement for decades now, although the conversion of measurements from the earlier Imperial units--known as metrication--commenced subsequently in 1971, and was not completed until 1988. All Primary and Secondary schools were using only metric units in school lessons by 1973, and it became illegal to teach…
The CODATA 2017 values of h, e, k, and N A for the revision of the SI
NASA Astrophysics Data System (ADS)
Newell, D. B.; Cabiati, F.; Fischer, J.; Fujii, K.; Karshenboim, S. G.; Margolis, H. S.; de Mirandés, E.; Mohr, P. J.; Nez, F.; Pachucki, K.; Quinn, T. J.; Taylor, B. N.; Wang, M.; Wood, B. M.; Zhang, Z.
2018-04-01
Sufficient progress towards redefining the International System of Units (SI) in terms of exact values of fundamental constants has been achieved. Exact values of the Planck constant h, elementary charge e, Boltzmann constant k, and Avogadro constant N A from the CODATA 2017 Special Adjustment of the Fundamental Constants are presented here. These values are recommended to the 26th General Conference on Weights and Measures to form the foundation of the revised SI.
A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents
Prom-Wormley, Elizabeth; Eaves, Lindon J.; Rhee, Soo Hyun; Hewitt, John K.; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G.; Legrand, Lisa; Samek, Diana R.; Murrelle, E. Lenn; Silberg, Judy L.; Miles, Donna R.; Schieken, Richard M.; Beunen, Gaston P.; Thomis, Martine; Rose, Richard J.; Dick, Danielle M.; Boomsma, Dorret I.; Bartels, Meike; Vink, Jacqueline M.; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C.
2017-01-01
Abstract Introduction: Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Methods: Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Results: Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Conclusions: Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. Implications: This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across studies reflecting similar etiology of liability to initiate smoking across different cultures and time periods. Thus familial factors strongly contribute to individual differences in who starts to smoke with a gradual increase in the impact of genetic factors and a corresponding decrease in that of the shared environment. PMID:27807125
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.
2003-01-01
Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.
The Use of Sensory Integration Therapy by Intervention Service Providers in Malaysia
ERIC Educational Resources Information Center
Leong, Han Ming; Stephenson, Jennifer; Carter, Mark
2011-01-01
Sensory integration (SI) therapy is a controversial intervention used in intervention for children with disabilities that is popular in the United States. Little is known about the use of SI therapy for children with disabilities in educational centres in developing nations such as Malaysia. Supervisors and teachers from seven educational…
The Effectiveness of the Improved NaHPO4-SnF2-ZrSiO4-SiO2 Prophylactic Paste.
1976-03-01
C-1119 Howard University -College of Dentistry Research Washington, DC 20001 DOD DISTRIBUTION STATEMENT Approved for public release; distribution...AORESS 10. PROGRAM ELEMENT. PROJECT. TASK Howard University AREA 6 WORK UNIT NUMBERS College of Dentistry Research Washington, DC 20001 1I. CONTROLLING
Coupling of carbon and silicon geochemical cycles in rivers and lakes
Wang, Baoli; Liu, Cong-Qiang; Maberly, Stephen C.; Wang, Fushun; Hartmann, Jens
2016-01-01
Carbon (C) and silicon (Si) biogeochemical cycles are important factors in the regulation of atmospheric CO2 concentrations and hence climate change. Theoretically, these elements are linked by chemical weathering and organism stoichiometry, but this coupling has not been investigated in freshwaters. Here we compiled data from global rivers and lakes in the United States of America and the United Kingdom, in order to characterize the stoichiometry between the biogeochemical cycles of C and Si. In rivers this coupling is confirmed by a significant relationship between HCO3−/Na+ and DSi/Na+, and DSi:HCO3− ratio can reflect the mineral source of chemical weathering. In lakes, however, these characteristic ratios of chemical weathering are altered by algal activity. The lacustrine Si:C atomic ratio is negative feedback regulation by phytoplankton, which may result in this ratio in algal assemblages similar to that in water column. And this regulation suggests lacustrine photosynthetic C fixation in this equilibrium state is quantitative and depends on the DSi concentration. These findings provide new insights into the role of freshwaters in global C and Si biogeochemical cycles. PMID:27775007
Silicon Germanium Strained Layers and Heterostructures
NASA Astrophysics Data System (ADS)
Willander, M.; Nur, O.; Jain, S. C.
2004-01-01
The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design and the most important designs of HBTs for optimum AC as well as DC are discussed in details. This technology is now mature enough and that is manifested in the appearance in the market nowadays. Si1 xGex based FETs circuits compatible with standard Si CMOS processes are soon expected to appear in the market. Finally, we briefly discuss the recent advances in Si1 xGex based infrared photodetectors.
SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste
NASA Astrophysics Data System (ADS)
Chanadee, Tawat
2017-11-01
Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.
Sun, Chunwen; Chen, Lanli; Shi, Siqi; Reeb, Berthold; López, Carlos Alberto; Alonso, José Antonio; Stimming, Ulrich
2018-01-16
We demonstrate that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is an excellent proton conductor. The crystallographic information concerning the hydrogen positions is unraveled from neutron-powder-diffraction (NPD) data for the first time. This study shows that all the hydrogen atoms are connected though H bonds, establishing a two-dimensional path between the [(Si 0.5 Ti 0.5 )P 4 O 13 2- ] n layers for proton diffusion across the crystal structure by breaking and reconstructing intermediate H-O═P bonds. This transient species probably reduces the potential energy of the H jump from an ammonium unit to the next neighboring NH 4 + unit. Both theoretical and experimental results support an interstitial-proton-conduction mechanism. The proton conductivities of (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 reach 0.0061 and 0.024 S cm -1 in humid air at 125 and 250 °C, respectively. This finding demonstrates that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is a promising electrolyte material operating at 150-250 °C. This work opens up a new avenue for designing and fabricating high-performance inorganic electrolytes.
Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.
Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay
2014-10-08
A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.
Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W
2017-10-01
Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.
Symbolic interactionism and nurse-mother communication in the neonatal intensive care unit.
Cleveland, Lisa Marie
2009-01-01
The admission of an infant to the neonatal intensive care unit (NICU) has the potential to cause significant stress for the mothers of these infants. Researchers have found that nurse-mother communication has the potential to either aid or hinder the mother's adaptation to the NICU environment. These communication patterns are relatively complex in nature and therefore warrant further investigation. Symbolic interactionism (SI) is a theoretical framework that offers the potential to direct such an investigation. The purpose of this article is to examine nurse-mother communication patterns in the NICU through the theoretical lens of SI.
Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery
NASA Astrophysics Data System (ADS)
Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook
2013-01-01
Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.
Rankin, Matthew A; MacLean, Darren F; Schatte, Gabriele; McDonald, Robert; Stradiotto, Mark
2007-12-26
Treatment of Cp*RuCl(kappa2-P,N-2b) (2b = 2-NMe2-3-PiPr2-indene) with TlSO3CF3 produced the cyclometalated complex [4]+SO3CF3- in 94% isolated yield. Exposure of [4]+X- (X = B(C6F5)4 or SO3CF3) to Ph2SiH2 (10 equiv) or PhSiH3 afforded the corresponding [Cp*(mu-P,N-2b)(H)2Ru=SiRPh]+X- complexes, [5]+X- (R = Ph; X = B(C6F5)4, 82%; X = SO3CF3, 39%) and [6]+X- (R = H; X = B(C6F5)4, 94%; X = SO3CF3, 95%). Notably, these transformations represent the first documented examples of Ru-mediated silylene extrusion via double geminal Si-H bond activation of an organosilane-a key step in the recently proposed Glaser-Tilley (G-T) alkene hydrosilylation mechanism. Treatment of [5]+B(C6F5)4- with KN(SiMe3)2 or [6]+SO3CF3- with NaN(SiMe3)2 afforded the corresponding zwitterionic Cp*(mu-2-NMe2-3-PiPr2-indenide)(H)2Ru=SiRPh complex in 69% (R = Ph, 7) or 86% (R = H, 8) isolated yield. Both [6]+X- and 8 proved unreactive toward 1-hexene and styrene and provided negligible catalytic turnover in the attempted metal-mediated hydrosilylation of these substrates with PhSiH3, thereby providing further empirical evidence for the required intermediacy of base-free Ru=Si species in the G-T mechanism. Isomerization of the P,N-indene ligand backbone in [6]+X-, giving rise to [Cp*(mu-1-PiPr2-2-NMe2-indene)(H)2Ru=SiHPh]+X- ([9]+X-), was observed. In the case of [9]+SO3CF3-, net intramolecular addition of the Ru=Si-H group across the styrene-like C=C unit within the ligand backbone to give 10 (96% isolated yield) was observed. Crystallographic characterization data are provided for [4]+X-, [5]+X-, [6]+X-, 8, and 10.
Luensmann, Doerte; Yu, Mili; Yang, Jeffery; Srinivasan, Sruthi; Jones, Lyndon
2015-07-01
To evaluate the impact of cosmetics on silicone hydrogel (SiHy) contact lens shape, lens power, and optical performance. In this in vitro experiment, 7 SiHy materials were coated with 9 marketed brands of cosmetics, including hand creams (HCs) (3), eye makeup removers (MRs) (3), and mascaras (3). Diameter, sagittal depth, and base curve were determined using the Chiltern (Optimec Limited), whereas lens power and optical performance were assessed using the Contest Plus (Rotlex). Six replicates were used for each lens and cosmetic combination. Measurements were repeated after a cleaning cycle using a one-step hydrogen peroxide solution. Makeup removers had the greatest impact on diameter, sagittal depth, and base curve, resulting in changes of up to 0.5, 0.15, and 0.77 mm, respectively. The HCs and mascaras had little impact on these parameters; however, differences were observed between lens types. Optical performance was reduced with all mascaras, and a decrease of greater than 2 units on a 0 to 10 scale (10=uniform power distribution) was seen for 5 lens types exposed to waterproof mascara (P<0.01). Most HCs and MRs had minimal impact on image quality. Lens power did not change with any of the cosmetics (± 0.25 diopter; P>0.05). Lens cleaning resulted in some recovery of the lens parameters, and efficiency varied between cosmetics. Some eye MRs and waterproof mascaras changed the shape and optical performance of some SiHy lenses. Further research is needed to understand the clinical implications for SiHy lens wearers using cosmetics.
Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS
NASA Astrophysics Data System (ADS)
De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.
1996-08-01
This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.
Theory and application of drilling fluid hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, A.
1985-01-01
The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less
NASA Astrophysics Data System (ADS)
Kim, Kyeong; Berezhnoy, Alexey; Wöhler, Christian; Grumpe, Arne; Rodriguez, Alexis; Hasebe, Nobuyuki; Van Gasselt, Stephan
2016-07-01
Using Kaguya GRS data, we investigated Si distribution on the Moon, based on study of the 4934 keV Si gamma ray peak caused by interaction between thermal neutrons and lunar Si-28 atoms. A Si peak analysis for a grid of 10 degrees in longitude and latitude was accomplished by the IRAP Aquarius program followed by a correction for altitude and thermal neutron density. A spectral parameter based regression model of the Si distribution was built for latitudes between 60°S and 60°N based on the continuum slopes, band depths, widths and minimum wavelengths of the absorption bands near 1 μμm and 2 μμm. Based on these regression models a nearly global cpm (counts per minute) map of Si with a resolution of 20 pixels per degree was constructed. The construction of a nearly global map of lunar Si abundances has been achieved by a combination of regression-based analysis of KGRS cpm data and M ^{3} spectral reflectance data, it has been calibrated with respect to returned sample-based wt% values. The Si abundances estimated with our method systematically exceed those of the LP GRS Si data set but are consistent with typical Si abundances of lunar basalt samples (in the maria) and feldspathic mineral samples (in the highlands). Our Si map shows that the Si abundance values on the Moon are typically between 17 and 28 wt%. The obtained Si map will provide an important aspect in both understanding the distribution of minerals and the evolution of the lunar surface since its formation.
XRD and 29Si MAS-NMR spectroscopy across the β-Lu 2Si 2O 7- β-Y 2Si 2O 7 solid solution
NASA Astrophysics Data System (ADS)
Becerro, Ana I.; Escudero, Alberto
2005-01-01
Samples in the system Lu 2-xY xSi 2O 7 (0⩽ x⩽2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu 2Si 2O 7 and Y 2Si 2O 7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y 2Si 2O 7 in β-Lu 2Si 2O 7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu 2Si 2O 7-Y 2Si 2O 7 and the results compare favorably with the values obtained experimentally.
NASA Astrophysics Data System (ADS)
Hitt, G. W.; Isakovic, A. F.; Fawwaz, O.; Bawa'aneh, M. S.; El-Kork, N.; Makkiyil, S.; Qattan, I. A.
2014-12-01
We report on efforts to design the "Collaborative Workshop Physics" (CWP) instructional strategy to deliver the first interactive engagement (IE) physics course at Khalifa University of Science, Technology and Research (KU), United Arab Emirates (UAE). To our knowledge, this work reports the first calculus-based, introductory mechanics course on the Arabian Peninsula using physics education research (PER)-based instruction. A brief history and present context of general university and STEM teaching in the UAE is given. We present this secondary implementation (SI) as a case study of a novel context and use it to determine if PER-based instruction can be successfully implemented far from the cultural context of the primary developer and, if so, how might such SIs differ from SIs within the United States (U.S.) in terms of criteria for and risks to their success. With these questions in view, a prereform baseline comprised of Maryland Physics Expectations in Physics survey, Force Concept Inventory (FCI), course exam grades, and English language proficiency data are used to design a hybrid implementation of Cooperative Group Problem Solving. We find that for students with high English proficiency, normalized gain on FCI improves substantially, from ⟨g⟩=0.16±0.10 prereform to ⟨g⟩=0.47±0.08 in the CWP pilot (standard errors), indicating a successful SI. However, we also find evidence that normalized gains on FCI are strongly modulated by language proficiency and discuss likely causes. Regardless of language ability, problem-solving skill is also substantially improved and course drop-fail-withdrawal rates are cut from 50% to 24%. In particular, we find evidence in postreform student interviews that prior classroom experiences, and not broader cultural expectations about education, are the more significant cause of expectations that are at odds with the classroom norms of well-functioning PER-based instruction. We present this result as evidence that PER-based innovations can be implemented across great changes in cultural context, provided that the method is thoughtfully adapted in anticipation of context and culture-specific student expectations. This case study should be valuable for future reforms at KU, the broader Gulf region, and other institutions facing similar challenges involving SI of PER-based instruction outside the U.S.
Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo
2014-12-14
Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.
NASA Astrophysics Data System (ADS)
Machin, Graham
2018-02-01
On 20 May 2019 it is anticipated that the most radical revision of the International System of Units (the SI), since its inception, will come into force. From that point, all the SI units will be based on defined values of fundamental constants of nature. In this paper the redefinition of the kelvin and its implications are considered. The topic will be introduced by discussing how the wording of the new definition of the kelvin developed. The kelvin redefinition is reliant on a secure low-uncertainty value of the Boltzmann constant; its determination by different physical methods and how the final definitive value for the kelvin redefinition was arrived at is discussed. The redefined kelvin will be implemented through a document known as the mise en pratique (i.e. the ‘practical realisation’) for the definition of the kelvin (MeP-K). The development and contents of the MeP-K will be described. There follows a discussion of contemporary primary thermometry, which is the bedrock on which a secure kelvin redefinition will be founded. Finally the paper ends with a discussion of the implications of the redefinition, for traceability, and, more widely, the practice of thermometry in general.
Rigger, Romana; Rück, Alexander; Hellriegel, Christine; Sauermoser, Robert; Morf, Fabienne; Breitruck, KathrinBreitruck; Obkircher, Markus
2017-09-01
In recent years, quantitative NMR (qNMR) spectroscopy has become one of the most important tools for content determination of organic substances and quantitative evaluation of impurities. Using Certified Reference Materials (CRMs) as internal or external standards, the extensively used qNMR method can be applied for purity determination, including unbroken traceability to the International System of Units (SI). The implementation of qNMR toward new application fields, e.g., metabolomics, environmental analysis, and physiological pathway studies, brings along more complex molecules and systems, thus making use of 1H qNMR challenging. A smart workaround is possible by the use of other NMR active nuclei, namely 31P and 19F. This article presents the development of three classes of qNMR CRMs based on different NMR active nuclei (1H, 31P, and 19F), and the corresponding approaches to establish traceability to the SI through primary CRMs from the National Institute of Standards and Technology and the National Metrology Institute of Japan. These TraceCERT® qNMR CRMs are produced under ISO/IEC 17025 and ISO Guide 34 using high-performance qNMR.
Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan
2015-01-01
The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p+-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I–V ) curves combined with the temperature dependence of the I–V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole–Frenkel (P–F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM. PMID:26508086
Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan
2015-10-28
The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.
NASA Astrophysics Data System (ADS)
Ritt, Patrick J.
The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward diffusion of oxygen with an external Al2O3 layer and effectively reduced the activity of Si in the underlying glass. Thus, the Mo-Si-B based coating is established as a viable protective coating for oxidation and corrosion protection for next-generation aerospace and aeronautical materials.
Dybkaer, René
2002-03-01
The "unit" for "enzymic activity" (U = 1 micromol/min) was recommended by the International Union of Biochemistry and Molecular Biology (IUB) in 1961 and is widely used in medical laboratory reports. The general trend in metrology, however, is toward global standardization through defining units coherent with the International System of Units (SI). Several proposals were advanced from the IFCC, International Union of Pure and Applied Chemistry, and IUB regarding the definition for enzymic activity as well as the terms for kind-of-quantity, units, symbol, and dimension. In 1977, international agreement was reached between these bodies and WHO that "catalytic activity" (z), of a catalyst in a given system is defined by the rate of conversion in a measuring system (in mol/s) and expressed in "katal" (symbol, kat; equal to 1 mol/s). The katal is invariant of the measurement procedure, but the numerical quantity value is not. Gaining support for the katal from the final arbiter, the General Conference on Weights and Measures, was slow, but Resolution 12 of 1999 adopted the katal (symbol, kat) as a special name and symbol for the SI-derived unit, mol/s, used in measuring catalytic activity. Laboratory results for amounts of catalysts, including enzymes, measured by their catalytic activity can now officially be expressed in katals and are traceable to the SI provided that the specified indicator reaction reflects first-order kinetics. The conversion from "unit" is: 1 U = 16.667 x 10(-9) kat. Further derived quantities have coherent units such as kat/L, kat/kg, and kat/kat = 1.
Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings.
Landskron, Kai; Hatton, Benjamin D; Perovic, Doug D; Ozin, Geoffrey A
2003-10-10
A periodic mesoporous organosilica composed of interconnected three-ring [Si(CH2)]3 units built of three SiO2(CH2)2 tetrahedral subunits is reported. It represents the archetype of a previously unknown class of nanocomposite materials in which two bridging organic groups are bound to each silicon atom. It can be obtained with powder and oriented film morphologies. The nanocomposite is self-assembled from the cyclic three-ring silsesquioxane [(EtO)2Si(CH2)]3 precursor and a surfactant mesophase to give a well-ordered mesoporous framework. Low dielectric constants and good mechanical stability of the films were measured, making this material interesting for microelectronic applications. Methylene group reactivity of the three-ring precursor provides entry to a family of nanocomposites, exemplified by the synthesis and self-assembly of [(EtO)2Si(CHR)][(EtO)2Si(CH2)]2 (where R indicates iodine, bromine, or an ethyl group).
NASA Astrophysics Data System (ADS)
Hung, Cheng-Chun; Lin, Yow-Jon
2018-01-01
The effect of (NH4)2S x treatment on the surface properties of SiO2 is studied. (NH4)2S x treatment leads to the formation of S-Si bonds on the SiO2 surface that serves to reduce the number of donor-like trap states, inducing the shift of the Fermi level toward the conduction band minimum. A finding in this case is the noticeably reduced value of the SiO2 capacitance as the sulfurated layer is formed at the SiO2 surface. The effect of SiO2 layers with (NH4)2S x treatment on the carrier transport behaviors for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. The pentacene/as-cleaned SiO2-based OTFT shows depletion-mode behavior, whereas the pentacene/(NH4)2S x -treated SiO2-based OTFT exhibits enhancement-mode behavior. Experimental identification confirms that the depletion-/enhancement-mode conversion is due to the dominance competition between donor-like trap states in SiO2 near the pentacene/SiO2 interface and acceptor-like trap states in the pentacene channel. A sulfurated layer between pentacene and SiO2 is expected to give significant contributions to carrier transport for pentacene/SiO2-based OTFTs.
NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prša, Andrej; Harmanec, Petr; Torres, Guillermo
In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the timemore » of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.« less
Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3
NASA Astrophysics Data System (ADS)
Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G.
2016-08-01
In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.
The SI Metric System and Practical Applications.
ERIC Educational Resources Information Center
Carney, Richard W.
Intended for use in the technical program of a technical institute or community college, this student manual is designed to provide background in the metric system contributing to employability. Nine units are presented with objectives stated for each unit followed by questions or exercises. (Printed answers are supplied when necessary.) Unit 1…
Lee, Soo Hyeon; Chung, Bong Hyun; Park, Tae Gwan; Nam, Yoon Sung; Mok, Hyejung
2012-07-17
Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi) processing. As a result, siRNA offers a potential strategy for treatment of many human diseases. However, due to inefficient delivery to cells and off-target effects, the clinical application of therapeutic siRNA has been very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. In this Account, we describe several strategies for efficient siRNA delivery and selective gene silencing. We took advantage of facile chemical conjugation and complementary hybridization to design novel siRNA-based micro- and nanostructures. Using chemical crosslinkers and hydrophobic/hydrophilic polymers at the end of siRNA, we produced various RNA-based structures, including siRNA block copolymers, micelles, linear siRNA homopolymers, and microhydrogels. Because of their increased charge density and flexibility compared with conventional siRNA, these micro- and nanostructures can form polyelectrolyte complexes with poorly charged and biocompatible cationic carriers that are both more condensed and more homogenous than the complexes formed in other carrier systems. In addition, the fabricated siRNA-based structures are linked by cleavable disulfide bonds for facile generation of original siRNA in the cytosol and for target-specific gene silencing. These newly developed siRNA-based structures greatly enhance intracellular uptake and gene silencing both in vitro and in vivo, making them promising biomaterials for siRNA therapeutics.
2013-01-01
MnSi~1.7 nanowires (NWs) with a single orientation and a large aspect ratio have been formed on a Si(110) surface with the molecular beam epitaxy method by a delicate control of growth parameters, such as temperature, deposition rate, and deposition time. Scanning tunneling microscopy (STM) was employed to study the influence of these parameters on the growth of NWs. The supply of free Si atoms per unit time during the silicide reaction plays a critical role in the growth kinetics of the NWs. High growth temperature and low deposition rate are favorable for the formation of NWs with a large aspect ratio. The orientation relationship between the NWs and the reconstruction rows of the Si(110) surface suggests that the NWs grow along the 11¯0 direction of the silicon substrate. High-resolution STM and backscattered electron scanning electron microscopy images indicate that the NWs are composed of MnSi~1.7. PMID:23339353
Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
NASA Astrophysics Data System (ADS)
Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji
2018-06-01
Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).
Epitaxial growth of CZT(S,Se) on silicon
Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu
2016-03-15
Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.
Amorphous silicon research. Final technical progress report, 1 August 1994--28 February 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S
1998-05-01
This report describes the status and accomplishments of work performed under this subcontract by United Solar Systems. United Solar researchers explored several new deposition regimes/conditions to investigate their effect on material/device performance. To facilitate optimum ion bombardment during growth, a large parameter space involving chamber pressure, rf power, and hydrogen dilution were investigated. United Solar carried out a series of experiments using discharge modulation at various pulsed-plasma intervals to study the effect of Si-particle incorporation on solar cell performance. Hydrogen dilution during deposition is found to improve both the initial and stable performance of a-Si and a-SiGe alloy cells. Researchersmore » conducted a series of temperature-ramping experiments on samples prepared with high and low hydrogen dilutions to study the effect of hydrogen effusion on solar cell performance. Using an internal photoemission method, the electrical bandgap of a microcrystalline p layer used in high-efficiency solar cells was measured to be 1.6 eV. New measurement techniques were developed to evaluate the interface and bulk contributions of losses to solar cell performance. Researchers replaced hydrogen with deuterium and found deuterated amorphous silicon alloy solar cells exhibit reduced light-induced degradation. The incorporation of a microcrystalline n layer in a multijunction cell is seen to improve cell performance. United Solar achieved a world-record single-junction a-Si alloy stable cell efficiency of 9.2% with an active area of 0.25 cm{sup 2} grown with high hydrogen dilution. They also achieved a world-record triple-junction, stable, active-area cell efficiency of 13.0% with an active area of 0.25 cm{sup 2}.« less
Yang, Xiao; Ji, Li; Zou, Xingli; Lim, Taeho; Zhao, Ji; Yu, Edward T; Bard, Allen J
2017-11-20
Electrodeposition of Si films from a Si-containing electrolyte is a cost-effective approach for the manufacturing of solar cells. Proposals relying on fluoride-based molten salts have suffered from low product quality due to difficulties in impurity control. Here we demonstrate the successful electrodeposition of high-quality Si films from a CaCl 2 -based molten salt. Soluble Si IV -O anions generated from solid SiO 2 are electrodeposited onto a graphite substrate to form a dense film of crystalline Si. Impurities in the deposited Si film are controlled at low concentrations (both B and P are less than 1 ppm). In the photoelectrochemical measurements, the film shows p-type semiconductor character and large photocurrent. A p-n junction fabricated from the deposited Si film exhibits clear photovoltaic effects. This study represents the first step to the ultimate goal of developing a cost-effective manufacturing process for Si solar cells based on electrodeposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Savic, Ivana; Mingo, Natalio; Donadio, Davide; Galli, Giulia
2010-03-01
It has been recently proposed that Si and SiGe based nanostructured materials may exhibit low thermal conductivity and overall promising properties for thermoelectric applications. Hence there is a considerable interest in developing accurate theoretical and computational methods which can help interpret recent measurements, identify the physical origin of the reduced thermal conductivity, as well as shed light on the interplay between disorder and nanostructuring in determining a high figure of merit. In this work, we investigate the capability of an atomistic Green's function method [1] to describe phonon transport in several types of Si and SiGe based systems: amorphous Si, SiGe alloys, planar and nanodot Si/SiGe multilayers. We compare our results with experimental data [2,3], and with the findings of molecular dynamics simulations and calculations based on the Boltzmann transport equation. [1] I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008). [2] S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). [3] G. Pernot et al., submitted.
Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke
2011-01-01
Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-01-01
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678
Laser etching of groove structures with micro-optical fiber-enhanced irradiation
2012-01-01
A microfiber is used as a laser-focusing unit to fabricate a groove structure on TiAlSiN surfaces. After one laser pulse etching, a groove with the minimum width of 265 nm is manufactured at the area. This technique of microfabricating the groove in microscale is studied. Based on the near-field intensity enhancement at the contact area between the fiber and the surface during the laser irradiation, simulation results are also presented, which agree well with the experimental results. PMID:22713521
Kaumalapau Harbor, Hawaii, Breakwater Repair
2012-05-01
agricultural economy to an economy based on tourism . Primary use of the harbor changed from the export of pineapple to the import of fuel and goods to...unit. The pulse-velocity measurement apparatus consists of a transmitter and receiver connected to electronic circuitry that generates a pulse sent...performance indices include a ME of -0.43 ft, RMSE of 0.66 ft and SI ERDC/CHL TR-12-7 86 of 0.24. In other words , the Maui SWAN model will perform as good
Monolithically Integrated SiGe/Si PIN-HBT Front-End Transimpedance Photoreceivers
NASA Technical Reports Server (NTRS)
Rieh, J.-S.; Qasaimeh, O.; Klotzkin, D.; Lu, L.-H.; Katehi, L. P. B.; Yang, K.; Bhattacharya, P.; Croke, E. T.
1997-01-01
The demand for monolithically integrated photoreceivers based on Si-based technology keeps increasing as low cost and high reliability products are required for the expanding commercial market. Higher speed and wider operating frequency range are expected when SiGe/Si heterojunction is introduced to the circuit design. In this paper, a monolithic SiGe/Si PIN-HBT front-end transimpedance photoreceiver is demonstrated for the first time. For this purpose, mesa-type SiGe/Si PIN-HBT technology was developed. Fabricated HBTs exhibit f(sub max) of 34 GHz with DC gain of 25. SiGe/Si PIN photodiodes, which share base and collector layers of HBTs, demonstrate responsivity of 0.3 A/W at lambda=850 nm and bandwidth of 450 MHz. Based on these devices, single- and dual-feedback transimpedance amplifiers were fabricated and they exhibited the bandwidth of 3.2 GHz and 3.3 GHz with the transimpedance gain of 45.2 dB(Omega) and 47.4 dB(Omega) respectively. Monolithically integrated single-feedback PIN-HBT photoreceivers were implemented and the bandwidth was measured to be approx. 0.5 GHz, which is limited by the bandwidth of PIN photodiodes.
Scale and the evolutionarily based approximate number system: an exploratory study
NASA Astrophysics Data System (ADS)
Delgado, Cesar; Jones, M. Gail; You, Hye Sun; Robertson, Laura; Chesnutt, Katherine; Halberda, Justin
2017-05-01
Crosscutting concepts such as scale, proportion, and quantity are recognised by U.S. science standards as a potential vehicle for students to integrate their scientific and mathematical knowledge; yet, U.S. students and adults trail their international peers in scale and measurement estimation. Culturally based knowledge of scale such as measurement units may be built on evolutionarily-based systems of number such as the approximate number system (ANS), which processes approximate representations of numerical magnitude. ANS is related to mathematical achievement in pre-school and early elementary students, but there is little research on ANS among older students or in science-related areas such as scale. Here, we investigate the relationship between ANS precision in public school U.S. seventh graders and their accuracy estimating the length of standard units of measurement in SI and U.S. customary units. We also explored the relationship between ANS and science and mathematics achievement. Accuracy estimating the metre was positively and significantly related to ANS precision. Mathematics achievement, science achievement, and accuracy estimating other units were not significantly related to ANS. We thus suggest that ANS precision may be related to mathematics understanding beyond arithmetic, beyond the early school years, and to the crosscutting concepts of scale, proportion, and quantity.
NASA Astrophysics Data System (ADS)
Leclaire, A.; Raveau, B.
1988-08-01
A germanosilicophosphate Ge 3P 6Si 2O 25 has been isolated. Its structure was solved from a single-crystal study in the space group P overline31c . Its cell parameters are a = b = 7.994(1) Å, c = 16.513(2) Å, Z = 2. The refinement by full-matrix least-squares calculations leads to R = 0.043 with 686 independent reflections. The structure of this oxide is built up from corner-sharing PO 4 and SiO 4 tetrahedra and GeO 6 octahedra. One observes a feature common to several silicophosphates: the presence of the structural unit P 6Si 2O 25 built up from a disilicate group sharing its corners with six PO 4 tetrahedra. The structural relationships between this oxide and the silicophosphates AMo 3P 6Si 2O 25 and Si 3P 6Si 2O 25 (or Ge 3P 6 Ge 2O 25) are described.
NASA Astrophysics Data System (ADS)
Nagae, Yuki; Kurosawa, Masashi; Shibayama, Shigehisa; Araidai, Masaaki; Sakashita, Mitsuo; Nakatsuka, Osamu; Shiraishi, Kenji; Zaima, Shigeaki
2016-08-01
We have carried out density functional theory (DFT) calculation for Si1- x Sn x alloy and investigated the effect of the displacement of Si and Sn atoms with strain relaxation on the lattice constant and E- k dispersion. We calculated the formation probabilities for all atomic configurations of Si1- x Sn x according to the Boltzmann distribution. The average lattice constant and E- k dispersion were weighted by the formation probability of each configuration of Si1- x Sn x . We estimated the displacement of Si and Sn atoms from the initial tetrahedral site in the Si1- x Sn x unit cell considering structural relaxation under hydrostatic pressure, and we found that the breaking of the degenerated electronic levels of the valence band edge could be caused by the breaking of the tetrahedral symmetry. We also calculated the E- k dispersion of the Si1- x Sn x alloy by the DFT+U method and found that a Sn content above 50% would be required for the indirect-direct transition.
Growth of amorphous and epitaxial ZnSiP 2–Si alloys on Si
Martinez, Aaron D.; Miller, Elisa M.; Norman, Andrew G.; ...
2018-01-30
ZnSiP 2is a wide band gap material lattice matched with Si, with potential for Si-based optoelectronics. Here, amorphous ZnSiP 2–Si alloys are grown with tunable composition. Films with Si-rich compositions can be crystallized into epitaxial films.
Yu, Yang; Stevensson, Baltzar; Edén, Mattias
2017-10-19
The short and intermediate range structures of a large series of bioactive borophosphosilicate (BPS) glasses were probed by solid-state nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations. Two BPS glass series were designed by gradually substituting SiO 2 by B 2 O 3 in the respective phosphosilicate base compositions 24.1Na 2 O-23.3CaO-48.6SiO 2 -4.0P 2 O 5 ("S49") and 24.6Na 2 O-26.7CaO-46.1SiO 2 -2.6P 2 O 5 ("S46"), the latter constituting the "45S5 Bioglass" utilized for bone grafting applications. The BPS glass networks are built by interconnected SiO 4 , BO 4 , and BO 3 moieties, whereas P exists mainly as orthophosphate anions, except for a minor network-associated portion involving P-O-Si and P-O-B [4] motifs, whose populations were estimated by heteronuclear 31 P{ 11 B} NMR experimentation. The high Na + /Ca 2+ contents give fragmented glass networks with large amounts of nonbridging oxygen (NBO) anions. The MD-generated glass models reveal an increasing propensity for NBO accommodation among the network units according to BO 4 < SiO 4 < BO 3 ≪ PO 4 . The BO 4 /BO 3 intermixing was examined by double-quantum-single-quantum correlation 11 B NMR experiments, which evidenced the presence of all three BO 3 -BO 3 , BO 3 -BO 4 , and BO 4 -BO 4 connectivities, with B [3] -O-B [4] bridges dominating. Notwithstanding that B [4] -O-B [4] linkages are disfavored, both NMR spectroscopy and MD simulations established their presence in these modifier-rich BPS glasses, along with non-negligible B [4] -NBO contacts, at odds with the conventional structural view of borosilicate glasses. We discuss the relative propensities for intermixing of the Si/B/P network formers. Despite the absence of pronounced preferences for Si-O-Si bond formation, the glass models manifest subtle subnanometer-sized structural inhomogeneities, where SiO 4 tetrahedra tend to self-associate into small chain/ring motifs embedded in BO 3 /BO 4 -dominated domains.
Lim, Y A; Kim, H H; Joung, U S; Kim, C Y; Shin, Y H; Lee, S W; Kim, H J
2010-04-01
We developed a web-based program for a national surveillance system to determine baseline data regarding the supply and demand of blood products at sentinel hospitals in South Korea. Sentinel hospitals were invited to participate in a 1-month pilot-test. The data for receipts and exports of blood from each hospital information system were converted into comma-separated value files according to a specific conversion rule. The daily data from the sites could be transferred to the web-based program server using a semi-automated submission procedure: pressing a key allowed the program to automatically compute the blood inventory level as well as other indices including the minimal inventory ratio (MIR), ideal inventory ratio (IIR), supply index (SI) and utilisation index (UI). The national surveillance system was referred to as the Korean Blood Inventory Monitoring System (KBIMS) and the web-based program for KBIMS was referred to as the Blood Inventory Monitoring System (BMS). A total of 30 256 red blood cell (RBC) units were submitted as receipt data, however, only 83% of the receipt data were submitted to the BMS server as export data (25 093 RBC units). Median values were 2.67 for MIR, 1.08 for IIR, 1.00 for SI, 0.88 for UI and 5.33 for the ideal inventory day. The BMS program was easy to use and is expected to provide a useful tool for monitoring hospital inventory levels. This information will provide baseline data regarding the supply and demand of blood products in South Korea.
Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.
Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guoping; Hou, Xinmei; Chou, Kuo-Chih
2018-08-31
In this paper, the fabrication and thermal conductivity (TC) of water-based nanofluids using boron (B)-doped SiC as dispersions are reported. Doping B into the β-SiC phase leads to the shrinkage of the SiC lattice due to the substitution of Si atoms (0.134 nm radius) by smaller B atoms (0.095 nm radius). The presence of B in the SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B-doped SiC nanoparticles are beneficial for the TC improvement of the nanofluids by using them as dispersions. Using B-doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement in stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. By dispersing B-doped SiC nanoparticles in water-based fluids, the TC of the as-prepared nanofluids containing only 0.3 vol.% SiC-B6 nanoparticles is remarkably raised to 39.3% at 30 °C compared to the base fluids, and is further enhanced with the increased temperature. The main reasons for the improvement in TC of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced TC of the SiC-B dispersions.
1994-03-04
WalerQC METHOD BANK 30104 79-0146 TRHICLOROE1Ifl.BEE(TE) 0.j U11.01 WalerQC UShODSBAIN 301 04W 79-0146 TRIILMOROBHYLBEE (TCE) IU 1101.. alerQC METHOD...OOUL1!ANE -SS 89 %IC WSWeQC METHOD BANK 3020(1400 22M 0-Si-S 2*OOCLOROBUTANE -SI 902 sm WalerQC METHOD BLANK 8020(1400 22M 0-365 1.4003C2LOROSUfANE...SS 920 %wI WmerQC METHMOD BANK 0102(1400 CH 10-56-5 I.OX4-D01OOSUANE -SI IisBc WaNer C METHOD BLANK 8100(1400 22 10-5&5 2.40 EHOROSUTANE -SI 92 IC
2001-05-01
This appendix presents tables of some of the more common conversion factors for units of measure used throughout Current Protocols manuals, as well as prefixes indicating powers of ten for SI units. Another table gives conversions between temperatures on the Celsius (Centigrade) and Fahrenheit scales.
High-performance silicon nanowire bipolar phototransistors
NASA Astrophysics Data System (ADS)
Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping
2016-07-01
Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.
The NIST Detector-Based Luminous Intensity Scale
Cromer, C. L.; Eppeldauer, G.; Hardis, J. E.; Larason, T. C.; Ohno, Y.; Parr, A. C.
1996-01-01
The Système International des Unités (SI) base unit for photometry, the candela, has been realized by using absolute detectors rather than absolute sources. This change in method permits luminous intensity calibrations of standard lamps to be carried out with a relative expanded uncertainty (coverage factor k = 2, and thus a 2 standard deviation estimate) of 0.46 %, almost a factor-of-two improvement. A group of eight reference photometers has been constructed with silicon photodiodes, matched with filters to mimic the spectral luminous efficiency function for photopic vision. The wide dynamic range of the photometers aid in their calibration. The components of the photometers were carefully measured and selected to reduce the sources of error and to provide baseline data for aging studies. Periodic remeasurement of the photometers indicate that a yearly recalibration is required. The design, characterization, calibration, evaluation, and application of the photometers are discussed. PMID:27805119
Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy.
Zheng, Meng; Tao, Wei; Zou, Yan; Farokhzad, Omid C; Shi, Bingyang
2018-05-01
Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pauling, Linus
1988-01-01
A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, J. M.; Čermák, P.; Fajt, L.
The SPT collaboration has been investigating the applicability of pixel detectors in the detection of two neutrino double electron capture (2νEC/EC) in{sup 106}Cd. The collaboration has proposed a Silicon Pixel Telescope (SPT) where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. The Pixel detector gives spatial information along with energy of the particle, thus helps to identify and remove the background signals. Four units of SPT prototype (using 0.5 and 1 mm Si sensors) were fabricated and installed in the LSM underground laboratory, France. Recent progress in the SPT experiment and preliminarymore » results from background measurements are presented.« less
Anthropogenic Influences on Estuarine Sedimentation in Salem Sound, MA
NASA Astrophysics Data System (ADS)
Kristiansen, E. R.; Hubeny, J. B.; Zhu, J.; Olsen, C. R.; Warren, B.
2010-12-01
The Salem Sound watershed (MA) historically has been a region of significant industrial activity. Two specific point sources for pollution in the region are the South Essex Sewerage District (SESD) wastewater treatment facility, and the Salem Harbor Power Station, a coal-burning power plant. This study tests the hypothesis that human impact on Salem Sound is preserved in the sediment record. A sediment core was taken near the location of the SESD outfall. This core was analyzed for content of organic matter via loss on ignition (LOI), as well as magnetic susceptibility. An age model was constructed using 137Cs and 210Pb. Below 31 cm (mid-nineteenth century), the core contains mean background values of 2.7% LOI and values increase above this depth. At 21cm, a rapid increase in organic matter concentration from 6.6% to 11.8% is observed. This depth corresponds to ~1905 which is contemporaneous with construction of the outfall pipe discharging raw wastewater. At a depth of 7 cm (mid 1970s), LOI values decrease from 11.7% to 9.3%. This shift is likely attributed to SESD beginning primary treatment in 1977. LOI values continue to drop at 2cm (late 1990s), from 7.8% to 6.3%, and remain at 6.1% to the modern surface, likely a result of SESD upgrading to secondary treatment in 1998. Magnetic susceptibility also shows variability down core that is likely attributed to human impact. At a depth of approximately 20cm susceptibility values start increasing from 4.2 SI units until they reach a peak at 15cm (8.8 SI units). This increase can be attributed to the industrial revolution and increased industrial activity in the area. A decrease in susceptibility is observed at 15cm to 11cm (5.6 SI units) that may be attributed to the Great Depression and less fossil fuels being burned due to the economic situation. At approximately 10cm and 8.0 SI units, an increasing trend is first observed. This trend continues up to the modern surface where it eventually reaches 19.9 SI units. This depth of 10cm coincides with the construction of the Salem Harbor Station in 1952, and the increasing trend can therefore most likely be explained by the proximal power plant burning coal.
Developing and Delivering National-Scale Gridded Phenology Data Products
NASA Astrophysics Data System (ADS)
Marsh, L.; Crimmins, M.; Crimmins, T. M.; Gerst, K.; Rosemartin, A.; Switzer, J.; Weltzin, J. F.
2016-12-01
The USA National Phenology Network (USA-NPN; www.usanpn.org) is now producing and freely delivering daily maps and short-term forecasts of accumulated growing degree days and spring onset dates (based on the Extended Spring Indices) at fine spatial scale for the conterminous United States. These data products have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, determining planting dates, anticipating allergy outbreaks and planning agricultural harvest dates. Accumulated growing degree day (AGDD) maps were selected because accumulated temperature is a strong driver of phenological transitions in plants and animals, including leaf-out, flowering, fruit ripening and migration. The Extended Spring Indices (SI-x) are based on predictive climate models for lilac and honeysuckle leaf and bloom; they have been widely used to summarize changes in the timing of spring onset. The SI-x is used as a national indicator of climate change impacts by the US Global Change Research Program and the Environmental Protection Agency. The USA-NPN is a national-scale program that supports scientific advancement and decision-making by collecting, storing, and sharing phenology data and information. To best serve various audiences, the AGDD and SI-x gridded maps are available in various formats through a range of access tools, including the USA-NPN online visualization tool as well as industry standards compliant web services. We plan to expand the suite of gridded map products offered by the USA-NPN to include predictive maps of phenological transitions for additional plant and animal species at fine spatial and temporal resolution in the near future. USA-NPN invites you to use freely available daily and short-term forecast maps of accumulated growing degree days and spring onset dates at fine spatial scale for the conterminous United States.
The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units
ERIC Educational Resources Information Center
Heras, Jose A.; Baez, G.
2009-01-01
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…
The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Hanak, J. J.; Kaschmitter, J. L.
1991-05-01
An ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) has been identified as a potential low-cost power source for small satellites. We have conducted a survey of the status of the a-Si PV array technology with respect to present and future performance, availability, cost and risks. For existing, experimental array 'blankets' made of commercial cell material, utilizing metal foil substrates, the BOL performance at AM0 and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated EOL power output after 10 years in a nominal low-earth orbit would be 80 percent of BOL, the degradation being due to largely light-induced effects (minus 10 to minus 15 percent) and in part (minus 5 percent) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing US national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long-range development program toward developing of this important power source for space. One new US developer has emerged as a future potential supplier of a-Si PV devices on thin, polyimide substrates.
Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films
NASA Astrophysics Data System (ADS)
Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John
2017-02-01
We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.
NASA Astrophysics Data System (ADS)
Song, Pei; Jiang, Chun
2013-05-01
The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.
Accurate Radiometry from Space: An Essential Tool for Climate Studies
NASA Technical Reports Server (NTRS)
Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma
2011-01-01
The Earth s climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a primary standard and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a metrology laboratory in space . Keywords: climate change; Earth observation; satellites; radiometry; solar irradiance
Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
Carrez, Philippe; Ferré, Denise; Cordier, Patrick
2007-03-01
The dynamics of the Earth's interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a 'post-perovskite' phase may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy, but the mechanical properties of these mineralogical phases are largely unknown. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations. A quantitative description of flow in the Earth's mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls-Nabarro model. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.
Nano-phase separation and structural ordering in silica-rich mixed network former glasses.
Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng
2018-06-13
We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.
The molecular characterisation of a Sida-infecting begomovirus from Jamaica.
Stewart, Cheryl; Kon, Tatsuya; Rojas, Maria; Graham, André; Martin, Darren; Gilbertson, Robert; Roye, Marcia
2014-02-01
The complete DNA sequence of both genome components of a new begomovirus (Sida golden mosaic Buckup virus-[Jamaica:St. Elizabeth:2004]; SiGMBuV-[JM:SE:04]) was determined from a field-infected Sida sp. sample from Buckup, St. Elizabeth, Jamaica. Phylogenetically, both genome components of SiGMBuV-[JM:SE:04] are most closely related to malvaceous weed-infecting Floridian and Mexican begomoviruses. Its DNA-B is a recombinant molecule, the majority of which was derived from a virus resembling Sida yellow mosaic Yucatan virus-[Mexico:Yucatan:2005] (SiYMYuV-[MX:Yuc:05]), while nucleotides 43-342 were derived from a virus resembling Sida golden mosaic virus-[United States of America:Florida] (SiGMV-[US:Flo]). Symptomatic infectivity of our cloned SiGMBuV-[JM:SE:04] components was confirmed in Nicotiana benthamiana.
Flat-plate collector research area: Silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1982-01-01
Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.
NASA Astrophysics Data System (ADS)
Kowase, Takayuki; Hori, Keisuke; Hasegawa, Kei; Momma, Toshiyuki; Noda, Suguru
2017-09-01
Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%-60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature ≥2000 °C, much higher than the melting point of Si (1414 °C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/gfilm, 230 mAh/cm3, and 0.644 mAh/cm2 with a moderate Si-based performance of 863 mAh/gSi at the 100th cycle.
The Capital Intensity of Photovoltaics Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basore, Paul
2015-10-19
Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.
NASA Astrophysics Data System (ADS)
Hasanah, L.; Suhendi, E.; Khairrurijal
2018-05-01
Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.
Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics
NASA Astrophysics Data System (ADS)
Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak
2016-12-01
To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.
Crystal structure of low-symmetry rondorfite
NASA Astrophysics Data System (ADS)
Rastsvetaeva, R. K.; Zadov, A. E.; Chukanov, N. V.
2008-03-01
The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca16[Mg2(Si7Al)(O31OH)]Cl4 from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Å, b = 15.110(2) Å, c = 15.092(2) Å, α = 90.06(1)°, β = 90.01(1)°, γ = 89.93(1)°, Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3σ( F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group ( a = 15.105 Å, sp. gr. Fd overline 3 , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3σ( F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.
Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.
Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V
2008-12-22
A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.
NASA Astrophysics Data System (ADS)
Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun
2017-10-01
We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.
Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems
NASA Astrophysics Data System (ADS)
Smith, E. P. G.; Bornfreund, R. E.; Kasai, I.; Pham, L. T.; Patten, E. A.; Peterson, J. M.; Roth, J. A.; Nosho, B. Z.; De Lyon, T. J.; Jensen, J. E.; Bangs, J. W.; Johnson, S. M.; Radford, W. A.
2006-02-01
Raytheon Vision Systems (RVS) is developing two-color and large format single color FPAs fabricated from molecular beam epitaxy (MBE) grown HgCdTe triple layer heterojunction (TLHJ) wafers on CdZnTe substrates and double layer heterojunction (DLHJ) wafers on Si substrates, respectively. MBE material growth development has resulted in scaling TLHJ growth on CdZnTe substrates from 10cm2 to 50cm2, long-wavelength infrared (LWIR) DLHJ growth on 4-inch Si substrates and the first demonstration of mid-wavelength infrared (MWIR) DLHJ growth on 6-inch Si substrates with low defect density (<1000cm -2) and excellent uniformity (composition<0.1%, cut-off wavelength Δcenter-edge<0.1μm). Advanced FPA fabrication techniques such as inductively coupled plasma (ICP) etching are being used to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. Recent two-color detectors with MWIR and LWIR cut-off wavelengths of 5.5μm and 10.5μm, respectively, exhibit significant improvement in 78K LW performance with >70% quantum efficiency, diffusion limited reverse bias dark currents below 300pA and RA products (zero field-of-view, +150mV bias) in excess of 1×103 Ωcm2. Two-color 20μm unit-cell 1280×720 MWIR/LWIR FPAs with pixel response operability approaching 99% have been produced and high quality simultaneous imaging of the spectral bands has been achieved by mating the FPA to a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). Large format mega pixel 20μm unit-cell 2048×2048 and 25μm unit-cell 2560×512 FPAs have been demonstrated using DLHJ HgCdTe growth on Si substrates in the short wavelength infrared (SWIR) and MWIR spectral range. Recent imaging of 30μm unit-cell 256×256 LWIR FPAs with 10.0-10.7μm 78K cut-off wavelength and pixel response operability as high as 99.7% show the potential for extending HgCdTe/Si technology to LWIR wavelengths.
Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao
2016-10-15
Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA release in the same delivery system could be effectively solved, resulting in enhanced siRNA silencing efficiency in tumor cells. To our knowledge, the described work is the first demonstration of a siRNA delivery system using a hypoxia trigger for regulation of siRNA release, which represents a new strategy for tumor-targeted therapy, and it is expected that this meaningful strategy must be widely applied in the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, W.L.; Vanheusden, K.; Fleetwood, D.M.
Recently, the authors have demonstrated that annealing Si/SiO{sub 2}/Si structures in a hydrogen containing ambient introduces mobile H{sup +} ions into the buried SiO{sub 2} layer. Changes in the H{sup +} spatial distribution within the SiO{sub 2} layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO{sub 2}/Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO{sub 2} structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memorymore » that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO{sub 2}/Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties.« less
NASA Astrophysics Data System (ADS)
Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan
2014-09-01
Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.
Solid solubility of Yb 2Si 2O 7 in β-, γ- and δ-Y 2Si 2O 7
NASA Astrophysics Data System (ADS)
Fernández-Carrión, A. J.; Alba, M. D.; Escudero, A.; Becerro, A. I.
2011-07-01
This paper examines the structural changes with temperature and composition in the Yb 2Si 2O 7-Y 2Si 2O 7 system; members of this system are expected to form in the intergranular region of Si 3N 4 and SiC structural ceramics when sintered with the aid of Yb 2O 3 and Y 2O 3 mixtures. A set of different compositions have been synthesised using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1650 °C during different times. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of Yb 2Si 2O 7 in β-Y 2Si 2O 7 and γ-Y 2Si 2O 7. Although Yb 2Si 2O 7 shows a unique stable polymorph (β), Yb 3+ is able to replace Y 3+ in γ-Y 2Si 2O 7 and δ-Y 2Si 2O 7 at high temperatures and low Yb contents. IR results confirm the total solid solubility in the system and suggest a constant SiOSi angle of 180° in the Si 2O 7 unit across the system. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β- RE2Si 2O 7 polymorph, with γ- RE2Si 2O 7 and δ- RE2Si 2O 7 showing reduced stability fields. The diagram is in accordance with Felsche's diagram if average ionic radii are assumed for the members of the solid solution at any temperature, as long as the β-γ phase boundary is slightly shifted towards higher radii.
NASA Astrophysics Data System (ADS)
Golubkova, Anastasia; Schmidt, Max W.; Connolly, James A. D.
2016-05-01
Natural moissanite (SiC) is reported from mantle-derived samples ranging from lithospheric mantle keel diamonds to serpentinites to podiform chromitites in ophiolites related to suprasubduction zone settings (Luobusa, Dongqiao, Semail, and Ray-Iz). To simulate ultra-reducing conditions and the formation of moissanite, we compiled thermodynamic data for alloys (Fe-Si-C and Fe-Cr), carbides (Fe3C, Fe7C3, SiC), and Fe-silicides; these data were augmented by commonly used thermodynamic data for silicates and oxides. Computed phase diagram sections then constrain the P- T- fO2 conditions of SiC stability in the upper mantle. Our results demonstrate that: Moissanite only occurs at oxygen fugacities 6.5-7.5 log units below the iron-wustite buffer; moissanite and chromite cannot stably coexist; increasing pressure does not lead to the stability of this mineral pair; and silicates that coexist with moissanite have X Mg > 0.99. At upper mantle conditions, chromite reduces to Fe-Cr alloy at fO2 values 3.7-5.3 log units above the moissanite-olivine-(ortho)pyroxene-carbon (graphite or diamond) buffer (MOOC). The occurrence of SiC in chromitites and the absence of domains with almost Fe-free silicates suggest that ultra-reducing conditions allowing for SiC are confined to grain scale microenvironments. In contrast to previous ultra-high-pressure and/or temperature hypotheses for SiC origin, we postulate a low to moderate temperature mechanism, which operates via ultra-reducing fluids. In this model, graphite-/diamond-saturated moderately reducing fluids evolve in chemical isolation from the bulk rock to ultra-reducing methane-dominated fluids by sequestering H2O into hydrous phases (serpentine, brucite, phase A). Carbon isotope compositions of moissanite are consistent with an origin of such fluids from sediments originally rich in organic compounds. Findings of SiC within rocks mostly comprised by hydrous phases (serpentine + brucite) support this model. Both the hydrous phases and the limited diffusive equilibration of SiC with most minerals in the rocks indicate temperatures below 700-800 °C. Moissanite from mantle environments is hence a mineral that does not inform on pressure but on a low to moderate temperature environment involving ultra-reduced fluids. Any mineral in equilibrium with SiC could only contain traces of Fe2+ or Cr3+.
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres
2013-11-01
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.
NASA Astrophysics Data System (ADS)
Niu, Xuming; Sun, Zhigang; Song, Yingdong
2017-11-01
In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.
The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells
NASA Technical Reports Server (NTRS)
Hanak, Joseph J.; Kaschmitter, Jim
1991-01-01
Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.
Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions
2007-01-01
found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tóvári, E.; Csontos, M., E-mail: csontos@dept.phy.bme.hu; Kriváchy, T.
2014-09-22
The structural and magnetotransport characterization of graphene nanodevices exfoliated onto Si/SiO{sub 2}/SiN{sub x} heterostructures are presented. Improved visibility of the deposited flakes is achieved by optimal tuning of the dielectric film thicknesses. The conductance of single layer graphene Hall-bar nanostructures utilizing SiO{sub 2}/SiN{sub x} gate dielectrics were characterized in the quantum Hall regime. Our results highlight that, while exhibiting better mechanical and chemical stability, the effect of non-stoichiometric SiN{sub x} on the charge carrier mobility of graphene is comparable to that of SiO{sub 2}, demonstrating the merits of SiN{sub x} as an ideal material platform for graphene based nanoelectromechanical applications.
NASA Astrophysics Data System (ADS)
Ding, Yi; Yamada, Riku; Gresback, Ryan; Zhou, Shu; Pi, Xiaodong; Nozaki, Tomohiro
2014-12-01
Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5-65 J cm‒3 and the H2/SiCl4 ratio (1-10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed.
Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process
NASA Astrophysics Data System (ADS)
Li, Hui; Liu, Wenqing
2017-04-01
The different nanoprecipitates formed in a 6061 aluminum alloy during aging at 453 K (180 °C), with or without 168 hours of pre-natural aging (NA), and the age-hardening response of the alloy were investigated by atom probe tomography (APT) and hardness testing. A hardness plateau developed between 2 and 8 hours in both the artificial aging (AA) and artificial aging with pre-natural aging (NAAA) samples. The hardness of NAAA samples was lower than that of AA samples when artificially aged for the same time. A 168-hour NA led to the formation of solute atom clusters in the matrix. The NA accelerated the precipitation kinetics of the following AA. The solute atom clusters gave the highest hardness increment per unit volume fraction. The β″ precipitates were dominant in the samples at the hardness plateau. The average normalized Mg:Si ratios of the solute atom clusters and GP zones were near 1. The average Mg:Si ratio of β″ precipitates increased from 1.3 to 1.5 upon aging for 2 hours. The microstructural evolution of samples with or without NA and its influence on the strengthening effects are discussed based on the experimental results.
Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu
2017-10-28
Sodium borosilicate glasses Na 2 O-B 2 O 3 -SiO 2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO 4 and BO 4 (B IV ) and triangular BO 3 (B III ). One of the salient features of these compounds is the change of the B III /B IV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of B III /B IV with respect to the composition and the temperature.
Cyclic peptides and their interaction with peptide coated surfaces
NASA Astrophysics Data System (ADS)
Palmer, F.; Tünnemann, R.; Leipert, D.; Stingel, C.; Jung, G.; Hoffmann, V.
2001-05-01
Focusing on biochemical and pharmaceutical inhibitor systems the interaction of cyclic peptides with model peptides have been investigated by ATR-FTIR-spectroscopy. Information about the participation of special functional groups e.g. COOH, COO -, NH 3+ or peptide backbone was gathered by observing cyclohexapeptides (c(X 1LX 2LX 3)) which are interacting with covalently coated Si-ATR-crystals ( L-arginine, tripeptide I (aNS), tripeptide II (SNa)). To determine the interaction, further studies about the band sequence (1800-1500 cm -1) for non-adsorbed cyclohexapeptides and for the interaction with the silicon surface (SiOH) were necessary. The spectra of the interacting cyclohexapeptides with the SiOH-groups were treated like reference spectra for the evaluation of the peptide-peptide interaction. Based on these spectra, we can conclude that there is peptide-peptide interaction with the coating and not with the residual OH-groups. Determination of interaction mechanisms was done by spectra which represent adsorbed molecules only. The amount of adsorbed molecules was considerably less than a monolayer. Therefore the intensities of the spectra are about 10 -4 absorbance units. The spectra contain information about both changes of the coating and of the cyclohexapeptide.
Code of Federal Regulations, 2012 CFR
2012-01-01
... venting, external cooling by an ancillary system, or operational controls during transport. Natural...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person...
Code of Federal Regulations, 2011 CFR
2011-01-01
... venting, external cooling by an ancillary system, or operational controls during transport. Natural...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person...
Code of Federal Regulations, 2010 CFR
2010-01-01
... venting, external cooling by an ancillary system, or operational controls during transport. Natural...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person...
A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents.
Maes, Hermine H; Prom-Wormley, Elizabeth; Eaves, Lindon J; Rhee, Soo Hyun; Hewitt, John K; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G; Legrand, Lisa; Samek, Diana R; Murrelle, E Lenn; Silberg, Judy L; Miles, Donna R; Schieken, Richard M; Beunen, Gaston P; Thomis, Martine; Rose, Richard J; Dick, Danielle M; Boomsma, Dorret I; Bartels, Meike; Vink, Jacqueline M; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C
2017-04-01
Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across studies reflecting similar etiology of liability to initiate smoking across different cultures and time periods. Thus familial factors strongly contribute to individual differences in who starts to smoke with a gradual increase in the impact of genetic factors and a corresponding decrease in that of the shared environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cultivar variation in silicon accumulation and distribution in Petunia ×hybrida
USDA-ARS?s Scientific Manuscript database
Silicon (Si) is a plant-beneficial element that can alleviate the effects of abiotic and biotic stress. Plants are typically classified as Si accumulators or non-accumulators based on foliar Si concentrations (= 1% Si on a dry weight basis for accumulators). Based on this definition, most greenhou...
Huang, Chun; Kim, Ayoung; Chung, Dong Jae; Park, Eunjun; Young, Neil P; Jurkschat, Kerstin; Kim, Hansu; Grant, Patrick S
2018-05-09
Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO x nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO x helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiO x nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiO x layer and between the separator and the Si/SiO x layer improved electrical contact and reduced irreversible pulverization of the Si/SiO x significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.
High-performance silicon photonics technology for telecommunications applications.
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
High-performance silicon photonics technology for telecommunications applications
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-01-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. PMID:27877659
High-performance silicon photonics technology for telecommunications applications
NASA Astrophysics Data System (ADS)
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor
NASA Astrophysics Data System (ADS)
Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU
2018-03-01
The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.
MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth
NASA Technical Reports Server (NTRS)
O'Neill, Bridget; Jeanloz, Raymond
1994-01-01
Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.
Classification of andisol soil on robusta coffee plantation in Silima Pungga - Pungga District
NASA Astrophysics Data System (ADS)
Marbun, P.; Nasution, Z.; Hanum, H.; Karim, A.
2018-02-01
The survey study aims to classify the Inceptisol soil on Robusta coffee plantation in Silima Pugga-Pungga District, from Order level to Sub Group level. The study was conducted on location of sample soil profiles which were determined based on Soil Map Unit (SMU) with the main Andisol Order, i.e. SMU 12, SMU 15 and SMU 17 of 18 existing SMU. The soil profiles were described to determine the morphological characteristics of the soil, while the physical and chemical properties were done by laboratory analysis. The soil samples were taken from each horizon in each profile and analyzed in the laboratory in the form of soil texture, bulk density, pH H2O, pH KCl, pH NaF, C-organic, exchangeable bases (Ca2+, Mg2+, K+, Na+), ZPC (zero point charge), base saturation, cation exchange capasity (CEC), P-retention, Al-Oxalate (Al-O) and Si-Oxalate (Si-O). The results showed that the classification of Andisol soil based on Soil Taxonomy only has one Sub Group namely Typic Hapludand. It is expected that the results of this study can provide information for more appropriate land management in order to increase the production of Robusta coffee plant in Silima Pungga-Pungga Sub district.
The SI-Gap: How British Units Are Impeding Advances in STEM
ERIC Educational Resources Information Center
Jones, M. P.; Cook, Courtney J.
2017-01-01
The United States is one of only three countries in the world that remain uncommitted to the metric system. Perhaps to policymakers the decision to hang on to miles, pounds, and gallons is one of tradition. However, as a physics teacher I have seen firsthand how growing up with U.S. Customary Units (commonly called by the pseudonym "British…
ERIC Educational Resources Information Center
Delgado, Cesar
2013-01-01
Following a sociocultural perspective, this study investigates how students who have grown up using the SI (Systeme International d'Unites) (metric) or US customary (USC) systems of units for everyday use differ in their knowledge of scale and measurement. Student groups were similar in terms of socioeconomic status, curriculum, native language…
Idehara, Kenji; Yamagishi, Gaku; Yamashita, Kunihiko; Ito, Michio
2008-01-01
The murine local lymph node assay (LLNA) is an accepted and widely used method for assessing the skin-sensitizing potential of chemicals. Here, we describe a non-radio isotopic modified LLNA in which adenosine triphosphate (ATP) content is used as an endpoint instead of radioisotope (RI); the method is termed LLNA modified by Daicel based on ATP content (LLNA-DA). Groups of female CBA/JNCrlj mice were treated topically on the dorsum of both ears with test chemicals or a vehicle control on days 1, 2, and 3; an additional fourth application was conducted on day 7. Pretreatment with 1% sodium lauryl sulfate solution was performed 1 h before each application. On day 8, the amount of ATP in the draining auricular lymph nodes was measured as an alternative endpoint by the luciferin-luciferase assay in terms of bioluminescence (relative light units, RLU). A stimulation index (SI) relative to the concurrent vehicle control was derived based on the RLU value, and an SI of 3 was set as the cut-off value. Using the LLNA-DA method, 31 chemicals were tested and the results were compared with those of other test methods. The accuracy of LLNA-DA vs LLNA, guinea pig tests, and human tests was 93% (28/30), 80% (20/25), and 79% (15/19), respectively. The estimated concentration (EC) 3 value was calculated and compared with that of the original LLNA. It was found that the EC3 values obtained by LLNA-DA were almost equal to those obtained by the original LLNA. The SI value based on ATP content is similar to that of the original LLNA as a result of the modifications in the chemical treatment procedure, which contribute to improving the SI value. It is concluded that LLNA-DA is a promising non-RI alternative method for evaluating the skin-sensitizing potential of chemicals.
NASA Astrophysics Data System (ADS)
Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji
2018-04-01
It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.
Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.
Cui, Y; Chung, J; Nogami, J
2012-02-01
We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.
NASA Technical Reports Server (NTRS)
Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward
1994-01-01
The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti-free analog with a formula of Ca3Al2Si4O14 synthesized by Paque et al. (1994) is thought to be related structurally but with the octahedral site being occupied by Al, that is, Ca(sub 3)(sup VIII)Al(sup VI)(Al,Si)(sub 2)(sup IV)(Si)(sub 3)(sup IV)O14.
Environmentally Resistant Mo-Si-B-Based Coatings
NASA Astrophysics Data System (ADS)
Perepezko, J. H.; Sossaman, T. A.; Taylor, M.
2017-06-01
High-temperature applications have demonstrated aluminide-coated nickel-base superalloys to be remarkably effective, but are reaching their service limit. Alternate materials such as refractory (e.g., W, Mo) silicide alloys and SiC composites are being considered to extend high temperature capability, but the silica surfaces on these materials require coatings for enhanced environmental resistance. This can be accomplished with a Mo-Si-B-based coating that is deposited by a spray deposition of Mo followed by a chemical vapor deposition of Si and B by pack cementation to develop an aluminoborosilica surface. Oxidation of the as-deposited (Si + B)-pack coatings proceeds with partial consumption of the initial MoSi2 forming amorphous silica. This Si depletion leads to formation of a B-saturated Mo5Si3 (T1) phase. Reactions between the Mo and the B rich phases develop an underlying Mo5SiB2 (T2) layer. The T1 phase saturated with B has robust oxidation resistance, and the Si depletion is prevented by the underlying diffusion barrier (T2). Further, due to the natural phase transformation characteristics of the Mo-Si-B system, cracks or scratches to the outer silica and T1 layers can be repaired from the Si and B reservoirs of T2 + MoB layer to yield a self-healing characteristic. Mo-Si-B-based coatings demonstrate robust performance up to at least 1700 °C not only to the rigors of elevated temperature oxidation, but also to CMAS attack, hot corrosion attack, water vapor and thermal cycling.
NASA Astrophysics Data System (ADS)
Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun
2018-04-01
We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.
An Exchange-Only Qubit in Isotopically Enriched 28Si
NASA Astrophysics Data System (ADS)
Gyure, Mark
2015-03-01
We demonstrate coherent manipulation and universal control of a qubit composed of a triple quantum dot implemented in an isotopically enhanced Si/SiGe heterostructure, which requires no local AC or DC magnetic fields for operation. Strong control over tunnel rates is enabled by a dopantless, accumulation-only device design, and an integrated measurement dot enables single-shot measurement. Reduction of magnetic noise is achieved via isotopic purification of the silicon quantum well. We demonstrate universal control using composite pulses and employ these pulses for spin-echo-type sequences to measure both magnetic noise and charge noise. The noise measured is sufficiently low to enable the long pulse sequences required for exchange-only quantum information processing. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.
A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2
NASA Astrophysics Data System (ADS)
Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Graça, Leonardo M.; Scholz, Ricardo
2015-01-01
The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm-1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm-1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
Silicon-based optoelectronics: Monolithic integration for WDM
NASA Astrophysics Data System (ADS)
Pearson, Matthew Richard T.
2000-10-01
This thesis details the development of enabling technologies required for inexpensive, monolithic integration of Si-based wavelength division multiplexing (WDM) components and photodetectors. The work involves the design and fabrication of arrayed waveguide grating demultiplexers in silicon-on-insulator (SOI), the development of advanced SiGe photodetectors capable of photodetection at 1.55 mum wavelengths, and the development of a low cost fabrication technique that enables the high volume production of Si-based photonic components. Arrayed waveguide grating (AWG) demultiplexers were designed and fabricated in SOI. The fabrication of AWGs in SOI has been reported in the literature, however there are a number of design issues specific to the SOI material system that can have a large effect on device performance and design, and have not been theoretically examined in earlier work. The SOI AWGs presented in this thesis are the smallest devices of this type reported, and they exhibit performance acceptable for commercial applications. The SiGe photodetectors reported in the literature exhibit extremely low responsivities at wavelengths near 1.55 mum. We present the first use of three dimensional growth modes to enhance the photoresponse of SiGe at 1.55 mum wavelengths. Metal semiconductor-metal (MSM) photodetectors were fabricated using this undulating quantum well structure, and demonstrate the highest responsivities yet reported for a SiGe-based photodetector at 1.55 mum. These detectors were monolithically integrated with low-loss SOI waveguides, enabling integration with nearly any Si-based passive WDM component. The pursuit of inexpensive Si-based photonic components also requires the development of new manufacturing techniques that are more suitable for high volume production. This thesis presents the development of a low cost fabrication technique based on the local oxidation of silicon (LOCOS), a standard processing technique used for Si integrated circuits. This process is developed for both SiGe and SOI waveguides, but is shown to be commercially suitable only for SOI waveguide devices. The technique allows nearly any Si microelectronics fabrication facility to begin manufacturing optical components with minimal change in processing equipment or techniques. These enabling technologies provide the critical elements for inexpensive, monolithic integration in a Si-based system.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person... a shipper for transport. Containment system means the assembly of components of the packaging...
Code of Federal Regulations, 2013 CFR
2013-01-01
...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person... a shipper for transport. Containment system means the assembly of components of the packaging...
Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan
2003-01-01
Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.
Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
Liu, Xiangkai; Zhao, Shuangyi; Gu, Wei; Zhang, Yuting; Qiao, Xvsheng; Ni, Zhenyi; Pi, Xiaodong; Yang, Deren
2018-02-14
Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm 2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.
NASA Technical Reports Server (NTRS)
Gordon, S.
1982-01-01
Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiaofan; Ma, Zhongyuan, E-mail: zyma@nju.edu.cn; Yang, Huafeng
2014-09-28
Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos,more » we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.« less
The 3R polymorph of CaSi{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedumkandathil, Reji; Benson, Daryn E.; Grins, Jekabs
The Zintl phase CaSi{sub 2} commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA′BB′CC′ fashion. In this study we show that sintering of CaSi{sub 2} in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 °C transforms 6R-CaSi{sub 2} quantitatively into 3R-CaSi{sub 2}. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi{sub 2}. First principles density functional calculations reveal that 6R and 3R-CaSi{sub 2} aremore » energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi{sub 2} stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi{sub 2} should revert to 6R at elevated temperatures, which however is not observed up to 800 °C. 3R-CaSi{sub 2} may be stabilized by small amounts of incorporated hydrogen and/or defects. - Graphical abstract: The common 6R form of CaSi{sub 2} can be transformed quantitatively into 3R-CaSi{sub 2} upon sintering in a hydrogen atmosphere. - Highlights: • Quantitative and reproducible bulk synthesis of the rare 3R polymorph of CaSi{sub 2}. • Clarification of the energetic relation between 3R and conventional 6R form. • 3R-CaSi{sub 2} is presumably stabilized by small amounts of incorporated hydrogen and/or defects.« less
Saad, M F; Anderson, R L; Laws, A; Watanabe, R M; Kades, W W; Chen, Y D; Sands, R E; Pei, D; Savage, P J; Bergman, R N
1994-09-01
An insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis was compared with the glucose clamp in 11 subjects with normal glucose tolerance (NGT), 20 with impaired glucose tolerance (IGT), and 24 with non-insulin-dependent diabetes mellitus (NIDDM). The insulin sensitivity index (SI) was calculated from FSIGTT using 22- and 12-sample protocols (SI(22) and SI(12), respectively). Insulin sensitivity from the clamp was expressed as SI(clamp) and SIP(clamp). Minimal model parameters were similar when calculated with SI(22) and SI(12). SI could not be distinguished from 0 in approximately 50% of diabetic patients with either protocol. SI(22) correlated significantly with SI(clamp) in the whole group (r = 0.62), and in the NGT (r = 0.53), IGT (r = 0.48), and NIDDM (r = 0.41) groups (P < 0.05 for each). SI(12) correlated significantly with SI(clamp) in the whole group (r = 0.55, P < 0.001) and in the NGT (r = 0.53, P = 0.046) and IGT (r = 0.58, P = 0.008) but not NIDDM (r = 0.30, P = 0.085) groups. When SI(22), SI(clamp), and SIP(clamp) were expressed in the same units, SI(22) was 66 +/- 5% (mean +/- SE) and 50 +/- 8% lower than SI(clamp) and SIP(clamp), respectively. Thus, minimal model analysis of the insulin-modified FSIGTT provides estimates of insulin sensitivity that correlate significantly with those from the glucose clamp. The correlation was weaker, however, in NIDDM. The insulin-modified FSIGTT can be used as a simple test for assessment of insulin sensitivity in population studies involving nondiabetic subjects. Additional studies are needed before using this test routinely in patients with NIDDM.
Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco
2016-02-07
We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
NASA Astrophysics Data System (ADS)
Tian, Chao; Wang, Weibiao; Liang, Jingqiu; Liang, Zhongzhu; Qin, Yuxin; Lv, Jinguang
2015-04-01
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit, and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42-1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2-2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.
Theoretical and experimental analysis of AlGaInP micro-LED array with square-circle anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chao; University of Chinese Academy of Sciences, Beijing 100049; Wang, Weibiao, E-mail: wangwbcn@163.com
An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit,more » and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42–1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2–2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.« less
Kaplan, Sebastian G; Ali, Shahzad K; Simpson, Brittany; Britt, Victoria; McCall, W Vaughn
2014-01-01
The goals of our study were to: 1) describe the incidence of disturbances in sleep quality, sleep hygiene, sleep-related cognitions and nightmares; and 2) investigate the association between these sleep-related disturbances and suicidal ideation (SI), in adolescents admitted to a psychiatric inpatient unit. Our sample consisted of 50 adolescents between the ages of 12 and 17 years (32 females and 18 males; 41 Caucasian and nine African American). Our cross-sectional design involved the administration of the Adolescent Sleep Wake Scale (ASWS), the Adolescent Sleep Hygiene Scale (ASHS), the Dysfunctional Beliefs and Attitudes about Sleep-Short version for use with children (DBAS-C10), the Disturbing Dreams and Nightmare Scale (DDNSI), and the Suicidal Ideation Questionnaire Jr (SIQ-JR). Analyses were conducted using Pearson correlations, as well as univariate and multivariate regression. Results indicated that our sample experienced sleep disturbances and SI to a greater degree than non-clinical samples. Sleep quality was correlated with nightmares, while sleep quality and nightmares were each correlated with SI. Sleep quality, dysfunctional beliefs, and nightmares each independently predicted SI. Our study was the first to use the four sleep measures with an adolescent psychiatric inpatient sample. It is important to develop sleep-related assessment tools in high-risk populations given the link between sleep disturbances and suicidality. Furthermore, a better understanding of the relationships between SI and sleep quality, sleep-related cognitions, and nightmares is needed to develop potential prevention and treatment options for suicidality in adolescents.
Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors
Gu, Jun-Tao; Zhang, Yong-De; Jiang, Jin-Gang
2014-01-01
The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS) technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s. PMID:24625742
Site Environmental Report for 2002, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
Site Environmental Report for 2002, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
Mechanically Activated Combustion Synthesis of MoSi 2-Based Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafirovich, Evgeny
2015-09-30
The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicatemore » surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of SHS compaction (quasi-isostatic pressing after combustion) significantly improves oxidation resistance of the obtained MoSi2-Mo5Si3 composites. The “chemical oven” technique has been successfully employed to fabricate low-porous Mo5SiB2–TiC, Mo5SiB2–TiB2, and Mo–Mo5SiB2–Mo3Si materials. Among them, Mo5SiB2–TiB2 material possesses good mechanical properties and simultaneously exhibits excellent oxidation resistance at temperatures up to 1500 °C.« less
Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J.; Neudeck, P. G.; Lukco, D.; Trunek, A.; Spry, D.; Lampard, P.; Androjna, D.; Makel, D.; Ward, B.
2007-01-01
Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.
NASA Astrophysics Data System (ADS)
Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.
2009-04-01
The effect of the vibrational strain amplitude on the Young’s modulus and ultrasound absorption (internal friction) of a SiC/Si biomorphic composite prepared by pyrolysis of sapele wood followed by infiltration of silicon were investigated. The studies were conducted in air and in vacuum by the acoustic resonance method with the use of a composite vibrator in longitudinal vibrations at frequencies of about 100 kHz. Measurements performed on sapele wood-based bio-SiC/Si samples revealed a substantial effect of adsorption-desorption of molecules contained in air on the effective elasticity modulus and elastic vibration decrement. Microplastic characteristics of the SiC/Si composites prepared from wood of different tree species were compared.
IODP Expedition 352 (Bonin Forearc): First Results
NASA Astrophysics Data System (ADS)
Pearce, J. A.; Reagan, M. K.; Stern, R. J.; Petronotis, K. E.
2014-12-01
IODP Expedition #352 (Testing Subduction Initiation and Ophiolite Models by Drilling the Outer Izu-Bonin-Mariana Forearc: July 30-Sept. 29, 2014) is just underway at the time of writing. It is testing the Stern-Bloomer hypothesis that subduction initiation (SI) was followed by a strongly extensional period of slab sinking and trench roll-back and then by a transitional period leading to the establishment of significant slab-parallel plate motion and hence normal subduction. The Expedition aims to carry out offset drilling at two sites near 28°30'N in the Bonin forearc. Ideally, these together will give the vertical volcanic stratigraphy needed to trace the geodynamic and petrogenetic processes associated with SI, and provide the complete reference section required for comparison with volcanic sequences of possible SI origin found on land in ophiolite complexes and elsewhere. We predict, but need to confirm, a c. 1.0-1.5km sequence with basal, MORB-like forearc basalts (known as FAB) marking the initial period of extension, boninites characterizing the transitional period, and tholeiitic and calc-alkaline lavas marking the establishment of normal arc volcanism. Study of such a sequence will enable us to understand the chemical gradients within and across these volcanic units, to reconstruct mantle flow and melting processes during the course of SI, and to test the hypothesis that fore-arc lithosphere created during SI is the birthplace of most supra-subduction zone ophiolites. Here, we present the first Expedition results, including (a) the volcanic stratigraphic record and subdivision into lava units, (b) the classifications and interpretations made possible by shipboard (portable XRF and ICP) analyses and down-hole measurements, and (c) the biostratigraphic, magnetic, mineralogical, sedimentary and structural constraints on the geological history of the SI section and the interactions between magmatic, hydrothermal and tectonic activity during its evolution.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
Sintering activation energy MoSi2-WSi2-Si3N4 ceramic
NASA Astrophysics Data System (ADS)
Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.
2018-04-01
The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.
Handbook for Metric Usage (First Edition).
ERIC Educational Resources Information Center
American Home Economics Association, Washington, DC.
Guidelines for changing to the metric system of measurement with regard to all phases of home economics are presented in this handbook. Topics covered include the following: (1) history of the metric system, (2) the International System of Units (SI): derived units of length, mass, time, and electric current; temperature; luminous intensity;…
Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates
NASA Astrophysics Data System (ADS)
Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan
2018-05-01
With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.
Shim, Gayong; Han, Su-Eun; Yu, Yong-Hee; Lee, Sangbin; Lee, Han Young; Kim, Kwangmeyung; Kwon, Ick Chan; Park, Tae Gwan; Kim, Young Bong; Choi, Yong Seok; Kim, Chan-Wha; Oh, Yu-Kyoung
2011-10-10
Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL. After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug. Copyright © 2010 Elsevier B.V. All rights reserved.
Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics
NASA Technical Reports Server (NTRS)
Tewari, Surendra
1997-01-01
Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.
SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.
Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli
2017-02-01
RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.
Enhancing endosomal escape for nanoparticle mediated siRNA delivery
NASA Astrophysics Data System (ADS)
Ma, Da
2014-05-01
Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.
Si/SiGe quadruple quantum dots with direct barrier gates
NASA Astrophysics Data System (ADS)
Ward, Daniel; Gamble, John; Foote, Ryan; Savage, Donald; Lagally, Max; Coppersmith, Susan; Eriksson, Mark
2014-03-01
We have fabricated a quadruple quantum dot in a Si/SiGe heterostructure with the aim of demonstrating a two-qubit quantum gate. This device makes use of direct barrier gates, in which individual gates are placed directly over the quantum dots and tunnel barriers. This design enables rational control of both energies and tunnel rates in coupled quantum dots. In this talk we discuss the design, fabrication, and initial characterization of the device. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government.
Rapid Optical Detection and Classification of Microbes in Suspicious Powders
2018-06-01
per kilogram (J kg–1) [sievert (Sv)] * Specific details regarding the implementation of SI units may be viewed at http://www.bipm.org/en/si...amino acids, peptides, and proteins. Above about 340 nm fluorescence occurs from multi -ring organic materials and their variants. Therefore, to...emission wavelength, and fluorescence intensity, represented as iso-intensity contours in the EEM diagram. The two different fluorophors shown with
A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material
NASA Astrophysics Data System (ADS)
Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.
2005-12-01
Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.
Hyperbranched Polycarbosilanes via Nucleophilic Substitution Reactions
NASA Astrophysics Data System (ADS)
Interrante, L.; Shen, Q.
Nucleophilic substitution reactions involving organomagnesium (Grignard) [1] and organolithium reagents have been used extensively for many years to form Si—C bonds (see Reaction Scheme 12.1). However, their use for the construction of hyperbranched polymers whose backbone contains, as a major structural component, silicon—carbon bonds, i.e., polycarbosilanes [2] is relatively more recent. (12.1) begin{array}{l} {{R}}_3 {{SiX + MR'}} to {{R}}_3 {{SiR' + MX}} \\ left({{{R,R' = alkyl}} {{or aryl;}} {{M = Mg(X),}} {{Li,}} {{Na}};{{X = halogen, OR''}}} right) \\ This chapter focuses on the application of such nucleophilic substitution reactions toward the synthesis of hyperbranched polycarbosilanes, with particular emphasis on those preparations that have resulted in relatively well characterized products. These syntheses are organized by the type of ABn monomer unit used (see Section 1.2), where A and B refer to the (C)X and (Si)Xn, respectively, functional ends of the monomer unit and where the nature of the coupling reaction leads to entirely or primarily Si—C bond formation. In most cases, these are “one-pot” reactions that employ monomers that bear halogen or alkoxy groups on the C and Si ends of the unit. Indeed, hyperbranched polycarbosilanes have been described, in general, as “obtained in one synthetic step via a random, one-pot polymerization of multifunctional monomers of AB n type” [2]. Treatment of the ABn monomer with either elemental Mg or an organolithium reagent, ideally (but not always) forms a complexed carbanion (the nucleophile) by reaction with the C-X end of the monomer unit, resulting in an intermediate of the type, (XxM)CSiXn, where M = Mg or Li, X = halogen or alkoxy, and x = 1 (Mg) or 0 (Li). Self-coupling of this reagent via reactions of the type shown in Reaction Scheme 12.1 leads to oligomeric and polymeric products that are connected primarily through Si—C bonds and yield an inorganic MXx by-product.
Kapantzoglou, Maria; Fergadiotis, Gerasimos; Restrepo, M Adelaida
2017-10-17
This study examined whether the language sample elicitation technique (i.e., storytelling and story-retelling tasks with pictorial support) affects lexical diversity (D), grammaticality (grammatical errors per communication unit [GE/CU]), sentence length (mean length of utterance in words [MLUw]), and sentence complexity (subordination index [SI]), which are commonly used indices for diagnosing primary language impairment in Spanish-English-speaking children in the United States. Twenty bilingual Spanish-English-speaking children with typical language development and 20 with primary language impairment participated in the study. Four analyses of variance were conducted to evaluate the effect of language elicitation technique and group on D, GE/CU, MLUw, and SI. Also, 2 discriminant analyses were conducted to assess which indices were more effective for story retelling and storytelling and their classification accuracy across elicitation techniques. D, MLUw, and SI were influenced by the type of elicitation technique, but GE/CU was not. The classification accuracy of language sample analysis was greater in story retelling than in storytelling, with GE/CU and D being useful indicators of language abilities in story retelling and GE/CU and SI in storytelling. Two indices in language sample analysis may be sufficient for diagnosis in 4- to 5-year-old bilingual Spanish-English-speaking children.
Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong
2015-02-02
Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Spearing, Dane R.; Farnan, Ian; Stebbins, Jonathan F.
1992-12-01
Relaxation times (T1) and lineshapes were examined as a function of temperature through the α-β transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the α-β transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, α1 and α2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in β-quartz being a time and space average of α1 and α2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the α-β transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter (η) of 0.125 at room T, which decreases to <0.040 at the transition temperature. The electric field gradient (EFG) and chemical shift anisotropy (CSA), however, remain the same, suggesting that the decrease in η is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the α-β phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the β-phase is characterized by a dynamical average of the twin domains on a unit cell scale.
NASA Astrophysics Data System (ADS)
Kahlenberg, Volker; Maier, Matthias
2016-12-01
Singe crystals of a new high-temperature polymorph of Na2Ca6Si4O15 have been obtained from solid state reactions performed at 1300 °C. The basic crystallographic data of this so-called β-phase at ambient conditions are as follows: space group P1 c1, a = 9.0112(5) Å, b = 7.3171(5) Å, c = 10.9723(6) Å, β = 107.720(14)°, V = 689.14(7) Å3, Z = 2. The crystals showed twinning by reticular merohedry (mimicking an orthorhombic C-centred unit cell) which was accounted for during data processing and structure solution. Structure determination was accomplished by direct methods. Least-squares refinements resulted in a residual of R(|F|) = 0.043 for 5811 observed reflections with I > 2σ(I). From a structural point of view β-Na2Ca6Si4O15 can be attributed to the group of mixed-anion silicates containing [Si2O7]-dimers as well as isolated [SiO4]-tetrahedra in the ratio 1:2, i.e. more precisely the formula can be written as Na2Ca6[SiO4]2[Si2O7]. The tetrahedral groups are arranged in layers parallel to (100). Sodium and calcium cations are located between the silicate anions for charge compensation and are coordinated by six to eight nearest oxygen ligands. Alternatively, the structure can be described as a mixed tetrahedral-octahedral framework based on kröhnkite-type [Ca(SiO4)2O2]-chains in which the CaO6-octahedra are corner-linked to bridging SiO4-tetrahedra. The infinite chains are running parallel to [001] and are concentrated in layers parallel to (010). Adjacent layers are shifted relative to each other by an amount of +δ or -δ along a*. Consequently, a …ABABAB… stacking sequence is created. A detailed comparison with related structures such as α-Na2Ca6Si4O15 and other A2B6Si4O15 representatives including topological as well as group theoretical aspects is presented. There are strong indications that monoclinic Na2Ca3Si2O8 mentioned in earlier studies is actually misinterpreted β-Na2Ca6Si4O15. In addition to the detailed crystallographic analysis of the previously unknown compound our results will also help to improve the interpretation of the phase relationships between the compounds in the ternary system Na2O-CaO-SiO2 which are of interest for several applications related to the field of applied mineralogy and materials science.
Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K
2014-09-10
Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.
Wafer-scale epitaxial graphene on SiC for sensing applications
NASA Astrophysics Data System (ADS)
Karlsson, Mikael; Wang, Qin; Zhao, Yichen; Zhao, Wei; Toprak, Muhammet S.; Iakimov, Tihomir; Ali, Amer; Yakimova, Rositza; Syväjärvi, Mikael; Ivanov, Ivan G.
2015-12-01
The epitaxial graphene-on-silicon carbide (SiC-G) has advantages of high quality and large area coverage owing to a natural interface between graphene and SiC substrate with dimension up to 100 mm. It enables cost effective and reliable solutions for bridging the graphene-based sensors/devices from lab to industrial applications and commercialization. In this work, the structural, optical and electrical properties of wafer-scale graphene grown on 2'' 4H semi-insulating (SI) SiC utilizing sublimation process were systemically investigated with focus on evaluation of the graphene's uniformity across the wafer. As proof of concept, two types of glucose sensors based on SiC-G/Nafion/Glucose-oxidase (GOx) and SiC-G/Nafion/Chitosan/GOx were fabricated and their electrochemical properties were characterized by cyclic voltammetry (CV) measurements. In addition, a few similar glucose sensors based on graphene by chemical synthesis using modified Hummer's method were also fabricated for comparison.
Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates
NASA Astrophysics Data System (ADS)
Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.
2015-04-01
Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.
Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications
Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun
2016-01-01
Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, D. H.; Das Arulsamy, A.; Rider, A. E.
A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si{sup 3+} and Si{sup 1+} ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nmmore » size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si{sup 1+} ions in a low substrate temperature range (227-327 deg. C). As low substrate temperatures ({<=}500 deg. C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.« less
NASA Astrophysics Data System (ADS)
Seo, D. H.; Rider, A. E.; Das Arulsamy, A.; Levchenko, I.; Ostrikov, K.
2010-01-01
A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun
ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.
NASA Astrophysics Data System (ADS)
Szymanski, D. W.; Patino, L. C.; Vogel, T. A.; Alvarado, G. E.
2002-12-01
Explaining the occurrence of high-silica arc magmatism in the absence of continental crust remains a fundamental problem in igneous petrology. Recent work in the southern portion of the Central American volcanic arc has expanded the database for the abundant high-silica ash-flow tuffs erupted on top of thick oceanic basement in Costa Rica and southern Nicaragua. Regional differences in geochemistry are observed in data from central and northern Costa Rica. In addition, local heterogeneities among units are demonstrated in plots of both major and trace elements. High-silica ash-flow tuffs in central Costa Rica include the Tiribi Tuff (~0.33 Ma) and Alto Palomo formation (~0.56 Ma). In northern Costa Rica, numerous large silicic ash-flow sheets are found in the Guanacaste province, ranging from late Miocene (<10 Ma) to Pleistocene (~0.6 Ma) in age. A frequency histogram of normalized silica content for all analyses to date from these units (n=222) produces a left-skewed curve with a mode occurring at approximately 70 wt.% SiO2. Samples from the northern region (n=107) demonstrate a tighter distribution of silica content (60.1-78.7 wt.% SiO2 with a median of 72.2 wt.% SiO2) compared to samples from the central region (n=115, 55.4-74.2 wt.% SiO2 with a median of 67.1 wt.% SiO2). The least evolved samples come from the Tiribi Formation in the Valle Central and are chemically distinct from rocks in the Guanacaste region. In both chemistry and geographical position, the Alto Palomo formation appears to represent a transition between tuffs in the Valle Central and those in Guanacaste. Incompatible trace element ratios for these units are nearly identical to regional trends observed in basaltic to andesitic lavas of the modern Costa Rican arc (e.g. Ba/Nb). The Papagayo sequence is an example of chemical variation within one vertical section. The sequence is a ~21 m section of well-exposed tuff that represents an essentially continuous sampling of an evolving magma body. Major-element analyses from a systematic vertical sampling of the section support a model of crystal fractionation, eruption, and mafic replenishment of the magma chamber. Samples range from 60.1 to 70.2 wt.% SiO2, with the most mafic sample occurring at the top of sequence as a visibly mafic-silicic mingled pumice. The Rio Liberia (~1.47 Ma) and Salitral (~1.3 Ma) formations in the Guanacaste region form a series of tuffs, related by the same inferred vent. Despite overlapping silica content, the units have distinct mineral compositions. The Salitral formation includes plagioclase- and amphibole-rich units that appear very similar in the field, while the Rio Liberia contains biotite. Chemically, the units are distinct, forming several separate trends in trace element plots. These heterogeneities most likely reflect differences in both source and/or processes of magma evolution.
NASA Astrophysics Data System (ADS)
Gatilova, Lina; Bouchoule, Sophie; Patriarche, Gilles; Guilet, Stephane
2011-08-01
We discuss the possibility of obtaining high-aspect-ratio etching of InP materials in Cl2- and HBr-based inductively coupled plasmas (ICP) with the addition of Si-containing gases (SiH4 or SiCl4). A vertical and smooth etching profile is demonstrated in SiCl4/H2 plasma. The effect of adding of a small amount of SiH4 to a previously optimised Cl2/H2 chemistry is presented, and new SiH4/Cl2 and SiH4/HBr chemistries are proposed. Ex-situ energy-dispersive X-ray spectroscopy coupled to transmission electron microscopy (EDX-TEM) is used to analyze the composition of the thin passivation layer deposited on the etched sidewalls. We show that it consists of a Si-rich silicon oxide (Si/O˜1) in Cl2/H2/SiH4 chemistry, and is changed to nano-crystalline (nc-) Si in SiH4/Cl2 chemistry depending on the SiH4 percentage. Moreover, we show that deep anisotropic etching of InP independent of the electrode coverplate material can be obtained via a SiOx passivation mechanism with the addition of Si-containing gases.
Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1997-01-01
Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.
Cho, Jeong-Hyun; Picraux, S Tom
2013-01-01
It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.
The Effect of Input-Based Instruction Type on the Acquisition of Spanish Accusative Clitics
ERIC Educational Resources Information Center
White, Justin
2015-01-01
The purpose of this paper is to compare structured input (SI) with other input-based instructional treatments. The input-based instructional types include: input flood (IF), text enhancement (TE), SI activities, and focused input (FI; SI without implicit negative feedback). Participants included 145 adult learners enrolled in an intermediate…
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
Silicon carbide optics for space and ground based astronomical telescopes
NASA Astrophysics Data System (ADS)
Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court
2012-09-01
Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).
Reactions of silicon-based ceramics in mixed oxidation chlorination environments
NASA Technical Reports Server (NTRS)
Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.
1988-01-01
The reaction of silicon-based ceramics with 2 percent Cl2/Ar and 1 percent Cl2/1 percent to 20 percent O2/Ar at 950 C was studied with thermogravimetric analysis and high-pressure mass spectrometry. Pure Si, SiO2, several types of SiC, and Si3N4 were examined. The primary corrosion products were SiCl4(g) and SiO2(s) with smaller amounts of volatile silicon oxychlorides. The reactions appear to occur by chlorine penetration of the SiO2 layer, and gas-phase diffusion of the silicon chlorides away from the sample appears to be rate limiting. Pure SiO2 shows very little reaction with Cl2, SiC with excess Si is more reactive than the other materials with Cl2, whereas SiC with excess carbon is more reactive than the other materials with Cl2/O2. Si3N4 shows very little reaction with Cl2. These differences are explained on the basis of thermodynamic and microstructural factors.
Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian
2017-09-27
Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.
NASA Astrophysics Data System (ADS)
Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin
2012-10-01
A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers. Electronic supplementary information (ESI) available: Additional flow cytometry histogram profiles of DOX fluorescence and ASCL1 knockdown results. See DOI: 10.1039/c2nr31853a
Pramann, Axel; Rienitz, Olaf
2016-06-07
A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.
CFD Extraction Tool for TecPlot From DPLR Solutions
NASA Technical Reports Server (NTRS)
Norman, David
2013-01-01
This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.
Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.
Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua
2018-02-01
As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.
Raman spectroscopic study of synthetic pyrope-grossular garnets: structural implications
NASA Astrophysics Data System (ADS)
Du, Wei; Han, Baofu; Clark, Simon Martin; Wang, Yichuan; Liu, Xi
2018-02-01
A study of the effect of substitution of Mg and Ca in garnet solid solution (Grtss) was carried out using Raman spectroscopy to probe changes to the crystal lattice. The garnet solid solutions with composition changing along pyrope (Py; Mg3Al2Si3O12) and grossular (Gr; Ca3Al2Si3O12) binary were synthesized from glass at 6 GPa and 1400 °C and a second series of Grtss with composition Py40Gr60 were synthesized at 6 GPa but different temperatures from 1000 to 1400 °C. Raman mode assignments were made based on a comparison with the two end members pyrope and grossular, which show consistent result with literature study on single crystals data. The correlation between the Raman mode frequencies and compositional changes along the pyrope-grossular binary suggests a two-mode behavior for Mg and Ca cations in the garnet structure. The full widths at half-maximum of selected Raman modes increase on moving away from the end members and are about double the end-member values in the mid-position, where the frequencies closely linearly change with composition. The frequencies of the translational modes of the SiO4 tetrahedron (T(SiO4)) show large deviations from linearity indicating a strong kinematic coupling with the translational modes of the Ca and Mg cations. The anomalies in T(SiO4) are linked to mixing unit cell volume, suggesting that the nonlinear mixing volume behavior along the pyrope-grossular binary is related to the resistance of the Si-O bond to expansion and compression, which is caused by substitution of Mg and Ca cations in the dodecahedral sites. Annealing temperature also shows effect on Raman mode frequencies, but the main factor controlling the changes in mode frequencies along pyrope-grossular binary is composition.
Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.
Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad
2017-01-01
Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for medical application of RNAi-based therapeutics is needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates
NASA Astrophysics Data System (ADS)
Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu
2015-12-01
Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.
Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi
2007-02-05
The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42+ and Se2I42+. The difference in the structures of S2I42+ and Se2I42+ is related to the high strength of the S-S pi bond compared to the weak S-I sigma bond and the additional stabilization from increased delocalization of positive charge in the structure of S2I42+ compared to the structure of Se2I42+. The investigation of the E2X42+ series (E = S, Se, Te; X = Cl, Br, I) revealed that only S2I42+ adopts the highly np pi-np pi (n > or = 3)-bonded structure, while all other dications favor the pi-bonded Se2I42+ structure. Theoretical bond order calculations for S2I42+ confirm the previously presented experimentally based bond orders for S-S (2.1-2.3) and I-I (1.3-1.5) bonds. The S-S bond is determined to have the highest reported S-S bond order in an isolated compound and has a bond order that is either similar to or slightly less than the Si-Si bond order in the proposed triply bonded [(Me3Si)2CH]2(iPr)SiSi triple bond SiSi(iPr)[CH(SiMe3)2]2 depending on the definition of bond orders used.
Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li
2018-04-04
Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.
In situ structural analysis of calcium aluminosilicate glasses under high pressure.
Muniz, R F; de Ligny, D; Martinet, C; Sandrini, M; Medina, A N; Rohling, J H; Baesso, M L; Lima, S M; Andrade, L H C; Guyot, Y
2016-08-10
In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al + Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T = Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.
Rocket calibration of the Nimbus 6 solar constant measurements.
Duncan, C H; Harrison, R G; Hickey, J R; Kendall, J M; Thekaekara, M P; Willson, R C
1977-10-01
Total solar irradiance was observed simultaneously outside the earth's atmosphere by three types of absolute cavity radiometers and duplicates of four of the Nimbus 6 Earth Radiation Budget (ERB) solar channels in a June 1976 Sounding Rocket Experiment. The preliminary average solar constant result from the cavity radiometers is 1367 W m(-2) with an uncertainty of less than +/-0.5% in SI units. The duplicate ERB channel 3 on the rocket gave a value of 1389 W mm(-2) which agreed exactly with the Nimbus 6 ERB channel 3 measurement made simultaneously with the rocket flight. Therefore, Nimbus 6 ERB solar constant values should be reduced approximately 1.6% in order to convert the values to SI units.
Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki
2013-10-01
In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.
NASA Astrophysics Data System (ADS)
Stearns, Linda A.; Gryko, Jan; Diefenbacher, Jason; Ramachandran, Ganesh K.; McMillan, Paul F.
2003-06-01
Lithium monosilicide (LiSi) was formed at high pressures and high temperatures (1.0-2.5 GPa and 500-700°C) in a piston-cylinder apparatus. This compound was previously shown to have an unusual structure based on 3-fold coordinated silicon atoms arranged into interpenetrating sheets. In the present investigation, lowered synthesis pressures permitted recovery of large (150-200 mg) quantities of sample for structural studies via NMR spectroscopy ( 29Si and 7Li), Raman spectroscopy and electrical conductivity measurements. The 29Si chemical shift occurs at -106.5 ppm, intermediate between SiH 4 and Si(Si(CH 3) 3) 4, but lies off the trend established by the other alkali monosilicides (NaSi, KSi, RbSi, CsSi), that contain isolated Si 44- anions. Raman spectra show a strong peak at 508 cm -1 due to symmetric Si-Si stretching vibrations, at lower frequency than for tetrahedrally coordinated Si frameworks, due to the longer Si-Si bonds in the 3-coordinated silicide. Higher frequency vibrations occur due to asymmetric stretching. Electrical conductivity measurements indicate LiSi is a narrow-gap semiconductor ( Eb˜0.057 eV). There is a rapid increase in conductivity above T=450 K, that might be due to the onset of Li + mobility.
Multicentre evaluation of the Premier Hb9210 HbA1c analyser
John, W. Garry; Little, Randie; Sacks, David B.; Weykamp, Cas; Lenters-Westra, Erna; Hornsby, Theresa; Zhao, Zhen; Siebelder, Carla; Tennill, Alethea; English, Emma
2017-01-01
Background The accurate and precise quantification of HbA1c is essential for the diagnosis and routine monitoring of patients with diabetes. We report an evaluation of the Trinity Biotech Premier Hb9210 analyser (Bray, Ireland/Kansas City, US), a boronate affinity chromatography-based high performance liquid chromatography (HPLC) system for the measurement of glycated haemoglobin. Methods We evaluated the analytical performance of the Hb9210 as part of a multicentre evaluation. The effect of haemoglobin variants, other potential interferences and the performance in comparison to both the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and National Glycohemoglobin Standardization Program (NGSP) reference systems, was assessed. Most of the centres participating also act as reference laboratories for both the IFCC standardisation network for HbA1c and the NGSP. Results The combined data from all centres showed total CVs of 2.71%, 2.32% and 2.14% at low medium and high values respectively for mmol/mol (SI units) and 1.62%, 1.59% and 1.68% for % (NGSP units), which are well below the recommended upper limits of 3% CV for SI (IFCC) units and 2% CV for % (NGSP). The analyser showed a good correlation to HbA1c methods currently used in clinical practice and the IFCC reference method procedure. Haemoglobin variants AC, AS, AE and AD do not affect the measurement of HbA1c. Overall the Hb9210 performs well across the whole analytical range. Conclusions The Hb9210 performs well and is suitable for clinical application in the analysis of HbA1c. PMID:25274956
Electric-field-controlled interface dipole modulation for Si-based memory devices.
Miyata, Noriyuki
2018-05-31
Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.
Groundwater-Discharge Wetlands in the Tanana Flats, Interior Alaska
1991-07-01
Water *Hemlock Duckweed Bladderwort Bcba Cal a Floating Mat Water 9112214 0 1im For conversion of SI metric units to U.S./British customary units of...Utricularia sp.) and duckweed (Lemna sp,.). classified as "fens" (Gabriel and Talbot 1984). There Mosses do not appear to contribute to the structure
Quantity quotient reporting. A proposal for a standardized presentation of laboratory results.
Haeckel, Rainer; Wosniok, Werner
2009-01-01
Laboratory results are reported in different units (despite international recommendations for SI units) together with different reference limits, of which several exist for many quantities. It is proposed to adopt the concept of the intelligence quotient and to report quantitative results as a quantity quotient (QQ) in laboratory medicine. This quotient is essentially the difference (measured result minus mean or mode value of the reference interval) divided by the observed biological variation CV(o). Thus, all quantities are reported in the same unit system with the same reference limits (for convenience shifted to e.g., 80-120). The critical difference can also be included in this standardization concept. In this way the information of reference intervals and the original result are integrated into one combined value, which has the same format for all quantities suited for quotient reporting (QR). The proposal of QR does not interfere with neither the current concepts of traceability, SI units or method standardization. This proposal represents a further step towards harmonization of reporting. It provides simple values which can be interpreted easily by physicians and their patients.
NASA Astrophysics Data System (ADS)
Liao, M.-H.; Chen, C.-H.
2013-04-01
The Positron Annihilation Spectra (PAS), Raman, and Photoluminescence spectroscopy reveal that Si0.5Ge0.5/Si interface quality can be significantly improved by the low energy plasma cleaning process using hydrogen. In the PAS, the particularly small value of lifetime and intensity near the Si0.5Ge0.5/Si interface in the sample with the treatment indicate that the defect concentration is successfully reduced 2.25 times, respectively. Fewer defects existed in the Si0.5Ge0.5/Si interface result in the high compressive strain about 0.36% in the top epi-Si0.5Ge0.5 layer, which can be observed in Raman spectra and stronger radiative recombination rate about 1.39 times for the infrared emission, which can be observed in the photoluminescence spectra. With better Si0.5Ge0.5/Si interface quality, the SiGe-based devices can have better optical and electrical characteristics for more applications in the industry. The PAS is also demonstrated that it is the useful methodology tool to quantify the defect information in the SiGe-based material.
2009-04-01
An Extensive X-ray Computed Tomography Evaluation of a Fully Penetrated Encapsulated SiC MMC Ballistic Panel by William H. Green and Robert H...Panel William H. Green and Robert H. Carter Weapons and Materials Research Directorate, ARL...PROGRAM ELEMENT NUMBER 2182040 6. AUTHOR(S) William H. Green and Robert H. Carter 5d. PROJECT NUMBER AH80 5e. TASK NUMBER 5f. WORK UNIT
NASA Astrophysics Data System (ADS)
Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica
2018-04-01
The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.
NASA Astrophysics Data System (ADS)
Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen
2018-03-01
In this work, the transparent bipolar resistive switching characteristics of a SiCN-based ITO/SiCN/AZO structure due to In diffusion from ITO is studied. The SiCN based device is found to be 80% transparent in the visible wavelength region. This device, with AZO as both top and bottom electrodes, does not show any RRAM property due to deposition of the high quality O2-free SiCN film. Replacing the AZO top electrode with ITO in this device results in good resistive switching (RS) characteristics with a high on/off ratio and long retention. Replacing the SiCN film with ZrO2 also results in excellent RS characteristics due to the formation of an oxygen vacancies filament inside the ZrO2 film. A resistance ratio of on/off is found to be higher in the SiCN based device compared to that of the ZrO2 device. Diffusion of In from ITO into the SiCN film on application of high positive voltage during forming can be attributed to the occurrence of RS in the device, which is confirmed by the analyses of energy dispersive spectroscopy and secondary-ion mass spectrometry. This study shows a pathway for the fabrication of CBRAM based transparent devices for non-volatile memory application.
Generation of High-Voltage Pulses by Sharp-Recovery SiC Drift Diodes ( n-Base versus p-Base Diodes)
NASA Astrophysics Data System (ADS)
Ivanov, P. A.; Grekhov, I. V.
2018-01-01
The time characteristics of pulse generators based on sharp-recovery 4 H : SiC drift diodes have been calculated. It has been found that the speed of n-base 4 H-SiC diodes is superior to that of p-base diodes with the amplitude and initial pedestal in the output voltage (<5% of the amplitude) versus the time curve being the same.
Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview
NASA Technical Reports Server (NTRS)
Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie
2016-01-01
Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs will be necessary. A second generation of EBCs incorporates rare earth silicates which have extremely favorable resistance against environmental attack and a higher temperature capability. Performance data for this class of EBCs is more limited and especially field data are not as extensive as for the first generation EBCs. Extensive laboratory, rig and engine testing, including testing of EBC coated SiC-SiC CMCs in actual field applications is in progress. The development of next generation EBCs with even higher temperature capability than the second generation EBC is also underway. This paper will discuss the current status of EBC technology and future direction based on literature survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banno, Hiroki; Hanai, Takaaki; Asaka, Toru
2014-03-15
The crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} was characterized by laboratory X-ray powder diffraction (CuKα{sub 1}). The title compound is trigonal with space group R3-bar m. The hexagonal unit-cell dimensions (Z=3) are a=0.301332(3) nm, c=4.18616(4) nm and V=0.3291825(5) nm{sup 3}. The initial structural model was successfully derived by the charge-flipping method and further refined by the Rietveld method. The final structural model showed the positional disordering of one of the three (Si,Al) sites. The maximum-entropy method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensitymore » partitioning was minimized. The reliability indices calculated from the MPF were R{sub wp}=5.05%, S (=R{sub wp}/R{sub e})=1.21, R{sub p}=3.77%, R{sub B}=1.29% and R{sub F}=1.01%. The disordered crystal structure was successfully described by overlapping three types of domains with ordered atom arrangements. The distribution of atomic positions in one of the three types of domains can be achieved in the space group R3-bar m. The atom arrangements in the other two types of domains are noncentrosymmetrical with the space group R3m. These two structural configurations are related by the pseudo-symmetry inversion. -- Graphical abstract: A bird's eye view of electron densities up to 75.3% (0.133 nm{sup −3}) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of SiAl{sub 4}O{sub 2}N{sub 4}. Highlights: • Crystal structure of SiAl{sub 4}O{sub 2}N{sub 4} is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping three types of domains with ordered atom arrangements.« less
SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.
Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M
2018-07-06
In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.
Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices
NASA Astrophysics Data System (ADS)
Yang, Mei; Wang, Hong; Ma, Xiaohua; Gao, Haixia; Wang, Bin
2017-12-01
Nitrides could create opportunities of tuning resistive-switching (RS) characteristics due to their different electrical properties and ionic chemistry with oxides. Here, we reported on the effect of nitrogen-accommodation ability of electrodes in SiNx-based RS devices. The Ti/SiNx/Pt devices show a self-compliance bipolar RS with excellent reliability. The W/SiNx/Pt devices provide an unstable RS and fall to an intermediate resistance state (IRS) after a set process. The low resistance states of the Ti/SiNx/Pt devices obey Ohmic conduction and Frenkel-Poole emission from a conductive channel. The IRS of the W/SiNx/Pt devices conforms to Schottky emission and Fowler-Nordheim tunneling from a conductive channel/insulator/electrode structure. A nitrogen-ion-based model is proposed to explain the experimental results. According to the model, the nitrogen-accommodation ability of the electrodes dominates the nitrogen-reservoir size and the nitrogen-ion migration at the metal/SiNx interface, modulating the RS characteristics of the SiNx memory devices.
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun
2015-12-01
Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.
A new family of multifunctional silicon clathrates: Optoelectronic and thermoelectric applications
NASA Astrophysics Data System (ADS)
Liu, Yinqiao; Jiang, Xue; Huang, Yingying; Zhou, Si; Zhao, Jijun
2017-02-01
To develop Si structures for multifunctional applications, here we proposed four new low-density silicon clathrates (Si-CL-A, Si-CL-B, Si-CL-C, and Si-CL-D) based on the same bonding topologies of clathrate hydrates. The electronic and thermal properties have been revealed by first-principles calculations. By computing their equation of states, phonon dispersion, and elastic constants, the thermodynamic, dynamic, and mechanical stabilities of Si-CL-A, Si-CL-B, Si-CL-C, and Si-CL-D allotropes are confirmed. In the low-density region of the phase diagram, Si-CL-B, Si-CL-D, and Si-CL-C would overtake diamond silicon and type II clathrate (Si-CL-II) and emerge as the most stable Si allotropes successively. Among them, the two direct semiconductors with bandgaps of 1.147 eV (Si-CL-A) and 1.086 eV (Si-CL-D) are found. The suitable bandgaps close to the optimal Shockley-Queisser limit result in better absorption efficiency in solar spectrum than conventional diamond silicon. Owing to the unique cage-based framework, the thermal conductivity of these Si allotropes at room temperature are very low (2.7-5.7 Wm-1 K-1), which are lower than that of diamond structured Si by two orders of magnitude. The suitable bandgaps, small effective masses, and low thermal conductivity of our new silicon allotropes are anticipated to find applications in photovoltaic and thermoelectric devices.
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials
NASA Astrophysics Data System (ADS)
Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.
2013-05-01
The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Li, La
Pure Si{sub x}C{sub 1−x} (x > 0.5) and B-containing Si{sub x}C{sub 1−x} (x > 0.5) based resistive switching devices (RSD) with the structure of Ag/Si{sub x}C{sub 1−x}/p-Si were fabricated and their switching characteristics and mechanism were investigated systematically. Percolation mechanism through trapping/ de-trapping at defect states was suggested for the switching process. Through the introduction of B atoms into Si{sub x}C{sub 1−x}, the density of defect states was reduced, then, the SET and RESET voltages were also decreased. Based on the percolation theory, the dependence of SET/RESET voltage on the density of defect states was analyzed. These results supply a deep understanding for themore » SiC-based RSD, which have a potential application in extreme ambient conditions.« less
siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens.
Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A; Kim, Hyun Seok
2013-03-01
Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.
siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens
Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A.
2013-01-01
Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute. PMID:23613684
Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s
Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh
2015-01-01
Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653
Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.
Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh
2015-04-29
Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.
Ackerman, Stacey J; Polly, David W; Knight, Tyler; Schneider, Karen; Holt, Tim; Cummings, John
2013-01-01
Introduction The economic burden associated with the treatment of low back pain (LBP) in the United States is significant. LBP caused by sacroiliac (SI) joint disruption/degenerative sacroiliitis is most commonly treated with nonoperative care and/or open SI joint surgery. New and effective minimally invasive surgery (MIS) options may offer potential cost savings to Medicare. Methods An economic model was developed to compare the costs of MIS treatment to nonoperative care for the treatment of SI joint disruption in the hospital inpatient setting in the US Medicare population. Lifetime cost savings (2012 US dollars) were estimated from the published literature and claims data. Costs included treatment, follow-up, diagnostic testing, and retail pharmacy pain medication. Costs of SI joint disruption patients managed with nonoperative care were estimated from the 2005–2010 Medicare 5% Standard Analytic Files using primary International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes 720.2, 724.6, 739.4, 846.9, or 847.3. MIS fusion hospitalization cost was based on Diagnosis Related Group (DRG) payments of $46,700 (with major complications - DRG 459) and $27,800 (without major complications - DRG 460), weighted assuming 3.8% of patients have complications. MIS fusion professional fee was determined from the 2012 Medicare payment for Current Procedural Terminology code 27280, with an 82% fusion success rate and 1.8% revision rate. Outcomes were discounted by 3.0% per annum. Results The extrapolated lifetime cost of treating Medicare patients with MIS fusion was $48,185/patient compared to $51,543/patient for nonoperative care, resulting in a $660 million savings to Medicare (196,452 beneficiaries at $3,358 in savings/patient). Including those with ICD-9-CM code 721.3 (lumbosacral spondylosis) increased lifetime cost estimates (up to 478,764 beneficiaries at $8,692 in savings/patient). Conclusion Treating Medicare beneficiaries with MIS fusion in the hospital inpatient setting could save Medicare $660 million over patients’ lifetimes. PMID:24348055
Development of a material property database on selected ceramic matrix composite materials
NASA Technical Reports Server (NTRS)
Mahanta, Kamala
1996-01-01
Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated, basically, on establishing the procedure for a smooth transfer of data into a CMC database on MAPTIS which is a vital part of the following broader picture of the project.
A compact muon tracking system for didactic and outreach activities
NASA Astrophysics Data System (ADS)
Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.
2016-07-01
We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.
NASA Astrophysics Data System (ADS)
Rastsvetaeva, R. K.; Aksenov, S. M.
2012-05-01
A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.
On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.
Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2017-09-13
Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.
Cerveau; Corriu; Dabosi; Fischmeister-Lepeytre; Combarieu
1999-01-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to analyse the surface composition of organic-inorganic hybrid solids obtained by a sol-gel process. Gels of type O(1.5)Si-R-SiO(1. 5), obtained from bis-silylated precursors (R'O)(3)-R-Si(OR')(3) (R' = Me, Et and R = (-CH(2))(n)-, n = 1, 2, 6, 10, 12;--CH=CH-; (-CH(2))(3)NH(CH(2))(3)-; 1, 1'-ferrocenyl; (CH(2))(n)-Ph-(CH(2))(n)- with Ph = 1,4-phenylene and n = 0, 1, 2; Ph = 1,3,5-phenyl and n = 0) were analysed. The results were highly dependent on the nature of the organic group. When the organic group was small or 'rigid', the main peaks detected corresponded to SiOH and SiOR' residual groups. Fragment ions from the organic group were poorly detected in this case. When the organic group was larger and more 'flexible', characteristic mass fragment ions were detected at higher relative intensities, indicative of a different organization of the organic units in the solid. TOF-SIMS clearly showed the differences between the xerogels derived from mono- and bis-silylated organic precursors : the organic group is present at the surface of mono-silylated xerogels, whereas for bis-silylated ones, the organization is dependent on the length and the flexibility of the organic units. These TOF-SIMS results are in agreement with other features already reported. Copyright 1999 John Wiley & Sons, Ltd.
Friction measurements on InAs NWs by AFM manipulation
NASA Astrophysics Data System (ADS)
Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars
2008-03-01
We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
NASA Astrophysics Data System (ADS)
Majumder, Chiranjib; Kulshreshtha, S. K.
2004-12-01
Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.
NASA Astrophysics Data System (ADS)
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-10-01
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k
Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.
Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin
2017-02-28
Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.
2016-04-01
We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.
Jeon, Dae-Young; Pregl, Sebastian; Park, So Jeong; Baraban, Larysa; Cuniberti, Gianaurelio; Mikolajick, Thomas; Weber, Walter M
2015-07-08
Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW. Further, it reveals for the first-time in SB based FETs the important internal electrostatic coupling between the channel and externally applied voltages. This work provides helpful information for the realization of practical circuits with ambipolar SB-TFTs that can be transferred to different substrate technologies and applications.
Vision-based system identification technique for building structures using a motion capture system
NASA Astrophysics Data System (ADS)
Oh, Byung Kwan; Hwang, Jin Woo; Kim, Yousok; Cho, Tongjun; Park, Hyo Seon
2015-11-01
This paper presents a new vision-based system identification (SI) technique for building structures by using a motion capture system (MCS). The MCS with outstanding capabilities for dynamic response measurements can provide gage-free measurements of vibrations through the convenient installation of multiple markers. In this technique, from the dynamic displacement responses measured by MCS, the dynamic characteristics (natural frequency, mode shape, and damping ratio) of building structures are extracted after the processes of converting the displacement from MCS to acceleration and conducting SI by frequency domain decomposition. A free vibration experiment on a three-story shear frame was conducted to validate the proposed technique. The SI results from the conventional accelerometer-based method were compared with those from the proposed technique and showed good agreement, which confirms the validity and applicability of the proposed vision-based SI technique for building structures. Furthermore, SI directly employing MCS measured displacements to FDD was performed and showed identical results to those of conventional SI method.
NASA Astrophysics Data System (ADS)
Lan, Mai Thi; Thuy Duong, Tran; Iitaka, Toshiaki; Van Hong, Nguyen
2017-06-01
The structural organization of CaSiO3 glass at 600 K and under pressure of 0-100 GPa is investigated by molecular dynamics simulation (MDS). Results show that the atomic structure of CaSiO3 comprises SiO n and CaO m units considered as basic structural polyhedra. At low pressure, most of the basic structural polyhedra are SiO4, CaO5, CaO6 and CaO7. At high pressure most of the basic structural polyhedra are SiO5, SiO6 and CaO9, CaO10 and CaO11. The distribution of basic structural polyhedra is not uniform resulting in formation of Ca-rich and Si-rich regions. The distribution of SiO4, SiO5 and SiO6 polyhedra is also not uniform, but it tends to form SiO4-, SiO5-, and SiO6-clusters. For the Si-O network, under compression there is a gradual transition from the tetrahedral network (SiO4) to the octahedral network (SiO6) via SiO5 polyhedra. The SiO5-clusters are the same as immediate-phase in the transformation process. The size and shape of SiO4 tetrahedra change strongly under compression. While the size of SiO5 and SiO6 has also changed significantly, but the shape is almost unchanged under compression. The SiO n polyhedra can connect to each other via one common oxygen ion (corner-sharing bond), two common oxygen ions (edge-sharing bond) or three common oxygen ions (face-sharing bond). The Si-Si bond length in corner-sharing bonds is much longer than the ones in edge-sharing and face-sharing bonds. The change of intermediate range order (IRO) structure under compression relating to edge- and face-sharing bonds amongst SiO n at high pressure is the origin of the first peak splitting of the radial distribution functions of Si-Si pair. Under compression, the number of non-bridging oxygen (NBO) decreases. This makes the Si-O network more polymerized. At low pressure, most of the Ca2+ ions incorporate into the Si-O network via NBOs. At high pressure, the amount of NBO decreases, Ca2+ ions mainly incorporate into the Si-O network via bridging oxygen (BO) that belongs to SiO5 and SiO6 with a negative charge. And this is the principle for immobilization of heavy metal as well as fissile materials in hazardous waste (nuclear waste).
NASA Astrophysics Data System (ADS)
Colston, Gerard; Myronov, Maksym
2017-11-01
Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventional materials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection of UV light and can offer a closely lattice matched virtual substrate for subsequent GaN heteroepitaxy. As 3C-SiC can be heteroepitaxially grown on silicon (Si) substrates its optical properties can be manipulated by controlling the thickness and doping concentrations. The optical properties of 3C-SiC epilayers have been characterized by measuring the transmission of light through suspended membranes. Decreasing the thickness of the 3C-SiC epilayers is shown to shift the absorbance edge to lower wavelengths, a result of the indirect bandgap nature of silicon carbide. This property, among others, can be exploited to fabricate very low-cost, tuneable 3C-SiC based UV photodetectors. This study investigates the effect of thickness and doping concentration on the optical properties of 3C-SiC epilayers grown at low temperatures by a standard Si based growth process. The results demonstrate the potential photonic applications of 3C-SiC and its heterogeneous integration into the Si industry.
Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures
NASA Technical Reports Server (NTRS)
Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.
1990-01-01
Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.
High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites
NASA Astrophysics Data System (ADS)
Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong
2018-04-01
The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.
Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles.
Pinto, Tânia V; Costa, Paula; Sousa, Céu M; Sousa, Carlos A D; Pereira, Clara; Silva, Carla J S M; Pereira, Manuel Fernando R; Coelho, Paulo J; Freire, Cristina
2016-10-26
Photochromic silica nanoparticles (SiO 2 @NPT), fabricated through the covalent immobilization of silylated naphthopyrans (NPTs) based on 2H-naphtho[1,2-b]pyran (S1, S2) and 3H-naphtho[2,1-b]pyran (S3, S4) or through the direct adsorption of the parent naphthopyrans (1, 3) onto silica nanoparticles (SiO 2 NPs), were successfully incorporated onto cotton fabrics by a screen-printing process. Two aqueous acrylic- (AC-) and polyurethane- (PU-) based inks were used as dispersing media. All textiles exhibited reversible photochromism under UV and solar irradiation, developing fast responses and intense coloration. The fabrics coated with SiO 2 @S1 and SiO 2 @S2 showed rapid color changes and high contrasts (ΔE* ab = 39-52), despite presenting slower bleaching kinetics (2-3 h to fade to the original color), whereas the textiles coated with SiO 2 @S3 and SiO 2 @S4 exhibited excellent engagement between coloration and decoloration rates (coloration and fading times of 1 and 2 min, respectively; ΔE* ab = 27-53). The PU-based fabrics showed excellent results during the washing fastness tests, whereas the AC-based textiles evidenced good results only when a protective transfer film was applied over the printed design.
NASA Astrophysics Data System (ADS)
Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio
2015-02-01
Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.
Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites
NASA Astrophysics Data System (ADS)
Lee, S. P.; Cho, K. S.; Lee, H. U.; Lee, J. K.; Bae, D. S.; Byun, J. H.
2011-10-01
The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiCf/SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiCf/SiC composites had a good fracture energy, even if their strength was lower than that of PW-Cf/SiC composites. SiCf/SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 °C.
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.