Sample records for si beam developments

  1. Preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lazarenko, A. A.; Berezovskaya, T. N.; Denisov, D. V.; Sobolev, M. S.; Pirogov, E. V.; Nikitina, E. V.

    2017-11-01

    This article discusses the process of preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. The method of preparation of Si (100) and Si (111) substrates was developed. This method provides reproducible high-quality silicon surface for molecular-beam epitaxy of Si-GaP heterostructures. As a result, it managed to reduce the eviction oxide temperature below 800 °C, which is an important parameter for the MBE technology.

  2. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  3. Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate

    DTIC Science & Technology

    2015-04-22

    Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...LED) structure. Optimization of traditional and hetero- P-i-N structures designed and grown on Ge-buffer Si (001) wafers using molecular beam epitaxy ...designed structures were grown on Ge-buffer Si (001) wafers using molecular beam epitaxy (MBE) with the low-temperature growth technique. (The Ge-buffer

  4. Electron Microprobe Measurements of Nitrogen in SiC

    NASA Astrophysics Data System (ADS)

    Ross, K.

    2007-12-01

    Methods have been developed for the measurement of low abundances of nitrogen in SiC films. These techniques were developed for measurements of synthetic thin-film samples prepared by materials scientists but the technique can also be applied to natural SiC grains in meteorites. One problem associated with measuring nitrogen at low abundance levels is the low count rates due to strong absorption of the nitrogen signal in the matrix material. In thin film samples, (SiC deposited on elemental Si) it is preferable to limit x-ray production and emission to the overlayer. This eliminates the need for data reduction using thin-film methods. Thin film data reduction is inevitably less accurate than bulk material data reduction methods. In order to limit x-ray emission to the film layer, data has been collected at 5 kV and 3.5 kV accelerating voltage (depending on film thickness estimates provided by scientists who prepared these samples). These low beam energies also promote production of x-rays in the shallow region of the samples, and this minimizes strong absorption, leading to more abundant nitrogen x-ray detection, which improves counting statistics and overall precision. The CASINO monte carlo modeling program was used to model electron penetration and x-ray production as a function of beam energy and depth in the sample in order to ensure that the excited volume is limited to the film. The beam was set to 200 nA beam current. This high beam current also improves counting statistics by providing more abundant count rates. One drawback of these beam conditions is the limited spatial resolution provided. In our Cameca probe, a 5 kV, 200 nA beam is approximately 10 microns in diameter. SiC samples and standard were not carbon coated (they are conducting). AlN was used as the nitrogen standard. These films contained 0.3 to 0.7 wt. per cent nitrogen, with analytical uncertainties in the range of 10-20 per cent relative errors. The Si:C ratios were very near 1:1 indicating that little if any Si signal originated in the substrate of the film.

  5. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  6. First Results From A Multi-Ion Beam Lithography And Processing System At The University Of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gila, Brent; Appleton, Bill R.; Fridmann, Joel

    2011-06-01

    The University of Florida (UF) have collaborated with Raith to develop a version of the Raith ionLiNE IBL system that has the capability to deliver multi-ion species in addition to the Ga ions normally available. The UF system is currently equipped with a AuSi liquid metal alloy ion source (LMAIS) and ExB filter making it capable of delivering Au and Si ions and ion clusters for ion beam processing. Other LMAIS systems could be developed in the future to deliver other ion species. This system is capable of high performance ion beam lithography, sputter profiling, maskless ion implantation, ion beammore » mixing, and spatial and temporal ion beam assisted writing and processing over large areas (100 mm2)--all with selected ion species at voltages from 15-40 kV and nanometer precision. We discuss the performance of the system with the AuSi LMAIS source and ExB mass separator. We report on initial results from the basic system characterization, ion beam lithography, as well as for basic ion-solid interactions.« less

  7. Development of Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Veteran, J. L.; Young, M. H.

    1991-01-01

    New molecular beam epitaxy (MBE) materials growth and doping processes were developed for the fabrication of Si/SiGe heterostructure devices. These new materials processes are applied to the demonstration of cryogenic n-p-n Si/Si 1-x Gex/Si heterojunction bipolar transistors (HBT). This application has special significance as an enabling DoD technology for fast low noise, high performance readout and signal processing circuits for IR focal systems. Reliable, versatile methods were developed to grow very high quality Si/SiGe strained layer heterostructures and multilayers. In connection with this program methods were developed to dope the Si and SiGe with B, Sb and Ga. B and Sb were found to be the preferred dopants for p and n regions respectively, of the HBT devices. The test devices clearly displayed gain enhancement due to the heterojunction and provided useful gains from room temperature down to 10 K.

  8. Analysis of thermoelastic damping in laminated composite micromechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vengallatore, Srikar

    2005-12-01

    Minimization of structural damping is an essential requirement in the design of multifunctional composite micromachined resonators used for sensing and communications applications. Here, we study thermoelastic damping in symmetric, three-layered, laminated, micromechanical Euler-Bernoulli beams using an analytical framework developed by Bishop and Kinra in 1997. The frequency dependence of damping in two representative sets of structures—metallized ceramic beams and ceramic/ceramic laminates—is investigated in detail. The effects of material properties and relative volume fractions are numerically evaluated. The results indicate that metallization of Si and SiC beams using Al, Cu, Ag or Au leads to a considerable increase in damping over a broad frequency range. Similarly, coating silicon with SiC leads to a monotonic increase of the peak damping value as a function of the volume fraction of silicon carbide but, remarkably, there exists a range of frequencies at which the damping in the composite is less than that of bare silicon. Implications for the design of metallized ceramic beams, and for the simultaneous optimization of natural frequency and damping, are discussed.

  9. In situ TEM observation of preferential amorphization in single crystal Si nanowire

    NASA Astrophysics Data System (ADS)

    Su, Jiangbin; Zhu, Xianfang

    2018-06-01

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  10. In situ TEM observation of preferential amorphization in single crystal Si nanowire.

    PubMed

    Su, Jiangbin; Zhu, Xianfang

    2018-06-08

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  11. Functionalization of MEMS cantilever beams for interconnect reliability investigation: development practice

    NASA Astrophysics Data System (ADS)

    Bieniek, T.; Janczyk, G.; Dobrowolski, R.; Wojciechowska, K.; Malinowska, A.; Panas, A.; Nieprzecki, M.; Kłos, H.

    2016-11-01

    This paper covers research results on development of the cantilevers beams test structures for interconnects reliability and robustness investigation. Presented results include design, modelling, simulation, optimization and finally fabrication stage performed on 4 inch Si wafers using the ITE microfabrication facility. This paper also covers experimental results from the test structures characterization.

  12. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  13. Mechanical behavior of polycrystalline ceramics: Brittle fracture of SiC-Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Ceipold, M. H.; Kapadia, C. M.; Kelkar, A. H.

    1972-01-01

    Research on the fracture behavior of silicon nitride and silicon carbide is reported along with the role of anion impurities in the fabrication and behavior of magnesium oxide. The results of a survey of crack propagation in SiC and Si3N4 are presented. Studies in the following areas are reported: development of a fracture toughness testing technique, constant moment beam, microcrack examination, and etching techniques.

  14. Patterned microstructures formed with MeV Au implantation in Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.

    2006-09-01

    Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.

  15. Injected ion energy dependence of SiC film deposited by low-energy SiC3H9+ ion beam produced from hexamethyldisilane

    NASA Astrophysics Data System (ADS)

    Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato

    2018-04-01

    We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.

  16. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as anmore » absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.« less

  17. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    NASA Astrophysics Data System (ADS)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  18. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams.

    PubMed

    Fleming, A; Folsom, C; Jensen, C; Ban, H

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO 2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO 2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO 2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  19. Supersonic molecular beam experiments on surface chemical reactions.

    PubMed

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures

    PubMed Central

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Lundsgaard Hansen, John; Nylandsted Larsen, Arne; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-01-01

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing. PMID:28773172

  1. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures.

    PubMed

    Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut

    2017-07-17

    Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.

  2. A micron resolution optical scanner for characterization of silicon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less

  3. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  4. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-05-10

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.

  5. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  6. Grafted Polystyrene Monolayer Brush as Both Negative and Positive Tone Electron Beam Resist.

    PubMed

    Aydinoglu, Ferhat; Yamada, Hirotaka; Dey, Ripon K; Cui, Bo

    2017-05-23

    Although spin coating is the most widely used electron-beam resist coating technique in nanolithography, it cannot typically be applied for nonflat or irregular surfaces. Here, we demonstrate that monolayer polystyrene brush can be grafted on substrates and used as both positive and negative electron-beam resist, which can be applied for such unconventional surfaces. Polystyrene is a popular negative resist when using solvent developer but solvent cannot be used for grafted polystyrene brush that is firmly bonded to the substrate. Instead, we employed two unconventional development methods to lead polystyrene brush to positive or negative tone behavior. Negative tone was achieved by thermal development at 300 °C because exposed thus cross-linked polystyrene brush is more thermally stable against vaporization than unexposed linear one. Surprisingly, positive tone behavior occurred when the brush was grafted onto an aluminum (Al) layer and the film stack was developed using diluted hydrofluoric acid (HF) that etched the underlying Al layer. By transferring the patterns into the silicon (Si) substrates using the thin Al layer as a sacrificial hard mask for dry etch, well-defined structures in Si were obtained in two different electron-beam resist tones as well as in nonflat surfaces.

  7. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    PubMed

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  8. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  9. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  10. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE PAGES

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...

    2016-04-14

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  11. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  12. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-01-01

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO2/Na2O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam. PMID:28809251

  13. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  14. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  15. Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card

    NASA Astrophysics Data System (ADS)

    Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo

    2007-01-01

    This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).

  16. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  17. Temperature-Dependent Helium Ion-Beam Mixing in an Amorphous SiOC/Crystalline Fe Composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2016-10-31

    Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873more » K, the Fe marker layer broke down and RBS could no longer be used to quantitatively examine the amount of ion mixing. The results indicate that the Fe/SiOC nanocomposite is thermally stable and tends to demix in the temperature range from 473 to 673 K. For application of this composite structure at temperatures of 873 K or higher, layer stability is a key consideration.« less

  18. Half-life of Si-32 from tandem-accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Elmore, D.; Anantaraman, N.; Fulbright, H. W.; Gove, H. E.; Nishiizumi, K.; Murrell, M. T.; Honda, M.; Hans, H. S.

    1980-01-01

    A newly developed mass-spectrometry technique employing a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector has been used to determine the half-life of Si-32. The result obtained, 108 plus or minus 18 yr, disagrees with the accepted value of 330 plus or minus 40 yr. The implications of the new half-life of Si-32, which is used for dating studies, are discussed.

  19. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  20. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  1. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  2. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  3. Controllable growth of GeSi nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin

    2018-06-01

    We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).

  4. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  5. High-energy electron beams for ceramic joining

    NASA Astrophysics Data System (ADS)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  6. Search for unbound nuclides and beam/fragment optics with the MoNA/LISA segmented target at NSCL

    NASA Astrophysics Data System (ADS)

    Gueye, Paul; Frank, Nathan; Thoennessen, Michael; Redpath, Thomas; MoNA Collaboration

    2017-09-01

    A multi-layered Si/Be segmented target consisting of three 700 mg/cm2 thick Be9 slabs and four 140 microns Si detectors was used by the MoNA Collaboration at the National Superconducting Cyclotron Laboratory of Michigan State University to study the O26 lifetime. This target provides unprecedented information on the incident beams and fragments (energy loss and position), thus allowing for better determination of the incident and outgoing energies and momenta of the detected particles compare to previous experiments conducted at this facility. With the availability of a newly developed Geant4 Monte Carlo simulation of the full N2 vault, we will present and discuss the performances of this target. Search for unbound nuclides and beam/fragment optics with the MoNA/LISA segmented target at NSCL.

  7. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  8. Pinpoint Delivery of Molecules by Using Electron Beam Addressing Virtual Cathode Display.

    PubMed

    Hoshino, Takayuki; Yoshioka, Moto; Wagatsuma, Akira; Miyazako, Hiroki; Mabuchi, Kunihiko

    2018-03-01

    Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography. The SiN membrane works as both a vacuum barrier and the display screen of the virtual cathode. The kinetic energy of the incident primary electrons to the SiN membrane was completely blocked, whereas negative charges and leaking electric current appeared on the surface of the dielectric SiN membrane within a region of 100 nm. Locally controlled transmembrane molecular delivery was demonstrated on adhered C2C12 myoblast cells in a culturing medium with fluorescent dye propidium iodide (PI). Increasing fluorescence of pre-diluted PI indicated local poration and transmembrane inflow at the virtual cathode position, as well as intracellular diffusion. The transmembrane inflows depended on beam duration time and acceleration voltage. At the post-molecular delivery, a slight decrease in intracellular PI fluorescence intensity indicates membrane recovery from the poration. Cell viability was confirmed by time-lapse cell imaging of post-exposure cell migration.

  9. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  10. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    NASA Astrophysics Data System (ADS)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene micro-ribbon (< 1 μm) was measured via overlaying two micro-electrodes using e-beam lithography and e-beam evaporation. The crystalline quality (stacking order, defect or disorder, strain, crystallite size, etc.) of laser-induced graphene was analyzed using Raman spectroscopy through the comparison with pristine natural graphite and CVD-grown monolayer graphene on SiO2/Si and other substrates. The experimental results reveal the feasibility of laser modification techniques as an efficient, inexpensive, and versatile (any shape and location) means in local synthesis of graphene, especially in patterning graphene nanostructures. Different from other laser induced graphene research works, which were concentrated on bulk SiC wafers, this PhD research work focuses on thin film SiC grown on Si (111) for the first time.

  11. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  12. Surface hardening of 30CrMnSiA steel using continuous electron beam

    NASA Astrophysics Data System (ADS)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  13. Effects associated with nanostructure fabrication using in situ liquid cell TEM technology

    DOE PAGES

    Chen, Xin; Zhou, Lihui; Wang, Ping; ...

    2015-07-28

    We studied silicon, carbon, and SiC x nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl 4 to 0 % SiCl 4 in CH 2Cl 2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generatemore » donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less

  14. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreasedmore » sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.« less

  15. Silicon nitride films deposited with an electron beam created plasma

    NASA Technical Reports Server (NTRS)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  16. Nuclear Resonance Scattering of Circularly Polarized SR

    NASA Astrophysics Data System (ADS)

    Szymanski, K.; Satula, D.; Dobrzynski, L.; Kalska, B.

    2004-09-01

    Results of the experiments with nuclear resonance scattering of synchrotron radiation aiming at construction of the circularly polarized beam suitable for nuclear hyperfine studies are reported. Si(4 0 0) single crystal slab, 100 μ m thick, was used as a quarter wave plate. Observed twofold reduction of the intensity in proposed geometry is due to the Si crystal itself. Hyperfine interactions are used to probe polarization state of the synchrotron beam. Too large angular beam divergence did not allow for achieving full circular polarization of photons. Consequently, further experiments are proposed to overcame beam divergence problems. A number of calculations presented in the paper show that cheap and easily available Si plate can serve as an effective desired polarizer.

  17. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com; Lavoie, Christian; Jordan-Sweet, Jean

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  18. Fast neutron detection at near-core location of a research reactor with a SiC detector

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  19. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyiloth Vayalil, Sarathlal, E-mail: sarathlal.koyilothvayalil@desy.de; UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017; Gupta, Ajay

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure.more » Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.« less

  20. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  1. Quantum point contacts for electrons on H-Si(111) surfaces using a Ga focused-ion beam for direct-write implant lithography

    NASA Astrophysics Data System (ADS)

    Robertson, Luke D.; Kane, B. E.

    Quantum point contacts (QPCs) realized in materials with anisotropic electron mass, such as Si, may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. To this end, we have developed ambipolar devices on a H-Si(111):Si(100)/SiO2 flip-chip assembly which utilize in-plane, degenerately doped n+ (P) and p+ (B) contacts to probe transport in a 2D electron system (2DES). In addition to providing electrostatic isolation of carriers, these p-type contacts can be used as lateral depletion gates to modulate the 2DES conductance, and if extended to the nanoscale can lead to 1D confinement and quantized conductance of the 2DES. In this talk, I will describe our efforts to use a Ga focused-ion beam for direct-write implant lithography to pattern QPCs and Ga nanowires on H-Si(111) surfaces. I will present low temperature (4.2K) conductance data collected on 30nm Ga nanowires to demonstrate their effectiveness as lateral depletion gates, and discuss on going measurements to confine and modulate the conductance of the 2DES using Ga QPCs.

  2. Growth of strained Si/relaxed SiGe heterostructures on Si(110) substrates using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu

    2017-11-01

    A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.

  3. Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan

    2018-04-01

    The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.

  4. Study of Silicon/silicon, Silicon/silicon Dioxide, and Metal-Oxide

    NASA Astrophysics Data System (ADS)

    Leung, To Chi

    A variable-energy positron beam is used to study Si/Si, Si/SiO_2, and metal-oxide -semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300^circC) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO_2. Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO_2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C -V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO_2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties.

  5. Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Tyryshkin, A. M.; Lyon, S. A.

    2017-03-01

    Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.

  6. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Zhang Xiaowei; Yoda, Yoshitaka

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  7. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja; ...

    2016-12-24

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Furthermore, light yield of up to 137 photoelectrons per muon per strip has been observed, as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  8. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  9. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  10. Low-energy mass-selected ion beam production of fragments produced from hexamethyldisilane for SiC film formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato

    2016-03-14

    We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less

  11. Transferring-free and large-area graphitic carbon film growth by using molecular beam epitaxy at low growth temperature

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yu; Wang, Cheng-Hung; Pao, Chun-Wei; Lin, Shih-Yen

    2015-09-01

    Graphitic carbon films prepared by using molecular beam epitaxy (MBE) on metal templates with different thicknesses deposited on SiO2/Si substrates are investigated in this paper. With thick Cu templates, only graphitic carbon flakes are obtained near the Cu grain boundaries at low growth temperatures on metal/SiO2 interfaces. By replacing the Cu templates with thin Ni templates, complete graphitic carbon films with superior crystalline quality is obtained at 600 °C on SiO2/Si substrates after removing the Ni templates. The enhanced attachment of the graphitic carbon film to the SiO2/Si substrates with reduced Ni thickness makes the approach a promising approach for transferring-free graphene preparation at low temperature by using MBE.

  12. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  13. R&D of the CEPC scintillator-tungsten ECAL

    NASA Astrophysics Data System (ADS)

    Dong, M. Y.

    2018-03-01

    The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

  14. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  15. Compound formation and superconductivity in Au-Si: X-ray absorption measurements on ion-beam-mixed Au-Si films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Y.; Jisrawi, N.; Liang, G.

    Multilayered Au-Si thin films have been deposited with the net compositions ''Au/sub 1-//sub x/Si/sub x/,'' x = 0.29, 0.5, and 0.8. After ion-beam mixing these films exhibited superconductivity in the 0.3--1.2 K range despite the nonsuperconducting character of both Au and Si. Near-edge x-ray absorption spectroscopy (XAS) measurements on the Au L/sub 3/ edge in these films indicate that metastable Au-Si compound formation occurs in these ion-mixed materials. Specifically, the XAS measurements indicate changes in Au 5d-orbital occupancy and changes in the local Au structural environment which are both consistent with local compound formation.

  16. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  17. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  18. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  19. Micromirror structure based on TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yong Qing; Hu, Min; Du, Hejun; Luo, Jack; Flewitt, Andrew J.; Milne, William I.

    2005-02-01

    TiNi films were deposited on silicon by co-sputtering TiNi target and a separate Ti target at a temperature of 450°C. Results from differential scanning calorimeter, in-situ X-ray diffraction and curvature measurement revealed clearly martensitic transformation upon heating and cooling. Two types of TiNi/Si optical micromirror structures with a Si mirror cap (20 micron thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, three elbow shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. In the second design, a V-shaped cantilever based on TiNi/Si bimorph beams was used as the actuation mechanism for micromirror. TiNi electrodes were patterned and wet-etched in a solutions of HF:HNO3:H2O (1:1:20) with an etch rate of 0.6 μm/min. The TiNi/Si microbeams were flat at room temperature, and bent up with applying voltage in TiNi electrodes (due to phase transformation and shape memory effect), thus causing the changes in angles of micromirror.

  20. Waveform digitization for high resolution timing detectors with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Albrow, M. G.; Los, S.

    2012-03-01

    The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.

  1. Stress in (Al, Ga)N heterostructures grown on 6H-SiC and Si substrates byplasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.

    2017-11-01

    The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.

  2. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  3. Applications of beam-foil spectroscopy to atomic collisions in solids

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  4. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  5. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  6. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  7. Positronium formation in SiO2 films grown on Si substrates studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Kawano, T.; Ohji, Y.

    1994-04-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2 (166 nm)/Si specimens fabricated by thermal oxidation. From the measurements, it was found that about 90% of positrons implanted into the SiO2 film annihilate from positronium (Ps) states. This fact was due to the trapping of positrons by open-space defects and a resultant enhanced formation of Ps in such regions. For the SiO2 film grown at 650 °C, the lifetime of ortho-Ps was found to be shorter than that in the film grown at 1000 °C. This result suggests that the volume of open-space defects in the SiO2 film decreased with decreasing the growth rate of the SiO2 film.

  8. Optical properties of Si+ implanted PMMA

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.

    2010-04-01

    In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.

  9. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Mitra, Sanjit; Rotti, Aditya; Pant, Nidhi; Souradeep, Tarun

    2016-06-01

    Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients and . Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of "throwing the baby out with the bathwater".

  10. Damage to the Silicon Substrate by Reactive Ion Etching Detected by a Slow Positron Beam

    NASA Astrophysics Data System (ADS)

    Wei, Long; Tabuki, Yasushi; Tanigawa, Shoichiro

    1993-01-01

    Defects in reactive ion-etched Si have been investigated by means of a slow positron beam. A thin carbon-containing film (<30 Å) was formed on the Si surface after reactive ion etching (RIE). Vacancy-type defects, which were estimated to distribute over 1200 Å in depth by numerical fitting using the positron trapping model, were observed in the damaged subsurface region of Si. Aside from ion bombardment, ultraviolet radiation is also presumed to affect the formation of vacancies, interstitials in oxide and the formation of vacancies in Si substrate. The ionization-enhanced diffusion (IED) mechanism is expected to promote the diffusion of vacancies and interstitials into Si substrate.

  11. Hexapole-selected supersonic beams of reactive radicals: CF3, SiF3, SH, CH, and C2H

    NASA Astrophysics Data System (ADS)

    Weibel, Michael A.; Hain, Toby D.; Curtiss, Thomas J.

    1998-02-01

    A supersonic corona discharge source was used to produce molecular beams of plasma particles. Neutral, polar components of the plasma mixture were selectively focused by an electrostatic hexapole, thereby "simplifying" the chemical and rotational state composition of the beam. Careful choice of a radical precursor, combined with control of discharge and hexapole voltage allowed the production of pure beams of CF3, SiF3, and SH (purity typically better than 90%), with no noticeable signal arising from undissociated precursor, ions, or other radicals. Focused beams from a hydrocarbon plasma contained a radical mixture of predominantly CH and C2H. Radical beams were characterized by rotationally and translationally cold temperatures (typically TR<20 K and TS<20 K, respectively) and high intensities (typically 1011-1012cm-2 s-1). Simulated focusing spectra using classical trajectory calculations showed generally good agreement with the experimental data, leading to the first experimental measurement of the permanent electric dipole moment of SiF3 (μ=1.2±0.1 D).

  12. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  13. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  14. Single-grain growth in Si film by chevron-shaped cw laser beam scanning

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang; Yamazaki, Satoki; Ishimoto, Akihisa; Morito, Shigekazu

    2016-02-01

    A single grain with a length of 450 µm and a width of 5-6 µm was grown in a 60 nm Si film on SiO2 by scanning a chevron-shaped cw laser beam, which was formed by passing a linear laser beam through a novel one-sided Dove prism. The crystal did not have any dominant orientations in both the growth and normal directions. The orientation rotated about the transverse direction at a rate of 0.47-0.51°/µm in the forward direction, which suggests that the lattice constant at the film surface was 0.049-0.053% larger than that at the film bottom.

  15. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias

    NASA Astrophysics Data System (ADS)

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-01

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  16. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias.

    PubMed

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-18

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  17. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  18. Epitaxial graphene growth on FIB patterned 3C-SiC nanostructures on Si (111): reducing milling damage.

    PubMed

    Amjadipour, Mojtaba; MacLeod, Jennifer; Lipton-Duffin, Josh; Iacopi, Francesca; Motta, Nunzio

    2017-08-25

    Epitaxial growth of graphene on SiC is a scalable procedure that does not require any further transfer step, making this an ideal platform for graphene nanostructure fabrication. Focused ion beam (FIB) is a very promising tool for exploring the reduction of the lateral dimension of graphene on SiC to the nanometre scale. However, exposure of graphene to the Ga + beam causes significant surface damage through amorphisation and contamination, preventing epitaxial graphene growth. In this paper we demonstrate that combining a protective silicon layer with FIB patterning implemented prior to graphene growth can significantly reduce the damage associated with FIB milling. Using this approach, we successfully achieved graphene growth over 3C-SiC/Si FIB patterned nanostructures.

  19. Molecular-Beam Epitaxial Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures.

    DTIC Science & Technology

    1985-06-24

    research , and perhaps the most far-reaching one * A GaP -on-Si transistor was achieved, vastly better than any previous or concurrent effort towards this...the numerous conceptual and technological developments that had accumulated during the research . e) Defects in GaP -on-Si(211) Layers. With the help...Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures Final Report by A Herbert Kroemer June 1985 -..2-- U. S. Army Research

  20. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  1. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  2. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  3. Development of splitting convergent beam electron diffraction (SCBED).

    PubMed

    Houdellier, Florent; Röder, Falk; Snoeck, Etienne

    2015-12-01

    Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The International Symposium on Si-Based Molecular Beam (4th) held in Anaheim, California, on 29 April-3 May 1991

    DTIC Science & Technology

    1992-04-14

    P.J. Restle, and S.S. Iyer SILICON-BASED LONG WAVELENGTH INFRARED DETECTORS FABRICATED BY MOLECULAR BEAM EPITAXY 477 T.L. Lin, E.W. Jones, T. George, A...behaviour was defect generation cause by cascade propagation by the Si+ ions. Two important questions arise in use of PED. Firstly, relying as it does...Avenue, Santa Clara, CA 95052 ABSTRACT Strong hole intersubband infrared absorption in 6-doped Si multiple quantum wells is observed. The structures

  5. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  6. Amorphous Silicon Based Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield usingmore » low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies developed here could be used to develop X-ray and neutron monitors that could be used in the future for security checks at the airports and other critical facilities. The project would lead to devices that could significantly enhance the performance of multi-billion dollar neutron source facilities in the US and bring our nation to the forefront of neutron beam sciences and technologies which have enormous impact to materials, life science and military research and applications.« less

  7. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  8. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin, E-mail: chenbinmse@gmail.com; Chen, Jun; Yao, Yuanzhao

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ∼100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed inmore » the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.« less

  9. Normal incidence reflectance of ion beam deposited SiC films in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Osantowski, John F.; Herzig, Howard; Gum, Jeffrey S.; Toft, Albert R.

    1988-01-01

    Results are presented from an experimental investigation of the normal-incidence reflectance at 58.4, 92.0, and 121.6 nm wavelength of 30- and 80-nm-thick SiC films produced by ion-beam deposition on unheated 5 x 5-cm microscope slides. The films were deposited in the 2-m evaporator described by Bradford et al. (1969) with chamber base pressure 1 microtorr, operating pressure 40 microtorr, and a 50-62-mA 750-eV Ar ion beam; the reflectance measurements were obtained in the reflector-monochromator system described by Osantowski (1974). Reflectances of over 30 percent were found at 92 and 121.6 nm, almost equal to those of polished CVD films of SiC and degrading only slightly after aging for 4 months. It is suggested that ion-beam deposition may be the best low-temperature technique for coating EUV optics for space astronomy.

  10. Defect-free fabrication of nano-disk and nano-wire by fusion of bio-template and neutral beam etching

    NASA Astrophysics Data System (ADS)

    Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi

    2016-11-01

    We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.

  11. Anisotropic Etching Using Reactive Cluster Beams

    NASA Astrophysics Data System (ADS)

    Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro

    2010-12-01

    The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.

  12. Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel

    2014-10-01

    Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.

  13. Electron-Beam-Induced Current | Materials Science | NREL

    Science.gov Websites

    Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction

  14. Silicon incorporation in GaAs: From delta-doping to monolayer insertion

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Newman, R. C.; Roberts, C.

    1995-08-01

    Raman spectroscopy was used to study the incorporation of Si into doping layers in GaAs, grown by molecular beam epitaxy at a temperature of 400 °C, for Si concentrations ranging from the δ-doping level to a ML coverage. The strength of the scattering by local vibrational modes of substitutional Si was almost constant for Si areal concentration [Si]A in the range 5×1012<[Si]A<5×1013 cm-2 but then decreased, dropping below the detection limit for [Si]A≳3×1014 cm-2. At these concentrations a new vibrational band emerged at a frequency close to 470 cm-1 and developed into the optic zone center phonon of a coherently strained epitaxial layer of Si embedded in GaAs when a coverage of ≊1.5 ML (9.3×1014 cm-2) was reached. These findings strongly indicate that the observed saturation and the eventual decrease of the concentration of substitutional silicon is caused by an increasing incorporation of deposited Si into two-dimensional islands of covalently bonded Si.

  15. Silicon Technologies Adjust to RF Applications

    NASA Technical Reports Server (NTRS)

    Reinecke Taub, Susan; Alterovitz, Samuel A.

    1994-01-01

    Silicon (Si), although not traditionally the material of choice for RF and microwave applications, has become a serious challenger to other semiconductor technologies for high-frequency applications. Fine-line electron- beam and photolithographic techniques are now capable of fabricating silicon gate sizes as small as 0.1 micron while commonly-available high-resistivity silicon wafers support low-loss microwave transmission lines. These advances, coupled with the recent development of silicon-germanium (SiGe), arm silicon integrated circuits (ICs) with the speed required for increasingly higher-frequency applications.

  16. Metal/oxide/semiconductor interface investigated by monoenergetic positrons

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Tanigawa, S.; Ohji, Y.

    1988-10-01

    Variable-energy positron-beam studies have been carried out for the first time on a metal/oxide/semiconductor (MOS) structure of polycrystalline Si/SiO 2/Si-substrate. We were successful in collecting injected positrons at the SiO 2/Si interface by the application of an electric field between the MOS electrodes.

  17. Bi-directional phase transition of Cu/6H-SiC(0 0 0 1) system discovered by positron beam study

    NASA Astrophysics Data System (ADS)

    Zhang, J. D.; Weng, H. M.; Shan, Y. Y.; Ching, H. M.; Beling, C. D.; Fung, S.; Ling, C. C.

    2002-06-01

    The slow positron beam facility at the University of Hong Kong has been used to study the Cu/6H-SiC(0 0 0 1) system. The S- E data show the presence of the Cu/SiC interface buried at a depth of 30 nm. Keeping the beam energy fixed and sweeping the sample temperature, sharp discontinuities are noted in the S-parameter at both ˜17 and ˜250 K. The S-parameter transitions, which are in opposite directions, are indicative of sharp free volume changes that come as a result of the sudden changes in the structure at the Cu/SiC interface accompanying some phase transition. Energy dispersive X-ray spectroscopy (EDXS) room temperature scans reveal the presence of O in addition to Cu, C, Si at the interface, and thus copper oxide phases should be considered in interpreting this new phenomenon. It is suggested that TEM investigation together with temperature dependent X-ray diffraction spectroscopy may be able to shed further light on the nature of this interesting bi-directional phase transition.

  18. Formation of 2D-PhCs with missing holes based on Si-layers by EBL

    NASA Astrophysics Data System (ADS)

    Utkin, D. E.; Shklyev, A. A.; Tsarev, A. V.; Latyshev, A. V.

    2017-11-01

    The fabrication of the periodic structures, that is two-dimensional photonic crystals (2D PhCs) based on Si-materials by electron beam lithography (EBL) technique has been studied. We have investigated basic lithography processes such as designing, exposition, development, etching and others. The developed top-down approach allows close-packed arrays of elements and holes to be formed in nanometre range. This can be used to produce 2D PhCs with emitting micro-cavities (missing holes) with lateral size parameters with an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.

  19. Goos-Hänchen effect on Si thin films with spherical and cylindrical pores

    NASA Astrophysics Data System (ADS)

    Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel

    2018-02-01

    We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.

  20. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    NASA Astrophysics Data System (ADS)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  1. Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA

    NASA Astrophysics Data System (ADS)

    Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu

    Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.

  2. Micromirror structure actuated by TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Y. Q.; Luo, J. K.; Hu, M.; Du, H. J.; Flewitt, A. J.; Milne, W. I.

    2005-10-01

    TiNi films were deposited by co-sputtering TiNi and Ti targets. Results from differential scanning calorimetry and curvature measurement revealed martensitic transformation and shape memory effect upon heating and cooling. Two types of TiNi/Si micromirror structures with a Si mirror cap (40 µm thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, a V-shaped cantilever based on the TiNi/Si bimorph structure was used as the actuation mechanism for the micromirror. In the second design, three elbow-shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. The TiNi/Si microbeams were flat at room temperature and bent up by applying voltage in the TiNi electrodes (due to phase transformation and shape memory effect), thus causing changes in angles of the micromirror.

  3. Nucleation Of Ge 3D-islands On Pit-patterned Si Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, P. L.; Smagina, J. V.; Vlasov, D. Yu.

    2011-12-23

    Joint experimental and theoretical study of Ge nanoislands growth on pit-patterned Si substrate is carried out. Si substrates that have been templated by means of electron beam lithography and reactive ion etching have been used to grow Ge by molecular-beam epitaxy. Atomic-force-microscopy studies show that at Si(100) substrate temperature 550 deg. C, Ge nanoislands are formed at the pits' edges, rather than between the pits. The effect is interpreted in terms of energy barrier, that is formed near the edge of a pit and prevents Ge transport inside the pit. By molecular dynamics calculations the value of the energy barriermore » 0.9 eV was obtained.« less

  4. Growth and properties of amorphous silicon films grown using pulsed-flow reactive plasma beam epitaxy

    NASA Technical Reports Server (NTRS)

    Dalal, Vikram L.; Knox, Ralph; Kandalaft, Nabeeh; Baldwin, Greg

    1991-01-01

    The growth and properties of a-Si:H films grown using a novel deposition technique, reactive plasma beam epitaxy, are discussed. In this technique, a remote H plasma produced in a microwave-ECR reactor is used to grow a-Si:H films at low pressures. The H ions react with SiH4 introduced near the substrate to produce the film. The flow of SiH4 is pulsed on or off, thereby achieving in-situ annealing of the film during growth by H ions and radicals. The films produced by this technique appear to have good electronic quality, and are more stable than the standard glow discharge films.

  5. Superconductivity in ion-beam-mixed layered Au-Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; McLean, W.L.; Stoffel, N.G.

    The superconducting properties of thin films made by mixing alternating layers of Au and Si using ion-beam bombardment correlate with the formation of metastable metallic phases in what is otherwise a simple eutectic system. Transmission-electron-microscopy measurements reveal the superconducting phases to be amorphous. Compound formation and the nature of Au-Si bonding in these metastable phases are demonstrated from x-ray photoelectron spectroscopy and from a previous study of x-ray-absorption spectroscopy. After mixing with a beam of Xe ions, multilayered films with an average nominal composition Au{sub {ital x}}Si{sub 1{minus}{ital x}}, where {ital x}=0.2, 0.4, 0.5, 0.72, and 0.8, exhibited superconducting transitionmore » temperatures in the range 0.2--1.2 K. A double transition feature in the magnetic field dependence of the resistivity is attributed to the formation of more than one metastable metallic phase in the same sample as the ion dose increases.« less

  6. Fabrication of single crystalline stripe in Si and Ge film on rolled flexible glass substrate by UV cw micro-chevron laser beam

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang

    2017-08-01

    Micro chevron laser beam annealing (μCLBA) of Si film and Ge film were introduced. Single crystal stripe with a dimension of several tens to hundreds μm in length and 3-8μm in width was formed in Si film or Ge film by scanning μCLBA over the film. Main boundaries in the c-Si stripe were Σ3 CSL twin boundary. Scanning speed of micro linear laser beam annealing (μLLBA) was varied from 0.05 m/s to 8m/s to investigate its influence to crystallinity. Even at 8m/s lateral growth taken place, however, crystal quality was better for slower lateral growth. Crystallization area per energy (APE) of μLLBA was evaluated and compared with other methods. It was found APE of μLLBA was larger than other method, especially for a display with low fill factor of TFT, APE can be several orders of magnitude larger.

  7. Sub-barrier fusion of Si+Si systems

    NASA Astrophysics Data System (ADS)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Bourgin, D.; Čolović, P.; Corradi, L.; Courtin, S.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Urbani, M.; Szilner, S.; Zhang, G. L.

    2017-11-01

    The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC) calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3- excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  8. Ion irradiation effects on a magnetic Si/Ni/Si trilayer and lateral magnetic-nonmagnetic multistrip patterning by focused ion beam

    NASA Astrophysics Data System (ADS)

    Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.

    2017-10-01

    Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.

  9. Group III impurities Si interstitials interaction caused by ion irradiation

    NASA Astrophysics Data System (ADS)

    Romano, L.; Piro, A. M.; De Bastiani, R.; Grimaldi, M. G.; Rimini, E.

    2006-01-01

    The off-lattice displacement of substitutional impurities (B, Ga) in Si caused by irradiation with energetic light ion beams has been investigated. Samples have been prepared by solid phase epitaxy (SPE) of pre-amorphized Si subsequently implanted with B and Ga at a concentration of about 1 × 1020 at/cm3 confined in a 300 nm thick surface region. The off-lattice displacement of the impurities was induced at room temperature (RT) by irradiation with high energy (>600 keV) light ion beams (H, He) and detected by the channelling technique along different axes, using the 11B(p,α)8Be reaction and standard RBS, for B and Ga, respectively. The normalized channelling yield χ of the impurity signal increases with the ion fluence, indicating a progressive off-lattice displacement of the dopant during irradiation, until it saturates at χF < 1 suggesting a non-random displacement of the dopant. Although the precise value of χF depends on the channelling direction and dopant species, the off-lattice displacement rate, deduced from the χ versus interstitial fluence curve, only depends on the excess of Si self-interstitials (SiI) generated by the irradiating beam through a parameter σ that can be interpreted as an effective cross-section for the impurity-SiI interaction.

  10. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    NASA Astrophysics Data System (ADS)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  11. MeV Si ion modifications on the thermoelectric generators from Si/Si + Ge superlattice nano-layered films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Heidary, K.; Johnson, R. B.; Colon, T.; Muntele, C.; Ila, D.

    2014-08-01

    The performance of thermoelectric materials and devices is characterized by a dimensionless figure of merit, ZT = S2σT/K, where, S and σ denote, respectively, the Seebeck coefficient and electrical conductivity, T is the absolute temperature in Kelvin and K represents the thermal conductivity. The figure of merit may be improved by means of raising either S or σ or by lowering K. In our laboratory, we have fabricated and characterized the performance of a large variety of thermoelectric generators (TEG). Two TEG groups comprised of 50 and 100 alternating layers of Si/Si + Ge multi-nanolayered superlattice films have been fabricated and thoroughly characterized. Ion beam assisted deposition (IBAD) was utilized to assemble the alternating sandwiched layers, resulting in total thickness of 300 nm and 317 nm for 50 and 100 layer devices, respectively. Rutherford Backscattering Spectroscopy (RBS) was employed in order to monitor the precise quantity of Si and Ge utilized in the construction of specific multilayer thin films. The material layers were subsequently impregnated with quantum dots and/or quantum clusters, in order to concurrently reduce the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and raise the cross plane electrical conductivity. The quantum dots/clusters were implanted via the 5 MeV Si ion bombardment which was performed using a Pelletron high energy ion beam accelerator. We have achieved remarkable results for the thermoelectric and optical properties of the Si/Si + Ge multilayer thin film TEG systems. We have demonstrated that with optimal setting of the 5 MeV Si ion beam bombardment fluences, one can fabricate TEG systems with figures of merits substantially higher than the values previously reported.

  12. Chromium silicide formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Shreter, U.; So, F. C. T.; Nicolet, M.-A.

    1984-01-01

    The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.

  13. Very thin, high Ge content Si 0.3Ge 0.7 relaxed buffer grown by MBE on SOI(0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Myronov, M.; Shiraki, Y.

    2007-04-01

    Growth procedure and excellent properties of very thin 240 nm thick, 95% relaxed, high Ge content Si 0.3Ge 0.7 buffer grown on SOI(0 0 1) substrate are demonstrated. All epilayers of the newly developed Si 0.3Ge 0.7/SOI(0 0 1) variable-temperature virtual substrate were grown in a single process by solid-source molecular beam epitaxy. Surface analysis of grown samples revealed smooth, cross-hatch free surface with low root mean square surface roughness of 0.9 nm and low threading dislocations density of 5×10 4 cm -2.

  14. Phase equilibrium in system Ti-Si-C-B and synthesis of MAX phase layers in vacuum under the influence of electron beam

    NASA Astrophysics Data System (ADS)

    Smirnyagina, N. N.; Khaltanova, V. M.; Dasheev, D. E.; Lapina, A. E.

    2017-05-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VТ-1 are generated at diffused saturation by electron beam treatment in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  15. Surface modification of an amorphous Si thin film crystallized by a linearly polarized Nd:YAG pulse laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horita, Susumu; Kaki, Hirokazu; Nishioka, Kensuke

    2007-07-01

    Amorphous Si films of 60 and 10 nm thick on glass substrates were irradiated by a linearly polarized Nd:YAG pulse laser with the wavelength {lambda}=532 nm at the incident angle {theta}{sub i}=0. The surface of the irradiated 60-nm-thick film had both periodic ridges perpendicular to the electric field vector E and aperiodic ridges roughly parallel to E, where the spatial period of the periodic ridges was almost {lambda}. From the continuous 10-nm-thick film, the separate rectangular Si islands were formed with a periodic distance of {lambda}, with the edges parallel or perpendicular to E. When {theta}{sub i} was increased frommore » normal incidence of the s-polarized beam for a 60-nm-thick film, the aperiodic ridges were reduced while the periodic ridges were still formed. For a 10-nm-thick film, the Si stripes were formed perpendicular to E, using the s-polarized beam at {theta}{sub i}=12 deg. In order to investigate the mechanisms of the surface modifications of, in particular, aperiodic ridges, islands, and stripes, we improved the previous theoretical model of the periodic distribution of the beam energy density (periodic E-D) generated by irradiation of the linearly polarized laser beam, taking account of the multireflection effect in the Si film which is semitransparent for {lambda}. Further, the calculated E-D was corrected with respect to the thermal diffusion in the irradiated Si film. The calculation results show that the two-dimensional E-D consists of a constant or a dc term and a sinusoidal or an ac term which contains various spatial periods. The multireflection effect strongly influences the amplitude and phase of every ac term, which means that the amplitude and phase depend on the film thickness. The thermal diffusion during the heating of the irradiated film greatly reduces the amplitudes of the ac terms with periods below the thermal diffusion length. The theoretical calculation showed that, by increasing {theta}{sub i}, the temperature distribution in the irradiated Si film was changed from two-dimensional toward one-dimensional, which can explain the above experimental results reasonably.« less

  16. Liquid-phase explosive crystallization of electron-beam-evaporated a-Si films induced by flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Matsumura, Hideki

    2013-01-01

    We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.

  17. Experimental, theoretical, and device application development of nanoscale focused electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Randolph, Steven Jeffrey

    Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.

  18. Self-Aligned ALD AlOx T-gate Insulator for Gate Leakage Current Suppression in SiNx-Passivated AlGaN/GaN HEMTs

    DTIC Science & Technology

    2010-01-01

    Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium

  19. Insight in the 3D morphology of silica-based nanotubes using electron microscopy.

    PubMed

    Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina

    2016-11-01

    Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    PubMed Central

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-01-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide–semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. PMID:27877816

  1. High-efficiency terahertz polarization devices based on the dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  2. Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.

    PubMed

    Godec, M; Podgornik, B; Nolan, D

    2017-11-23

    In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.

  3. Focused electron beam induced deposition of pure SIO II

    NASA Astrophysics Data System (ADS)

    Perentes, Alexandre; Hoffmann, Patrik; Munnik, Frans

    2007-02-01

    Focused electron beam induced processing (FEBID) equipments are the "all in one" tools for high resolution investigation, and modification of nano-devices. Focused electron beam induced deposition from a gaseous precursor usually results in a nano-composite sub-structured material, in which the interesting material is embedded in an amorphous carbonaceous matrix. Using the Hydrogen free tetraisocyanatosilane Si(NCO) 4 molecule as Si source, we show how a controlled oxygen flux, simultaneously injected with the precursor vapors, causes contaminants to vanish from the FEB deposits obtained and leads to the deposition of pure SiO II. The chemical composition of the FEBID material could be controlled from SiC IINO 3 to SiO II, the latter containing undetectable foreign element contamination. The [O II] / [TICS] ratio needed to obtain SiO II in our FEB deposition equipment is larger than 300. The evolution of the FEBID material chemical composition is presented as function of the [O II] / [TICS] molecular flux ratios. A hypothetical decomposition pathway of this silane under these conditions is discussed based on the different species formed under electron bombardment of TICS. Transmission electron microscopy investigations demonstrated that the deposited oxide is smooth (roughness sub 2nm) and amorphous. Infrared spectroscopy confirmed the low concentration of hydroxyl groups. The Hydrogen content of the deposited oxide, measured by elastic recoil detection analysis, is as low as 1 at%. 193nm wavelength AIMS investigations of 125nm thick SiO II pads (obtained with [O II] / [TICS] = 325) showed an undetectable light absorption.

  4. Recent Development of IMP LECR3 Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.M.; Zhao, H.W.; Li, J.Y.

    2005-03-15

    18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.

  5. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayersmore » grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.« less

  6. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shen, X. Q.; Takahashi, T.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.; Matsuhata, H.; Ide, T.; Shimizu, M.

    2013-12-01

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  7. Measurement of key resonances for the 24Al(p ,γ )25Si reaction rate using in-beam γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Longfellow, B.; Gade, A.; Brown, B. A.; Richter, W. A.; Bazin, D.; Bender, P. C.; Bowry, M.; Elman, B.; Lunderberg, E.; Weisshaar, D.; Williams, S. J.

    2018-05-01

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be(26Si,25Si)X and 9Be(25Al,25Si)X using in-beam γ -ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al(p ,γ )25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1 s1 /2 proton orbital to account for the observed Thomas-Ehrman shift, leading to a factor of 10-100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.

  8. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Choi, Miri; Posadas, Agham; Dargis, Rytis; Shih, Chih-Kang; Demkov, Alexander A.; Triyoso, Dina H.; David Theodore, N.; Dubourdieu, Catherine; Bruley, John; Jordan-Sweet, Jean

    2012-03-01

    An epitaxial layer of SrTiO3 grown directly on Si may be used as a pseudo-substrate for the integration of perovskite oxides onto silicon. When SrTiO3 is initially grown on Si (001), it is nominally compressively strained. However, by subsequent annealing in oxygen at elevated temperature, an SiOx interlayer can be formed which alters the strain state of SrTiO3. We report a study of strain relaxation in SrTiO3 films grown on Si by molecular beam epitaxy as a function of annealing time and oxygen partial pressure. Using a combination of x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy, we describe the process of interfacial oxidation and strain relaxation of SrTiO3 on Si (001). Understanding the process of strain relaxation of SrTiO3 on silicon will be useful for controlling the SrTiO3 lattice constant for lattice matching with functional oxide overlayers.

  9. Water Sorption in Electron-Beam Evaporated SiO2 on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements.

    PubMed

    Kushner, Douglas I; Hickner, Michael A

    2017-05-30

    Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO 2 -coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO 2 layer. The water sorption into this porous SiO 2 layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO 2 layer as it sorbs water. This correction is especially important when experiments on SiO 2 -coated QCM crystals are compared to measurements on Si wafers with dense native SiO 2 layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO 2 layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO 2 -coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (<20% RH) and 25%-40% of the polymer swelling in the high humidity regime (>70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO 2 layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.

  10. Exploring forward physics with the PHENIX MPC-EX upgrade

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert; Phenix Collaboration

    2014-09-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. Norbert Novitzky for PHENIX collaboration.

  11. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  12. Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji

    2009-04-01

    A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.

  13. Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.; Kapoor, Vik J.; Young, Paul G.; Williams, Wallace D.; Dickman, John E.

    1990-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  14. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  15. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams.

    PubMed

    Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-01

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.

  16. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  17. Effect of SiC buffer layer on GaN growth on Si via PA-MBE

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.

    2017-11-01

    The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.

  18. Laboratory Rotational Spectra of Silyl Isocyanide

    NASA Astrophysics Data System (ADS)

    Lee, K. L. K.; Gottlieb, C. A.; McCarthy, M. C.

    2018-06-01

    The rotational spectrum of silyl isocyanide (SiH3NC), an isomer of the well-studied silyl cyanide (SiH3CN), has been detected in the laboratory in a supersonic molecular beam, and the identification was confirmed by observations of the corresponding rotational transitions in the rare isotopic species {SiH}}3}15{NC} and SiH3N13C. Spectroscopic constants derived from 19 transitions between 11 and 35 GHz in the three lowest harmonically related rotational transitions in the K = 0 and 1 ladders of the normal isotopic species including the nitrogen nuclear quadrupole hyperfine constant allow the principal astronomical transitions of SiH3NC to be calculated to an uncertainty of about 4 km s‑1 in equivalent radial velocity, or within the FWHM of narrow spectral features in the inner region of IRC+10216 near 200 GHz. The concentration of SiH3NC in our molecular beam is three times less than SiH3CN, or about the same as the corresponding ratio of the isomeric pair SiNC and SiCN produced under similar conditions. Silyl isocyanide is an excellent candidate for astronomical detection, because the spectroscopic and chemical properties are very similar to SiH3CN, which was recently identified in the circumstellar envelope of IRC+10216 by Cernicharo et al. and of SiNC and SiCN in the same source.

  19. Nanopillar Photonic Crystal Lasers for Tb/s Transceivers on Silicon

    DTIC Science & Technology

    2015-07-09

    dimensions of NWs can be adjusted by lithographically patterned nanoholes on dielectric mask. Some studies of SAE growth on Si using Ga droplets, i.e. Ga...inside the patterned nanoholes . In this study, the effects of seeding layer growth temperature on uniformity, vertical yield, and optical...thermal silicon dioxide (SiO2). Next, E-Beam resist ZEP520A was coated and nanoholes were patterned by E-Beam lithography (EBL). The designed diameter

  20. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si

    PubMed Central

    2011-01-01

    Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934

  1. High-spin states in neutron-deficient nuclei near A=80

    NASA Astrophysics Data System (ADS)

    Theisen, L. V.; Tabor, S. L.; Medsker, L. R.; Neuschaefer, G.; Fry, L. H., Jr.; Clements, J. S.

    1982-03-01

    In-beam γ-ray spectroscopy with the reactions 54Fe + 28Si and 56Fe + 28Si at beam energies from 80 to 99 MeV were used to study high-spin states in neutron-deficient nuclei in the mass A~80 region. Measurements of γ-ray energies, intensities, angular distributions, excitation functions, and γ-γ coincidences were used to assign new levels in 79Rb and 80Sr. For the first time, high-spin states in 81Sr have been observed. NUCLEAR REACTIONS 56Fe(28Si,xpynγ) and 54Fe(28Si,xpynγ) Elab=80-99 MeV; measured Eγ, Iγ, γ-γ coincidences, σ(Eγ,E), and σ(Eγ,θ) 79Rb, 80Sr, and 81Sr deduced levels, Jπ. Enriched targets.

  2. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  3. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    NASA Astrophysics Data System (ADS)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  4. Selective area growth of InAs nanowires from SiO2/Si(1 1 1) templates direct-written by focused helium ion beam technology

    NASA Astrophysics Data System (ADS)

    Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung

    2018-02-01

    We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.

  5. Electron-beam-induced structure transformation of the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy

    NASA Astrophysics Data System (ADS)

    Reyes-Gasga, J.; R. Garcia, G.; Jose-Yacaman, M.

    1995-02-01

    Some details on the phase transformation experienced by the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy under a 400 kV electron beam are given. The transition is observed in situ with a high resolution electron microscope and recorded on video tape. The results show that the electron beam radiation produces a sequence of changes similar to the ones observed in an ion-beam-induced amorphization process. Considering electron radiation damage analysis, the results agree well with the "flip-flop" model [Coddens, Bellisent, Calvayrac and Ambroise (1991) Europhys. Lett.16, 271] where the transition from a quasicrystalline phase to a crystalline phase is produced by atomic displacements but not in a cascade way.

  6. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  7. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  8. Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias

    NASA Astrophysics Data System (ADS)

    Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi

    2017-06-01

    Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.

  9. Breakdown voltage mapping through voltage dependent ReBEL intensity imaging of multi-crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Dix-Peek, RM.; van Dyk, EE.; Vorster, FJ.; Pretorius, CJ.

    2018-04-01

    Device material quality affects both the efficiency and the longevity of photovoltaic (PV) cells. Therefore, identifying these defects can be beneficial in the development of more efficient and longer lasting PV cells. In this study, a combination of spatially-resolved, electroluminescence (EL), and light beam induced current (LBIC) measurements, were used to identify specific defects and features of a multi-crystalline Si PV cells. In this study, a novel approach is used to map the breakdown voltage of a PV cell through voltage dependent Reverse Bias EL (ReBEL) intensity imaging.

  10. Ion assisted deposition of SiO2 film from silicon

    NASA Astrophysics Data System (ADS)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  11. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  12. Low energy implantation of boron with decaborane ions

    NASA Astrophysics Data System (ADS)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  13. New Meta Nanomaterials Extension II of Optical Enhancement and Photorefractive Two-Beam Coupling - Synthesis and Fabrication of Quantum Dot NLO Polymer Composites

    DTIC Science & Technology

    2015-07-09

    peaks at -65, which is assigned to Si(- OSi )3. All of these signals are consistent with the functionalization of CdS with MPS. However, another intense...OR CdS S RO 5 Si S OR SiO OR OR CdS S OR Si RO Si O ORRO S CdS S Si S S Si O O O O O O 6 Si Si Si SiSi O Si = OSi n Figure 3. Possible alternative...on this assumption, we attribute the peak in the 29Si SSNMR spectrum at-57 ppm to Si(- OSi )2O(R/H) groups, respectively, where R = CH3 and the weak

  14. Quantum confinement effects in lithographic sub-5 nm Silicon nanowire fets and integration of si nanograting fet biosensors

    NASA Astrophysics Data System (ADS)

    Trivedi, Krutarth B.

    In recent years, widespread accessibility to reliable nanofabrication techniques such as high resolution electron beam lithography as well as development of innovative techniques such as nanoimprint lithography and chemically grown nano-materials like carbon nanotubes and graphene have spurred a boom in many fields of research involving nanoscale features and devices. The breadth of fields in which nanoscale features represent a new paradigm is staggering. Scaling down device dimensions to nanoscale enables non-classical quantum behavior and allows for interaction with similarly sized natural materials, like proteins and DNA, as never before, affording an unprecedented level of performance and control and fostering a seemingly boundless array of unique applications. Much of the research effort has been directed toward understanding such interactions to leverage the potential of nanoscale devices to enhance electronic and medical technology. In keeping with the spirit of application based research, my graduate research career has spanned the development of nanoimprint techniques and devices for novel applications, demonstration and study of sub-5 nm Si nanowire FETs exhibiting tangible performance enhancement over conventional MOSFETs, and development of an integrated Si nanograting FET based biosensor and related framework. The following dissertation details my work in fabrication of sub-5 nm Si nanowire FETs and characterization of quantum confinement effects in charge transport of FETs with 2D and 1D channel geometry, fabrication and characterization of schottky contact Si nanograting FET sensors, integration of miniaturized Si nanograting FET biosensors into Chip-in-Strip(c) packaging, development of an automated microfluidic sensing system, and investigation of electrochemical considerations in the Si nanograting FET biosensor gate stack followed by development of a novel patent-pending strategy for a lithographically patterned on-chip gate electrode.

  15. Novel approach for III-N on Si (111) templates fabrication by low-temperature PA MBE using porous Si layer

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Seredin, P.; Lenshin, A.; Goloshchapov, D.; Mizerov, A.

    2017-11-01

    We report on successful growth of GaN nanorods by low-temperature plasma-assisted molecular beam epitaxy on a Si(111) substrate with and without preformed thin porous Si layer (por-Si). The deposited GaN initially forms islands which act as a seed for the wires. Porous structure of the por-Si layer helps to control nucleation islands sizes and achieve homogeneous distribution of the nanorods diameters. In addition 850 nm-thick crack-free GaN layer was formed on Si(111) substrate with preformed por-Si layer.

  16. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  17. Study of the structural and optical properties of GaP(N) layers synthesized by molecular-beam epitaxy on Si(100) 4° substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhanovskaya, N. V., E-mail: NataliaKryzh@gmail.com; Polubavkina, Yu. S.; Nevedomskiy, V. N.

    The structural and optical properties of GaP and GaPN layers synthesized by molecular-beam epitaxy on Si(100) substrates misoriented by 4° are studied. The possibility of producing GaP buffer layers that exhibit a high degree of heterointerface planarity and an outcropping dislocation density of no higher than ~2 × 10{sup 8} cm{sup –2} is shown. Emission from the Si/GaP/GaPN structure in the spectral range of 630–640 nm at room temperature is observed. Annealing during growth of the Si/GaP/GaPN structure makes it possible to enhance the room-temperature photoluminescence intensity by a factor of 2.6, with no shift of the maximum of themore » emission line.« less

  18. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.

    PubMed

    Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y

    2015-03-13

    The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.

  19. A SiPM based real time dosimeter for radiotherapic beams

    NASA Astrophysics Data System (ADS)

    Berra, A.; Conti, V.; Lietti, D.; Milan, L.; Novati, C.; Ostinelli, A.; Prest, M.; Romanó, C.; Vallazza, E.

    2015-02-01

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  20. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  1. Measurement of key resonances for the Al 24 ( p , γ ) Si 25 reaction rate using in-beam γ -ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longfellow, B.; Gade, A.; Brown, B. A.

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be ( 26Si, 25Si) X and 9Be ( 25Al, 25Si) X using in-beam γ-ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al (p, γ) 25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1s 1/2 proton orbital to account for the observed Thomas-Ehrman shift, leadingmore » to a factor of 10–100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.« less

  2. Measurement of key resonances for the Al 24 ( p , γ ) Si 25 reaction rate using in-beam γ -ray spectroscopy

    DOE PAGES

    Longfellow, B.; Gade, A.; Brown, B. A.; ...

    2018-05-04

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be ( 26Si, 25Si) X and 9Be ( 25Al, 25Si) X using in-beam γ-ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al (p, γ) 25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1s 1/2 proton orbital to account for the observed Thomas-Ehrman shift, leadingmore » to a factor of 10–100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.« less

  3. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    PubMed Central

    2011-01-01

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted. PMID:21711696

  4. Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies

    NASA Astrophysics Data System (ADS)

    Mynbaev, K. D.; Bazhenov, N. L.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Marin, D. V.; Yakushev, M. V.

    2018-05-01

    Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical "intrinsic" HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.

  5. Kinetics of Si and Ge nanowires growth through electron beam evaporation.

    PubMed

    Artoni, Pietro; Pecora, Emanuele Francesco; Irrera, Alessia; Priolo, Francesco

    2011-02-21

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted.

  6. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  7. Laser Damage in Thin Film Optical Coatings

    DTIC Science & Technology

    1992-07-01

    10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as

  8. Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slobodskyy, T.; Ruester, C.; Fiederling, R.

    2004-12-20

    We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.

  9. Measurements of stress evolution during thin film deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Floro, J.A.

    1996-05-01

    We have developed a technique for measuring thin film stress during growth by monitoring the wafer curvature. By measuring the deflection of multiple parallel laser beams with a CCD detector, the sensivity to vibration is reduced and a radius of curvature limit of 4 km has been obtained in situ. This technique also enables us to obtain a 2-dimensional profile of the surface curvature from the simultaneous reflection of a rectangular array of beams. Results from the growth of SiG alloy films are presented to demonstrate the unique information that can be obtained during growth.

  10. Are Nonadiabatic Reaction Dynamics the Key to Novel Organosilicon Molecules? The Silicon (Si(3P))-Dimethylacetylene (C4H6(X1A1g)) System as a Case Study.

    PubMed

    Thomas, Aaron M; Dangi, Beni B; Yang, Tao; Kaiser, Ralf I; Lin, Lin; Chou, Tzu-Jung; Chang, Agnes H H

    2018-06-06

    The bimolecular gas phase reaction of ground-state silicon (Si; 3 P) with dimethylacetylene (C 4 H 6 ; X 1 A 1g ) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC 4 H 4 isomer(s) and molecular hydrogen (H 2 ) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC 4 H 4 isomers ( 1 p8- 1 p24) in overall exoergic reaction(s) (-107 -20 +12 kJ mol -1 ). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si( 3 P), with a hydrocarbon molecule.

  11. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.

  12. Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system

    NASA Astrophysics Data System (ADS)

    Li, Linxin; Liu, Quan; Chen, Junming; Wang, Leilei; Jin, Yunxia; Yang, Yifeng; Shao, Jianda

    2017-02-01

    We report on a polarization-independent all-dielectric trapezoidal bilayer grating with broadband and high diffraction efficiency. The bilayer trapezoidal grating ridge on a reflector consists of an HfO2 layer and a SiO2 layer. The theoretical -1st order efficiencies of the grating are more than 95% with wavelength range from 1010 nm to 1080 nm for both TE and TM polarizations. The fabrication tolerances depending on the HfO2 and SiO2 layer grating ridge depths are enough to obtain the designed grating using current craft. The fabricated grating with exceeding 94% efficiency from 1000 nm to 1085 nm measured by a non-polarization laser has been fabricated and applied in a spectral beam combining external cavity to combine eight beams into one beam output with 10.77 kW.

  13. Development of mirrors for precision laser gyros

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger

    1987-11-01

    Substrate polishing and interference-layer deposition techniques for the preparation of laser-gyro mirrors to operate at laser wavelength 633 nm and incidence angle 30 deg are investigated experimentally. The importance of high reflectivity and low backscatter for accurate laser-gyro angular-velocity measurement is explained, and the methods used to measure these parameters are outlined. Results for uncoated quartz glass, Zerodur, and Si monocrystal; thin Ag layers; alternate layers of SiO2 and TiO2, and Ag with a thin layer of SiO2 are presented in graphs and micrographs and characterized in detail. It is predicted that further improvements in polishing, the use of ion-beam deposition techniques, and perhaps the replacement of TiO2 with Ta2O5 will give mirrors with lower backscatter values.

  14. LDRD Final Report for''Tactical Laser Weapons for Defense'' SI (Tracking Code 01-SI-011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R; Zapata, L

    The focus of this project was a convincing demonstration of two new technological approaches to high beam quality; high average power solid-state laser systems that would be of interest for tactical laser weapon applications. Two pathways had been identified to such systems that built on existing thin disk and fiber laser technologies. This SI was used as seed funding to further develop and vet these ideas. Significantly, the LLNL specific enhancements to these proposed technology paths were specifically addressed for devising systems scaleable to the 100 kW average power level. In the course of performing this work we have establishedmore » an intellectual property base that protects and distinguishes us from other competitive approaches to the same end.« less

  15. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  16. High-Brightness Lasers with Spectral Beam Combining on Silicon

    NASA Astrophysics Data System (ADS)

    Stanton, Eric John

    Modern implementations of absorption spectroscopy and infrared-countermeasures demand advanced performance and integration of high-brightness lasers, especially in the molecular fingerprint spectral region. These applications, along with others in communication, remote-sensing, and medicine, benefit from the light source comprising a multitude of frequencies. To realize this technology, a single multi-spectral optical beam of near-diffraction-limited divergence is created by combining the outputs from an array of laser sources. Full integration of such a laser is possible with direct bonding of several epitaxially-grown chips to a single silicon (Si) substrate. In this platform, an array of lasers is defined with each gain material, creating a densely spaced set of wavelengths similar to wavelength division multiplexing used in communications. Scaling the brightness of a laser typically involves increasing the active volume to produce more output power. In the direction transverse to the light propagation, larger geometries compromise the beam quality. Lengthening the cavity provides only limited scaling of the output power due to the internal losses. Individual integrated lasers have low brightness due to combination of thermal effects and high optical intensities. With heterogeneous integration, many lasers can be spectrally combined on a single integrated chip to scale brightness in a compact platform. Recent demonstrations of 2.0-microm diode and 4.8-microm quantum cascade lasers on Si have extended this heterogeneous platform beyond the telecommunications band to the mid-infrared. In this work, low-loss beam combining elements spanning the visible to the mid-infrared are developed and a high-brightness multi-spectral laser is demonstrated in the range of 4.6-4.7-microm wavelengths. An architecture is presented where light is combined in multiple stages: first within the gain-bandwidth of each laser material and then coarsely between each spectral band to a single output waveguide. All components are demonstrated on a common material platform with a Si substrate, which lends feasibility to the complete system integration. Particular attention is focused on improving the efficiency of arrayed waveguide gratings (AWGs), used in the dense wavelength combining stage. This requires development of a refined characterization technique involving AWGs in a ring-resonator configuration to reduce measurement uncertainty. New levels of low-loss are achieved for visible, near-infrared, and mid-infrared multiplexing devices. Also, a multi-spectral laser in the mid-infrared is demonstrated by integrating an array of quantum cascade lasers and an AWG with Si waveguides. The output power and spectra are measured, demonstrating efficient beam combining and power scaling. Thus, a bright laser source in the mid-infrared has been demonstrated, along with an architecture and the components for incorporating visible and near-infrared optical bands.

  17. Secondary ion mass spectrometry study of ex situ annealing of epitaxial GaAs grown on Si substrates

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Mccullough, O.; Cser, J.; Katz, J.

    1988-01-01

    Samples of epitaxial GaAs grown on (100) Si substrates using molecular beam epitaxy were annealed at four different temperatures, from 800 to 950 C. Following annealing, the samples were analyzed using secondary ion mass spectrometry. Depth profiles of Ga, As, and Si reveal optimum conditions for annealing, and place a lower limit on a damage threshold for GaAs/Si substrates.

  18. Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Buckley, Donald H.; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.

    1987-01-01

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.

  19. Mechanical strength and tribological behavior of ion-beam-deposited boron nitride films on non-metallic substrates

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.

  20. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 µA of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  1. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 ´A of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  2. The directed self-assembly for the surface patterning by electron beam II

    NASA Astrophysics Data System (ADS)

    Nakagawa, Sachiko T.

    2015-03-01

    When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.

  3. Formation and characterization of perpendicular mode Si ripples by glancing angle O{sub 2}{sup +} sputtering at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollick, S. A.; Ghose, D.

    Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less

  4. The isotype ZnO/SiC heterojunction prepared by molecular beam epitaxy--A chemical inert interface with significant band discontinuities.

    PubMed

    Zhang, Yufeng; Lin, Nanying; Li, Yaping; Wang, Xiaodan; Wang, Huiqiong; Kang, Junyong; Wilks, Regan; Bär, Marcus; Mu, Rui

    2016-03-15

    ZnO/SiC heterojunctions show great potential for various optoelectronic applications (e.g., ultraviolet light emitting diodes, photodetectors, and solar cells). However, the lack of a detailed understanding of the ZnO/SiC interface prevents an efficient and rapid optimization of these devices. Here, intrinsic (but inherently n-type) ZnO were deposited via molecular beam epitaxy on n-type 6H-SiC single crystalline substrates. The chemical and electronic structure of the ZnO/SiC interfaces were characterized by ultraviolet/x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy. In contrast to the ZnO/SiC interface prepared by radio frequency magnetron sputtering, no willemite-like zinc silicate interface species is present at the MBE-ZnO/SiC interface. Furthermore, the valence band offset at the abrupt ZnO/SiC interface is experimentally determined to be (1.2 ± 0.3) eV, suggesting a conduction band offset of approximately 0.8 eV, thus explaining the reported excellent rectifying characteristics of isotype ZnO/SiC heterojunctions. These insights lead to a better comprehension of the ZnO/SiC interface and show that the choice of deposition route might offer a powerful means to tailor the chemical and electronic structures of the ZnO/SiC interface, which can eventually be utilized to optimize related devices.

  5. The isotype ZnO/SiC heterojunction prepared by molecular beam epitaxy – A chemical inert interface with significant band discontinuities

    PubMed Central

    Zhang, Yufeng; Lin, Nanying; Li, Yaping; Wang, Xiaodan; Wang, Huiqiong; Kang, Junyong; Wilks, Regan; Bär, Marcus; Mu, Rui

    2016-01-01

    ZnO/SiC heterojunctions show great potential for various optoelectronic applications (e.g., ultraviolet light emitting diodes, photodetectors, and solar cells). However, the lack of a detailed understanding of the ZnO/SiC interface prevents an efficient and rapid optimization of these devices. Here, intrinsic (but inherently n-type) ZnO were deposited via molecular beam epitaxy on n–type 6H-SiC single crystalline substrates. The chemical and electronic structure of the ZnO/SiC interfaces were characterized by ultraviolet/x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy. In contrast to the ZnO/SiC interface prepared by radio frequency magnetron sputtering, no willemite-like zinc silicate interface species is present at the MBE-ZnO/SiC interface. Furthermore, the valence band offset at the abrupt ZnO/SiC interface is experimentally determined to be (1.2 ± 0.3) eV, suggesting a conduction band offset of approximately 0.8 eV, thus explaining the reported excellent rectifying characteristics of isotype ZnO/SiC heterojunctions. These insights lead to a better comprehension of the ZnO/SiC interface and show that the choice of deposition route might offer a powerful means to tailor the chemical and electronic structures of the ZnO/SiC interface, which can eventually be utilized to optimize related devices. PMID:26976240

  6. Optimized Varian aSi portal dosimetry: development of datasets for collective use.

    PubMed

    Van Esch, Ann; Huyskens, Dominique P; Hirschi, Lukas; Baltes, Christof

    2013-11-04

    Although much literature has been devoted to portal dosimetry with the Varian amorphous silicon (aSi) portal imager, the majority of the described methods are not routinely adopted because implementation procedures are cumbersome and not within easy reach of most radiotherapy centers. To make improved portal dosimetry solutions more generally available, we have investigated the possibility of converting optimized configurations into ready-to-use standardized datasets. Firstly, for all commonly used photon energies (6, 10, 15, 18, and 20 MV), basic beam data acquired on 20 aSi panels were used to assess the interpanel reproducibility. Secondly, a standardized portal dose image prediction (PDIP) algorithm configuration was created for every energy, using a three-step process to optimize the aSi dose response function and profile correction files for the dosimetric calibration of the imager panel. An approximate correction of the backscatter of the Exact arm was also incorporated. Thirdly, a set of validation fields was assembled to assess the accuracy of the standardized configuration. Variations in the basic beam data measured on different aSi panels very rarely exceeded 2% (2 mm) and are of the same order of magnitude as variations between different Clinacs when measuring in reference conditions in water. All studied aSi panels can hence be regarded as nearly identical. Standardized datasets were successfully created and implemented. The test package proved useful in highlighting possible problems and illustrating remaining limitations, but also in demonstrating the good overall results (95% pass rate for 3%,3 mm) that can be obtained. The dosimetric behavior of all tested aSi panels was found to be nearly identical for all tested energies. The approach of using standardized datasets was then successfully tested through the creation and evaluation of PDIP preconfigured datasets that can be used within the Varian portal dosimetry solution.

  7. A review of molecular beam epitaxy of ferroelectric BaTiO 3 films on Si, Ge and GaAs substrates and their applications

    DOE PAGES

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; ...

    2015-06-30

    SrTiO 3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO 3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO 3 films on silicon,more » namely integrated photonics, which benefits from the large Pockels effect of BaTiO 3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.« less

  8. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  9. Direct laser interference patterning of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Aktag, Aliekber

    Recently, patterned magnetic thin films have attracted much attention for a variety of applications such as high density magnetic recording, magnetoresistive sensing, and magnetic random access memories. In the case of magnetic recording, one scheme calls for the films to be patterned into single domain "dots", where every dot represents a thermally stable bit. In this thesis, we extended a technique called direct laser interference patterning (DLIP), originally developed by Polushkin and co-workers, to pattern and locally modify the materials properties of magnetic thin films. In this technique, a high-intensity Nd:YAG pulse laser beam was split into two, three, or four beams, which are then recombined to interfere on a sample surface. The interference intensity maxima can modify the local materials properties of the film through local "annealing" or, more drastically, by ablation. We carried out some preliminary investigations of the DLIP process in several films including co-sputtered Co-C, amorphous Dy/Co:SiO2 multilayers, and Co/SiO2 multilayers in order to refine our techniques. We successfully produced regular arrays of lines, dots, or antidots formed by ablation of the thin film. The preliminary studies also showed that, in the regime of more modest pulse energies, it is possible to modify the magnetic properties of the films without noticeably changing the film topography. We then prepared perpendicular magnetic anisotropy Co/Pt multilayers with a SiO x passivation layer and applied DLIP at fairly modest intensities to pattern the film. We then studied the structural and magnetic changes that occurred in some detail. X-ray diffraction scans showed the Co/Pt:SiO x multilayer films to be nanocrystalline before and after patterning. Atomic force microscopy images showed no evidence for topographic changes of the Co/Pt:SiOx during patterning. In contrast, magnetic force microscopy showed regular periodic dot arrays, indicating that the local magnetic properties were significantly affected by the patterning process. Alternating-gradient-force magnetometry and magneto-optic measurements also showed that the magnetic properties were markedly changed by the DLIP process. Our results offer strong evidence that local heating causes the moments to change from perpendicular to in-plane, with the consequent formation of an "anisotropy lattice": dots of in-plane magnetization within a matrix of perpendicular magnetization. We also carried out some optical interference calculations to predict the light intensity distributions for two, three, and four interfering beams of light. We found that the patterns could be controlled by varying the angles of incidence, the polarizations of the beams, and the wavelength and intensity of the beams, and that a wide variety of patterns are possible. The predicted patterns were in quite good agreement with those observed experimentally.

  10. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are?

    PubMed

    Cole, Jacqueline H; Scerpella, Tamara A; van der Meulen, Marjolein C H

    2005-01-01

    Magnification error in fan-beam densitometers varies with distance from the X-ray source to the bone measured and might obscure bone mineral changes in the growing skeleton. Magnification was examined by scanning aluminum rods of different shapes (square, rectangular, solid round, and hollow round) at four distances above the X-ray source in two orientations, with rods aligned parallel (SI) and perpendicular (ML) to the longitudinal axis of the scanning table. Measured area (cm(2)) decreased linearly with distance above the X-ray source for all rods in the SI orientation (p < 0.005). Measured mineral content (g) decreased linearly with distance but only for SI round rods (p < 0.0001) and for ML hollow round rods (p < 0.005). Area and mineral content decreased 1.6-1.8% per centimeter above the source for round rods. Measured mineral density (g/cm(2)) decreased linearly with distance from the source only for ML hollow round rods (p < 0.005). Variation in area, mineral content, and mineral density measurements was 6.6-6.9%, 6.9-7.5%, and 1.9-2.3%, respectively, for SI round rods. Magnification errors of this magnitude are problematic for clinical studies using fan-beam densitometry. Particularly in pediatric subjects, increases in soft tissue during normal growth could increase a bone's distance from the fan-beam source and result in apparent reductions in area and bone mineral content.

  11. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Leung, D. C.; Fang, P. H.

    1983-01-01

    A total of sixteen runs of e-beam vacuum deposition of p type microcrystalline Si (m-Si) films were attempted on n type or p-n junction single crystalline Si (C-Si) substrates. The m-Si film thickness varied from .15 to .7 um and metal contacts were deposited after plasma hydrogenation. The p-m-Si on n-c-Si structure had a Voc of up to 490 m V while no Voc improvements were observed in the p-m-Si on p-n C-Si structure against p-n controls. Both CFF and Jsc were lower than control. Possible problem areas were interfaced between m-Si and C-si and the back contacts due to lack of sintering for fear of dehydrogenation.

  12. Growth of BaSi2 continuous films on Ge(111) by molecular beam epitaxy and fabrication of p-BaSi2/n-Ge heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Toko, Kaoru; Suemasu, Takashi

    2017-05-01

    We grew BaSi2 films on Ge(111) substrates by various growth methods based on molecular beam epitaxy (MBE). First, we attempted to form BaSi2 films directly on Ge(111) by MBE without templates. We next formed BaSi2 films using BaGe2 templates as commonly used for MBE growth of BaSi2 on Si substrates. Contrary to our prediction, the lateral growth of BaSi2 was not promoted by these two methods; BaSi2 formed not into a continuous film but into islands. Although streaky patterns of reflection high-energy electron diffraction were observed inside the growth chamber, no X-ray diffraction lines of BaSi2 were observed in samples taken out from the growth chamber. Such BaSi2 islands were easily to get oxidized. We finally attempted to form a continuous BaSi2 template layer on Ge(111) by solid phase epitaxy, that is, the deposition of amorphous Ba-Si layers onto MBE-grown BaSi2 epitaxial islands, followed by post annealing. We achieved the formation of an approximately 5-nm-thick BaSi2 continuous layer by this method. Using this BaSi2 layer as a template, we succeeded in forming a-axis-oriented 520-nm-thick BaSi2 epitaxial films on Ge substrates, although (111)-oriented Si grains were included in the grown layer. We next formed a B-doped p-BaSi2(20 nm)/n-Ge(111) heterojunction solar cell. A wide-spectrum response from 400 to 2000 nm was achieved. At an external bias voltage of 1 V, the external quantum efficiency reached as high as 60%, demonstrating the great potential of BaSi2/Ge combination. However, the efficiency of a solar cell under AM1.5 illumination was quite low (0.1%). The origin of such a low efficiency was examined.

  13. Distribution of point defects in Si(100)/Si grown by low-temperature molecular-beam epitaxy and solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Gossmann, H.-J.; Unterwald, F. C.; Feldman, L. C.; Leung, T. C.; Au, H. L.; Talyanski, V.; Nielsen, B.; Lynn, K. G.

    1993-08-01

    Positron annihilation in Si is a quantitaive, depth-sensitive technique for the detection of vacancylike defects or voids. A sensitivity of 5×1015 cm-3 for voidlike defects is easily achieved. The technique has been applied to a study of point-defect distributions in thin films of Si grown by molecular-beam epitaxy. A special procedure was developed to remove the influence of the native oxide on the positron measurement. 200-nm-thick films grown at temperatures between 475 and 560 °C show no defects below the sensitivity limit and are indistinguishable from the bulk substrate. So are films grown at 220 °C, provided a 2-min high-temperature anneal to a peak temperature of >=500 °C is executed every ~=30 nm during growth. If TRTA=450 °C, part of the film contains vacancylike defects to a concentration of ~=1018 cm-3. These results correlate well with current-voltage characteristics of p-n junctions grown with different rapid thermal anneal (RTA) temperatures. Ion scattering, with a defect sensitivity of ~=1%, shows no difference between films grown with different TRTA. Recrystallization of amorphous films, deposited at room temperature and annealed in situ at 550 °C, always leaves a significant defect concentration of ~=2×1018 cm-3; those defects are reduced but still present even after a 2-h 800 °C furnace anneal.

  14. Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Seh Joong; Park, Nam Kyou; Park, Doo Jae; Choi, Soo Bong; Kim, Yong-Sang

    2017-05-01

    The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.

  15. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  16. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  17. Note on in situ (scanning) transmission electron microscopy study of liquid samples.

    PubMed

    Jiang, Nan

    2017-08-01

    Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiN x membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isomer beam elastic scattering: 26mAl(p, p) for astrophysics

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-01-01

    The advent of radioactive ground-state beams some three decades ago ultimately sparked a revolution in our understanding of nuclear physics. However, studies with radioactive isomer beams are sparse and have often required sophisticated apparatuses coupled with the technologies of ground-state beams due to typical mass differences on the order of hundreds of keV and vastly different lifetimes for isomers. We present an application of a isomeric beam of 26mAl to one of the most famous observables in nuclear astrophysics: galactic 26Al. The characteristic decay of 26Al in the Galaxy was the first such specific radioactivity to be observed originating from outside the Earth some four decades ago. We present a newly-developed, novel technique to probe the structure of low-spin states in 27Si. Using the Center for Nuclear Study low-energy radioisotope beam separator (CRIB), we report on the measurement of 26mAl proton resonant elastic scattering conducted with a thick target in inverse kinematics. The preliminary results of this on-going study are presented.

  19. Machine-related backgrounds in the SiD detector at ILC

    NASA Astrophysics Data System (ADS)

    Denisov, D. S.; Mokhov, N. V.; Striganov, S. I.; Kostin, M. A.; Tropin, I. S.

    2006-12-01

    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+e- interactions are presented in this paper for the SiD detector.

  20. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  1. p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111)

    NASA Astrophysics Data System (ADS)

    Deng, Tianguo; Sato, Takuma; Xu, Zhihao; Takabe, Ryota; Yachi, Suguru; Yamashita, Yudai; Toko, Kaoru; Suemasu, Takashi

    2018-06-01

    B-doped p-BaSi2 epitaxial layers with a hole concentration of 1.1 × 1018 cm‑3 were grown on n-Si(001) using molecular beam epitaxy to fabricate p-BaSi2/n-Si solar cells. The thickness (d) of the p-BaSi2 layer was varied from 20 to 60 nm to investigate its effect on the solar cell performance. The conversion efficiency under an AM1.5 illumination increased with d reaching a maximum of 9.8% at d = 40 nm, which is nearly equal to the highest efficiency (9.9%) for p-BaSi2/n-Si solar cells on Si(111). This study indicated that Si(001) substrates are promising for use in BaSi2 solar cells.

  2. Interface formation of epitaxial MgO/Co2MnSi(001) structures: Elemental segregation and oxygen migration

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.

    2017-12-01

    The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.

  3. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT structures and map out the spatial sensitivities using the Sandia Focused Heavy Ion Microprobe Facility s Ion Beam Induced Charge Collection (IBICC) technique. Combining the two data sets offers insights into the charge collection mechanisms responsible for circuit level response and provides the first insights into the SEE characteristics of this latest version of IBM s commercial SiGe process.

  4. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  5. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  6. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  7. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  8. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  9. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  10. One Step Synthesis of a PerchlorinatedCyclohexasilane from Trichlorosilane: A Route to New Materials for Flexible Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip Boudjouk

    2010-03-27

    The serendipitous discovery of tetradecachlorocyclohexasilane dianion 1 was recently reported by our group at NDSU. The dianion is isolated from a mixture of an amine template (pentaethyldiethylenetriamine, pedeta) and HSiCl{sub 3} as insoluble colorless crystals that are easily reduced to give cyclohexasilane (Si{sub 6}H{sub 12}) in high yields and purity. While the product Si{sub 6}H{sub 12} has been shown to be useful as a liquid silane precursor to a-Si:H rectifying diodes and field effect transistors, these initial studies show a non-uniform dopant distributions. The need for a homogeneous dopant has led our group to further develop the chemistry of cyclohexasilane.more » Toward that end, we have focused on the design of molecules that contain a single dopant moiety bound to one or more Si{sub 6} ring(s). New Si{sub 6}H{sub 11}E compounds (where E is an n-type or p-type dopant) are being investigated (eqs. 2, 3) and initial results will be reported including the isolation of chlorocyclohexasilane, Si{sub 6}H{sub 11}Cl. In addition, several different triamine ligand templates to for Si{sub 6}Cl{sub 14}{sup 2-} salts were investigated toward optimizing the yield and ease of isolation for both the salt and the product liquid silane. Cyclohexasilane (Si{sub 6}H{sub 12})-based inks have been used as liquid precursor to silicon-containing electronic materials. Spin-coating of Si{sub 6}H{sub 12}-based inks with subsequent UV light and/or thermal treatment yielded amorphous silicon (a-Si:H) films. Initial results demonstrated the formation of n-type and p-type a-Si that were used in heterojunction structures (i.e., thin a-Si films on heavily-doped Si wafer substrates). While present ink chemistries produce a-Si:H with a high resistivity (i.e., > 10{sup 6} {Omega}.cm), efforts are under development to address this limitation. Additionally, a new printing approach (i.e., collimated aerosol beam direct write, CAB-DW) was developed that allows the deposition of silane-based features with linewidths <10 {micro}m. Assuming silicon-based materials with good electrical properties will be developed, there may be significant cost advantages associated with the ability to controllably deposit the semiconductor in a metered fashion.« less

  11. Development of semiconductor tracking: The future linear collider case

    NASA Astrophysics Data System (ADS)

    Savoy-Navarro, Aurore

    2011-04-01

    An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.

  12. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.

    PubMed

    García Núñez, Carlos; Braña, Alejandro F; López, Nair; García, Basilio J

    2018-06-13

    The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 μm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high-energy electron diffraction patterns associated with the epitaxial growth of GaAs NWs on Si(111) substrates, which have been analyzed and compared to the morphological characterization of GaAs NWs grown for different times under different conditions.

  13. Role of external neutrons of weakly bound nuclei in reactions with their participation

    NASA Astrophysics Data System (ADS)

    Naumenko, M. A.; Penionzhkevich, Yu E.; Samarin, V. V.; Sobolev, Yu G.

    2018-05-01

    The paper presents the results of measurement of the total cross sections for reactions 4,6He+Si and 6,7,9Li+Si in the beam energy range 5–50 A MeV. The enhancements of the total cross sections for reaction 6He+Si compared with reaction 4He+Si and 9Li+Si compared with reactions 6,7Li+Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He+Si and 9Li+Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.

  14. Density Determination and Metallographic Surface Preparation of Electron Beam Melted Ti6Al4V

    DTIC Science & Technology

    2015-06-02

    Electron Microscopy SiC Silicon Carbide Ti6Al4V Titanium-6Aluminum-4Vanadium WRNMMC Walter Reed National Military Medical Center Wd Dry...polishing with silicon carbide ( SiC ) papers and colloidal silica suspension to produce samples with varying surface topographies. Surfaces were...manufacturing process. For titanium alloys, the grinding media typically used is silicon carbide ( SiC ) paper. Table 1 lists grades of SiC papers that are

  15. Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting.

    PubMed

    Benkouider, A; Ronda, A; David, T; Favre, L; Abbarchi, M; Naffouti, M; Osmond, J; Delobbe, A; Sudraud, P; Berbezier, I

    2015-12-18

    Synthesizing Au0.8Si0.2 nanocatalysts that are homogeneous in size and have controlled position is becoming a challenging and crucial prequisite for the fabrication of ordered semiconductor nanowires. In this study, Au0.8Si0.2 nanocatalysts are synthesized via dewetting of Au layers on Si(111) during thermal annealing in an ultra-high vacuum. In the first part of the paper, the mechanism of homogeneous dewetting is analyzed as a function of the Au-deposited thickness (h Au). We distinguish three different dewetting regimes: (I) for a low thickness ([Formula: see text]), a submonolyer coverage of Au is stabilized and there is no dewetting. (II) For an intermediate thickness ([Formula: see text]), there is both dewetting and Au0.8Si0.2 phase formation. The size and density of the Au0.8Si0.2 clusters are directly related to h Au. When cooling down to room temperature, the clusters decompose and reject the Si at the Au/Si substrate interface. (III) For a large thickness ([Formula: see text]), only dewetting takes place, without forming AuSi clusters. In this regime, the dewetting is kinetically controlled by the self-diffusion of Au (activation energy ∼0.43 eV) without evidence of an Si-alloying effect. As a practical consequence, when relying solely on the homogeneous dewetting of Au/Si(111) to form the Au0.8Si0.2 catalysts (without a supply of Si atoms from vapor), regime II should be used to obtain good size and density control. In the second part of the paper, a process for ordering the catalysts using focused ion beam-(FIB) assisted dewetting (heterogeneous dewetting) is developed. We show that no matter what the FIB milling conditions and the Au nominal thickness are, dewetting is promoted by ion beam irradiation and is accompanied by the formation of Au0.8Si0.2 droplets. The droplets preferentially form on the patterned areas, while in similar annealing conditions, they do not form on the unpatterned areas. This behavior is attributed to the larger Au-Si interdiffusion in the patterned areas, which results from the Si amorphization induced by the FIB. A systematic analysis of the position of the nanodroplets shows their preferential nucleation inside the patterns, while thicker platelets of almost pure Au are observed between the patterns. The evolutions of the size homogeneity and the occupancy rate of the patterns are quantified as a function of the FIB dose and annealing temperature. Nice arrays of perfectly ordered AuSi catalysts are obtained after optimizing the FIB and dewetting conditions.

  16. Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Mu, Xiaoyu; Wang, Gang; Liu, Changlong

    2017-11-01

    By etching two SiO2 optical waveguide slabs separately implanted with 90 keV Ag ions and 60 keV Cu ions at the same dose of 6 × 1016 cm-2, two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers with 600-nm periodicity and 100-nm thickness were fabricated, and their structural and vertical input coupling properties were investigated. Experimental results revealed that the two couplers could convert light beams at wavelengths of 620-880 nm into guided waves with different efficiencies, highlighting the special importance of metal nanoparticles (NPs). Further discussions also revealed that owing to the introduction of periodically distributed metal NPs, the periodical phase modification of the transmitted beam was enhanced drastically, and the nanocomposite veins could behave as efficient light scatterers. As a result, the two couplers were much larger in coupling efficiency than the NP-free one with identical morphological parameters. The above findings may be useful to construct thin and short but efficient surface-relief grating couplers on glass optical waveguides.

  17. Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmaraj, P.; Jeganathan, K., E-mail: kjeganathan@yahoo.com; Parthiban, S.

    We report selective area growth of large area homogeneous Bernal stacked bilayer epitaxial graphene (BLEG) on 4H-SiC (0001) substrate by electron-beam irradiation. Sublimation of Si occurs by energetic electron irradiations on SiC surface via breaking of Si–C bonds in the localized region, which allows the selective growth of graphene. Raman measurements ensure the formation of homogeneous BLEG with weak compressive strain of −0.08%. The carrier mobility of large area BLEG is ∼5100 cm{sup 2} V{sup −1} s{sup −1} with a sheet carrier density of 2.2 × 10{sup 13} cm{sup −2}. Current-voltage measurements reveal that BLEG on 4H-SiC forms a Schottky junction with an operation at mAmore » level. Our study reveals that the barrier height at the Schottky junction is low (∼0.58 eV) due to the Fermi-level pinning above the Dirac point.« less

  18. SU-E-J-155: Utilizing Varian TrueBeam Developer Mode for the Quantification of Mechanical Limits and the Simulation of 4D Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D; Dave, M

    Purpose: Use Varian TrueBeam Developer mode to quantify the mechanical limits of the couch and to simulate 4D respiratory motion. Methods: An in-house MATLAB based GUI was created to make the BEAM XML files. The couch was moved in a triangular wave in the S/I direction with varying amplitudes (1mm, 5mm, 10mm, and 50mm) and periods (3s, 6s, and 9s). The periods were determined by specifying the speed. The theoretical positions were compared to the values recorded by the machine at 50 Hz. HD videos were taken for certain tests as external validation. 4D Respiratory motion was simulated by anmore » A/P MV beam being delivered while the couch moved in an elliptical manner. The ellipse had a major axis of 2 cm (S/I) and a minor axis of 1 cm (A/P). Results: The path planned by the TrueBeam deviated from the theoretical triangular form as the speed increased. Deviations were noticed starting at a speed of 3.33 cm/s (50mm amplitude, 6s period). The greatest deviation occurred in the 50mm- 3s sequence with a correlation value of −0.13 and a 27% time increase; the plan essentially became out of phase. Excluding these two, the plans had correlation values of 0.99. The elliptical sequence effectively simulated a respiratory pattern with a period of 6s. The period could be controlled by changing the speeds or the dose rate. Conclusion: The work first shows the quantification of the mechanical limits of the couch and the speeds at which the proposed plans begin to deviate. These limits must be kept in mind when programming other couch sequences. The methodology can be used to quantify the limits of other axes. Furthermore, the work shows the possibility of creating 4D respiratory simulations without using specialized phantoms or motion-platforms. This can be further developed to program patient-specific breathing patterns.« less

  19. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szelc, A. M.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelengthmore » shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.« less

  20. Selective-area growth of GaN nanowires on SiO{sub 2}-masked Si (111) substrates by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion

    2016-06-14

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less

  1. Ripple structure of crystalline layers in ion-beam-induced Si wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, S.; Chini, T.K.; Sanyal, M.K.

    Ion-beam-induced ripple formation in Si wafers was studied by two complementary surface sensitive techniques, namely atomic force microscopy (AFM) and depth-resolved x-ray grazing incidence diffraction (GID). The formation of ripple structure at high doses ({approx}7x10{sup 17} ions/cm{sup 2}), starting from initiation at low doses ({approx}1x10{sup 17} ions/cm{sup 2}) of ion beam, is evident from AFM, while that in the buried crystalline region below a partially crystalline top layer is evident from GID study. Such ripple structure of crystalline layers in a large area formed in the subsurface region of Si wafers is probed through a nondestructive technique. The GID techniquemore » reveals that these periodically modulated wavelike buried crystalline features become highly regular and strongly correlated as one increases the Ar ion-beam energy from 60 to 100 keV. The vertical density profile obtained from the analysis of a Vineyard profile shows that the density in the upper top part of ripples is decreased to about 15% of the crystalline density. The partially crystalline top layer at low dose transforms to a completely amorphous layer for high doses, and the top morphology was found to be conformal with the underlying crystalline ripple.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Dipankar, E-mail: dip2602@gmail.com; Porwal, S.; Sharma, T. K., E-mail: tarun@rrcat.gov.in

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pumpmore » beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.« less

  3. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.

    PubMed

    Jana, Dipankar; Porwal, S; Sharma, T K; Kumar, Shailendra; Oak, S M

    2014-04-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.

  4. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  5. High performance Si immersion gratings patterned with electron beam lithography

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error by a factor of 5. (3) The serial write process for typical gratings yields write times of about 24 hours- this makes prototyping costly. We discuss work with negative e-beam resist to reduce the fill factor of exposure, and therefore limit the exposure time. We also discuss the tradeoffs of long write-time serial write processes like e-beam with UV photomask lithography. We show the results of experiments on small pattern size prototypes on silicon wafers. Current prototypes now exceed 30 dB of suppression on spectral and spatial dimension ghosts compared to monochromatic spectral purity measurements of the backside of Si echelle gratings in reflection at 632 nm. We perform interferometry at 632 nm in reflection with a 25 mm circular beam on a grating with a blaze angle of 71.6°. The measured wavefront error is 0.09 waves peak to valley.

  6. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  7. Photothermal Stability of an E-Beam Pre-Crosslinked EVA Encapsulant and Its Performance Degradation on a-Si Submodules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Watson, G. L.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Study of photothermal stability of special EVA encapsulant by accelerated exposure testing and analysis of causes of performance degradation on a-Si modules.

  8. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  9. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET of the Si ions ranged from 48 to 158 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to -rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE(sub max) value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/ m for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.

  10. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2 substratum

    NASA Astrophysics Data System (ADS)

    Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.

    2017-09-01

    Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

  11. Omnidirectional anti-reflection properties of vertically align SiO2 nanorod films prepared by electron beam evaporation with glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-03-01

    Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.

  12. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    PubMed

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  13. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  14. Composite Yb:YAG/SiC-prism thin disk laser.

    PubMed

    Newburgh, G A; Michael, A; Dubinskii, M

    2010-08-02

    We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

  15. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  16. Silicide induced ion beam patterning of Si(001).

    PubMed

    Engler, Martin; Frost, Frank; Müller, Sven; Macko, Sven; Will, Moritz; Feder, René; Spemann, Daniel; Hübner, René; Facsko, Stefan; Michely, Thomas

    2014-03-21

    Low energy ion beam pattern formation on Si with simultaneous co-deposition of Ag, Pd, Pb, Ir, Fe or C impurities was investigated by in situ scanning tunneling microscopy as well as ex situ atomic force microscopy, scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectrometry. The impurities were supplied by sputter deposition. Additional insight into the mechanism of pattern formation was obtained by more controlled supply through e-beam evaporation. For the situations investigated, the ability of the impurity to react with Si, i.e. to form a silicide, appears to be a necessary, but not a sufficient condition for pattern formation. Comparing the effects of impurities with similar mass and nuclear charge, the collision kinetics is shown to be not of primary importance for pattern formation. To understand the observed phenomena, it is necessary to assume a bi-directional coupling of composition and height fluctuations. This coupling gives rise to a sensitive dependence of the final morphology on the conditions of impurity supply. Because of this history dependence, the final morphology cannot be uniquely characterized by a steady state impurity concentration.

  17. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  18. The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering

    NASA Astrophysics Data System (ADS)

    McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.

    2000-03-01

    β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.

  19. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  20. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  1. Integrated polarization beam splitter with relaxed fabrication tolerances.

    PubMed

    Pérez-Galacho, D; Halir, R; Ortega-Moñux, A; Alonso-Ramos, C; Zhang, R; Runge, P; Janiak, K; Bach, H-G; Steffan, A G; Molina-Fernández, Í

    2013-06-17

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO(2) Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

  2. An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.

    1998-03-01

    External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.

  3. Annealing properties of open volumes in HfSiOx and HfAlOx gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ikeuchi, K.; Yamabe, K.; Ohdaira, T.; Muramatsu, M.; Suzuki, R.; Hamid, A. S.; Chikyow, T.; Torii, K.; Yamada, K.

    2005-07-01

    Thin Hf0.6Si0.4Ox and Hf0.3Al0.7Ox films fabricated by metal-organic chemical-vapor deposition and atomic-layer-deposition techniques were characterized using monoenergetic positron beams. Measurements of the Doppler broadening spectra of annihilation radiation and the lifetime spectra of positions indicated that positrons annihilated from the trapped state by open volumes that exist intrinsically in amorphous structures of the films. For HfSiOx, the mean size of the open volumes and their size distribution decreased with increasing postdeposition annealing (PDA) temperature. For HfAlOx, although the overall behavior of the open volumes in response to annealing was similar to that for HfSiOx, PDA caused a separation of the mean size of the open volumes. When this separation occurred, the value of the line-shape parameter S increased, suggesting an oxygen deficiency in the amorphous matrix. This fragmentation of the amorphous matrix can be suppressed by decreasing the annealing time.

  4. Nanogram calorimetry using microscale suspended SiN{sub x} platforms fabricated via focused ion beam patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickey, K. J.; Chilcote, M.; Johnston-Halperin, E.

    2015-01-15

    Comprehensive characterization of thermal properties in nanoscale heterostructures requires microscale thermally isolated platforms combined with sensitive thermometry in order to measure small heat accumulations. Amorphous SiN{sub x} membranes are often used for these measurements due to their low thermal conductivity and compatibility with standard fabrication techniques. The total thermal conductance of such SiN{sub x} membranes is typically microwatts per kelvin or higher. Here, we further reduce this thermal coupling to 120 nW/K by using a focused ion beam (FIB) to remove large portions of commercially available amorphous SiN{sub x} membranes, leaving a 100 μm × 100 μm square platform suspendedmore » by 10 μm wide by 325 μm long support legs. We demonstrate the capability of these platforms by measuring the heat capacity of a 6.2 ng Au sample and show that it matches well with established specific heat of bulk Au.« less

  5. Critical thickness of transition from 2D to 3D growth and peculiarities of quantum dots formation in GexSi1-x/Sn/Si and Ge1-ySny/Si systems

    NASA Astrophysics Data System (ADS)

    Lozovoy, Kirill A.; Kokhanenko, Andrey P.; Voitsekhovskii, Alexander V.

    2018-03-01

    Nowadays using of tin as one of the deposited materials in GeSi/Sn/Si, GeSn/Si and GeSiSn/Si material systems is one of the most topical problems. These materials are very promising for various applications in nanoelectronics and optoelectronics due to possibility of band gap management and synthesis of direct band semiconductors within these systems. However, there is a lack of theoretical investigations devoted to the peculiarities of germanium on silicon growth in the presence of tin. In this paper a new theoretical approach for modeling growth processes of binary and ternary semiconductor compounds during the molecular beam epitaxy in these systems is presented. The established kinetic model based on the general nucleation theory takes into account the change in physical and mechanical parameters, diffusion coefficient and surface energies in the presence of tin. With the help of the developed model the experimentally observed significant decrease in the 2D-3D transition temperatures for GeSiSn/Si system compared to GeSi/Si system is theoretically explained for the first time in the literature. Besides that, the derived expressions allow one to explain the experimentally observed temperature dependencies of the critical thickness, as well as to predict the average size and surface density of quantum dots for different contents and temperatures in growth experiment, that confirms applicability of the model proposed. Moreover, the established model can be easily applied to other material systems in which the Stranski-Krastanow growth mode occurs.

  6. Process development of beam-lead silicon-gate COS/MOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Baptiste, B.; Boesenberg, W.

    1974-01-01

    Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  8. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  9. Melting in Superheated Silicon Films Under Pulsed-Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jimmy

    This thesis examines melting in superheated silicon films in contact with SiO2 under pulsed laser irradiation. An excimer-laser pulse was employed to induce heating of the film by irradiating the film through the transparent fused-quartz substrate such that most of the beam energy was deposited near the bottom Si-SiO2 interface. Melting dynamics were probed via in situ transient reflectance measurements. The temperature profile was estimated computationally by incorporating temperature- and phase-dependent physical parameters and the time-dependent intensity profile of the incident excimer-laser beam obtained from the experiments. The results indicate that a significant degree of superheating occurred in the subsurface region of the film. Surface-initiated melting was observed in spite of the internal heating scheme, which resulted in the film being substantially hotter at and near the bottom Si-SiO2 interface. By considering that the surface melts at the equilibrium melting point, the solid-phase-only heat-flow analysis estimates that the bottom Si-SiO2 interface can be superheated by at least 220 K during excimer-laser irradiation. It was found that at higher laser fluences (i.e., at higher temperatures), melting can be triggered internally. At heating rates of 1010 K/s, melting was observed to initiate at or near the (100)-oriented Si-SiO2 interface at temperatures estimated to be over 300 K above the equilibrium melting point. Based on theoretical considerations, it was deduced that melting in the superheated solid initiated via a nucleation and growth process. Nucleation rates were estimated from the experimental data using Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Interpretation of the results using classical nucleation theory suggests that nucleation of the liquid phase occurred via the heterogeneous mechanism along the Si-SiO2 interface.

  10. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  11. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 1

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical link was demonstrated between JPL's Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of June, August, and September of 2000. The bidirectional laser link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. The 780-nm beacon laser transmitted from TMF comprised eight co-propagating mutually incoherent laser beams. The normalized variance or scintillation index (SI) of the individual beacon lasers measured by recording the signal received through 8.50-cm-diameter spotting telescopes on three different nights (June 28-30, 2000) was 1.05 +/- 0.2, 1.76 +/- 0.6, and 0.96 +/- 0.24, respectively. These measurements agreed with values predicted by a heuristic model. The SI of the signal received at SP was found to decrease progressively with an increasing number of beams, and a factor of 3 to 3.5 reduction was achieved for all eight beams. The beam divergence determined by mapping out the point spread function of a few of the individual laser footprints received at SP was 85 to 150 microrad, compared to a design goal of 120 microrad. The 852-nm communications laser beam received at TMF through a 60-cm-diameter telescope on the nights of August 4 and September 14 and 15, 2000, yielded SI values of 0.23 +/- 0.04, 0.32 +/- 0.01, and 0.49 +/- 0.18, respectively, where the reduction was attributed to aperture averaging. The probability distribution functions of the received signal at either end, mitigated by multi-beam averaging in one direction and by aperture averaging in the other direction, displayed lognormal behavior. Consequently, the measured fade statistics showed good agreement with a lognormal model.

  12. Analysis and Correction of Diffraction Effect on the B/A Measurement at High Frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Gong, Xiu-Fen; Liu, Xiao-Zhou; Kushibiki, Jun-ichi; Nishino, Hideo

    2004-01-01

    A numerical method is developed to analyse and to correct the diffraction effect in the measurement of acoustic nonlinearity parameter B/A at high frequencies. By using the KZK nonlinear equation and the superposition approach of Gaussian beams, an analytical model is derived to describe the second harmonic generation through multi-layer medium SiO2/liquid specimen/SiO2. Frequency dependence of the nonlinear characterization curve for water in 110-155 MHz is numerically and experimentally investigated. With the measured dip position and the new model, values of B/A for water are evaluated. The results show that the present method can effectively correct the diffraction effect in the measurement.

  13. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  14. Strain relaxation of thin Si{sub 0.6}Ge{sub 0.4} grown with low-temperature buffers by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Hansson, G. V.; Ni, W.-X.

    A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less

  15. Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Wang, D. D.; Chen, Z. Q.; Kimura, S.; Yamashita, Y.; Mori, A.; Uedono, A.

    2013-01-01

    Undoped ZnO single crystals were implanted with 300 keV Si+ ions to a dose of 6 × 1016 cm-2. A combination of X-ray diffraction (XRD), positron annihilation, Raman scattering, high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) was used to study the microstructure evolution after implantation and subsequent annealing. A very large increase of Doppler broadening S parameters in Si+-implanted region was detected by using a slow positron beam, indicating that vacancy clusters or microvoids are induced by implantation. The S parameters increase further after annealing up to 700 °C, suggesting agglomeration of these vacancies or microvoids to larger size. Most of these defects are removed after annealing up to 1100 °C. The other measurements such as XRD, Raman scattering, and PL all indicate severe damage and even disordered structure induced by Si+ implantation. The damage and disordered lattice shows recovery after annealing above 700 °C. Amorphous regions are observed by HRTEM measurement, directly testifies that amorphous phase is induced by Si+ implantation in ZnO. Analysis of the S - W correlation and the coincidence Doppler broadening spectra gives direct evidence of SiO2 precipitates in the sample annealed at 700 °C, which strongly supports the chemical effect of Si ions on the amorphization of ZnO lattice.

  16. Programming Arduino to Control Bias Voltages to Temperature-Depedndent Gamma-ray Detectors aboard TRYAD Mission

    NASA Astrophysics Data System (ADS)

    Stevons, C. E.; Jenke, P.; Briggs, M. S.

    2016-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond gamma-ray flashes that are correlated with lightning have been observed with numerous satellites since their discovery in the early 1990s. Although substantial research has been conducted on TGFs, puzzling questions regarding their origin are still left unanswered. Consequently, the Terrestrial RaYs Analysis and Detection (TRYAD) mission is designed to solve many issues about TGFs by measuring the beam profile and orientation of TGFs in low Earth orbit. This project consists of sending two CubeSats into low-Earth orbit where they will independently sample TGF beams. Both of the TRYAD CubeSats will contain a gamma-ray detector composed of lead doped plastic scintillator coupled to silicon photomultiplier (SiPM) arrays. The gain readings of the SiPMs vary with temperature and the bias voltage must be corrected to compensate. Using an Arduino micro-controller, circuitry and software was developed to control the gain in response to the resistance of a thermistor. I will present the difficulties involved with this project along with our solutions.

  17. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Wang, Y., E-mail: yanping.wang@insa-rennes.fr; Kuyyalil, J.; Nguyen Thanh, T.

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer.more » Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.« less

  18. Wear and Tribological Properties of Silicon-Containing Diamond-Like Carbon (Si-DLC) Coatings Synthesized with Nitrogen, Argon Plus Nitrogen, and Argon Ion Beams

    DTIC Science & Technology

    1998-06-01

    of the (Ar + N)/Si-DLC and Ar/Si-DLC coatings. Meletis, Erdemir, and Fenske [10, 11] have attributed the smaller friction coefficient of their...vol. 15, p. 227,1986. 9. Rao, P., and E. H. Lee. /. of Mater. Sei., vol. 10, p. 2661,1996. 10. Meletis, E. I., A. Erdemir, and G. R. Fenske . Surface

  19. Use of double-layer ITO films in reflective contacts for blue and near-UV LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2014-12-15

    The structural and optical properties of multilayer ITO/SiO{sub 2}/Ag composites are studied. In these composites, the ITO (indium-tin oxide) layer is produced by two different methods: electron-beam evaporation and a combined method including electron-beam evaporation and subsequent magnetron sputtering. It is shown that the reflectance of the composite based on the ITO film produced by electron-beam evaporation is substantially lower. This can be attributed to the strong absorption of light at both boundaries of the SiO{sub 2} layer, which results from the complex surface profile of ITO films deposited by electron-beam evaporation. Samples with a film deposited by the combinedmore » method have a reflectance of about 90% at normal light incidence, which, combined with their higher electrical conductivity, makes these samples advantageous for use as reflective contacts to the p-type region of AlInGaN light-emitting diodes of the flip-chip design.« less

  20. Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model

    NASA Astrophysics Data System (ADS)

    Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji

    2018-04-01

    In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.

  1. Suppression of dilution in Ni-Cr-Si-B alloy cladding layer by controlling diode laser beam profile

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Funada, Yoshinori; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    A Ni-Cr-Si-B alloy layer was produced on a type 304 stainless steel plate by laser cladding. In order to produce cladding layer with smooth surface and low dilution, influence of laser beam profile on cladding layer was investigated. A laser beam with a constant spatial intensity at the focus spot was used to suppress droplet formation during the cladding layer formation. This line spot, formed with a focussing unit designed by our group, suppressed droplet generation. The layer formed using this line spot with a constant spatial intensity had a much smoother surface compared to a layer formed using a line spot with a Gaussian-like beam. In addition, the dilution of the former layer was much smaller. These results indicated that a line spot with a constant spatial intensity was more effective in producing a cladding layer with smooth surface and low dilution because it suppressed droplet generation.

  2. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  3. Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Fu, Yu-Long; Yu, Si-Yuan; Xie, Xiao-Long; Tan, Li-Ying

    2018-03-01

    A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approximation theory. Finite inner and outer scale parameters and high wave number “bump” are considered in the spectrum with a generalized spectral power law in the range of 3–4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.

  4. Resizing metal-coated nanopores using a scanning electron microscope.

    PubMed

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanical Behavior of Microelectromechanical Microshutters

    NASA Technical Reports Server (NTRS)

    Burns, Devin Edward; Jones, Justin Scott; Li, Mary J.

    2014-01-01

    A custom micro-mechanical test system was constructed using off-the-shelf components to characterize the mechanical properties of microshutters. Microshutters are rectangular microelectromechanical apertures which open and close about a narrow torsion bar hinge. Displacement measurements were verified using both capacitive and digital image correlation techniques. Repeatable experiments on Si3N4 cantilever beams verified that the test system operates consistently. Using beam theory, the modulus of elasticity of the low stress Si3N4 was approximately 150 GPa, though significant uncertainty exists for this measurement due primarily to imprecise knowledge of the cantilever thickness. Tests conducted on microshutter arrays concluded that reducing the Si3N4 thickness from 250 nm to 500 nm reduces the torsional stiffness by a factor of approximately four. This is in good agreement with analytical and finite element models of the microshutters.

  6. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  7. Stacked Quantum Wire AlN/GaN HEMTs

    DTIC Science & Technology

    2012-04-27

    Zimmermann, Debdeep Jena and Huili Xing. Molecular beam epitaxy regrowth of ohmics in metal-face AlN/GaN transistors. International Conference on...mobility transistors with regrown ohmic contacts by molecular beam epitaxy . Physica Status Solidi (a), 208(7), 1617-1619, (2011). [9] Debdeep Jena...high Si doping concentrations grown by molecular beam epitaxy . Submitted, (2012). [14] Guowang Li, Ronghua Wang, Jai Verma, Yu Cao, Satyaki Ganguly

  8. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  9. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  10. Solid State Research.

    DTIC Science & Technology

    1984-08-15

    for the Same Signal 30 3 -1 Schematic Diagrams of Two Configurations with SOI/ CMOS and Bipolar Devices Fabricated on the Same Si Wafer. The Bipolar...Waveform of 39-Stage SOI/ CMOS Ring Oscillator for 5-V Supply Voltage. The Propagation Delay per Stage is 藨 ps 33 3 -4 Common-Emitter I-V...multiple beam splitters and delay lines. 3 . MATERIALS RESEARCH Two merged CMOS ! bipolar technologies utilizing S01 films have been developed for

  11. Transmission electron microscopy study of the formation of epitaxial CoSi2/Si (111) by a room-temperature codeposition technique

    NASA Technical Reports Server (NTRS)

    D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1988-01-01

    Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.

  12. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, Sergey, E-mail: konovserg@gmail.com; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  13. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  14. Sn - Induced decomposition of SiGeSn alloys grown on Si by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Talochkin, A. B.; Timofeev, V. A.; Gutakovskii, A. K.; Mashanov, V. I.

    2017-11-01

    Structural features of Si1-x-yGexSny alloy layers grown on Si by molecular-beam epitaxy are studied. These layers with the thickness of 2.0 nm, the nominal Ge composition of x0 ≈ 0.3, and the Sn-content of y ≈ 2-6 at.% have been grown at low temperatures (100-150 °C). We have used high-resolution transmission electron microscopy to analyze atomic structure of grown layers and Raman spectroscopy to evaluate the real Ge-content x from the observed optical phonon frequencies. It is found that the x value coincides with the nominal one at low Sn-content (2-3 at.%), and when it is increased (y ≥ 5 at.%), the decomposition of alloys into two fractions occurs. One of them is enriched by Ge with x up to 0.6 and the other fraction is Si-enriched. It is shown that the observed decomposition is Sn-induced and related to increase in Ge adatoms mobility in the growth process. This mechanism is similar to that theoretically predicted by Venezuela and Tersoff (Phys. Rev. 58, 10871 (1998)) for the case of high growth temperature.

  15. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  16. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  17. Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires

    PubMed Central

    Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur

    2014-01-01

    Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533

  18. In pursuit of photo-induced magnetic and chiral microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Jinwei; Kamandi, Mohammad; Darvishzadeh-Varcheie, Mahsa; Albooyeh, Mohammad; Veysi, Mehdi; Guclu, Caner; Hanifeh, Mina; Rajaei, Mohsen; Potma, Eric O.; Wickramasinghe, H. Kumar; Capolino, Filippo

    2018-06-01

    Light-matter interactions enable the perception of specimen properties such as its shape and dimensions by measuring the subtle differences carried by an illuminating beam after interacting with the sample. However, major obstacles arise when the relevant properties of the specimen are weakly coupled to the incident beam, for example when measuring optical magnetism and chirality. To address this challenge we propose the idea of detecting such weakly-coupled properties of matter through the photo-induced force, aiming at developing photo-induced magnetic or chiral force microscopy. Here we review our pursuit consisting of the following steps: (1) Development of a theoretical blueprint of a magnetic nanoprobe to detect a magnetic dipole oscillating at an optical frequency when illuminated by an azimuthally polarized beam via the photo-induced magnetic force; (2) Conducting an experimental study using an azimuthally polarized beam to probe the near fields and axial magnetism of a Si disk magnetic nanoprobe, based on photo-induced force microscopy; (3) Extending the concept of force microscopy to probe chirality at the nanoscale, enabling enantiomeric detection of chiral molecules. Finally, we discuss difficulties and how they could be overcome, as well as our plans for future work. Invited Paper

  19. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  20. Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning

    NASA Astrophysics Data System (ADS)

    Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.

    2007-05-01

    In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.

  1. Structural properties of a-Si films and their effect on aluminum induced crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AICmore » is diminished, leading larger poly-Si grain size.« less

  2. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arutyunyan, S. S., E-mail: spartakmain@gmail.com; Pavlov, A. Yu.; Pavlov, B. Yu.

    The fabrication of a two-layer Si{sub 3}N{sub 4}/SiO{sub 2} dielectric mask and features of its application in the technology of non-fired epitaxially grown ohmic contacts for high-power HEMTs on AlGaN/GaN heterostructures are described. The proposed Si{sub 3}N{sub 4}/SiO{sub 2} mask allows the selective epitaxial growth of heavily doped ohmic contacts by nitride molecular-beam epitaxy and the fabrication of non-fired ohmic contacts with a resistance of 0.15–0.2 Ω mm and a smooth surface and edge morphology.

  4. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  5. Proof of feasibility of the Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

    NASA Astrophysics Data System (ADS)

    Barbarino, G.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Fiorillo, G.; Migliozzi, P.; Barbato, F. C. T.; Mollo, C. M.; Russo, A.; Vivolo, D.

    2013-04-01

    The Vacuum Silicon PhotoMultiplier Tube (VSiPMT) is an innovative design we propose for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a hemispherical vacuum glass PMT standard envelope. The basic idea is to replace the classical dynode chain of a PMT with a SiPM, which acts as an electron multiplying detector. Such a solution will match the goal of a large photocathode sensitive area with the performances of a SiPM. This will lead to many advantages such as lower power consumption, mild sensitivity to magnetic fields and high quantum efficiency. The feasibility of this idea has been throughly studied both from a theoretical and experimental point of view. As a first step we performed the full characterization of a special non-windowed Hamamatsu MPPC with a laser source. The response of the SiPM to an electron beam was studied as a function of the energy and of the incident angle by means of a Geant4-based simulation. In this paper we present the preliminary results of the characterization of the SiPM with an electron source and we discuss how the development of next generation SiPMs will overcome the main weaknesses of VSiPMT, such as relatively low PDE and high photocathode voltage.

  6. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  7. Polymerization of room-temperature ionic liquid monomers by electron beam irradiation with the aim of fabricating three-dimensional micropolymer/nanopolymer structures.

    PubMed

    Minamimoto, H; Irie, H; Uematsu, T; Tsuda, T; Imanishi, A; Seki, S; Kuwabata, S

    2015-04-14

    A novel method for fabricating microsized and nanosized polymer structures from a room-temperature ionic liquid (RTIL) on a Si substrate was developed by the patterned irradiation of an electron beam (EB). An extremely low vapor pressure of the RTIL, 1-allyl-3-ethylimidazolium bis((trifluoromethane)sulfonyl)amide, allows it to be introduced into the high-vacuum chamber of an electron beam apparatus to conduct a radiation-induced polymerization in the nanoregion. We prepared various three-dimensional (3D) micro/nanopolymer structures having high aspect ratios of up to 5 with a resolution of sub-100 nm. In addition, the effects of the irradiation dose and beam current on the physicochemical properties of the deposited polymers were investigated by recording the FT-IR spectra and Young's modulus. Interestingly, the overall shapes of the obtained structures were different from those prepared in our recent study using a focused ion beam (FIB) even if the samples were irradiated in a similar manner. This may be due to the different transmission between the two types of beams as discussed on the basis of the theoretical calculations of the quantum beam trajectories. Perceptions obtained in this study provide facile preparation procedures for the micro/nanostructures.

  8. Large displacement spring-like electro-mechanical thermal actuators with insulator constraint beams

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-07-01

    A number of in-plane spring-like micro-electro-thermal-actuators with large displacements were proposed. The devices take the advantage of the large difference in the thermal expansion coefficients between the conductive arms and the insulator clamping beams. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inside of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Analytical model and finite element analysis were used to simulate the performances. It showed that at a constant temperature, analytical model is sufficient to predict the displacement of these devices. The displacements are all proportional to the temperature and the number of the chevron sections. A two-mask process is under development to fabricate these devices, using Si3N4 as the insulator beams, and electroplated Ni as the conductive beams.

  9. Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, Temenuga; Petrik, Peter; Nesheva, Diana; Fogarassy, Zsolt; Lábár, János; Kaschieva, Sonia; Dmitriev, Sergei N.; Antonova, Krassimira

    2018-05-01

    Homogeneous films from SiO1.3 (250 nm thick) were deposited on crystalline Si substrates by thermal evaporation of silicon monoxide. A part of the films was further annealed at 700 °C to grow amorphous Si (a-Si) nanoclusters in an oxide matrix, thus producing composite a-Si-SiO1.8 films. Homogeneous as well as composite films were irradiated by 20-MeV electrons at fluences of 7.2 × 1014 and 1.44 × 1015 el/cm2. The film thicknesses and optical constants were explored by spectroscopic ellipsometry. The development of the phase composition of the films caused by the electron-beam irradiation was studied by transmission electron microscopy. The ellipsometric and electron microscopy results have shown that the SiOx films are optically homogeneous and the electron irradiation with a fluence of 7.2 × 1014 el/cm2 has led to small changes in the optical constants and the formation of very small a-Si nanoclusters. The irradiation of the a-Si-SiOx composite films caused a decrease in the effective refractive index and, at the same time, an increase in the refractive index of the oxide matrix. Irradiation induced increase in the optical band gap and decrease in the absorption coefficient of the thermally grown amorphous Si nanoclusters have also been observed. The obtained results are discussed in terms of the formation of small amorphous silicon nanoclusters in the homogeneous layers and electron irradiation induced reduction in the nanocluster size in the composite films. The conclusion for the nanoparticle size reduction is supported by infrared transmittance results.

  10. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  11. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraby, H.; DiBattista, M.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu

    The electrical impedance (both the resistive and capacitive aspects) of focused ion beam (FIB) deposited SiO{sub 2} has been correlated to the specific composition of the ion beam, in Ga- and Xe-based FIB systems. The presence of electrically percolating Ga in concert with carbon (inevitably found as the product of the hydrocarbon precursor decomposition) has been isolated as a major cause for the observed decrease in the resistivity of the deposited SiO{sub 2}. Concomitant with the decreased resistivity, an increased capacitance and effective dielectric constant was observed. Our study would be useful to understand the constraints to the deposition ofmore » high quality insulator films through FIB based methodologies.« less

  13. Nanosilicon dot arrays with a bit pitch and a track pitch of 25 nm formed by electron-beam drawing and reactive ion etching for 1 Tbit/in.{sup 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosaka, Sumio; Sano, Hirotaka; Shirai, Masumi

    2006-11-27

    The formation of very fine Si dots with a bit pitch and a track pitch of less than 25 nm using electron-beam (EB) lithography on ZEP520 and calixarene EB resists and CF{sub 4} reactive ion etching has been demonstrated. The experimental results indicate that the calixarene resist is very suitable for forming an ultrahigh-packed bit array pattern of Si dots. This result promises to open the way toward 1 Tbit/in.{sup 2} storage using patterned media with a dot size of <15 nm.

  14. Reaction of Si(100) with NH3: Rate-limiting steps and reactivity enhancement via electronic excitation

    NASA Astrophysics Data System (ADS)

    Bozso, F.; Avouris, Ph.

    1986-09-01

    We report on the low-temperature reaction of ammonia with Si(100)-(2×1). The dangling bonds in the clean Si surface promote NH3 dissociation even at temperatures as low as 90 K. The N atoms thus produced occupy subsurface sites, while the H atoms bind to surface Si atoms, tie up the dangling bonds, and inactivate the surface. Thermal or electronic-excitation-induced hydrogen desorption restores the dangling bonds and the reactivity of the surface. Silicon nitride film growth is achieved at 90 K by simultaneous exposure of the Si surface to NH3 and an electron beam.

  15. Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grydlik, Martyna; Groiss, Heiko; Brehm, Moritz

    2012-07-02

    We show that suitable pit-patterning of a Si(001) substrate can strongly influence the nucleation and the propagation of dislocations during epitaxial deposition of Si-rich Si{sub 1-x}Ge{sub x} alloys, preferentially gettering misfit segments along pit rows. In particular, for a 250 nm layer deposited by molecular beam epitaxy at x{sub Ge} = 15%, extended film regions appear free of dislocations, by atomic force microscopy, as confirmed by transmission electron microscopy sampling. This result is quite general, as explained by dislocation dynamics simulations, which reveal the key role of the inhomogeneous distribution in stress produced by the pit-patterning.

  16. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).

    PubMed

    Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2018-04-30

    Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

  17. Isotopic effects in sub-barrier fusion of Si + Si systems

    NASA Astrophysics Data System (ADS)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Bourgin, D.; Čolović, P.; Corradi, L.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Szilner, S.; Urbani, M.; Zhang, G. L.

    2018-04-01

    Background: Recent measurements of fusion cross sections for the 28Si+28Si system revealed a rather unsystematic behavior; i.e., they drop faster near the barrier than at lower energies. This was tentatively attributed to the large oblate deformation of 28Si because coupled-channels (CC) calculations largely underestimate the 28Si+28Si cross sections at low energies, unless a weak imaginary potential is applied, probably simulating the deformation. 30Si has no permanent deformation and its low-energy excitations are of a vibrational nature. Previous measurements of this system reached only 4 mb, which is not sufficient to obtain information on effects that should show up at lower energies. Purpose: The aim of the present experiment was twofold: (i) to clarify the underlying fusion dynamics by measuring the symmetric case 30Si+30Si in an energy range from around the Coulomb barrier to deep sub-barrier energies, and (ii) to compare the results with the behavior of 28Si+28Si involving two deformed nuclei. Methods: 30Si beams from the XTU tandem accelerator of the Laboratori Nazionali di Legnaro of the Istituto Nazionale di Fisica Nucleare were used, bombarding thin metallic 30Si targets (50 μ g /cm2) enriched to 99.64 % in mass 30. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ERs) at very forward angles, and angular distributions of ERs were measured. Results: The excitation function of 30Si+30Si was measured down to the level of a few microbarns. It has a regular shape, at variance with the unusual trend of 28Si+28Si . The extracted logarithmic derivative does not reach the LCS limit at low energies, so that no maximum of the S factor shows up. CC calculations were performed including the low-lying 2+ and 3- excitations. Conclusions: Using a Woods-Saxon potential the experimental cross sections at low energies are overpredicted, and this is a clear sign of hindrance, while the calculations performed with a M3Y + repulsion potential nicely fit the data at low energies, without the need of an imaginary potential. The comparison with the results for 28Si+28Si strengthens the explanation of the oblate shape of 28Si being the reason for the irregular behavior of that system.

  18. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  19. Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae

    2018-03-01

    Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.

  20. Molecular beam epitaxy growth of PbSe on Si (211) using a ZnTe buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. J.; Chang, Y.; Hou, Y. B.

    2011-09-15

    The authors report the results of successful growth of single crystalline PbSe on Si (211) substrates with ZnTe as a buffer layer by molecular beam epitaxy. Single crystalline PbSe with (511) orientation was achieved on ZnTe/Si (211), as evidenced by RHEED patterns indicative of 2 dimensional (2D) growth, x ray diffraction rocking curves with a full width at half maximum as low as 153 arc sec and mobility as large as 1.1x10{sup 4}cm{sup 2}V{sup -1}s{sup -1} at 77 K. Cross hatch patterns were found on the PbSe(511) surface in Nomarski filtered microscope images suggesting the presence of a surface thermalmore » strain relaxation mechanism, which was confirmed by Fourier transformed high resolution transmission electron microscope images.« less

  1. Nitridation of silicon by nitrogen neutral beam

    NASA Astrophysics Data System (ADS)

    Hara, Yasuhiro; Shimizu, Tomohiro; Shingubara, Shoso

    2016-02-01

    Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si3N4 layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si3N4 layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.

  2. Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ina, Ginnosuke; Fujii, Tatsuya; Kozeki, Takahiro; Miura, Eri; Inoue, Shozo; Namazu, Takahiro

    2017-06-01

    In this study, we investigate the effects of focused ion beam (FIB)-induced damage and specimen size on the mechanical properties of Si nanowires (NWs) by a microelectromechanical system (MEMS)-based tensile testing technique. By an FIB fabrication technique, three types of Si NWs, which are as-FIB-fabricated, annealed, and FIB-implanted NWs, are prepared. A sacrificial-oxidized NW is also prepared to compare the mechanical properties of these FIB-based NWs. The quasi-static uniaxial tensile tests of all the NWs are conducted by scanning electron microscopy (SEM). The fabrication process and specimen size dependences on Young’s modulus and fracture strength are observed. Annealing is effective for improving the Young’s modulus of the FIB-damaged Si. Transmission electron microscopy (TEM) suggests that the mechanism behind the process dependence on the mechanical characteristics is related to the crystallinity of the FIB-damaged portion.

  3. Focused ion beam micromachining of TiNi film on Si( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Xie, D. Z.; Ngoi, B. K. A.; Ong, A. S.; Fu, Y. Q.; Lim, B. H.

    2003-11-01

    Having an excellent shape memory effect, titanium-nickel (TiNi) thin films are often used for fabrication of microactuators in microelectromechanical systems. In this work, the Ga + focused ion beam (FIB) etching characteristics of TiNi thin films has been investigated. The thin films were deposited on Si(1 1 1) wafers by co-sputtering NiTi and Ti targets using a magnetron-sputtering system. Some patterns have been etched on the surface of the films by FIB. Atomic force microscopy has been used to analyze the surface morphology of the etched areas. It is found that the etched depth depends linearly on the ion dose per area with a slope of 0.259 μm/(nC/μm 2). However, the etching depth decreases with increasing the ion beam current. The root-mean-square (RMS) surface roughness changes nonlinearly with ion dose and reaches a minimum of about 5.00 nm at a dose of about 0.45 nC/μm 2. The RMS decreases with increasing ion beam current and reaches about 4.00 nm as the ion beam current is increased to 2 nA.

  4. Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd

    2018-01-01

    The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.

  5. New trend of radiation application to polymer modification — irradiation in oxygen free atmosphere and at elevated temperature

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao

    2000-03-01

    Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.

  6. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, T.; Kumar, M.; Som, T., E-mail: tsom@iopb.res.in

    2015-09-14

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film.more » Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.« less

  7. MBE growth and optical properties of GaN layers on SiC/Si(111) hybrid substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Kotlyar, K. P.; Soshnikov, I. P.; Kukushkin, S. A.; Osipov, A. V.; Nikitina, E. V.; Cirlin, G. E.

    2017-11-01

    The fundamental possibility of the growth of GaN layers by molecular-beam epitaxy on a silicon substrate with nanoscale buffer layer of silicon carbide without any AlN layers has been demonstrated for the first time. Morphological properties of the resulting system have been studied.

  8. Transmission Electron Microscopy of an In Situ Presolar Silicon Carbide Grain

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; OGrady, Megan; Nittler, Larry R.; Alexander, Conel M. OD.

    2002-01-01

    We used a focused ion beam workstation to prepare ultra-thin sections of a presolar SiC grain. Our TEM studies indicate that the SiC formed by rapid vapor-phase condensation, trapping pre-existing graphite grains in random orientations. Additional information is contained in the original extended abstract.

  9. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.

    PubMed

    Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W

    2011-12-01

    The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.

  10. Effects of Carrier Confinement and Intervalley Scattering on Photoexcited Electron Plasma in Silicon.

    PubMed

    Sieradzki, A; Kuznicki, Z T

    2013-01-01

    The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.

  11. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

    NASA Astrophysics Data System (ADS)

    Nishino, Shunsuke; Ekino, Satoshi; Inukai, Manabu; Omprakash, Muthusamy; Adachi, Masahiro; Kiyama, Makoto; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro

    2018-06-01

    Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1- x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K-1 m-1 was found at around 0.2 < x < 0.6. The compositional dependence of the thermal conductivity was well accounted for by the compositional dependence of the mixing entropy. Some of these values agree exactly with the amorphous limit predicted by theoretical calculations. The smallest lattice thermal conductivity found for the present samples is lower than that of nanostructured Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

  12. Nanoscale Phase-Separated Structure in Core-Shell Nanoparticles of SiO2-Si1-xGexO2 Glass Revealed by Electron Microscopy.

    PubMed

    Kubo, Yugo; Yonezawa, Kazuhiro

    2017-09-05

    SiO 2 -based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO 2 -GeO 2 glass nanoparticles during the manufacturing of SiO 2 -GeO 2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO 2 . However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO 2 -GeO 2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO 2 -Si 1-x Ge x O 2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.

  13. Electrical properties of PMMA ion-implanted with low-energy Si+ beam

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Gueorguiev, V. K.; Ivanov, Tz E.; Marinov, Y. G.; Ivanov, V. G.; Faulques, E.

    2010-01-01

    The electrical properties of polymethylmethacrylate (PMMA) after implantation with silicon ions accelerated to an energy of 50 keV are studied under DC electric bias field. The electrical response of the formed material is examined as a function of Si+ fluence in the range 1014 - 1017 cm-2. The carbonaceous subsurface region of the Si+-implanted PMMA displays a significant DC conductivity and a sizable field effect that can be used for electronic applications.

  14. Thermal transport across high-pressure semiconductor-metal transition in Si and Si 0.991 Ge 0.009

    DOE PAGES

    Hohensee, Gregory T.; Fellinger, Michael R.; Trinkle, Dallas R.; ...

    2015-05-07

    Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell (DAC) and provide non-contact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si 0.991Ge 0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. Furthermore, we used the Wiedemann-Franzmore » law to derive the associated electrical resistivity, and found it consistent with the Bloch-Gruneisen model.« less

  15. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  16. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.

    1984-01-01

    During the reporting period, InGaAs was grown on Fe-doped (semi-insulating) (100) InP substrates by current controlled liquid phase epitaxy (CCLPE) at 640 C and current densities of 2.5A sq/cm to 5 A/sq cm for periods from 5 to 30 minutes. Special efforts were made to reduce the background carrier concentration in the grown layers as much as possible. The best layers exhibited carrier concentrations in the mid-10 to the 15th power/cu cm range and up to 10,900 sq cm/V-sec room temperature mobility. InGaAsP quaternary layers of energy gap corresponding to wavelengths of approximately 1.5 microns and 1.3 microns were grown on (100) InP substrates by CCLPE. In the device fabrication area, work was directed toward processing MISFET's using InGaAs. SiO2, Si3N4 and Al2O3 were deposited by ion beam sputtering, electron beam evaporation and chemical vapor reaction on Si, GaAs, and InGaAs substrates. SiO2 and Si3N4 sputtered layers were found to possess a high density of pinhole defects that precluded capacitance-voltage analysis. Chemical vapor deposited Al2O3 layers on Si, GaAs and InGaAs substrates also exhibited a large number of pinhole defects. This prevented achieving good MIS devices over most of the substrate surface area.

  17. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  18. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  19. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  20. Positron annihilation on the surfaces of SiO 2 films thermally grown on single crystal of Cz-Si

    NASA Astrophysics Data System (ADS)

    Deng, Wen; Yue, Li; Zhang, Wei; Cheng, Xu-xin; Zhu, Yan-yan; Huang, Yu-yang

    2009-09-01

    Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10-3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.

  1. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  2. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform InfraRed spectroscopy (FTIR) for SiOCH samples. Finally the benefit of this new patterning approach will be presented on 3D patterns structures.

  3. Superconducting properties of ion-implanted gold-silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.

    The superconducting properties of thin Au{sub x}Si{sub 1{minus}x}, films prepared by ion beam implantation and ion beam mixing are studied. The films are prepared by evaporation of single Au layers on Si substrates and mixing them with Si, Ar, or Xe, or by Xe beam mixing of alternate multilayers of Au and Si sputtered on Al{sub 2}O{sub 3} substrates. The superconducting transition temperature and upper critical fields are determined by measuring the temperature and magnetic field dependence of resistivity. Temperatures as low as 20mK and magnetic fields as high as 8 T were used. Superconductivity in these films is discussedmore » in connection with metastable metallic phases that are reportedly produced in the Au-Si system by high quenching rate preparation techniques like quenching from the vapor or the melt or ion implantation. Preliminary structural studies provide evidence for the existence of these phases and near-edge X-ray absorption and X-ray photoelectron spectroscopy measurements indicate a metallic type of bonding from which compound formation is inferred. The quality of the films is strongly dependent on the conditions of implantation. The maximum superconducting transition temperature attained is about 1.2 K. The upper critical fields have a maximum of 6T. An unusual double transition in the field dependence of resistivity is observed at low temperatures. The effect is very pronounced at compositions near x = 0.5 where the maximum {Tc} occurs. A model is presented to explain this result which invokes the properties of the metastable metallic phases and assumes the formation of more than two such phases in the same sample as the implantation dose increases. The Si-Au interface plays an important role in understanding the model and in interpreting the results of this thesis in general.« less

  4. Toyota beamline (BL33XU) at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.

    2016-07-27

    The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators,more » in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.« less

  5. [Laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence].

    PubMed

    Xu, Mei-fang; Gao, Wen-hong; Shi, Yun-bo; Wang, Hao-quan; Du, Bin-bin

    2014-06-01

    Speckle suppression has been the research focus in laser display technology. In the present paper, the relation between multiple scattering and the size of speckle grains is established by analyzing the properties of speckle generated by the laser beam through SiO2 suspension. Combined with dynamic light scattering theory, laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence is proposed. A speckle suppression element consists of a static diffuser and a light pipe containing the water suspension of SiO2 microspheres with a diameter of 300 nm and a molar concentration of 3.0 x 10(-4) μm3, which is integrated with the laser display system. The laser beam with different incident angles into the SiO2 suspension affecting the contrast of the speckle images is analyzed by the experiments. The results demonstrate that the contrast of the speckle image can be reduced to 0.067 from 0.43 when the beam with the incident angle of approximately 8 degrees illuminates into the SiO2 suspension. The spatial average of speckle granules and the temporal average of speckle images were achieved by the proposed method, which improved the effect of speckle suppression. The proposed element for speckle suppression improved the reliability and reduced the cost of laser projection system, since no mechanical vibration is needed and it is convenient to integrate the element with the existing projection system.

  6. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  7. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE PAGES

    Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...

    2014-12-04

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  8. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lihua; Su, Dong; Kisslinger, Kim

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  9. Status and Perspectives of Ion Track Electronics for Advanced Biosensing

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.

    New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.

  10. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    PubMed

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  11. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  13. Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment

    NASA Astrophysics Data System (ADS)

    Diblen, Faruk; Buitenhuis, Tom; Solf, Torsten; Rodrigues, Pedro; van der Graaf, Emiel; van Goethem, Marc-Jan; Brandenburg, Sytze; Dendooven, Peter

    2017-07-01

    In vivo verification of dose delivery in proton therapy by means of positron emission tomography (PET) or prompt gamma imaging is mostly based on fast scintillation detectors. The digital silicon photomultiplier (dSiPM) allows excellent scintillation detector timing properties and is thus being considered for such verification methods. We present here the results of the first investigation of radiation damage to dSiPM sensors in a proton therapy radiation environment. Radiation hardness experiments were performed at the AGOR cyclotron facility at the KVI-Center for Advanced Radiation Technology, University of Groningen. A 150-MeV proton beam was fully stopped in a water target. In the first experiment, bare dSiPM sensors were placed at 25 cm from the Bragg peak, perpendicular to the beam direction, a geometry typical for an in situ implementation of a PET or prompt gamma imaging device. In the second experiment, dSiPM-based PET detectors containing lutetium yttrium orthosilicate scintillator crystal arrays were placed at 2 and 4 m from the Bragg peak, perpendicular to the beam direction; resembling an in-room PET implementation. Furthermore, the experimental setup was simulated with a Geant4-based Monte Carlo code in order to determine the angular and energy distributions of the neutrons and to determine the 1-MeV equivalent neutron fluences delivered to the dSiPM sensors. A noticeable increase in dark count rate (DCR) after an irradiation with about 108 1-MeV equivalent neutrons/cm2 agrees with observations by others for analog SiPMs, indicating that the radiation damage occurs in the single photon avalanche diodes and not in the electronics integrated on the sensor chip. It was found that in the in situ location, the DCR becomes too large for successful operation after the equivalent of a few weeks of use in a proton therapy treatment room (about 5 × 1013 protons). For PET detectors in an in-room setup, detector performance was unchanged even after an irradiation equivalent to three years of use in a treatment room (3 × 1015 protons).

  14. Non-equilibrium ionization by a periodic electron beam. II. Synthetic Si IV and O IV transition region spectra

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2018-03-01

    Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org

  15. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    NASA Astrophysics Data System (ADS)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  16. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    PubMed

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  17. Damage and annealing recovery of boron-implanted ultra-shallow junction: The correlation between beam current and surface configuration

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Wu, Zong-Zhe; Lin, Yen-Fu; Kao, Li-Chi; Wu, Cheng-Ta; JangJian, Shiu-Ko; Chen, Yuan-Nian; Lo, Kuang Yao

    2018-03-01

    The condition of the beam current in the implantation process is a key issue in the damage rate and structural evolution in the sequent annealing process, especially for ultra-shallow layers. In this work, we develop a compensative optical method combined with UV Raman, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge spectroscopy (XANES) to inspect the influence of the beam current in the implantation process. The optima condition of the beam current in the implantation process is determined by higher effective Si-B bond portion in UV Raman spectra and less the peak of B-B bond in XPS spectra which is caused by B cluster defects. Results of XANES indicate that the B oxide layer is formed on the surface of the ultra-shallow junction. The defects in the ultra-shallow junction after annealing are analyzed by novel optical analyses, which cannot be inspected by a traditional thermal wave and resistance measurement. This work exhibits the structural variation of the ultra-shallow junction via a variant beam current and provides a valuable metrology in examining the chemical states and the effective activation in the implantation technology.

  18. Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Fluch, U.; Petersson, P.; Ott, S.; Primetzhofer, D.

    2017-08-01

    Zirconium-oxide based metal-organic frameworks (MOFs) were grown on p-type Si wafers. A modified linker molecule containing iodine was introduced by post synthetic exchange (PSE). Samples have been studied using Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) techniques, employing the 5 MV 15SDH-2 Pelletron Tandem accelerator at the Ångström laboratory. The degree of post synthetic uptake of the iodine-containing linker has been investigated with both a broad beam and a focused beam of carbon and alpha particles targeting different kind of MOF crystals which were of ∼1-10 μm in size, depending on the linker used. Iodine concentrations in MOF crystallites were also measured by Nuclear Magnetic Resonance Spectroscopy (NMR) and are compared to the RBS results. In parallel to the ion beam studies, samples were investigated by Scanning Electron Microscopy (SEM) to quantify possible crystallite clustering, develop optimum sample preparation routines and to characterize the potential ion beam induced sample damage and its dependence on different parameters. Based on these results the reliability and accuracy of ion beam data is assessed.

  19. Two-dimensional Si nanosheets with local hexagonal structure on a MoS(2) surface.

    PubMed

    Chiappe, Daniele; Scalise, Emilio; Cinquanta, Eugenio; Grazianetti, Carlo; van den Broek, Bas; Fanciulli, Marco; Houssa, Michel; Molle, Alessandro

    2014-04-02

    The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. IR and SiO Maser Observations of Miras

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.; Mennesson, B.; Diamond, P. J.; Perrin, G.; Coudé du Foresto, V.; Chagnon, G.; van Langevelde, H. J.; Ridgway, S.; Waters, R.; Vlemmings, W.; Morel, S.; Traub, W.; Carleton, N.; Lacasse, M.

    2005-12-01

    Preliminary results of a coordinated program of near IR and SiO maser interferometric observations of Mira variables are reported. The 2.2 and 3.6 micron results are from the FLUOR/TISIS beam combiners on the IOTA interferometer and the SiO maser observations from the VLBA. The ratio of the SiO ring diameter to the apparent diameter at 2.2 microns for stars in our sample cluster around 2, whereas the 3.6 micron diameters range from slightly larger than the 2.2 micron diameter to approximately the SiO ring diameter. This may be due to differences in the opacity of the molecular envelope at 3.6 microns.

  1. Fiber Strength of Hi Nicalon(TM) S After Oxidation and Scale Crystallization in Si(OH)4 Saturated Steam (Postprint)

    DTIC Science & Technology

    2017-02-06

    conducted for the longest times because the fibers would completely oxidize. The SiO2 tube would warp during experiments run at temperatures over 1200° C ...Chollon, G.; Labrugere, C .; Lahaye, M.; Guette, A.; Bruneel, J . L.; Couzi, M.; Naslain, R.; Jiang, D. L., Characterization of Nearly Stoichiometric...Electron Beam Irradiation Curing - A Review. J . Ceram. Soc. Japan 2006, 114, 455-460. 8. Sauder, C .; Lamon, J ., Tensile Creep Behavior of SiC-Based Fibers

  2. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  3. High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling

    NASA Astrophysics Data System (ADS)

    Löper, Philipp; Canino, Mariaconcetta; Schnabel, Manuel; Summonte, Caterina; Janz, Stefan; Zacharias, Margit

    Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current-voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10-10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.

  4. Elemental analysis with external-beam PIXE

    NASA Astrophysics Data System (ADS)

    Lin, E. K.; Wang, C. W.; Teng, P. K.; Huang, Y. M.; Chen, C. Y.

    1992-05-01

    A beamline system and experimental setup has been established for elemental analysis using PIXE with an external beam. Experiments for the study of the elemental composition of ancient Chinese potsherds (the Min and Ching ages) were performed. Continuum X-ray spectra from the samples bombarded by 3 MeV protons have been measured with a Si(Li) detector. From the analysis of PIXE data, the concentration of the main elements (Al, Si, K, and Ca) and of more than ten trace elements in the matrices and glazed surfaces were determined. Results for two different potsherds are presented, and those obtained from the glaze colorants are compared with the results of measurements on a Ching blue-and-white porcelain vase.

  5. Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.

    2004-05-01

    Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.

  6. Dewetting induced Au-Ge composite nanodot evolution in SiO2

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Chettah, A.; Siva, V.; Kanjilal, D.; Sahoo, P. K.

    2018-01-01

    A composite nanostructure comprising of Au and Ge gradually evolves on SiO2 surface when a bilayer of Au and Ge is irradiated by medium keV Xe-ion beam. The morphology progresses through different stages from nucleating patches to extended islands and finally a Au-Ge composite nanodot array develops on the insulator surface. While ion energy and fluence are found to determine dimensions of the nanostructures, existence of a characteristic lateral length scale is also detected at every stage of evolution. Through morphological and compositional analysis, the observed evolution is understood as an effect of ion beam induced dewetting of Au top layer. Numerical estimation based on the unified thermal spike model using the present experimental condition demonstrates formation of molten zones around the ion track due to nuclear and electronic energy deposition in the target. Dewetting results from mass flow onto the surface driven by local melting along the ion track and combines with sputter erosion of the bilayer film to lead to composite nanodot evolution. The generality of the ion induced processes provides possible route towards metal-semiconductor hybrid nanostructure synthesis on insulator surface.

  7. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    NASA Astrophysics Data System (ADS)

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr < 600°C) forms on the wetting layer. Long-term annealing of granular films at the same conditions results in formation of c(4x2)-reconstructed wetting layer typical to high-temperature MBE (Tgr < 600°C) and huge clusters of Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  8. Enhanced nickelidation rate in silicon nanowires with interfacial lattice disorder

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichiro; Yokogawa, Ryo; Oba, Shunsuke; Asada, Shuhei; Xu, Taiyu; Tomita, Motohiro; Ogura, Atsushi; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2017-10-01

    We demonstrate that the nickelidation (nickel silicidation) reaction rate of silicon nanowires (SiNWs) surrounded by a thermally grown silicon dioxide (SiO2) film is enhanced by post-oxidation annealing (POA). The SiNWs are fabricated by electron beam lithography, and some of the SiNWs are subjected to the POA process. The nickelidation reaction rate of the SiNWs is enhanced in the samples subjected to the POA treatment. Ultraviolet Raman spectroscopy measurements reveal that POA enhances compressive strain and lattice disorder in the SiNWs. By considering these experimental results in conjunction with our molecular dynamics simulation analysis, we conclude that the oxide-induced lattice disorder is the dominant origin of the increase in the nickelidation rate in smaller width SiNWs. This study sheds light on the pivotal role of lattice disorders in controlling metallic contact formation in SiNW devices.

  9. The external scanning proton microprobe of Firenze: A comprehensive description

    NASA Astrophysics Data System (ADS)

    Giuntini, L.; Massi, M.; Calusi, S.

    2007-06-01

    An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.

  10. X-ray μ-Laue diffraction analysis of Cu through-silicon vias: A two-dimensional and three-dimensional study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Dario Ferreira; Weleguela, Monica Larissa Djomeni; Audoit, Guillaume

    2014-10-28

    Here, white X-ray μ-beam Laue diffraction is developed and applied to investigate elastic strain distributions in three-dimensional (3D) materials, more specifically, for the study of strain in Cu 10 μm diameter–80 μm deep through-silicon vias (TSVs). Two different approaches have been applied: (i) two-dimensional μ-Laue scanning and (ii) μ-beam Laue tomography. 2D μ-Laue scans provided the maps of the deviatoric strain tensor integrated along the via length over an array of TSVs in a 100 μm thick sample prepared by Focused Ion Beam. The μ-beam Laue tomography analysis enabled to obtain the 3D grain and elemental distribution of both Cu and Si. Themore » position, size (about 3 μm), shape, and orientation of Cu grains were obtained. Radial profiles of the equivalent deviatoric strain around the TSVs have been derived through both approaches. The results from both methods are compared and discussed.« less

  11. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  12. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavymore » {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.« less

  13. Surface Modification in Control SiO2 Fiber Fracture.

    DTIC Science & Technology

    1981-10-01

    If your address has changed or if you wish to be removid from the RAMC mailing list, or if the addressee is no longer employed by your organization...crack arrest is developed in terms of a stress intensity factor evaluated at a short distance ahead of the crack tip [2]. 1.3 Stress Corrosion It is... evaluated the comrosition of silica films produced by electron beam evaporation had shown earlier that the deposits retained the stoichiometry of the

  14. Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Lin; Oyoshi, Keiji; Chao, Der-Sheng; Tsai, Hsu-Sheng; Hong, Wei-Lun; Takeda, Yoshihiko; Liang, Jenq-Horng

    2016-05-01

    In recent years, gold (Au) nanoparticles have been synthesized via various methods and used in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes high absorption in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that greater efficiency in the photoluminescence (PL) originating from oxygen deficiency centers (ODC) can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated in this study. The results revealed that a clear absorption peak at approximately 530 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as post-annealing temperature and ambient. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 320, 360, 460, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2. In addition, the PL peak intensities increased as post-annealing temperature increased, a finding contradictory to the defect recovery but highly consistent with the SPR tendency. A maximum PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 °C for 1 h under N2. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects as well as enhance PL emission resulting from defect-related luminescence centers.

  15. Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

    PubMed Central

    Rowell, N L; Benkouider, A; Ronda, A; Favre, L; Berbezier, I

    2014-01-01

    Summary We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6 to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Si–substrate–TO and NW-no-phonon (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1− xGex with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x = 0.14. Both of these concentrations values, as determined from PL, are in agreement with the target value. The NWs are too large in diameter for a quantum confinement induced energy shift in the band gap. Nevertheless, NW PL is readily observed, indicating that efficient carrier recombination is occurring within the NWs. PMID:25671145

  16. Research and development on advanced silicon carbide thin film growth techniques and fabrication of high power and microwave frequency silicon carbide-based device structures

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.

    1990-12-01

    The RF operation of MESFETs and bipolar transistors fabricated from both alpha- and beta-SiC have been modeled. The results show that SiC has considerable promise for producing microwave power MESFETs with RF output power capability greater (approx. 4 times) than can be obtained with any of the commonly used semiconductors (e.g., GaAs), this due to the high breakdown field of SiC that allows high bias voltage to be applied. These device modeling efforts have been used as a guide to design a new MESFET mask set with a aS micron gate length and reduced gate pad area. For the first time, positive gain was observed for a SiC transistor at microwave frequencies. The highest values for Ft and Fmax were 2.9 GHz and 1.9 GHz, respectively. The highest current and power gains observed at 1.0 GHz were 8.5 dB and 7 db, respectively. Avalanche characteristics for a 6H-SiC IMPATT were observed for the first time. Heteroepitaxial growth of Ti on (0001) 6H-SiC has been achieved at room and elevated temperatures. Current voltage measurements display shifts toward ohmic behavior after annealing at 400 C. Molecular beam epitaxy equipment has been designed and commissioned.

  17. Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2018-04-01

    After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.

  18. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    PubMed

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  19. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  20. Synergistic damage effects of vacuum ultraviolet photons and O2 in SiCOH ultra-low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2010-10-01

    Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.

  1. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  2. Onset temperature for Si nanostructure growth on Si substrate during high vacuum electron beam annealing.

    PubMed

    Fang, F; Markwitz, A

    2009-05-01

    Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.

  3. Cobalt disilicide contacts to silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Goeller, Peter Thomas

    This dissertation investigated the structure and stability of thin (18--45 nm) cobalt disilicide films, electron beam evaporated onto strained and relaxed Si1--xGex/Si(001) alloy layers. The aim of these investigations was to develop a means of growing smooth, continuous, epitaxial and thermally stable CoSi2 films suitable for use as contacts in SiGe device technology. Previous research on the reaction of Co metal with SiGe alloys has indicated a number of problems, such as film islanding, formation of polycrystalline silicide films, Ge segregation and poor thermal stability. In the present work, we studied the scientific issues underlying these phenomena with a variety of experimental techniques. Our initial studies comparing direct deposition of Co versus co-deposition of Co and Si indicated that co-deposition resulted in CoSi2 formation at much lower temperatures (500°C) than with the direct deposition method (700°C). Furthermore, the co-deposited films were epitaxial to the SiGe layer, whereas the direct deposited films were polycrystalline. Both methods resulting in increasing islanding of the films with increasing annealing temperature. The issues underlying the islanding of the co-deposited films were investigated with an in situ XAFS investigation of the Co/SiGe interface using monolayers of Co. It was determined that Co preferentially bonds with Si atoms as the annealing temperature is increased, leading to segregation of Ge at the interface and faceting of the silicide. A modified template method of silicide growth was devised, in which a sacrificial Si layer was deposited onto the SiGe surface before the CoSi2 template was grown. This growth method was shown to result in smooth, epitaxial and thermally stable films of CoSi2 on Si0.80Ge0.20 alloys. A thickness effect was observed for the direct deposition of Co on SiGe alloys, in which Co layers do not completely convert to CoSi2 until thicknesses greater than 35 nm are deposited. A thermodynamic model was developed, based on the Gibbs free energy change of the CoSi → CoSi2 transition, which indicated that the thickness effect was driven by the presence of Ge in the reaction zone. Finally, the Ge segregation phenomenon accompanying the direct reaction of Co on both strained and relaxed Si0.80Ge0.20 alloys was investigated. It was determined using XRD and EDS in the STEM microscope that Ge segregation on strained SiGe takes the form of Ge-enriched SiGe regions surrounding CoSi and CoSi2 grains at the surface of the film. (Abstract shortened by UMI.)

  4. Etude de L'interface Or/silicium Par Analyse de Surface et Microscopie Electronique

    NASA Astrophysics Data System (ADS)

    Lamontagne, Boris

    In order to start with the cleanest c-Si surface achievable, two cleaning procedures have been used and compared: aqueous chemical cleaning with HF, and sputter cleaning followed by high temperature annealing; the former is found to be the most efficient of the two. We have observed the formation of Si-C bonds induced by energetic particles associated to sputtering and sputter deposition. One of the main objectives of this work was to compare the Au/Si interfaces obtained by e-beam evaporation and by sputter deposition; Ag/Si, Cu/Si and Al/Si interfaces have also been examined. X-ray photoelectron diffraction has allowed us to judge the quality of the substrate crystallinity under the metallic overlayer, a method which readily showed the amorphisation of the c-Si substrate induced by sputter deposition. Moreover, XPD has indicated the Au overlayer to be amorphous, while the Ag and Cu appear to grow heteroepitaxially on c-Si(100). A new XPS parameter has been developed to characterize the metal/Si interface state, in particular, broadening of the interface induced by the sputter deposition. For the case of evaporated layers, it indicates that Au/Si and Cu/Si interfaces are diffuse, while Ag/Si and Al/Si interfaces are abrupt. Atomic force microscopy has revealed that sputter deposition reduces the tendency to form metal islands, characteristic of some overlayer/substrate systems such as Ag/Si. Our experiments have illustrated the role of two "new" parameters which lead to better knowledge and control of the sputter deposition process, namely the ion masses and the sample position relative to that of the target position. In the scientific literature, the value of the critical thickness, d_{rm c} , for reaction between Au and Si is still a controversial issue, probably on account of calibration problems. By using newly observed XPS discontinuities, corresponding to the completion of the first and second Au monolayers, we have been able to resolve this problem, and thereby precisely evaluate the critical thickness, d_ {rm c} = 2 ML. We obtained various new information about the Au/Si interface using complementary methods (XPD, XPS, TEM, AFM, etc.) information from which we developed a new model of the Au/Si interface; this so called "cluster model" correlates the observed overlayer structural transition with the beginning of the reaction between Au and Si. It suggests that reconstruction of the overlayer at 2 ML thickness activates the reaction between Si and Au (Si-Si bonds disruption, followed by Si outdiffusion). This model seems to be the only one capable of explaining the difference in reactivity between Au/Si and Ag/Si interfaces. (Abstract shortened by UMI.).

  5. Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez, L. A.; Moretón, A.; Guada, M.; Rodríguez-Conde, S.; Martínez, O.; González, M. A.; Jiménez, J.

    2018-05-01

    Today's photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical-grade Si solar cells are studied using these two techniques.

  6. Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle

    2017-12-01

    Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.

  7. Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru

    2018-02-01

    We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.

  8. Effect of etching time on morphological, optical, and electronic properties of silicon nanowires.

    PubMed

    Nafie, Nesma; Lachiheb, Manel Abouda; Bouaicha, Mongi

    2012-07-16

    Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet-visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties.

  9. Improvement of Permeation of Solvent-Free Multilayer Encapsulation of Thin Films on Poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kang, Hee-Jin; Kim, Jong-Yeon; Kim, Gwi-Yeol; Seo, Dae-Shik

    2006-12-01

    In this study, inorganic multilayer thin-film encapsulation is adopted for the first time to protect an organic layer from moisture and oxygen. Inorganic multilayer thin-film encapsulation is deposited onto poly(ethylene terephthalate) (PET) using an electron beam and sputtering. The SiON/SiO2 and parylene layer show the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from a level of 0.57 g m-2 day-1 (bare substrate) to 1× 10-5 g m-2 day-1 after the application of a SiON and SiO2 layer. These results indicate that PET/parylene/SiO2/SiON barrier coatings have high potential for flexible organic light-emitting diode (OLED) applications.

  10. Simplified Analysis of Airspike Heat Flux Into Lightcraft Thermal Management System

    NASA Astrophysics Data System (ADS)

    Head, Dean R.; Seo, Junghwa; Cassenti, Brice N.; Myrabo, Leik N.

    2005-04-01

    An approximate method is presented for estimating the airspike heat flux into a 9-meter diameter lightcraft, integrated over its flight to low Earth orbit. The super-pressure lightcraft's exotic twin-hull, sandwich structure is assumed to be fabricated from SiC/SiC thin-film ceramic matrix composites of semiconductor grade purity, giving superior structural properties while being transparent to 35-GHz microwave radiation. The vehicle's MHD slipstream accelerator engine is energized by an annular microwave power beam — converted on-board into DC electric power by two concentric, water-cooled microwave rectenna arrays. The vehicle's airspike is created by a central 3-m diameter laser beam that sustains a laser-supported detonation wave at a distance of 10-m ahead of the craft; the LSD wave propagates up the beam with a velocity that matches the lightcraft's flight speed. The simplified analysis, which is based on aerodynamic heating during re-entry, shows that helium flowing at a velocity of 10 m/s through the lightcraft's double-hull is sufficient to keep the outer, 0.13-mm thick SiC skin safely under its maximum service temperature. The interior helium pressurant that maintains the structural integrity of this exotic pressure-airship, increases in temperature by only 25 K during the flight to LEO.

  11. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology.

    PubMed

    Llobet, J; Rius, G; Chuquitarqui, A; Borrisé, X; Koops, R; van Veghel, M; Perez-Murano, F

    2018-04-02

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  12. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    NASA Astrophysics Data System (ADS)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  13. Free-standing epitaxial graphene on silicon carbide and transport barriers in layered materials

    NASA Astrophysics Data System (ADS)

    Shivaraman, Shriram

    This thesis is based on the topic of layered materials, in which different layers interact with each other via van der Waals forces. The majority of this thesis deals with epitaxial graphene (EG) obtained from silicon carbide (SiC). Free-standing epitaxial graphene (FSEG) structures are produced from EG using a photoelectrochemical (PEC) etching process developed for making suspended graphene structures on a large-scale. These structures are investigated for their mechanical and electrical properties. For doubly-clamped FSEG structures, a unique U-beam effect is observed which causes orders of magnitude increase in their mechanical resonance frequency compared to that expected using simple beam theory. Combined magnetotransport and Raman spectroscopy studies reveal that FSEG devices produced from nominally monolayer graphene on the Si-face of SiC exhibit properties of an inhomogeneously doped bilayer after becoming suspended. This suggests that the buffer layer which precedes graphene growth on the Si-face of SiC gets converted to a graphene layer after the PEC etching process. In the second theme of this thesis, transport barriers in layered materials are investigated. The EG-SiC interface is studied using a combination of electrical (I-V, C-V) and photocurrent spectroscopy techniques. It is shown that the interface may be described as having a Schottky barrier for electron transport with a Gaussian distribution of barrier heights. Another interface explored in this work is that between different layers of MoS 2, a layered material belonging to the class of transition metal dichalcogenides. This interface maybe thought of as a one-dimensional junction. Four-point transport measurements indicate the presence of a barrier for electron transport at this interface. A simple model of the junction as a region with an increased threshold voltage and degraded mobility is suggested. The final chapter is a collection of works based on the topic of layered materials, which are not related to the main theme of the thesis. They include fabrication and characterization details of a dual-gated bilayer graphene device, an investigation of the graphene-Si interface and hexagonal boron nitride-based membranes. These are presented in the hope that they may be useful for further investigations along those directions.

  14. Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.

    PubMed

    Li, Jian-Lang; Ueda, Ken-ichi; Zhong, Lan-xiang; Musha, Mitsuru; Shirakawa, Akira; Sato, Takashi

    2008-07-07

    Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb(2)O(5)/SiO(2)) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.

  15. Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure

    NASA Technical Reports Server (NTRS)

    Das, Kalyan; Hall, Harvey

    1999-01-01

    Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.

  16. Carbon buffer layers for smoothing superpolished glass surfaces as substrates for molybdenum /silicon multilayer soft-x-ray mirrors.

    PubMed

    Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U

    1997-03-01

    Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.

  17. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    PubMed Central

    2011-01-01

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938

  18. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    Treesearch

    X. Guo; J.E. Jakes; S. Banna; Y. Nishi; J.L. Shohet

    2014-01-01

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes...

  19. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates

    NASA Astrophysics Data System (ADS)

    Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut

    2016-02-01

    This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.

  20. Focused Ion Beam Fabrication of Graded Channel Field Effect Transistors (FETs) in GaAs and Si

    DTIC Science & Technology

    1988-11-21

    is used even though the cut may need to be - I-am wide. Since theL ± ne REMOVAL etch time varies as the inverse square of the beam diameter , a ROF...at room temperature a fairly large diameter capillary 1.4-mm and ion induced deposition or etching , the focused ion beam inner diameter was used . For...Pd/B/As/P (alloy sources) Main - micromachining - implantation uses - ion induced deposition - lithography and etching - high resolution SIMS

  1. Condenser for illuminating a ring field

    DOEpatents

    Sweatt, William C.

    1994-01-01

    A series of segments of a parent aspheric mirror having one foci at at a si-point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field.

  2. Optoelectronics Material Center: A Collaborative Program Including Center for High Technology Materials of the University of New Mexico, Stanford University, California Institute of Technology

    DTIC Science & Technology

    1992-09-01

    SI by Ion-Assisted Molecular Beam Enltaxy Currently there is considerable interest in misfit accommodation in hetero- epitaxy for integration of device...of misfit accommodation. In the last quarter, we have demonstrated, using ion-assisted molecular beam epitaxy : * Reduction of dislocation density in... beam epitaxy (MOMBE) hardware, and demonstration of state-of-the-art MOMBE AlGaAs (1990). MOCVD Materials Growth Facilities and Eauipment Extension to

  3. Single Etch-Pit Shape on Off-Angled 4H-SiC(0001) Si-Face Formed by Chlorine Trifluoride

    NASA Astrophysics Data System (ADS)

    Hatayama, Tomoaki; Tamura, Tetsuya; Yano, Hiroshi; Fuyuki, Takashi

    2012-07-01

    The etch pit shape of an off-angled 4H-SiC Si-face formed by chlorine trifluoride (ClF3) in nitrogen (N2) ambient has been studied. One type of etch pit with a crooked hexagonal shape was formed at an etching temperature below 500 °C. The angle of the etch pit measured from a cross-sectional atomic force microscopy image was about 10° from the [11bar 20] view. The dislocation type of the etch pit was discussed in relation to the etch pit shape and an electron-beam-induced current image.

  4. Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kale, Abhijit; Beese, Emily; Saenz, Theresa

    NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.

  5. Possibility of Exciton Mediated Superconductivity in Nano-Sized Sn/Si Core-Shell Clusters: A Process Technology towards Heterogeneous Material in Nano-Scale

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo; Sumiyama, Kenji

    2012-07-01

    We have produced Sn/Si core-shell cluster assemblies by a plasma-gas-condensation cluster beam deposition apparatus. For the sample with Si content = 12 at. %, the temperature dependence of electrical resistivity exhibits a metallic behavior above 10 K and the onset of superconducting transition below 6.1 K. With decreasing temperature, the thermomagnetic curve for the sample with Si content = 8 at. % begins to decrease steadily toward negative value below 7.7 K, indicating the Meissner effect. An increase in the transition temperature, TC is attributable to exciton-type superconductivity.

  6. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    NASA Astrophysics Data System (ADS)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to minimize the unnecessary cost. As an extended research of 4H-SiC devices, Metal-Insulator-SiC (MIS) structures were utilized to evaluate the high dielectric constant materials---TiO 2 and Al2O3, as possible gate dielectrics for SiC devices. TiO2 and Al2O3 were chosen because of their high dielectric constants and bandgap energies as well as the acceptance of Ti and Al in most modern CMOS fabrication facilities. MIS devices were fabricated and both their I-V and C-V characteristics were measured and discussed. Our research showed that Al2O3 deposited by e-beam evaporation could be considered as a promising material among the gate insulators for high power SiC devices. In the topic of "Si JFET-controlled carbon nanotube field emitter cathode arrays", stability, controllability and lifetime are the main issues waiting to be addressed before field emitters find their wide applications. The ideas of connecting Si or metal field emitters with external MOSFETs or built-in active devices were attempted by other researchers, and those devices showed effectiveness in controlling and stabilizing the emission current. We presented the design, simulation, and the fabrication of Si JFETs monolithically integrated with CNTs field emitters. The Si JFET was designed to control and improve the emission of carbon nanotube field emitter arrays. Its electrical characteristics were simulated by the device simulator ATLAS. The fabrication process was developed to be compatible with the last step of growing multiwalled carbon nanotubes at 700°C. Carbon nanotubes field emitters were grown by PECVD (Plasma Enhanced Chemical Vapor Deposition). Preliminary field emission tests were conducted with 50 x 50 emitter arrays, with a resultant emission current of 3 muA (˜40 mA/cm2) at an extraction gate voltage of 50 V and an anode voltage of 300 V. Experimental data shows the linear relationship between ln(I/V2) and l/V consistent with Fowler-Nordheim electron tunneling. Some challenging issues were also discussed.

  7. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  8. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    NASA Astrophysics Data System (ADS)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  9. The Mu2e undoped CsI crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  10. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.

    PubMed

    Gago, R; Jaafar, M; Palomares, F J

    2018-07-04

    The surface morphology of molybdenum silicide (Mo x Si 1-x ) films has been studied after low-energy Ar + ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si 1-x films with compositions below, equal and above the MoSi 2 stoichiometry (x  =  0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si 1-x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si 1-x . Contrary to silicon, Mo x Si 1-x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si 1-x films with 1 keV Ar + at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si 1-x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si 1-x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.

  11. Residual Stresses in Ta, Mo, Al and Pd Thin Films Deposited by E-Beam Evaporation Process on Si and Si/SiO2 Substrates

    NASA Astrophysics Data System (ADS)

    Guisbiers, G.; Strehle, S.; Van Overschelde, O.; Wautelet, M.

    2006-02-01

    Residual stresses are commonly generated during the deposition process of thin films and can influence the reliability of the deposited systems e.g. due to fatigue, aging effects or debonding. Therefore, an evaluation of such stresses in thin films is of crucial importance for metallization of microelectronic devices and MEMS. Residual stresses can be determined experimentally by substrate curvature or X-ray diffraction measurements. The modeling of residual stresses generally deals with the calculation of the thermal ones alone. In the present work, a model is proposed, where intrinsic stresses are calculated explicitly based on the Tsui-Clyne model. The aim of this model, called self-consistent model, is to predict residual stresses in thin films independent on measurements. The simulated values are compared with experimental results for the following systems: Ta/Si, Mo/Si, Al/SiO2/Si and Pd/SiO2/Si.

  12. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  13. Ion-sculpting of nanopores in amorphous metals, semiconductors, and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, H. Bola; Madi, Charbel S.; Aziz, Michael J.

    2010-06-28

    We report the closure of nanopores to single-digit nanometer dimensions by ion sculpting in a range of amorphous materials including insulators (SiO{sub 2} and SiN), semiconductors (a-Si), and metallic glasses (Pd{sub 80}Si{sub 20})--the building blocks of a single-digit nanometer electronic device. Ion irradiation of nanopores in crystalline materials (Pt and Ag) does not cause nanopore closure. Ion irradiation of c-Si pores below 100 deg. C and above 600 deg. C, straddling the amorphous-crystalline dynamic transition temperature, yields closure at the lower temperature but no mass transport at the higher temperature. Ion beam nanosculpting appears to be restricted to materials thatmore » either are or become amorphous during ion irradiation.« less

  14. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle frommore » the AGR-1 program are reported.« less

  15. SiO 2/SiC interface proved by positron annihilation

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  16. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  17. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.

    PubMed

    Biskupek, Johannes; Kaiser, Ute; Falk, Fritz

    2008-06-01

    In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.

  18. Evaluation of Surface Cleaning of Si(211) for Molecular-Beam Epitaxy Deposition of Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Jaime-Vasquez, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Bubulac, L. O.; Chen, Y.; Brill, G.

    2010-07-01

    We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.

  19. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  20. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard

    2014-12-01

    Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  1. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  2. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu; Torrents, Anna; Borrajo-Pelaez, Rafael

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmissionmore » electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.« less

  3. Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials.

    PubMed

    Vieregg, Jeffrey R; Martin, Steven J; Breeland, Adam P; Weikart, Christopher M; Tirrell, Matthew V

    2018-01-01

    For many years, glass has been the default material for parenteral packaging, but the development of advanced plastics such as cyclic olefin polymers and the rapidly increasing importance of biologic drugs have provided new choices, as well as more stringent performance requirements. In particular, many biologics must be stored at non-neutral pH, where glass is susceptible to hydrolysis, metal extraction, and delamination. Plastic containers are not susceptible to these problems, but suffer from higher gas permeability and a propensity for sterilization-induced radical generation, heightening the risk of oxidative damage to sensitive drugs. This study evaluates the properties of a hybrid material, SiOPlas™, in which an ultrathin multilayer coating is applied to the interior of cyclic olefin polymer containers via plasma-enhanced chemical vapor deposition. Our results show that the coating decreases oxygen permeation through the vial walls 33-fold compared to uncoated cyclic olefin polymers, which should allow for improved control of oxygen levels in sensitive formulations. We also measured degradation of two biologic drugs that are known to be sensitive to oxidation, teriparatide and erythropoietin, in gamma and electron beam sterilized SiOPlas™, glass, and uncoated cyclic olefin polymer vials. In both cases, solutions stored in SiOPlas™ vials did not show elevated susceptibility to oxidation compared to either glass or unsterilized controls. Taken together, these results suggest that hybrid materials such as SiOPlas™ are attractive choices for storing high-value biologic drugs. LAY ABSTRACT: One of the most important functions of parenteral drug containers is safeguarding their contents from damage, either chemical or physical. Glass has been the container material of choice for many years, but concerns over breakage and vulnerability to chemical attack at non-neutral pH have spurred the rise of advanced plastics as alternatives. Plastics solve many problems associated with glass but introduce several of their own, including increased gas permeation and generation of oxidizing radicals during sterilization. In this article, we evaluate SiOPlas™, a hybrid material consisting of plastic with a thin multilayer coating applied to the interior, for its ability to overcome these two problems. We find that SiOPlas™ is much less permeable to oxygen than uncoated plastic, and that two biologic drugs stored in gamma and electron beam sterilized SiOPlas™ vials do not display elevated levels of oxidation compared to either glass or unsterilized vials. This suggests that hybrid materials such as SiOPlas™ can exhibit the best qualities of both glass and plastic, making them attractive materials for storing high-value parenteral drugs. © PDA, Inc. 2018.

  4. Studying Silicon Photomultipliers and Light Signal Acquisition for the SBND Experiment

    NASA Astrophysics Data System (ADS)

    Savard, Claire; SBND Collaboration

    2017-01-01

    The Short-Baseline Near Detector (SBND) is one of three Liquid Argon Time Projection Chamber (LArTPC) based detectors that will be used in the Short-Baseline Neutrino (SBN) program at Fermilab. SBN will study the neutrino-argon interaction and search for oscillations at short baseline. Light produced in neutrino interactions inside a LArTPC provides a precision measurement of the initial interaction time of the event, essential for differentiating non-beam-background from beam-based signal. I will discuss the light guide system for SBND, with an emphasis on the Silicon Photomultiplier (SiPM) readout and data acquisition. In particular, I will show results from testing and characterizing a candidate electronics board for reading out the SiPM signals.

  5. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  6. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  7. Electron-beam induced damage in thin insulating films on compound semiconductors. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.

    1989-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron-beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectric. The electron-beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  8. Studies for aluminum photoionization in hot cavity for the selective production of exotic species projecta)

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Vasquez, J.; Tomaselli, A.; Grassi, D.; Biasetto, L.; Cavazza, A.; Corradetti, S.; Manzolaro, M.; Montano, J.; Andrighetto, A.; Prete, G.

    2012-02-01

    Selective production of exotic species (SPES) is an ISOL-based accelerator facility that will be built in the Legnaro INFN Laboratory (Italy), intended to provide an intense neutron-rich radioactive ion beams obtained by proton induced fission of an uranium carbide target. Beside this main target, a silicon carbide (SiC) target will the first to be used to deliver some p-rich beams. This target will validate also the functionality of the SPES facility with aluminum beam as result of hitting SiC target with protons. In the past off-line studies on laser photoionization of aluminum have performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro where, recently, a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. Results are promising to justify further studies with this technique, aiming a better characterization of the SPES ion extraction capability under laser photoionization.

  9. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, Frederick; Carlson, O. Norman

    1986-09-09

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  10. Method for preparing high purity vanadium

    DOEpatents

    Schmidt, F.; Carlson, O.N.

    1984-05-16

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  11. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  12. A new apparatus for electron tomography in the scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less

  13. Development of a new in-air micro-PIXE set-up with in-vacuum charge measurements in Atomki

    NASA Astrophysics Data System (ADS)

    Török, Zs.; Huszánk, R.; Csedreki, L.; Dani, J.; Szoboszlai, Z.; Kertész, Zs.

    2015-11-01

    A new external microbeam set-up has recently been installed as the extension of the existing microprobe system at the Laboratory of Ion Beam Applications of Atomki, Debrecen, Hungary. The external beam set-up, based on the system of Oxford Microbeams (OM), is equipped with two X-ray detectors for PIXE analysis, a digital microscope, two alignment lasers and a precision XYZ stage for easy and reproducible positioning of the sample. Exit windows with different thicknesses and of different materials can be used according to the actual demands, currently silicon-nitride (Si3N4) film with 200 nm thickness is employed in our laboratory. The first application was demonstrated in the field of archaeometry, on Bronze Age hoards from Hungary.

  14. Coupling of semiconductor nanowires with neurons and their interfacial structure.

    PubMed

    Lee, Ki-Young; Shim, Sojung; Kim, Il-Soo; Oh, Hwangyou; Kim, Sunoh; Ahn, Jae-Pyeong; Park, Seung-Han; Rhim, Hyewhon; Choi, Heon-Jin

    2009-12-04

    We report on the compatibility of various nanowires with hippocampal neurons and the structural study of the neuron-nanowire interface. Si, Ge, SiGe, and GaN nanowires are compatible with hippocampal neurons due to their native oxide, but ZnO nanowires are toxic to neuron due to a release of Zn ion. The interfaces of fixed Si nanowire and hippocampal neuron, cross-sectional samples, were prepared by focused ion beam and observed by transmission electron microscopy. The results showed that the processes of neuron were adhered well on the nanowire without cleft.

  15. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique

    DTIC Science & Technology

    2010-01-01

    Transducers (iMINT), University of Colorado, Boulder, CO 80309, USA a r t i c l e i n f o Article history : Received 8 March 2010 Received in revised...technology [68], the microcantilever method is not well suited for the MUMPs technology [70], because the nominal radius of curvature of polySi/SiO2...polySi compos- ite structures is roughly 43 (m−1). That is, the tip of similar MUMPs beams will contact the substrate for lengths >200m. The curvature of

  16. Superlattice Multinanolayered Thin Films of SiO2/SiO2 + Ge for Thermoelectric Device Applications

    DTIC Science & Technology

    2013-04-05

    radioiso- tope sources in the past. In a space nuclear reactor system, the energy source is the heat generated by the controlled fission of uranium ...to the nanodots and/or nanocluster formations in the multilayered thin films. This is one of the expected results of the ion beam bombardments on...very large (150 W m 1 K 1 for Si and 63 W m 1 K 1 for Ge). The lattice thermal conductivity can be substantially reduced by alloy formation between

  17. Twelve mortal sins of the turbulence propagation science

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2011-09-01

    In this review paper we discuss a series of typical mistakes and omissions that are made by engineers and scientists involved in the theoretical research and modeling of the optical propagation through atmospheric turbulence. We show how the use of the oversimplified Gaussian spectral model of turbulence delivers the completely erroneous results for the beam wander. We address a series of common omissions related to calculations of the average beam intensity: unnecessary use of the approximations when rigorous result is available, invalid application of the RMS beam size to the turbulence-distorted beams, overlooking the simple theoretical result - average beam intensity is a convolution with the turbulent Point Spread Function (PSF). We discuss the meaning and potential dangers of the use of the quadratic structure function for modeling of the turbulent perturbations. We will also address the issues related to the energy conservation principle and reciprocity that have very important consequences for the turbulence propagation, but are frequently overlooked in the current literature. We discuss a series of misconceptions that very common in of the Scintillation Index (SI) calculations. We will clarify the infamous misunderstanding of the Rytov's approximation: vanishing scintillation at the beam focus, and show the correct weak and strong scintillation solutions for the SI at the beam focus. We discuss the flaws of the Fried model of the short-term PSF, and direct to the more accurate PSF model. We will briefly review the propagation of the polarized optical waves through turbulence and discuss the inadequacy of the recently published calculations of the electromagnetic beams calculations. We discuss some common errors in representation of the calculation results for the non-Kolmogorov turbulence.

  18. Superplastic Aluminum Evaluation

    DTIC Science & Technology

    1981-06-01

    Gold coated. 450 Lilt to electron beam ...................... ............... 111 16 Scanning electron micrograph of a cross section through a cavity... Gold coated. 450 tilt to electron beam ............. ...... .. ... 113 17 Typical EDAX spectra from (a) dark, angular, loose particles ((Fe,Cr)3SiAll...with atmospheric water vapor to form aluminum oxide and hydrogen. The hydrogen (already in monoatomic form) is very rapidly dissolved by the liquid

  19. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko

    2018-04-01

    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  20. Effect of etching time on morphological, optical, and electronic properties of silicon nanowires

    PubMed Central

    2012-01-01

    Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet–visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties. PMID:22799265

  1. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  2. Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.

    NASA Astrophysics Data System (ADS)

    Wong, Justin Wai-Chow

    1987-09-01

    Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.

  3. Thermoelectric Properties and Morphology of Si/SiC Thin-Film Multilayers Grown by Ion Beam Sputtering

    DOE PAGES

    Cramer, Corson; Farnell, Casey; Farnell, Cody; ...

    2018-03-19

    Multilayers (MLs) of 31 bi-layers and a 10-nm layer thickness each of Si/SiC were deposited on silicon, quartz and mullite substrates using a high-speed, ion-beam sputter deposition process. The samples deposited on the silicon substrates were used for imaging purposes and structural verification as they did not allow for accurate electrical measurement of the material. The Seebeck coefficient and the electrical resistivity on the mullite and the quartz substrates were reported as a function of temperature and used to compare the film performance. The thermal conductivity measurement was performed for ML samples grown on Si, and an average value ofmore » the thermal conductivity was used to find the figure of merit, zT, for all samples tested. X-ray diffraction (XRD) spectra showed an amorphous nature of the thin films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the film morphology and verify the nature of the crystallinity. The mobility of the multilayer films was measured to be only 0.039 to 1.0 cm 2/Vs at room temperature. The samples were tested three times in the temperature range of 300 K to 900 K to document the changes in the films with temperature cycling. The highest Seebeck coefficient is measured for a Si/SiC multilayer system on quartz and mullite substrates and were observed at 870 K to be roughly -2600 μV/K due to a strain-induced redistribution of the states’ effect. The highest figure of merit, zT, calculated for the multilayers in this study was 0.08 at 870 K.« less

  4. Electron-impact ionization of silicon tetrachloride (SiCl4).

    PubMed

    Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K

    2005-08-01

    We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.

  5. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  6. Thermoelectric Properties and Morphology of Si/SiC Thin-Film Multilayers Grown by Ion Beam Sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Corson; Farnell, Casey; Farnell, Cody

    Multilayers (MLs) of 31 bi-layers and a 10-nm layer thickness each of Si/SiC were deposited on silicon, quartz and mullite substrates using a high-speed, ion-beam sputter deposition process. The samples deposited on the silicon substrates were used for imaging purposes and structural verification as they did not allow for accurate electrical measurement of the material. The Seebeck coefficient and the electrical resistivity on the mullite and the quartz substrates were reported as a function of temperature and used to compare the film performance. The thermal conductivity measurement was performed for ML samples grown on Si, and an average value ofmore » the thermal conductivity was used to find the figure of merit, zT, for all samples tested. X-ray diffraction (XRD) spectra showed an amorphous nature of the thin films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the film morphology and verify the nature of the crystallinity. The mobility of the multilayer films was measured to be only 0.039 to 1.0 cm 2/Vs at room temperature. The samples were tested three times in the temperature range of 300 K to 900 K to document the changes in the films with temperature cycling. The highest Seebeck coefficient is measured for a Si/SiC multilayer system on quartz and mullite substrates and were observed at 870 K to be roughly -2600 μV/K due to a strain-induced redistribution of the states’ effect. The highest figure of merit, zT, calculated for the multilayers in this study was 0.08 at 870 K.« less

  7. Purity of targets prepared on Cu substrates

    NASA Astrophysics Data System (ADS)

    Méens, A.; Rossini, I.; Sens, J. C.

    1993-09-01

    The purity of several elemental self-supporting targets usually prepared by evaporation onto soluble Cu substrates has been studied. The targets were analysed by Rutherford backscattering and instrumental neutron activation analysis. Because of the high percentage of Cu observed in some Si targets, further measurements, including transmission electron microscopy, have been performed on Si targets deposited by e-gun bombardment onto Cu and ion-beam sputtering onto betaine.

  8. Effect of different methods of preliminary surface treatment and magnetron sputtering on the adhesion of Si coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Slabodchikov, V. A.; Kuznetsov, V. M.

    2017-05-01

    The paper presents research results on the adhesion of Si coatings deposited by magnetron sputtering on NiTi substrates after preliminary surface treatment (cleaning and activation) with low-energy ion beams and gas discharge plasma. The adhesion properties of the coatings obtained by two methods are analyzed and compared using data of scratch and spherical abrasion tests.

  9. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  10. High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.

    2005-01-01

    III-V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III-V/Si cells from achieving high performance to date have been fundamental materials incompatabilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi Intermediate buffers grown by ultra-high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. Ga As cell structures were found to incorporate a threading dislocation density of 0.9-1.5 x 10 (exp 6) per square centimeter, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures wre grown on the GeSi/Si substrates for time-resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growth were performed to ass3ss the impact of a GaAs buffer to a thickness of only 0.1 micrometer. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at he III-V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to "bury" regions of high autodopjing,a nd that either pn or np configuration cells are easily accomodated by these substrates. Preliminary diodes and single junction Al Ga As heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge/GeSi/Si substrate show nearly identical I-V characteristics in both forward and reverse bias regions. External quantum efficiencies of AlGaAs/GaAs cell structures grown on Ge/GeSi/Si and Ge substrates demonstrated nearly identical photoresponse, which indicates that high lifetimes, diffusion lengths and efficient minority carrier collection is maintained after complete cell processing.

  11. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.; Fang, P. H.

    1984-01-01

    Microcrystalline Si (m-Si) films with a 1.7eV energy bandgap and crystal size of several hundred A were e-beam evaporated on single crystalline Si (c-Si) to form a heterojunction with the substrate, or a window layer to a single crystalline p-n junction (heteroface structure). The goal was to enhance Voc by such uses of the larger bandgap m-Si, with the intriguing prospect of forming heterostructures with exact lattice match on each layer. The heterojunction structure was affected by interface and shunting problems and the best Voc achieved was only 482mV, well below that of single crystal Si homojunctions. The heteroface structure showed promise for some of the samples with p m-Si/p-n structure (the complementary structure did not show any improvement). Although several runs with different deposition conditions were run, the results were inconsistent. Any Voc enhancement obtained was too small to compensate for the current loss due to the extra absorption and poor carrier transport properties of the m-Si film.

  12. Characterization of single-crystalline Al films grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Fortuin, A. W.; Alkemade, P. F. A.; Verbruggen, A. H.; Steinfort, A. J.; Zandbergen, H.; Radelaar, S.

    1996-10-01

    Single-crystalline Al films have been grown by molecular beam epitaxy on a (7 × 7) reconstructed Si(111) surface at 50°C. The 100 nm thick Al films were extensively characterized by X-ray diffraction, transmission electron diffraction and microscopy, SIMS, and RBS in combination with ion channeling. The orientational relationship found was Al(111) t' | Si(111) and Al[11¯0] t'| Si[11¯0]. The film is single-crystalline over the entire 4″ Si wafer. TED and TEM showed that the lattice mismatch of 25.3% at room temperature is accommodated at the interface by alignment of every three Si atoms to four Al atoms. Annealing of the film at 400°C for 30 min led to a reduction of defects in the film and an increase at the interface. Furthermore, it increased the Si concentration in the Al film slightly. We regard this deposition method as the most appropriate one among the various techniques for epitaxial growth of Al on Si explored so far.

  13. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si)

    PubMed Central

    Nomoev, Andrey V.; Bardakhanov, Sergey P.; Schreiber, Makoto; Bazarova, Dashima Zh.; Baldanov, Boris B.; Romanov, Nikolai A.

    2014-01-01

    Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed. PMID:28346996

  14. Combining graphene with silicon carbide: synthesis and properties - a review

    NASA Astrophysics Data System (ADS)

    Shtepliuk, Ivan; Khranovskyy, Volodymyr; Yakimova, Rositsa

    2016-11-01

    Being a true two-dimensional crystal, graphene possesses a lot of exotic properties that would enable unique applications. Integration of graphene with inorganic semiconductors, e.g. silicon carbide (SiC) promotes the birth of a class of hybrid materials which are highly promising for development of novel operations, since they combine the best properties of two counterparts in the frame of one hybrid platform. As a specific heterostructure, graphene on SiC performs strongly, dependent on the synthesis method and the growth modes. In this article, a comprehensive review of the most relevant studies of graphene growth methods and mechanisms on SiC substrates has been carried out. The aim is to elucidate the basic physical processes that are responsible for the formation of graphene on SiC. First, an introduction is made covering some intriguing and not so often discussed properties of graphene. Then, we focus on integration of graphene with SiC, which is facilitated by the nature of SiC to assume graphitization. Concerning the synthesis methods, we discuss thermal decomposition of SiC, chemical vapor deposition and molecular beam epitaxy, stressing that the first technique is the most common one when SiC substrates are used. In addition, we briefly appraise graphene synthesis via metal mediated carbon segregation. We address in detail the main aspects of the substrate effect, such as substrate face polarity, off-cut, kind of polytype and nonpolar surfaces on the growth of graphene layers. A comparison of graphene grown on the polar faces is made. In particular, growth of graphene on Si-face SiC is critically analyzed concerning growth kinetics and growth mechanisms taking into account the specific characteristics of SiC (0001) surfaces, such as the step-terrace structure and the unavoidable surface reconstruction upon heating. In all subtopics obstacles and solutions are featured. We complete the review with a short summary and concluding remarks.

  15. Development of the SOFIA silicon carbide secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias

    2003-02-01

    The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.

  16. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  17. Autosurfactant of the second kind: Bi enables δ-doping of Bi in Si

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Miki, Kazushi; Fukatsu, Susumu

    2017-10-01

    Surfactants in heteroepitaxy are catalytic elements that float up to the surface during growth to control the energetics/kinetics of adatoms. "Autosurfactants" are exceptional in that the surfactant action is self-contained without foreign species. So far, autosurfactants as surface smootheners are known. Here, we demonstrate a different class of autosurfactants as surface-segregation quenchers: Bi, a dopant with a strong surface-segregation tendency in Si, is utilized to lock otherwise elusive Bi adatoms themselves to the Si lattice underneath during molecular beam epitaxy. Quasi-1D δ-doping of Bi in Si up to 4 × 1020 cm-3 in terms of volume concentration is achieved.

  18. Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.

    2006-03-01

    The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.

  19. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  20. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  1. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aseev, Pavel, E-mail: pavel.aseev@upm.es; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.

  2. Lateral Growth Expansion of 4H/6H-SiC m-plane Pseudo Fiber Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Powell, J. A.; Spry, David J.; Raghothamachar, Balaji; Dudley, Michael

    2011-01-01

    Lateral expansion of small mixed polytype 4H/6H-SiC slivers were realized by hot wall chemical vapor deposition (HWCVD). Small slivers cut from m-oriented ..11..00.. SiC boule slices containing regions of 4H and 6H SiC were exposed to HWCVD conditions using standard silane/propane chemistry for a period of up to eight hours. The slivers exhibited approximately 1500 microns (1.5 mm) of total lateral expansion. Initial analysis by synchrotron white beam x-ray topography (SWBXT) confirms, that the lateral growth was homoepitaxial, matching the polytype of the respective underlying region of the seed sliver.

  3. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  4. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    PubMed Central

    Kolel-Veetil, Manoj K.; Keller, Teddy M.

    2010-01-01

    The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  5. Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji

    2017-10-01

    We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.

  6. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  7. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries.

    PubMed

    Zhu, Xiaoming; Jiang, Xiaoyu; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-11-04

    The safety concern is a critical obstacle to large-scale energy storage applications of lithium-ion batteries. A thermostable separator is one of the most effective means to construct the safe lithium-ion batteries. Herein, we demonstrate a novel ceramic (SiO2)-grafted PE separator prepared by electron beam irradiation. The separator shows similar thickness and pore structure to the bare separator, while displaying strong dimensional thermostability, as the shrinkage ratio is only 20% even at an elevated temperature of 180 °C. Besides, the separator is highly electrochemically inert, showing no adverse effect on the energy and power output of the batteries. Considering the excellent electrochemical and thermal stability, the SiO2-grafted PE separator developed in this work is greatly beneficial for constructing safer lithium-ion batteries.

  8. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B.D. Miller; D.D. Keiser Jr.

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of themore » U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.« less

  9. SU-F-T-615: Comparison of Plan Quality for Linac-Based Stereotactic Radiosurgery (SRS) Using Single- and Multi-Isocenter Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J; Dept of Radiation Oncology, NewYork Hospital/Weill Cornell Medical College, New York, NY; Wernicke, A

    2016-06-15

    Purpose: To compare the plan quality of linear accelerator (linac)-based stereotactic radiosurgery (SRS) using single-isocenter volumetric arc therapy (SI-VMAT), restricted single-isocenter dynamic-arc (RSI-DARC), and multi-isocenter DARC (MI-DARC) techniques. Methods: Fifteen SRS cases were randomly selected and re-planned using the SI-VMAT (Pinnacle), RSI-DARC (iPlanNet) and MI-DARC (iPlanNet). The number of planning target volumes (PTVs) for each plan ranged from 1 to 6. For SI-VMAT, a single isocenter and 3-4 VMAT beams are used for all PTVs, while for MI-DARC, each PTV has its own isocetner with 3 DARC beams. RSI-DARC uses one isocnter with 3-6 DARC beams to irradiate all PTVsmore » within 2.5-cm radius. Both SI-DARC and RSI-DARC plans were optimized manually. The prescription dose was 20 Gy to each PTV. The maximal dose was 25 Gy for RSI-DARC and MI-DARC, but could not be controlled for SI-VMAT due to the nature of VMAT planning. Plan quality indexes including PTV coverage, mean dose of PTV (PTVmean) and tissue (Tmean), V12Gy, conformity index (CI), and V10Gy/VPTV were calculated and compared. Results: Full PTV coverage was achieved for all three techniques. Using the MI-DARC plans as the gold standard, the PTVmean of the SI-VMAT plans was 12.5%±8.3% (mean±standard deviation) higher, in comparison to 0.7%±1.4% for the RSI-DARC plans. Similar trend was observed for other indexes including V12Gy (39.4%±27.3% vs. 9.3%±7.8%), Tmean (35.0%±26.8% vs. 2.8%±3.4%), and V10Gy/VPTV (42.2%±31.5% vs. 9.9%±8.2%). CI is comparable (6.2%±14.2% vs. 6.3%±7.2%). Assuming the treatment time is proportional to the number of isocenters, the reduction of the treatment time in comparison to MI-DARC was 70% for SI-VMAT and 42% for RSI-DARC. Conclusion: Although the SI-VMAT can save a considerable amount of treatment time, the plan indexes also significantly deviates from the gold standard, MI-DARC. RSI-DARC, on the other hand, provides a good compromise between the treatment time and plan quality.« less

  10. In situ TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film

    NASA Astrophysics Data System (ADS)

    Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.

    2017-01-01

    Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.

  11. The effect of light touch on balance control during overground walking in healthy young adults.

    PubMed

    Oates, A R; Unger, J; Arnold, C M; Fung, J; Lanovaz, J L

    2017-12-01

    Balance control is essential for safe walking. Adding haptic input through light touch may improve walking balance; however, evidence is limited. This research investigated the effect of added haptic input through light touch in healthy young adults during challenging walking conditions. Sixteen individuals walked normally, in tandem, and on a compliant, low-lying balance beam with and without light touch on a railing. Three-dimensional kinematic data were captured to compute stride velocity (m/s), relative time spent in double support (%DS), a medial-lateral margin of stability (MOS ML ) and its variance (MOS ML CV), as well as a symmetry index (SI) for the MOS ML . Muscle activity was evaluated by integrating electromyography signals for the soleus, tibialis anterior, and gluteus medius muscles bilaterally. Adding haptic input decreased stride velocity, increased the %DS, had no effect on the MOS ML magnitude, decreased the MOS ML CV, had no effect on the SI, and increased activity of most muscles examined during normal walking. During tandem walking, stride velocity and the MOS ML CV decreased, while %DS, MOS ML magnitude, SI, and muscle activity did not change with light touch. When walking on a low-lying, compliant balance beam, light touch had no effect on walking velocity, MOS ML magnitude, or muscle activity; however, the %DS increased and the MOS ML CV and SI decreased when lightly touching a railing while walking on the balance beam. The decreases in the MOS ML CV with light touch across all walking conditions suggest that adding haptic input through light touch on a railing may improve balance control during walking through reduced variability.

  12. Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Bumble, Bruce; Lee, Karen; LeDuc, Henry; Rice, Frank; Zmuidzinas, Jonas

    2005-01-01

    A process that employs silicon-on-insulator (SOI) substrates and silicon (Si) micromachining has been devised for fabricating wide-intermediate-frequency-band (wide-IF) superconductor/insulator/superconductor (SIS) mixer devices that result in suspended gold beam leads used for radio-frequency grounding. The mixers are formed on 25- m-thick silicon membranes. They are designed to operate in the 200 to 300 GHz frequency band, wherein wide-IF receivers for tropospheric- chemistry and astrophysical investigations are necessary. The fabrication process can be divided into three sections: 1. The front-side process, in which SIS devices with beam leads are formed on a SOI wafer; 2. The backside process, in which the SOI wafer is wax-mounted onto a carrier wafer, then thinned, then partitioned into individual devices; and 3. The release process, in which the individual devices are separated using a lithographic dicing technique. The total thickness of the starting 4-in. (10.16-cm)-diameter SOI wafer includes 25 m for the Si device layer, 0.5 m for the buried oxide (BOX) layer, and 350 m the for Si-handle layer. The front-side process begins with deposition of an etch-stop layer of SiO2 or AlN(x), followed by deposition of a Nb/Al- AlN(x) /Nb trilayer in a load-locked DC magnetron sputtering system. The lithography for four of a total of five layers is performed in a commercial wafer-stepping apparatus. Diagnostic test dies are patterned concurrently at certain locations on the wafer, alongside the mixer devices, using a different mask set. The conventional, self-aligned lift-off process is used to pattern the SIS devices up to the wire level.

  13. Fully Scalable Porous Metal Electrospray Propulsion

    DTIC Science & Technology

    2012-03-20

    particular emphasis on the variation of specific impulse for multi-modal propulsion is currently carried out by MIT and the Busek Company under an...Beam profile distributions in the negative (left) and positive (center) modes as visualized directly thorough a multi-channel plate and phosphor...screen. These profiles are parabolic (right) indicating the non-thermal character of these type of ion beams. Microscopic Image of pattern imprinted on Si

  14. Characterization of Strain Due to Nitrogen Doping Concentration Variations in Heavy Doped 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Raghothamachar, Balaji; Chan, Xiaojun; Kim, Taejin; Dudley, Michael

    2018-02-01

    Highly doped 4H-SiC will show a significant lattice parameter difference with respect to the undoped material. We have applied the recently developed monochromatic contour mapping technique for 4H-SiC crystals to a 4H-SiC wafer crystal characterized by nitrogen doping concentration variation across the whole sample surface using a synchrotron monochromatic x-ray beam. Strain maps of 0008 and - 2203 planes were derived by deconvoluting the lattice parameter variations from the lattice tilt. Analysis reveals markedly different strain values within and out of the basal plane indicating the strain induced by nitrogen doping is anisotropic in the 4H-SiC hexagonal crystal structure. The highest strain calculated along growth direction [0001] and along [1-100] on the closed packed basal plane is up to - 4 × 10-4 and - 2.7 × 10-3, respectively. Using an anisotropic elasticity model by separating the whole bulk crystal into numerous identical rectangular prism units, the measured strain was related to the doping concentration and the calculated highest nitrogen level inside wafer crystal was determined to be 1.5 × 1020 cm-3. This is in agreement with observation of double Shockley stacking faults in the highly doped region that are predicted to nucleate at nitrogen levels above 2 × 1019 cm-3.

  15. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    PubMed

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  16. Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding method

    NASA Astrophysics Data System (ADS)

    Takigawa, Ryo; Higurashi, Eiji; Asano, Tanemasa

    2018-06-01

    In this paper, we report room-temperature bonding of LiNbO3 (LN) and SiO2/Si for the realization of a LN on insulator (LNOI)/Si hybrid wafer. We investigate the applicability of a modified surface activated bonding (SAB) method for the direct bonding of LN and a thermally grown SiO2 layer. The modified SAB method using ion beam bombardment demonstrates the room-temperature wafer bonding of LN and SiO2. The bonded wafer was successfully cut into 0.5 × 0.5 mm2 dies without interfacial debonding owing to the applied stress during dicing. In addition, the surface energy of the bonded wafer was estimated to be approximately 1.8 J/m2 using the crack opening method. These results indicate that a strong bond strength can be achieved, which may be sufficient for device applications.

  17. Vacancy-fluorine complexes and their impact on the properties of metal-oxide transistors with high-k gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.

    2007-09-01

    Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.

  18. Internal structure of copper(II)-phthalocyanine thin films on SiO2/Si substrates investigated by grazing incidence x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Strössner, F.; Evans, D. A.; Clark, G. F.

    2006-04-01

    The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO2/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the α form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO2/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.

  19. Luminescence studies of laser MBE grown GaN on ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Kapoor, Ashok K.; Tandon, R. P.; Gupta, Vinay

    2017-08-01

    GaN films have been successfully fabricated using Laser Molecular Beam Epitaxy (LMBE) technique on bare c-plane sapphire substrate and ZnO nanostructures (NS) decorated Si (100) substrates. The ZnO nanostructures were grown on Si (100) substrate using high pressure assisted Pulsed laser deposition technique in inert gas ambience. Discrete nanostructured morphology of ZnO was obtained using the PLD growth on Si substrates. Photoluminescence studies performed on the prepared GaN/Sapphire and GaN/ZnO-NS/Si systems, revealed a significant PL enhancement in case of GaN/ZnO-NS/Si system compared to the former. The hexagonal nucleation sites provided by the ZnO nanostructures strategically enhanced the emission of GaN film grown by Laser MBE Technique at relatively lower temperature of 700°C. The obtained results are attractive for the realization of highly luminescent GaN films on Si substrate for photonic devices.

  20. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    NASA Astrophysics Data System (ADS)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  1. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp; Nakata, Yuka; Takahasi, Masamitu

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain sizemore » was smaller for all film thicknesses.« less

  2. Characterization of Si p-i-n diode for scanning transmission ion microanalysis of biological samples

    NASA Astrophysics Data System (ADS)

    Devès, G.; Matsuyama, S.; Barbotteau, Y.; Ishii, K.; Ortega, R.

    2006-05-01

    The performance of a silicon p-i-n diode (Hamamatsu S1223-01) for the detection of charged particles was investigated and compared with the response of a standard passivated implanted planar silicon (PIPS) detector. The photodiode was characterized by ion beam induced charge collection with a micrometer spatial resolution using proton and alpha particle beams in the 1-3MeV energy range. Results indicate that homogeneity, energy resolution, and reproducibility of detection of charged particles enable the use of the low cost silicon p-i-n device as a replacement of conventional PIPS detector during scanning transmission ion microanalysis experiments. The Si p-i-n diode detection setup was successfully applied to scanning transmission ion microscopy determination of subcellular compartments on human cancer cultured cells.

  3. Passivation of InP heterojunction bipolar transistors by strain controlled plasma assisted electron beam evaporated hafnium oxide

    NASA Astrophysics Data System (ADS)

    Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.

    2012-01-01

    We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.

  4. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  5. Study of Direct-Contact HfO2/Si Interfaces

    PubMed Central

    Miyata, Noriyuki

    2012-01-01

    Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs) but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs. PMID:28817060

  6. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  7. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    NASA Astrophysics Data System (ADS)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  8. Deep ultraviolet photodetectors based on p-Si/ i-SiC/ n-Ga2O3 heterojunction by inserting thin SiC barrier layer

    NASA Astrophysics Data System (ADS)

    An, Yuehua; Zhi, Yusong; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Guo, Daoyou; Li, Peigang; Tang, Weihua

    2016-12-01

    Deep ultraviolet photodetectors based on p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterojunctions were fabricated by laser molecular beam epitaxial (L-MBE), respectively. In compare with p-Si/ n-Ga2O3 heterostructure-based photodetector, the dark current of p-Si/ i-SiC/ n-Ga2O3-based photodetector decreased by three orders of magnitude, and the rectifying behavior was tuned from reverse to forward. In order to improve the quality of the photodetector, we reduced the oxygen vacancies of p-Si/ i-SiC/ n-Ga2O3 heterostructures by changing the oxygen pressure during annealing. As a result, the rectification ratio ( I F/ I R) of the fabricated photodetectors was 36 at 4.5 V and the photosensitivity was 5.4 × 105% under the 254 nm light illumination at -4.5 V. The energy band structure of p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterostructures was schematic drawn to explain the physic mechanism of enhancement of the performance of p-Si/ i-SiC/ n-Ga2O3 heterostructure-based deep UV photodetector by introduction of SiC layer.

  9. Recent development on the realization of a 1-inch VSiPMT prototype

    NASA Astrophysics Data System (ADS)

    Barbato, F. C. T.; Barbarino, G.; Campajola, L.; Di Capua, F.; Mollo, C. M.; Valentini, A.; Vivolo, D.

    2017-03-01

    The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a revolutionary hybrid photodetector. The idea, born with the purpose to use a SiPM for large detection volumes, consists in replacing the classical dynode chain with a SiPM. In this configuration, we match the large sensitive area of a photocathode with the performances of the SiPM technology, which therefore acts like an electron detector and so like a current amplifier. The excellent photon counting capability, fast response, low power consumption and great stability are among the most attractive features of the VSiPMT. In order to realize such a device we first studied the feasibility of this detector both from theoretical and experimental point of view, by implementing a Geant4-based simulation and studying the response of a special non-windowed MPPC by Hamamatsu with an electron beam. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes with a photocathode of 3mm diameter. We present the progress on the realization of a 1-inch prototype and the preliminary tests we are performing on it.

  10. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  11. Some ideas on the choice of designs and materials for cooled mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howells, M.R.

    1994-12-01

    This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highestmore » performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.« less

  12. Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo

    2004-07-01

    We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.

  13. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gago, R.; Jaafar, M.; Palomares, F. J.

    2018-07-01

    The surface morphology of molybdenum silicide (Mo x Si1‑x ) films has been studied after low-energy Ar+ ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si1‑x films with compositions below, equal and above the MoSi2 stoichiometry (x  =  0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si1‑x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si1‑x . Contrary to silicon, Mo x Si1‑x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si1‑x films with 1 keV Ar+ at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si1‑x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si1‑x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.

  14. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  15. Growth process for gallium nitride porous nanorods

    DOEpatents

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  16. Effects of Si-doping on magnetic properties of Ga1-xCrxN

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongpo; Yang, Zongxian; Liu, Chang

    2015-01-01

    Ga1-xCrxN thin films with and without the Si doping have been prepared by molecular beam epitaxy. The samples have been investigated by X-ray diffraction, X-ray photoemission spectroscopy, photoluminescence, optical absorption spectra and magnetic measurements. It has been confirmed that for the undoped samples Cr in GaN is predominantly trivalent when substituting for Ga and that the Cr 3d state appears within the band gap of GaN. In Si doped specimens the upward shifts of the chemical potential are observed, and the electrons supplied by the Si doping are trapped at Cr sites forming Cr2+. As a result, the Si doping effects show an increase of the Curie temperature, and a reduction of the saturation magnetization in the Ga1-xCrxN:Si samples. The significant effect on the ferromagnetism with Si doping in Ga1-xCrxN is explained by the percolation theory of bound magnetic polarons.

  17. Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation

    PubMed Central

    2010-01-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391

  18. Self-assembled growth of MnSi~1.7 nanowires with a single orientation and a large aspect ratio on Si(110) surfaces

    PubMed Central

    2013-01-01

    MnSi~1.7 nanowires (NWs) with a single orientation and a large aspect ratio have been formed on a Si(110) surface with the molecular beam epitaxy method by a delicate control of growth parameters, such as temperature, deposition rate, and deposition time. Scanning tunneling microscopy (STM) was employed to study the influence of these parameters on the growth of NWs. The supply of free Si atoms per unit time during the silicide reaction plays a critical role in the growth kinetics of the NWs. High growth temperature and low deposition rate are favorable for the formation of NWs with a large aspect ratio. The orientation relationship between the NWs and the reconstruction rows of the Si(110) surface suggests that the NWs grow along the 11¯0 direction of the silicon substrate. High-resolution STM and backscattered electron scanning electron microscopy images indicate that the NWs are composed of MnSi~1.7. PMID:23339353

  19. Optical recording in functional polymer nanocomposites by multi-beam interference holography

    NASA Astrophysics Data System (ADS)

    Zhuk, Dmitrij; Burunkova, Julia; Kalabin, Viacheslav; Csarnovics, Istvan; Kokenyesi, Sandor

    2017-05-01

    Our investigations relate to the development of new polymer nanocomposite materials and technologies for fabrication of photonic elements like gratings, integrated elements, photonic crystals. The goal of the present work was the development and application of the multi-beam interference method for one step, direct formation of 1-, 2- or even 3D photonic structures in functional acrylate nanocomposites, which contain SiO2 and Au nanoparticles and which are sensitized to blue and green laser illumination. The presence of gold nanoparticles and possibility to excite plasmonic effects can essentially influence the polymerization processes and the spatial redistribution of nanoparticles in the nanocomposite during the recording. This way surface and volume phase reliefs can be recorded. It is essential, that no additional treatments of the material after the recording are necessary and the elements possess high transparency, are stable after some relaxation time. New functionalities can be provided to the recorded structures if luminescent materials are added to such materials.

  20. The Mu2e undoped CsI crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanov, N.; Baranov, V.; Budagov, J.

    We present the Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystalsmore » and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Lastly, although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.« less

Top