Sample records for si fe ca

  1. Optimization of Performance of Arc Welding Using Fluxes in Welded Ship Structures from HY-100 and HY-130 KPSI.

    DTIC Science & Technology

    1981-09-01

    production and formulation for several decades. NMgO + NCaO + NMnO + NFeO + NAI 20 3Basicity = NSiO 2 + NTi0 2 + NZr0 2 + NA1 203 This differs from the widely...20 3 100 (CaO-SiO, )(40) slag CaO/SiO 2 0.15 none 2600 NCaO /NSiO2 0.17 8% FeSi 1900 16% FeSi 1700 32% FeSi 1400 52 I Table 8 (continued). Islag Ca0...SiO~e .79 none 1200 NCaO /NSiOz .84 2% FeSi 1000 4% FeSi 900 16% FeSi 500 32% FeSi 500 Mechanical Property Tests Mechanical property weldments were

  2. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  3. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life

    NASA Astrophysics Data System (ADS)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun

    2018-03-01

    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  4. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  5. Composition dependence of spin transition in (Mg,Fe)SiO 3 bridgmanite

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Rueff, Jean -Pascal; ...

    2015-10-01

    Spin transitions in (Mg,Fe)SiO 3 bridgmanite have important implications for the chemistry and dynamics of Earth’s lower mantle, but have been complex to characterize in experiments. We examine the spin state of Fe in highly Fe-enriched bridgmanite synthesized from enstatites with measured compositions (Mg 0.61Fe 0.38Ca 0.01)SiO 3 and (Mg 0.25Fe 0.74Ca 0.01)SiO 3. Bridgmanite was synthesized at 78-88 GPa and 1800-2400 K and X-ray emission spectra were measured on decompression to 1 bar (both compositions) and compression to 126 GPa ((Mg 0.61Fe 0.38Ca 0.01)SiO 3 only) without additional laser heating. Observed spectra confirm that Fe in these bridgmanites ismore » dominantly high spin in the lower mantle. However, the total spin moment begins to decrease at ~50 GPa in the 74% FeSiO 3 composition. Lastly, these results support density functional theory predictions of a lower spin transition pressure in highly Fe-enriched bridgmanite and potentially explain the high solubility of FeSiO 3 in bridgmanite at pressures corresponding to Earth’s deep lower mantle.« less

  6. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  7. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  8. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  9. Melt densities in the CaO-FeO-Fe 2O 3-SiO 2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts

    NASA Astrophysics Data System (ADS)

    Dingwell, Donald B.; Brearley, Mark

    1988-12-01

    The densities of 10 melts in the CaO-FeO-Fe 2O 3-SiO 2 system were determined in equilibrium with air, in the temperature range of 1200 to 1550°C, using the double-bob Archimedean technique. Melt compositions range from 6 to 58 wt% SiO 2, 14 to 76 wt% Fe 2O 3 and 10 to 46 wt% CaO. The ferric-ferrous ratios of glasses drop-quenched from loop fusion equilibration experiments were determined by 57Fe Mössbauer spectroscopy. Melt densities range from 2.689 to 3.618 gm/cm 3 with a mean standard deviation from replicate experiments of 0.15%. Least-squares regressions of molar volume versus molar composition have been performed and the root mean squared deviation shows that a linear combination of partial molar volumes for the oxide components (CaO, FeO, Fe 2O 3 and SiO 2) cannot describe the data set within experimental error. Instead, the inclusion of excess terms in CaFe 3+ and CaSi (product terms using the oxides) is required to yield a fit that describes the experimental data within error. The nonlinear compositional-dependence of the molar volumes of melts in this system can be explained by structural considerations of the roles of Ca and Fe 3+. The volume behavior of melts in this system is significantly different from that in the Na 2O-FeO-Fe 2O 3-SiO 2 system, consistent with the proposal that a proportion of Fe 3+ in melts in the CaO-FeO-Fe 2O 3-SiO 2 system is not tetrahedrally-coordinated by oxygen, which is supported by differences in 57Fe Mössbauer spectra of glasses. Specifically, this study confirms that the 57Fe Mössbauer spectra exhibit an area asymmetry and higher values of isomer shift of the ferric doublet that vary systematically with composition and temperature (this study; Dingwell and Virgo, 1987, 1988). These observations are consistent with a number of other lines of evidence ( e.g., homogeneous redox equilibria, Dickenson and Hess, 1986; viscosity, Dingwell and Virgo, 1987,1988). Two species of ferric iron, varying in proportions with temperature, composition and redox state, are sufficient to describe the above observations. The presence of more than one coordination geometry for Fe 3+ in low pressure silicate melts has several implications for igneous petrogenesis. The possible effects on compressibility, the pressure dependence of the redox ratio, and redox enthalpy are briefly noted.

  10. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  11. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  12. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base.

    PubMed

    Li, Tian-Tian; Liu, Yu; Qi, Shi-Chao; Liu, Xiao-Qin; Huang, Li; Sun, Lin-Bing

    2018-05-03

    The design of new type of solid strong base with ideal activity, stability, and reusability is strongly urged by the growing demand of green chemistry and sustainable development. In this study, a new type of mesoporous solid strong base, denoted as CaO/mSiO 2 /Fe 3 O 4 , is successfully fabricated by successively coating SiO 2 onto Fe 3 O 4 magnetic nanoparticles and loading CaO into the mesoporous SiO 2 . Compared with a series of other typical solid bases, the CaO/mSiO 2 /Fe 3 O 4 exhibits higher activity towards the synthesis of dimethyl carbonate by the transesterification of ethylene carbonate and methanol. The activity of the CaO/mSiO 2 /Fe 3 O 4 is not observed to decrease obviously even after sextic catalyst recirculation, and in particular, the recovery of the catalyst without quality loss is very convenient due to the good magnetic responsiveness of the Fe 3 O 4 cores. Copyright © 2018. Published by Elsevier Inc.

  13. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka

    2014-09-01

    An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

  14. Crystallization of belite–melilite clinker minerals in the presence of liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Yoshida, Hideto

    2014-06-01

    Crystallization of belite–melilite clinker minerals was studied from the view point of a high temperature equilibrium. Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} and Ca{sub 2}SiO{sub 4}–Ca{sub 2}AlFeSiO{sub 7} clinkers were synthesized at 1330 °C–1650 °C. The constituent phases were determined by X-ray powder diffractometry and optical microscopy. Chemical compositions of the individual clinker minerals were determined using an electron probe microanalyzer. We established the two types of P{sub 2}O{sub 5}-bearing pseudobinary phase diagrams in the systems Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} at 1505 °C–1650 °C and Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} at 1330 °C–1550 °C. In the lattermore » system, the liquid phase appeared at 1390 °C, which is approximately 150 °C lower than the temperature of liquid formation in the former system. The melilite phenocrysts larger than 50 μm were observed not only in the slowly cooled Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} clinker but also in commercial belite–melilite clinkers. These crystals would be nucleated and grown from a liquid phase which was formed at relatively low temperatures.« less

  15. Effect of Heat Treatment Parameters on the Characteristics of Thin Wall Austempered Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev

    2018-03-01

    The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.

  16. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar compressibility (±1σ) for FeO = 2.4 (± 0.3) 10-2 GPa-1 at 1723 K. In contrast, the compressibility of FeO in pure hedenbergite liquid is more than twice as large: 6.3 (± 0.2) 10-2 GPa-1. When these results are combined with density and sound speed data on CaO-FeO-SiO2 liquids at one bar (Guo et al., 2009), a systematic and linear variation between the partial molar volume and compressibility of the FeO component is obtained, which appears to track changes in the average Fe2+ coordination in these liquids. Therefore, the three most important conclusions of this study are: (1) ideal mixing of volume and compressibility does not occur for all FeO-bearing magmatic liquids, owing to changes in Fe2+ coordination, (2) the partial molar volume and compressibility of FeO varies linearly and systematically with Fe2+ coordination, and (3) ideal mixing of volume and compressibility does occur among the three mixed An-Di-Hd liquids, presumably because of a common, average Fe2+ coordination of ~6.

  17. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  18. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-05-15

    We report the synthesis, structure, and electrochemistry of the first Na +-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g -1; ca. 1.7 Na + ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na +/Na.

  19. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  20. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  1. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    PubMed

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  2. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  3. Amoeboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules?

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Petaev, Michail I.; Yurimoto, Hisayoshi

    2004-04-01

    Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ 17O ˜ -20‰) and consist of forsterite (Fa <2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk <15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ˜10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules. Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg to form Ca-Tschermakite (CaAl 2SiO 6)-diopside (CaMgSi 2O 6) solid solution and anorthite. Solid or incipiently melted olivine in some AOAs reacted with gaseous SiO in the CAI- or chondrule-forming regions to form low-Ca pyroxene: Mg 2SiO 4 + SiO (g) + H 2O (g) = Mg 2Si 2O 6 + H 2(g). Some low-Ca pyroxenes in AOAs may have formed by oxidation of Si-bearing FeNi-metal: Mg 2SiO 4 + Si (in FeNi) + 2H 2O (g) = Mg 2Si 2O 6 + 2H 2(g) and by direct gas-solid condensation: Mg (g) + SiO (g) +H 2O (g) = Mg 2Si 2O 6(s) + H 2(g) from fractionated (Mg/Si ratio < solar) nebular gas. Although bulk compositions of AOAs are rather similar to those of Type I chondrules, on the projection from spinel onto the plane Ca 2SiO 4-Mg 2SiO 4-Al 2O 3, these objects plot on different sides of the anorthite-forsterite thermal divide, suggesting that Type I chondrules cannot be produced from AOAs by an igneous fractionation. Formation of low-Ca pyroxene by reaction of AOAs with gaseous SiO and by melting of silica-rich dust accreted around AOAs moves bulk compositions of the AOAs towards chondrules, and provide possible mechanisms of transformation of refractory materials into chondrules or chondrule precursors. The rare occurrences of low-Ca pyroxene in AOAs may indicate that either AOAs were isolated from the hot nebular gas before condensation of low-Ca pyroxene or that condensation of low-Ca pyroxene by reaction between forsterite and gaseous SiO was kinetically inhibited. If the latter is correct, then the common occurrences of pyroxene-rich Type I chondrules may require either direct condensation of low-Ca pyroxenes or SiO 2 from fractionated nebular gas or condensation of gaseous SiO into chondrule melts.

  4. The ab initio simulation of the Earth's core.

    PubMed

    Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D

    2002-06-15

    The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.

  5. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    PubMed

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF orientation was observed showing cell preference towards PGF.

  6. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    PubMed

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  7. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  8. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end-member, corresponding to a 20% density difference. This volume difference arises from variations in the a (2% larger than Fe-free perovskite) and c (1% larger) lattice parameters. Volumes under compression show no evidence of a discontinuity in the range measured; any magnetic spin transition in the Fe is either gradual or has too weak an effect on volume to be observed.

  9. One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo

    2016-06-01

    One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.

  10. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    NASA Astrophysics Data System (ADS)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-09-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  11. Non-isothermal crystallization kinetics of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin, E-mail: stra-ceo@163.com; Wang, Yongya; Luo, Wenqin

    Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass ceramics containing nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe{sub 2}O{sub 3}–CaO–SiO{sub 2} glass, f(α) = 2.3(1–α)[–ln(1–α)]{supmore » 0.57}, was also obtained. The addition of nucleation agent P{sub 2}O{sub 5}/TiO{sub 2} could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.« less

  12. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    NASA Astrophysics Data System (ADS)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.

  13. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space group F23; a = 14.9346(4) Å; V = 3331.07(15) Å3, Z = 4. The strongest lines of the X-ray powder-diffraction pattern [ d, Å - ( I obs )] are: 2.874(57), 2.640 (100), 2.524(42), 2.278(41), 1.760(54), 1.725(25), 1.524(33), 1.500(33). The crystal structure was solved from single-crystal X-ray diffraction data and refined to wR2 = 0.0672 on the basis of 913 unique reflections with I 0 > 2σ( I). Tululite belongs to a group of compounds with the general formula Ca14 MT 15O35+ x (0 ≤ x ≤ 1), and is a new structure type. The tetrahedral framework of tululite structure is formed by T7O13 secondary building units (SBU), which consist of four corner-linked tetrahedra sharing a common oxygen atom and three tetrahedra sharing two O atoms with the neighbor SBU. Ca2+ cations occupy three positions; two of them also contain a minor amount of Cd2+. The Ca sites surround an island (Fe3+,Al)O6 octahedron and a (Si,P)O4 tetrahedron in the centers of framework cages at the junction of eight SBUs. The (Fe3+,Al)O6 octahedron is coordinated by fourteen Ca positions into a 6-capped cube, whereas the (Si,P)O4 tetrahedron is coordinated by six Ca positions into a regular octahedron. The structural formula of tululite is Ca14{Fe3+O6}M1[(Si,P)O4]T1[(Al,Zn)7O13]2 T2-T4. The mineral is yellow with greenish tint, transparent with vitreous luster, non-fluorescent under ultraviolet light, and showing neither parting nor cleavage; Mohs hardness is 6.5. The density calculated on the basis of the empirical formula is 3.826 g/cm3. Its Raman spectrum shows strong bands at 522, 550 and 636 cm-1 and weak bands at 199, 260, 295, 456, and 754 cm-1.

  14. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    NASA Astrophysics Data System (ADS)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  15. Crystal chemistry and oxidation state of Fe-rich prehnite from a hydrothermally altered dolerite

    NASA Astrophysics Data System (ADS)

    Nagashima, Mariko; Iwasa, Kiyoka; Akasaka, Masahide

    2018-04-01

    Fe-rich prehnite, Ca2(Al,Fe)(AlSi3)O10(OH)2, in a hydrothermally altered dolerite sill from Mitsu, Shimane Peninsula, Japan, was studied using 57Fe Mössbauer spectroscopy and X-ray Rietveld method to determine the oxidation state and distribution of Fe within the prehnite and to clarify its structural properties. Prehnite shows two modes of occurrence: a druse and vein mineral (prehnite I) associated with Fe-rich pumpellyite and laumontite and a replacement of primary plagioclase (prehnite II). The Fe contents of prehnite I and II are 0.33-0.44 and 0.01-0.46 Fe3+ atoms per formula unit, respectively. The Mössbauer spectrum of prehnite II consists of one doublet with isomer shift ( IS) = 0.364 mm/s and quadrupole splitting ( QS) = 0.284 mm/s assigned to Fe3+ at the octahedral M site. In contrast, the Mössbauer spectrum of prehnite I consists of two doublets assigned to Fe3+ at the M site ( IS = 0.369 mm/s and QS = 0.299 mm/s) and Fe2+ at the seven coordinated A site ( IS = 1.05 and QS = 2.78 mm/s). According to X-ray Rietveld refinements with Pmna and Pma2 space groups, the fitting with Pma2 gave more reduced reliability factors than those using Pmna for both specimens, implying ordering of Al and Si at the tetrahedral T2 sites. Determined T2-O bond lengths at the Al-rich and Si-rich T2 sites, 1.71-1.72 and 1.62-1.64 Å, respectively, also indicate the ordered arrangement of Al and Si at the T2 sites. Refined site occupancies at the A and M sites are represented as A (Ca0.993(9)Fe2 + 0.007) M (Al0.666(6)Fe3 + 0.334) for prehnite I, and A Ca1.0 M (Al0.865(5)Fe3 + 0.135) for prehnite II, respectively. The existence of Fe2+ in the A site filling Ca deficiency in prehnite I is consistent with the result from the Mössbauer analysis.

  16. Seasonal variations in C:N:Si:Ca:P:Mg:S:K:Fe relationships of seston from Norwegian coastal water: Impact of extreme offshore forcing during winter-spring 2010.

    PubMed

    Erga, Svein Rune; Haugen, Stig Bjarte; Bratbak, Gunnar; Egge, Jorun Karin; Heldal, Mikal; Mork, Kjell Arne; Norland, Svein

    2017-11-20

    The aim of this study was to reveal the relative content of C, N, Ca, Si, P, Mg, K, S and Fe in seston particles in Norwegian coastal water (NCW), and how it relates to biological and hydrographic processes during seasonal cycles from October 2009-March 2012. The following over all stoichiometric relationship for the time series was obtained: C 66 N 11 Si 3.4 Ca 2.3 P 1 Mg 0.73 S 0.37 K 0.35 Fe 0.30 , which is novel for marine waters. A record-breaking (187-year record) negative North Atlantic Oscillation (NAO) index caused extreme physical forcing on the Norwegian Coastal Current Water (NCCW) during the winter 2009-2010, and the inflow and upwelling of saline Atlantic water (AW) in the fjord was thus extraordinary during late spring-early summer in 2010. The element concentrations in fjord seston particles responded strongly to this convection, revealed by maximum values of all elements, except Fe, exceeding average values with 10.8 × for Ca, 9.3 for K, 5.3 for S, 5.1 for Mg, 4.6 for Si, 4.0 for P, 3.8 for C, and 3.3 for N and Fe. This indicates that the signature of the Atlantic inflow was roughly two times stronger for Ca and K than for the others, probably connected with peaks in coccolithophorids and diatoms. There is, however, 1.5 × more of Si than Ca contained in the seston, which could be due to a stronger dominance of diatoms than coccolithophorids, confirming their environmental fitness. In total our data do not indicate any severe nutrient limitation with respect to N, P and Fe, but accumulation of iron by Fe-sequestering bacteria might at times reduce the availability of the dissolved Fe-fraction. There is a high correlation between most of the measured elements, except for Ca, which together with Fe only weakly correlated with the other elements. It is to be expected that environmental alterations in NCW related to climate change will influence the seston elemental composition, but the full effect of this will be strongly dependent on the future dominance of the high pressure versus low pressure systems (i.e. NAO index), since they are key regulators for the direction of wind driven vertical convection (i.e. upwelling or downwelling). Changes in stratification, temperature, light, pH (ocean acidification), CaCO 3 concentrations (carbon pump) and availability of nutrients in the euphotic zone (biogeochemical cycling) are essential for the future dominance of coccolithophorids versus diatoms.

  17. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  18. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    PubMed

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. © The Author(s) 2015.

  19. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the biotite-like flakes, the increase in Fe:Si AR was greater in the flakes that had a higher Fe:Si AR; (4) The Fe deposition on the Fe-rich microcrystalline surface coatings of the feldspar was much greater than on the Fe-poor, beige quartz and feldspar grains that, prior to elution, had only CaSO4 microcrystalline coatings; and (5) No Fe was deposited on Fe-poor grains with no microcrystalline surface coating.

  20. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  1. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts

    NASA Astrophysics Data System (ADS)

    Dickenson, M. P.; Hess, P. C.

    1986-02-01

    The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2OAl2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt. The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials μFe3+ Al-1 and μCa0.5K-1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes.

  2. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru

    2001-06-01

    A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of +/-0.34 wt% (relative error =9%) and +/-0.08 wt% (14%) and +/-0.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, $μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Pl} agree with those calculated using reported thermodynamic models for multicomponent spinel, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Sp} and clinopyroxene, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Cpx} $ . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.

  3. Thermal infrared emission spectroscopy of the pyroxene mineral series

    NASA Astrophysics Data System (ADS)

    Hamilton, Victoria E.

    2000-04-01

    The thermal infrared emissivity spectra of coarse particulate samples of compositions in the pyroxene series display reststrahlen features (absorptions) that distinguish not only orthorhombic from monoclinic structures, but also major end-members within the two structural groups, as well as minerals within solid solution series. The exact number of reststrahlen features observed and their positions are dependent on mineral structure and cation occupancy of the M1 and M2 sites. End-member quadrilateral pyroxenes (Mg2Si2O6-Fe2Si2O6-Ca[Mg,Fe]Si2O6) are easily distinguished from each other and from minerals in the nonquadrilateral series (NaFeSi2O6-Na[Al,Fe]Si2O6-LiAlSi2O6). Furthermore, among quadrilateral pyroxenes, variations in Mg/(Mg+Fe) are linearly correlated with several band locations, as are variations in Ca content in high-Ca clinopyroxenes. In both quadrilateral and nonquadrilateral compositions, Christiansen feature positions are also diagnostic. No correlations with minor constituents (of the order of 0.05 atoms per formula unit) were observed. The detailed spectral characteristics of pyroxenes and their variability as a function of structure and cation occupancy are presented here with determinative curves for the identification of pyroxene composition. These data have important implications for the interpretation of spectral data from both laboratory and remote sensing instruments because they should permit a more detailed determination of pyroxene composition in measured unknown pure mineral and bulk compositions dominated by surface scattering, i.e., all particulates greater than ~65 μm, and solid samples.

  4. Silicon and Manganese Partition Between Slag and Metal Phases and Their Activities Pertinent to Ferromanganese and Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Cengizler, Hakan; Eric, R. Hurman

    Equilibrium between MnO-CaO-MgO-SiO2-Al2O3 slags and carbon saturated Mn-Si-Fe-C alloys was investigated under CO at 1500oC. Manganese and silicon activities were obtained by using the present data and the previously determined MnO and SiO2 activities of the slag. Quadratic multi-coefficient regression equations were developed for activity coefficients of manganese and silicon. The conclusions of this work are:(i)increase in the basicity and the CaO/Al2O3 ratios decreases the Mn distribution ratio,(ii)increase in the silica concentration and the MgO/CaO ratio increases the Mn distribution ratio, iii)carbon and manganese as well as carbon and silicon of the metal phase are inversely proportional,(iv)as Mn/Fe and Mn/Si ratio increases in the metal the carbon solubility increases,(v)decrease in the basicity increases the silicon content of the metal and (vi)increase in the silica content of the slag increases the silicon content of the metal and this effect is more pronounced at the higher Mn/Fe and Mn/Si ratios.

  5. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  6. The Partial Molar Volume and Compressibility of FeO in CaO-SiO2 Liquids: Systematic Variation with Fe2+ Coordination Change

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2009-12-01

    Iron is an important element in magmatic liquid, since its concentration can range up to 18% in some basaltic liquids, and it has two oxidation states. In order to model magmatic processes, thermodynamic descriptions of silicate melts must include precise information for both the FeO and Fe2O3 components. Currently, the partial molar volume of FeO is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Yet these data are required in order to convert sound speed measurements on FeO-bearing liquids into compressibility data, which in turn are needed extend density models for magmatic liquids to elevated pressures. Moreover, there is growing evidence from the spectroscopic literature that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and thus it is possible that the partial molar volume and compressibility of FeO may vary with Fe2+ coordination, and thus with melt composition. To explore these issues, we have conducted both density and relaxed sound speed measurements on liquids in the CaO-FeO-SiO2 system, where the CaO/SiO2 ratio was systematically varied at constant FeO concentration (40 mol%). Density was measured between 1594 and 1813K with the double-bob Archimedean method using molybdenum bobs and crucible in a reducing gas (1%CO-99%Ar) environment. The sounds speeds were measured under similar conditions with a frequency-sweep acoustic interferometer. The derived partial molar volume of FeO increases systematically from 13.7 to 15.2 cm3/mol at 1673 K as the CaO/SiO2 ratio increases and the Fe2+ coordination number decreases. From a comparison with the crystalline volume of FeO (halite structure; 12.06 cm3/mol), which serves as a lower limit for VFeO in silicate liquids when Fe2+ is in 6-fold coordination, we estimate that the average Fe2+ coordination in our experimental melts extends up to values between 5 and 4, consistent with the spectroscopic literature. The partial molar compressibility of FeO also increases systematically as Fe2+ coordination decreases, and its maximum measured value (7.01 x 10-2 GPa-1) is nearly identical to that for the SiO2 component in 4-fold coordination (7.14 x 10-2 GPa-1) and is considerably larger than that for the relatively incompressible component MgO (0.65 x 10-2 GPa-1). Thus, our data indicate that the volumetric properties of FeO component have more in common with those for SiO2 than for MgO.

  7. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  8. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  9. Heat capacities of synthetic hedenbergite, ferrobustamite and CaFeSi2O6 glass

    USGS Publications Warehouse

    Haselton, H.T.; Robie, R.A.; Hemingway, B.S.

    1987-01-01

    Heat capacities have been measured for synthetic hedenbergite (9-647 K), ferrobustamite (5-746 K) and CaFeSi2O6 glass (6-380 K) by low-temperature adiabatic and differential scanning calorimetry. The heat capacity of each of these structural forms of CaFeSiO6 exhibits anomalous behavior at low temperatures. The X-peak in the hedenbergite heat-capacity curve at 34.5 K is due to antiferromagnetic ordering of the Fe2+ ions. Ferrobustamite has a bump in its heat-capacity curve at temperatures less than 20 K, which could be due to weak cooperative magnetic ordering or to a Schottky anomaly. Surprisingly, a broad peak with a maximum at 68 K is present in the heat-capacity curve of the glass. If this maximum, which occurs at a higher temperature than in hedenbergite is caused by magnetic ordering, it could indicate that the range of distortions of the iron sites in the glass is quite small and that coupling between iron atoms is stronger in the glass than in the edge-shared octahedral chains of hedenbergite. The standard entropy change, So298.15 - So0, is 174.2 ?? 0.3, 180.5 ?? 0.3 and 185.7 ?? 0.4 J/mol??K for hedenbergite, ferrobustamite and CaFeSi2O6 glass, respectively. Ferrobustamite is partially disordered in Ca-Fe distribution at high temperatures, but the dependence of the configuratonal entropy on temperature cannot be evaluated due to a lack of information. At high temperatures (298-1600 K), the heat capacity of hedenbergite may be represented by the equation Cop(J/mol??K) = 3l0.46 + 0.01257T-2039.93T -1 2 - 1.84604?? l06T-2 and the heat capacity of ferrobustamite may be represented by Cop(J/mol??K) = 403.83-0.04444T+ 1.597?? 10-5T2-3757.3T -1 2. ?? 1987.

  10. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  11. Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jinlei; Yan, Xu; Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru

    The effects of transition metal substitution for Ni on the magnetic properties of the CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K formore » SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Graphical abstract: CaCu{sub 5}-type SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Highlights: • CaCu{sub 5}-type SmNi{sub 3}{Mn, Fe, Co, Cu}Si exhibit the Curie points at 12–190 K. • SmNi{sub 3}{Mn, Fe, Co, Cu}Si show field induced transition at 6–110 K. • SmNi{sub 3}MnSi shows huge magnetic hysteresis with coercive field of 80 kOe at 20 K. • SmNi{sub 3}FeSi shows huge magnetic hysteresis with coercive field of 87 kOe at 40 K. • SmNi{sub 3}CuSi shows giant coercive field of 54 kOe at 5 K.« less

  12. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  13. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  14. Ferrorhodonite, CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Shchipalkina, Nadezhda V.; Chukanov, Nikita V.; Pekov, Igor V.; Aksenov, Sergey M.; McCammon, Catherine; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Koshlyakova, Natalya N.; Schäfer, Christof; Scholz, Ricardo; Rastsvetaeva, Ramiza K.

    2017-05-01

    The new mineral ferrorhodonite, a Mn2+-Fe2+ ordered analogue of rhodonite with the idealized formula CaMn3Fe[Si5O15], was found in the manganese-rich metamorphic rocks of the Broken Hill Pb-Zn-Ag deposit, Yancowinna Co., New South Wales, Australia. Ferrorhodonite occurs as brownish red coarsely crystalline aggregates in association with galena, chalcopyrite, spessartine, and quartz. The mineral is brittle. Its Mohs hardness is 6. Cleavage is perfect on {201} and good on {021} and {210}. The measured and calculated values of density are 3.71 (2) and 3.701 g cm-3, respectively. Ferrorhodonite is optically biaxial positive, with α = 1.731 (4), β = 1.736 (4), γ = 1.745 (5) and 2 V (meas.) = 80 (10)°. The average chemical composition of ferrorhodonite is (electron-microprobe data, wt%): CaO 7.09, MgO 0.24, MnO 32.32, FeO 14.46, ZnO 0.36, SiO2 46.48, and total 100.95. The empirical formula calculated on 15 O apfu ( Z = 2) is Ca0.81Mn2.92Fe1.29Mg0.04Zn0.03Si4.96O15. The Mössbauer and IR spectra are reported. The strongest reflections in the powder X-ray diffraction pattern [( d, Å ( I, %) ( hkl)] are: 3.337 (32) (-1-13), 3.132 (54) (-210), 3.091 (41) (0-23), 2.968 (100) (-2-11), 2.770 (91) (022), 2.223 (34) (-204), 2.173 (30) (-310). Ferrorhodonite is isostructural with rhodonite. The crystal structure was solved based on single-crystal X-ray diffraction data and refined to R 1 = 4.02% [for 3114 reflections with I > 2 σ( I)]. The mineral is triclinic, space group P \\bar{1}, a = 6.6766 (5), b = 7.6754 (6), c = 11.803 (1) Å, α = 105.501 (1)°, β = 92.275 (1)°, γ = 93.919 (1)°; V = 580.44 (1). The crystal-chemical formula of ferrorhodonite inferred to be: M5(Ca0.81Mn0.19) M1-3(Mn2.52Fe0.48) M4(Fe 0.81 2+ Mn0.12Mg0.04Zn0.03) [Si5O15]..

  15. Stabilizing Fe Nanoparticles in the SmCo 5 Matrix

    DOE PAGES

    Shen, Bo; Mendoza-Garcia, Adriana; Baker, Sarah E.; ...

    2017-08-03

    In this paper, we report a new strategy for stabilizing Fe nanoparticles (NPs) in the preparation of SmCo 5–Fe nanocomposites. We coat the presynthesized Fe NPs with SiO 2 and assemble the Fe/SiO 2 NPs with Sm–Co–OH to form a mixture. After reductive annealing at 850 °C in the presence of Ca, we obtain SmCo 5–Fe/SiO 2 composites. Following aqueous NaOH washing and compaction, we produced exchange-coupled SmCo 5–Fe nanocomposites with Fe NPs controlled at 12 nm. In conclusion, our work demonstrates a successful strategy of stabilizing high moment magnetic NPs in a hard magnetic matrix to produce a nanocompositemore » with tunable magnetic properties.« less

  16. Decomposition of potent greenhouse gas sulfur hexafluoride (SF6) by Kirschsteinite-dominant stainless steel slag.

    PubMed

    Zhang, Jia; Zhou, Ji Zhi; Xu, Zhi Ping; Li, Yajun; Cao, Tiehua; Zhao, Jun; Ruan, Xiuxiu; Liu, Qiang; Qian, Guangren

    2014-01-01

    In this investigation, kirschsteinite-dominant stainless steel slag (SSS) has been found to decompose sulfur hexafluoride (SF6) with the activity higher than pure metal oxides, such as Fe2O3 and CaO. SSS is mainly made up of CaO·FeO·SiO2(CFS)/MgO·FeO·MnO(RO) phase conglomeration. The SF6 decomposition reaction with SSS at 500-700 °C generated solid MF2/MF3 and gaseous SiF4, SO2/SO3 as well as HF. When 10 wt % of SSS was replaced by Fe2O3 or CaO, the SF6 decomposition amount decreased from 21.0 to 15.2 or 15.0 mg/g at 600 °C. The advantage of SSS over Fe2O3 or CaO in the SF6 decomposition is related to its own special microstructure and composition. The dispersion of each oxide component in SSS reduces the sintering of freshly formed MF2/MF3, which is severe in the case of pure metal oxides and inhibits the continuous reaction of inner components. Moreover, SiO2 in SSS reacts with SF6 and evolves as gaseous SiF4, which leaves SSS with voids and consequently exposes inner oxides for further reactions. In addition, we have found that oxygen significantly inhibited the SF6 decomposition with SSS while H2O did not, which could be explained in terms of reaction pathways. This research thus demonstrates that waste material SSS could be potentially an effective removal reagent of greenhouse gas SF6.

  17. Geochemical characterization and leaching behavior of slags: by-product materials from an old lead smelter in Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.

    2012-12-01

    Steel slags are stored in piles or stocks around or near the smelter site. Currently, there is an increasing interest in the use of waste materials, especially in the construction industry, to replace natural aggregates, help the environment and reduce the costs. Slags are being used widely as road ballast, road base or sub-base material, sandblasting agents or cement additives, but normally contain high concentrations of potentially toxic metals. Although these metals are associated with glass, silicate and oxide minerals, with slow solubilities in water, a characterization of the leaching behavior is essential in environmental evaluation for reuse scenarios. The state of Chihuahua is located in northern Mexico, and mining has been an important economic activity since the 18th century. In the early 1900's, a lead smelter operated in Avalos, Chihuahua (in the southern surroundings of Chihuahua city), and left considerable slag piles after their closure in the 1980's. In this study, this material has been geochemically analyzed to identify the metals contained in it, and used in "tank tests" experiments, to assess its leaching behavior. The slags from Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%) in different minerals such as hardystonite (Ca2ZnSi2O7), melanotekite (Pb2Fe3+3O2Si2O7), kentrolite (Pb2Mn2Si2O9) and sphalerite (ZnS) or trapped in the glass. Major elements are present in phases such as monticellite (CaMgSiO4), kirschsteinite (CaFe2+SiO4), hedenbergite (CaFeSi2O6), babingtonite (Fe2Si3O9), magnetite (Fe3O4), and calcite (CaCO3). The leaching experiments were performed for 6, 24, 168 and 360 hours in mixtures of 30 and 50% of slags with natural road base material using distilled water at a pH 5 and 8 to recreate acidic and alkaline waters. The amounts of leached Pb ranges from 0.1 to 0.5 ppm, Zn from 0.1 to 0.6 ppm, As from 0 to 0.09 ppm, and Ca from 40 to 180 ppm, being the acidic experiments the ones that leached out the highest amounts of metals. Based on the results of analyses and experiments, it is recommended to use the waste material (slags) as aggregates in road construction, but only as minor constituent (<30%) in base materials.

  18. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  19. Cast Iron Inoculation Enhanced by Supplementary Oxy-sulfides Forming Elements

    NASA Astrophysics Data System (ADS)

    Riposan, Iulian; Stan, Stelian; Uta, Valentin; Stefan, Ion

    2017-09-01

    Inoculation is one of the most important metallurgical treatments applied to the molten cast iron immediately prior to casting, to promote solidification without excessive eutectic undercooling, which favors carbides formation usually with undesirable graphite morphologies. The paper focused on the separate addition of an inoculant enhancer alloy [S, O, oxy-sulfides forming elements] with a conventional Ca-FeSi alloy, in the production of gray and ductile cast irons. Carbides formation tendency decreased with improved graphite characteristics as an effect of the [Ca-FeSi + Enhancer] inoculation combination, when compared to other Ca/Ca, Ba/Ca, RE-FeSi alloy treatments. Adding an inoculant enhancer greatly enhances inoculation, lowers inoculant consumption up to 50% or more and avoids the need to use more costly inoculants, such as a rare earth bearing alloy. The Inoculation Specific Factor [ISF] was developed as a means to more realistically measure inoculant treatment efficiency. It compares the ratio between the improved characteristic level and total inoculant consumption for this effect. Addition of any of the commercial inoculants plus the inoculant enhancer offered outstanding inoculation power [increased ISF] even at higher solidification cooling rates, even though the total enhancer addition was at a small fraction of the amount of commercial inoculant used.

  20. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  1. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  2. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Grew; J Marsh; M Yates

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eightmore » cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is interpreted to have equilibrated with ferrosilite, augite, quartz, oligoclase, allanite-(Ce), magnetite, ilmenite and fluorapatite, in the absence of almandine, on the prograde path at 7-8.5 kbar and T {approx} 700-800 C, and subsequently dissolved incongruently in an anatectic melt to form almandine, most likely, at P {approx} 8.5-9.5 kbar and T {approx} 800-850 C.« less

  3. Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Klincker, Allison M.

    2014-02-20

    The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca 2.88Mn 2+ 0.06Mg 0.04Fe 2+ 0.03} Σ3[Fe 3+ 1.29Al 0.49Ti 4+ 0.17Fe 2+ 0.06] Σ2(Si 2.89Al 0.11) Σ3O 12. The Rietveld refinement reduced χ 2 = 1.384 and overall R (F 2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average = 2.4196, Fe–O =more » 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.« less

  4. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  5. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  6. [Spatial heterogeneity of surface soil mineral components in a small catchment in Karst peak-cluster depression area, South China].

    PubMed

    Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping

    2013-11-01

    A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.

  7. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/D, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  8. Ultrabasic-basic change over primary inclusions in lower-mantle diamonds: Mineralogical and experimental evidence for crucial role of stishovite paradox

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy; Spivak, Anna

    2017-04-01

    Melting relations of the lower-mantle magmatic system MgO - FeO - CaO - SiO2 are characterized by peritectic reaction of bridgmanite (Mg,Fe)SiO3 and melt with formation of Fe-rich phases of periclase-wustite solid solutions (MgO•FeO)ss and stishovite SiO2. The reaction proceeds also in melts-solutions of lower-mantle diamond-parental system MgO - FeO - CaO - SiO2 - (Mg-Fe-Ca-Na-carbonate) - C. Xenoliths of lower mantle rocks were never found among the deep mantle derived materials. Estimation of lower-mantle mineralogy as ferropericlase+ bridgmanite+ Ca-perovskite association is inferred from high-pressure subsolidus experiments with ultrabasic pyrolite composition (Akaogi, 2007). The paradoxical in situ paragenesis of stishovite and ferropericlase as primary inclusions in lower-mantle diamonds (Kaminsky, 2012) takes its explanation from the bridgmanite peritectic reaction (effect of "stishovite paradox") (Litvin et al., 2014). Based on the data for inclusions, physico-chemical study on syngenesis of diamonds and primary inclusions has experimentally revealed the ferropericlase-bridgmanite-Ca-perovskite-stishovite-magnesiowustite-(Mg-Fe-Ca-Na-carbonate)-carbon compositions of the lower-mantle diamond-forming system .(Litvin et al., 2016). The generalized diagram of diamong-forming media characterizes the variable compositions of growths melts for diamonds and paragenetic phases and their genetic relationships with lower mantle matter, and it is the reason for genetic classifying primary inclusions. Fractional ultrabasic-basic evolution and continuous paragenetic transition from ultrabasic bridgmanite-ferropericlase to basic stishovite-magnesiowustite assemblages in the of lower-mantle diamond-parental melts-solutions are providing by the physico-chemical mechanism of stishovite paradox. References Akaogi M. (2007). Phase transformations of minerals in the transition zone and upper part of the lower mantle. In Advances in High-Pressure Mineralogy (Ohtani E., ed.). Geol. Soc. Am. Spec. Paper 421, 1-13. Kaminsky F.V. (2012). Mineralogy of the lower mantle: a review of "supper-deep" mineral inclusions in diamonds. Earth Sci. Rev. 110, 127-147. Litvin Yu.A., Spivak A.V., Solopova N.A., Dubrovinsky L.S. (2014). On origin of lower-mantle diamonds and their primary inclusions. Phys. Earth Planet. Inter. 228, 176-185. Litvin Yu.A., Spivak A.V., Dubrovinsky L.S. (2016). Magmatic evolution of the material of the Earth's lower mantle: stishovite paradox and origin of superdeep diamonds (experiments at 24-26 GPa). Geochemistry Internat. 54(11, 936-947.)

  9. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  10. Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents

    NASA Astrophysics Data System (ADS)

    Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina

    2017-09-01

    Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  12. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  13. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya

    2017-01-01

    To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

  14. Crystal structures of two new low-symmetry calcium-deficient analogs of eudialyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K.; Rozenberg, K. A.; Pekov, I. V.

    2006-03-15

    The crystal structures of two new low-symmetry (sp. gr. R3) representatives of the eudialyte group from Mont Saint-Hilaire (Quebec, Canada) and the Lovozero massif (Kola Peninsula, Russia) were studied by single-crystal X-ray diffraction analysis and refined to R = 0.068 and 0.054 using 2899 reflections with F > 5{sigma}(F) and 2927 reflections with F > 3{sigma}(F), respectively. The idealized formulas of these representatives are Na{sub 13}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Mn){sub 3}({open_square})(Si)[Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}(O, OH, Cl){sub 3} . 2H{sub 2}O and Na{sub 15}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Zr){sub 3}(Si)(Si) . [Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}O{sub 2}(OH,more » F, Cl){sub 2} . 2H{sub 2}O. Both minerals are analogs of oneillite and are characterized by a low Ca content. The distinguishing features of the mineral from Quebec are that the M(4) site is essentially vacant (>50%) and Ca atoms occupy one independent site in the six-membered ring, whereas another site is occupied by Mn along with a small impurity of Na. In the mineral from the Lovozero massif, both the M(3) and M(4) sites are occupied predominantly by silicon, while Ca atoms are distributed between both octahedral sites of the six-membered ring, one of these sites being occupied predominantly by Mn.« less

  15. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  16. Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping

    In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.

  17. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  18. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are assumed to ideally mix allowing for interpolation between end-member compositions. Results show the chondrite critical isentrope intersecting its liquidus at the core-mantle boundary with a potential temperature (TP) of 2400 K, whereas the peridotite critical isentrope has a TP of 2800 K and first crystallizes at 85 GPa. An identical calculation fails to recover the Hd isentrope (Hd = Di+0.5Fa-0.5Fo). This failure is likely due to the very different partial molar volumes of FeO in Hd and Fa, which have average Fe2+ coordination states of ~4.5 and ~6, respectively [5]. Consequently the simple ideal model is likely to only support mixing among like-coordinated Fe2+ liquids. We hope to further investigate this hypothesis for linear-mixing by constraining the EOS of An-Hd (50:50), and An-Di-Hd (33:33:33) melts using pre-heated shock wave techniques. [1] Ghiorso & Kress (2004) AJS 304, 679-751.[2] Ai & Lange(2008) JGR 113,B04203.[3] Fiquet et al. (2010) Science 329, 1516-1518.[4]Andrault et al. (2011) EPSL 304, 251-259.[5]Lange et al. (2012) Goldschmidt meeting, abstract.

  19. Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite

    USGS Publications Warehouse

    Robie, Richard A.; Bin, Zhao; Hemingway, Bruce S.; Barton, Mark D.

    1987-01-01

    Between 300 and 1000 K the molar heat capacity of andradite can be represented by the equation Cop,m = 809.24 - 7.025 × 10−2T− 7.403 × 103T−0.5 − 6.789 × 105T−2. We have also used our thermochemical data for andradite to estimate the Gibbs free energy of formation of hedenbergite (CaFeSi2O6) for which we obtained ΔfGom (298.15 K) = −2674.3 ± 5.8 kJ/mol.

  20. Disproportionation of marokite at high pressures and temperatures with geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, Lin-gun

    1983-07-01

    Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.

  1. Improved magnetic properties and growth anisotropy of chemically modified Sr ferrites

    NASA Astrophysics Data System (ADS)

    Lee, Jung W.; Cho, Yong S.; Amarakoon, Vasantha R. W.

    1999-04-01

    Magnetic properties and microstructural characteristics of SrOṡ5.9Fe2O3 chemically modified with Si and Ca were investigated by changing experimental parameters such as additive composition, the ratio of Ca/Si, and sintering condition. A novel particulate coating method utilizing sol-gel reactions was used to uniformly incorporate the additives of Si and Ca. This method was very successful in obtaining homogeneous grain growth and fine grains. A sample containing the gel additives of 0.6 wt % SiO2 and 0.7 wt % CaO and sintered at 1200 °C for 4 h was found to significantly suppress abnormal grain growth, resulting in submicron-sized grains and high density. A distinct grain boundary phase containing Si and Ca was observed by increasing the sintering temperature to 1250 °C. The resultant microstructural characteristics favorably affected magnetic properties. For example, the chemically modified sample exhibited a higher coercivity of 3530 Oe compared to a value of 2050 Oe obtained for the sample without the additives. On the other hand, an increase in the ratio of Ca/Si or in sintering temperature tended to induce a large anisotropy during grain growth.

  2. Post-magmatic solid solutions of CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-bearing epidote in miarolitic pegmatites of Permian Baveno granite (Verbania, central-southern alps, Italy)

    NASA Astrophysics Data System (ADS)

    Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela

    2017-06-01

    CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.

  3. Reduced and unstratified crust in CV chondrite parent body.

    PubMed

    Ganino, Clément; Libourel, Guy

    2017-08-15

    Early Solar System planetesimal thermal models predict the heating of the chondritic protolith and the preservation of a chondritic crust on differentiated parent bodies. Petrological and geochemical analyses of chondrites have suggested that secondary alteration phases formed at low temperatures (<300 °C) by fluid-rock interaction where reduced and oxidized Vigarano type Carbonaceous (CV) chondrites witness different physicochemical conditions. From a thermodynamical survey of Ca-Fe-rich secondary phases in CV3 chondrites including silica activity (aSiO 2 ), here we show that the classical distinction between reduced and oxidized chondrites is no longer valid and that their Ca-Fe-rich secondary phases formed in similar reduced conditions near the iron-magnetite redox buffer at low aSiO 2 (log(aSiO 2 ) <-1) and moderate temperature (210-610 °C). The various lithologies in CV3 chondrites are inferred to be fragments of an asteroid percolated heterogeneously via porous flow of hydrothermal fluid. Putative 'onion shell' structures are not anymore a requirement for the CV parent body crust.Meteorites may unlock the history of the early solar system. Here, the authors find, through Ca-Fe-rich secondary phases, that the distinction between reduced and oxidized CV chondrites is invalid; therefore, CV3 chondrites are asteroid fragments that percolated heterogeneously via porous flow of hydrothermal fluid.

  4. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  5. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  6. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  7. The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa

    2015-03-01

    It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.

  8. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.

    2016-10-01

    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.H.; Song, B.

    The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less

  10. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects.

    PubMed

    Jiang, Yumin; Ou, Jun; Zhang, Zhanhe; Qin, Qing-Hua

    2011-03-01

    In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.

  11. Search for New Superconductors for Energy and Power Applications

    DTIC Science & Technology

    2014-10-21

    superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0

  12. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  13. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE PAGES

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...

    2017-09-22

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  14. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  15. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate-ranged atomic pair correlations as 2-line ferrihydrite (2LFH), rather than lepidocrocite (Lp) which is generated in an NaCl electrolyte. However, when Ca or Mg is added to oxyanion electrolytes, Fe-Fe polymerization and particle size both tend to increase and a Lp-like material with characteristic Fe-O and Fe-Fe pair correlations is once again favored. The presence of either Ca or Mg also enhances the removal P, As(V), and to a lesser extent, Si per mass of Fe. The analysis from EXAFS and PDF spectra provide new insights into the polyhedral connectivity of nanoscale oxyanion-bearing HFO formed under a wide range of chemical conditions, improving predictions of EC performance in the field and allowing for knowledge-based improvements in the design of future EC systems. Our PDF data also show that the most disordered EC precipitate samples (formed at high oxyanion/Fe ratios) all share a similar "backbone" of 3-4 peaks beyond the first 4 Å, regardless of the oxyanion present during synthesis. Using 2LFH as a reference, we index all atomic pair correlations throughout the coherently scattering structure of our disordered samples.

  16. Alteration geochemistry of the volcanic-hosted Dedeninyurdu, Yergen and Fındıklıyar Fe-Cu mineralization at Gökçedoǧan, Çorum-Kargi region, Turkey

    NASA Astrophysics Data System (ADS)

    Gumus, Lokman; Öztürk, Sercan; Yalçın, Cihan; Abdelnasser, Amr; Hanilçi, Nurullah; Kumral, Mustafa

    2016-04-01

    This study is to determine the mass/volume gain and loss of the major and trace elements during the alteration processes on Dedeninyurdu, Yergen and Fındıklıyar Fe-Cu mineralizations of the area. Fe-Cu mineralization occurred in the spilitic volcanic a rock of Saraycık Formation is associated with the different types of alteration zones which are pyritization, silicification and sericitization. The study area comprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık formation consists of spilitic volcanic rocks with pelagic limestone, siltstone and chert. The ore mineralogical data show that the pyrite, chalcopyrite, covellite, hematite, malachite and goethite formed during three phases of mineralization. As well as the geologic and petrographic studies reveal three alteration zones with definite mineral assemblages; phyllic alteration (quartz + sericite + pyrite) that represents the main alteration and mineralized zone; propylitic alteration; and carbonatized sericitic alteration zone. The boundaries between these zones are gradual. Mass balance calculations suggested that the phyllic alteration zone represented by gain in Si, Fe, K, S, and LOI and loss in Mg, Ca, and Na refers to silicification, sericitization and pyritization as well as replacement of Fe-Mg silicate and plagioclase. While, in the propylitic alteration zone, enrichment of Si, Fe, Mg, LOI and S occurred with depletions of Ca, Na, and K reflecting chloritization alteration type. On the other hand, carbonatized sericitic alteration zone shows local gain in Si, CaO and K reflects the occurrence of calc-silicate alteration. All alteration zones contain a large proportion of sulfide minerals (gain in S) with increase in loss on ignition (LOI). Keywords: Alteration geochemistry; Mass balance calculation, Fe-Cu mineralization; phyllic alteration, propylitic alteration.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudraswami, N. G.; Prasad, M. Shyam; Dey, S.

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μ m) and high entry velocities (>16 km s{sup −1})more » experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s{sup −1} and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO{sub 2}, and FeO are not significant for an entry velocity of 11 km s{sup −1} and sizes <300 μ m, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s{sup −1} the changes in MgO, SiO{sub 2}, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μ m. Beyond 400 μ m particle sizes at 16 km s{sup −1}, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.« less

  18. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s‑1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s‑1 and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s‑1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s‑1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s‑1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  19. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon; Kang, Youn-Bae

    2013-04-01

    In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 °C to 1550 °C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steel; thus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.

  20. Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study.

    PubMed

    Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang

    2017-11-23

    In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t  = Z t  - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.

  1. Evidence from an Ice Core of a Large Impact Circa 1443 A.D.

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Biscaye, P.; Cole-Dai, J.; Breger, D.

    2005-12-01

    Published data on melt water from the Siple Dome ice core show distinct anomalies at 1443.16 A.D. The Ca value is 111 ppb, over 9 times the next highest Ca value between 850-1760 A.D. The K value is 20 ppb, about 1.4 times the next highest K value. The Ca anomaly may be due to partial dissolution of CaCO3 microfossils from the 24 km Mahuika bolide impact crater on the southern New Zealand shelf. Deep-sea samples of the Mahuika ejecta layer contain >98% carbonate microfossils. The Mahuika impact may have produced tsunami runups of 130 meters in Jervis Bay, Australia. The Australian megatsunami deposits date to 1450±50 A.D. We analyzed the melt water from 8 ice-core samples from the West Antarctic Siple Dome ice core that date from 1440-1448 A.D. The 1443 A.D. level contained a peak in K of 53 ppb as compared to a background of ~6-7 ppb. Ca was high at 26 ppb but this is not as pronounced as reported earlier. We extracted solid material from the melt water. Except for the 1443 A.D. horizon and one fractured grain at the 1442 A.D. level, most samples were barren except for typical dust. At the 1443 A.D. level, we found 5 carbonate microfossils (coccoliths?) from 5 to 20 microns across. Two were round and solid. One microfossil appeared either caught during mitosis or broken during deformation and elongation. Another carbonate microfossil was unbroken, but appeared deformed into a square. We found a Cu grain with a small amount of oxygen. It is most likely a grain of native copper with an oxidized surface. Deformed microfossils and native minerals are both characteristic of bolide impacts. We also found many microcrystalline magnetite cubes, with an average crystal size of 0.3 microns or less. The high magnetic susceptibility of impact ejacta layers is caused by microcrystalline magnetite. We found a grain of conchoidally fractured feldspar ~15 microns long. A semi-quantitive EDAX analysis found 21% Si, 55% O, 9% Al, 5% Na, 3% K, 2% Fe, and 1% Ca (atomic %), well within the range of K-feldspar compositions. Because Fe does not fit into the feldspar structure, its occurrence implies either that the Fe-bearing feldspar is a glass, or that the Fe is in microcracks within the grain. As ice is not Fe-rich, the former is more likely. Because conchoidal fracture is characteristic of glass, this suggests that the feldspar is a glass (maskelynite) derived from an impact onto continental crust. We also found Al Fe oxide, Ti Al oxide, and amphibole. A semi-quantitative EDAX analysis of the latter found 53% O, 20% Si, 5% Na, 4% Al, Mg, and Fe, 3% Ca, and 0.5% K (atomic %) with trace Ti, S and Cl, close to the composition of the alkali amphibole richterite, which forms in contact metamorphosed limestones (skarns). The Al Fe oxide is most likely hercynite, a spinel that forms in contact metamorphic aureoles in silica-poor environments. All mineral grains had distinct edges. We also found radiating, fibrous crystals of a Ca Na silicate. An EDAX analysis of the mineral found 59% O, 13% Ca, 8% Si, 3% Na, and 1% Mg (atomic %). The Ca Na silicate is most likely pectolite (NaCa2Si3O8), which has radiating, fibrous crystals and forms in skarns. The presence of minerals characteristic of contact metamorphism is important as we have found abundant skarn facies minerals in the Mahuika ejecta layer within deep sea sediment. Thus, our data taken together are most consistent with an impact ejecta layer within the Siple Dome ice core that comes from the Mahuika impact event about 4044 kilometers away; providing a well-constrained date for the event around 1443 A.D.

  2. Component mobility at 900 °C and 18 kbar from experimentally grown coronas in a natural gabbro

    NASA Astrophysics Data System (ADS)

    Keller, Lukas M.; Wunder, Bernd; Rhede, Dieter; Wirth, Richard

    2008-09-01

    Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al 2O 3, SiO 2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a "diffusion-controlled" reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < ( LSiSi, LFeFe) < LMgMg during reaction rim growth.

  3. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  4. Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia.

    PubMed

    Bahloul, Moez; Chabbi, Iness; Dammak, Rim; Amdouni, Ridha; Medhioub, Khaled; Azri, Chafai

    2015-12-01

    The present study investigates the geochemical behaviour of PM10 aerosol constituents (Cl, Na, Si, Al, Ca, Fe, Mg, Mn, Pb, Zn, S) at Sfax City (Tunisia) under succeeding meteorological conditions, including short-lived anticyclonic, cyclonic and prolonged anticyclonic situations. The results revealed daily total concentrations fluctuating between 4.07 and 88.51 μg/m(3). The highest level recorded was noted to occur under the effect of the short-lived anticyclonic situation characterized by low wind speeds. It was 1.5 times higher than those recorded during cyclonic and long-lived anticyclonic situations characterized by moderate to high wind speeds. During the cyclonic situation, the marked increase of (Na and Cl) concentrations is associated with relatively high sea wind speeds (6 to 9 m/s), which are in turn responsible for a slight increase of crustal elements such as Al, Ca, Si, Fe and Mg, by the entrainment in the air of dust from roads and undeveloped areas. During the two anticyclonic situations, the simultaneous increase (due to communal transport) of crustal (Ca, Si, Al, Fe, Mg) and man-made (Mn, S, Pb, Zn) elements was noted to be associated with the dominance of terrigenious wind flows with speeds varying between 1.5 and 4 m/s. However, the significant contribution rates observed for Cl under the prevalence of such winds as compared to other crustal elements such as Fe suggested the influence of the sebkhas of Southern Tunisia.

  5. Thermodynamic Properties of Sulfatian Apatite: Constraints on the Behavior of Sulfur in Calc-Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.

    2004-12-01

    The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.

  6. Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom

    USGS Publications Warehouse

    El, Goresy A.; Chao, E.C.T.

    1976-01-01

    Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks. The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite. ?? 1976.

  7. Adsorption of CO on oxide and water ice surfaces - Implications for the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.; Blamont, J. E.; Anbar, A. D.; Keyser, L. F.; Sander, S. P.

    1992-01-01

    The adsorption of carbon monoxide (CO) on water ice and on the oxides Fe2O3, Fe3O4, Al2O3, SiO2, CaO, MgO, and TiO2 (rutile and anatase) has been investigated in a flow reactor. A mass spectrometer was employed as a detector to monitor the temporal concentrations of CO. Adsorption coefficients as large as 1 x 10 exp -4 were measured for CO on TiO2 solids in helium at 196 K. The fractional surface coverage for CO on TiO2 solids in helium was also determined to be approximately 10 percent at 196 K. The upper limits of the fractional surface coverage for the other oxides (Fe2O3, Fe3O4, Al2O3, SiO2, CaO, and MgO) and water ice were also measured to be less than 1 percent. The implications for the stability of CO2 in the Martian atmosphere and the 'CO hole' observed by the Phobos/ISM experiment are discussed.

  8. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  9. Preparation of the Iron Oxide Red from the Converter Dust by the Magnetic Separation and Roasting Process

    NASA Astrophysics Data System (ADS)

    Guo, Z. J.; Li, S. Q.; Yang, C. Q.

    2017-05-01

    Preparation of iron oxide red (α-Fe2O3) from the converter dust by the superconductivity high gradient magnetic separation (S-HGMS) and roasting process was investigated in the paper. The basic properties of the dust were studied by the X Ray Fluorescence, the chemical analysis and the X Ray Diffraction methods. The results showed that the raw dust mainly contained elements of Fe‵O‵Si‵Ca, the iron content of the raw dust was 61.80%, and there were ferrous phases of Fe3O4, α-Fe2O3, Fe2(SiO4) and CaFe(Si2O6) in the raw dust. Under the optimum conditions of magnetic field intensity of 1.8T, the dispersion agent of 30mg/L and velocity of 500mL/min, the powders absorbed by the magnetic medium mainly contained Fe3O4 and α-Fe2O3, and the iron content of powders absorbed was up to 65.90%. The Fe2+ content of the powders absorbed under the optimum magnetic conditions dropped to 0.25% from 19.10% after roasting of fifty minutes, and the iron content of powders absorbed under the optimum magnetic conditions fell to 64% due to oxidation, and the Fe3O4 was removed. Finally the α-Fe2O3 content was up to 91.07% in the iron oxide red.

  10. Additive for iron disulfide cathodes used in thermal batteries

    DOEpatents

    Not Available

    1982-03-23

    The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

  11. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.

  12. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  13. The effect of iron content and dissolved O2 on dissolution rates of clinopyroxene at pH 5.8 and 25°C: Preliminary results

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1996-01-01

    Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.

  14. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    NASA Astrophysics Data System (ADS)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  15. Additive for iron disulfide cathodes used in thermal batteries

    DOEpatents

    Armijo, James R.; Searcy, Jimmie Q.

    1983-01-01

    The invention comprises thermal batteries employing an FeS.sub.2 depolarizer, i.e. cathode material, and the depolarizer itself. A minor amount of CaSi.sub.2 preferably, 1-3% by weight is provided as an additive in the FeS.sub.2 depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS.sub.2 by weight generally comprises 64-90%.

  16. Bonanza: An extremely large dust grain from a supernova

    NASA Astrophysics Data System (ADS)

    Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst

    2018-01-01

    We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.

  17. Element-based prognostics of occupational pneumoconiosis using micro-proton-induced X-ray emission analysis.

    PubMed

    He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo

    2017-12-01

    Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.

  18. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico.

    PubMed

    Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M

    2018-08-01

    Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. GPU-Accelerated Optical Coherence Tomography Signal Processing and Visualization

    NASA Astrophysics Data System (ADS)

    Darbrazi, Seyed Hamid Hosseiny

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  20. Albumin and fibronectin adsorption and osteoblast adhesion on titanium oxides

    NASA Astrophysics Data System (ADS)

    Freitas, Susana Maria Ribeiro e. Sousa Mendes de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  1. Birefringence and Bragg grating control in femtosecond laser written optical circuits

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis A.

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  2. Single Point Incremental Forming and Multi-Stage Incremental Forming on Aluminium Alloy 1050

    NASA Astrophysics Data System (ADS)

    Suriyaprakan, Premika

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  3. Magnetism at the nanoscale: Nanoparticles, nanowires, nanotubes and their ordered arrays

    NASA Astrophysics Data System (ADS)

    Proenca, Mariana Jesus Paiva

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  4. Seismic assessment of reinforced concrete frame structures with a new flexibility based element

    NASA Astrophysics Data System (ADS)

    Arede, Antonio Jose Coelho Dias

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  5. Viscoelastic nanocapsules under flow in microdevices

    NASA Astrophysics Data System (ADS)

    Cordeiro, Ana Lucinda Teixeira

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  6. Stellar activity in high-precision photometric and spectroscopic transit observations

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  7. Starch and polyethylene based bone-analogue composite biomaterials

    NASA Astrophysics Data System (ADS)

    Reis, Rui Luis Goncalves dos

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  8. Clinopyroxene based glasses and glass-ceramics for functional applications

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  9. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Occurrence of wide-chain Ca-pyriboles as primary crystals in the Salton Sea Geothermal Field, California, USA

    NASA Astrophysics Data System (ADS)

    Yau, Yu-Chyi; Peacor, Donald R.; Essene, Eric J.

    1986-09-01

    Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions (X_{CO_2 } < 0.06) at temperatures below 330° C.

  11. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  12. The Effects of Surface Roughness on the NEAR XRS Elemental Results: Monte-Carlo Modeling

    NASA Technical Reports Server (NTRS)

    Lin, Lucy F.; Nittler, Larry R.

    2011-01-01

    The objective of the NEAR-Shoemaker X-ray Gamma-Ray Spec1roscopy ("XGRS") investigation was to determine the elemental composition of the near-Earth asteroid 433 Eros. The X-ray Spectrometer (XRS) system measured the characteristic fluorescence of six major elements (Mg, Al, Si, S, Ca, Fe) in the 1-10 keV energy range excited by the interaction of solar X-rays with the upper 100 microns of the surface of 433 Eros. Various investigators, using both laboratory experiments and computer simulations have established that X-ray fluorescent line ratios can be influenced by small-scale surface roughness at high incidence or emission angles. The effect on the line ratio is specific to the geometry, excitation spectrum, and composition involved, In general, however, the effect is only substantial for ratios of lines with a significant energy difference between them: Fe/Si and Ca/Si are much more likely to be affected than AI/Si or Mg/Si. We apply a Monte-Carlo code to the specific geometry and spectrum of a major NEAR XRS solar flare observation, using an H chondrite composition as the substrate. The seventeen most abundant elements were included in the composition model, from oxygen to titanium.

  13. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  14. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  15. Sintering and crystallization behavior of CaMgSi{sub 2}O{sub 6}-NaFeSi{sub 2}O{sub 6} based glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; Kansal, Ishu; Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia, 41100 Modena

    2009-11-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi{sub 2}O{sub 6}-10 mol % NaFeSi{sub 2}O{sub 6}. The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950more » deg. C in both air and N{sub 2} atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.« less

  16. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Štyriaková, I.; Štyriak, I.; Oberhänsli, H.

    2012-07-01

    The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.

  17. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides

    NASA Astrophysics Data System (ADS)

    Hara, Yotamu Stephen Rainford

    2014-01-01

    Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.

  18. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    PubMed

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  19. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  20. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components

    USGS Publications Warehouse

    Papp, C.S.E.; Harms, T.F.

    1985-01-01

    In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.

  1. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  2. Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany

    NASA Astrophysics Data System (ADS)

    Zubkova, N. V.; Chukanov, N. V.; Pekov, I. V.; Turchkova, A. G.; Lykova, I. S.; Schüller, W.; Ternes, B.; Pushcharovsky, D. Yu.

    2016-12-01

    A Ba-dominant (Ba > K) analogue of hydrodelhayelite (BDAH) from Löhley (Eifel Mts., Rhineland-Palatinate, Germany) and Ba-enriched varieties of related double- and triple-layer phyllosilicates from Eifel are studied. The crystal structure of BDAH was solved by direct methods and refined to R = 0.0698 [1483 unique reflections with I > 2σ( I)]. It is orthorhombic, Pmmn, a = 23.9532(9), b = 7.0522(3), c = 6.6064(3) Å, V = 1115.97(8) Å3, Z = 2. The structure is based upon delhayelite-type double-layer tetrahedral blocks [(Al,Si)4Si12O34(OH,O)4] connected by chains of (Ca,Fe)-centered octahedra. Ba2+ and subordinate K+ occur at partially vacant sites in zeolitic channels within the tetrahedral blocks. The crystal-chemical formula of BDAH is: (Ba0.42K0.34□0.24)(Ca0.88Fe0.12)2(□0.90Mg0.10)2[Si6(Al0.5Si0.5)2O17(OH0.71O0.29)2]ṡ6H2O. The formation of BDAH and Ba-rich varieties of altered delhayelite/fivegite, günterblassite and hillesheimite is considered as a result of leaching of Na, Cl, F and, partially, K and Ca accompanied with hydration and the capture of Ba as a result of natural ion exchange. These minerals are structurally a "bridge" between single-layer phyllosilicates and zeolites having the open three-dimensional tetrahedral Al-Si-O frameworks.

  3. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  4. Bioleaching of Ilmenite and Basalt in the Presence of Iron-oxidizing and Iron-scavenging Bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, J. U.; Cappelle, I.; Borrok, D.; Isru-Bio Team

    2010-12-01

    Understanding the biogeochemical processes that control mineral weathering rates is not only important for Earth systems, but may be a useful for developing technologies for the in-situ utilization of resources from other planets, moons, and asteroids. Traditional techniques that may be used to extract metals like iron, titanium, and aluminum from planetary rocks have large energy and/or hardware requirements that may not always be feasible. In this study, we performed biotic and abiotic leaching experiments with basalt and ilmenite (FeTiO3) to determine whether bacteria increased elemental leaching rates. Our secondary objectives were (1) to determine whether Acidithiobacillus ferrooxidans, an Fe-oxidizing bacterial strain, could grow on the low concentrations of ferrous Fe generated by the available substrates, and (2) to determine whether Pseudomonas mendocina, a heterotrophic Fe-scavenging bacteria, could grow on the low concentrations of nutrient elements generated by the available substrates. Experimental results demonstrate that the Fe(II) leached from ilmenite was rapidly depleted and replaced by Fe(III) in the presence of the Fe-oxidizing bacteria. The Fe in the abiotic control system remained as Fe(II) over the entire duration of the experiment. This suggests that the bacteria were able to grow using the Fe(II) from ilmenite (and the metal-free growth media) as a substrate. The iron-oxidizing bacteria were also able to grow in the presence of basaltic rock types; however the elemental release rates of Si, Ca, and Al in the presence of A. ferrooxidans were actually the same or lower than those from the abiotic control experiments. This may be attributable to the metabolically active bacteria creating a thick altered layer at the mineral surface that decreased the rate of diffusion or it may be caused in part by adsorption or precipitation of Fe(III) onto the existing mineral surfaces. Blending of the basaltic rock with ilmenite to further stimulate the bacterial metabolisms by providing additional Fe(II) resulted in a slight increase in Si, Ca, and Al release rates. For example, Si was released at an initial rate of 6.6e-12 mol/m2*s in the biotic experiments, while Si leached from the abiotic control at a rate of 4.0e-12mol/m2*s. Additional experiments utilizing P. mendocina, a heterotrophic organism capable of using siderophores to scavenge Fe from refractory minerals, are underway. Results from these experiments will be presented and compared to the results obtained for the iron-oxidizing systems.

  5. Chemical Heterogeneity on Mercury's Surface Revealed by the MESSENGER X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Stockstill-Cahill, Karen R.; Byrne, Paul K.; Denevi, Brett W.; Head, James W.; Solomon, Sean C.

    2012-01-01

    We present the analysis of 205 spatially resolved measurements of the surfacecomposition of Mercury from MESSENGERs X-Ray Spectrometer. The surfacefootprints of these measurements are categorized according to geological terrain. Northernsmooth plains deposits and the plains interior to the Caloris basin differ compositionallyfrom older terrain on Mercury. The older terrain generally has higher MgSi, SSi, andCaSi ratios, and a lower AlSi ratio than the smooth plains. Mercurys surface mineralogyis likely dominated by high-Mg mafic minerals (e.g., enstatite), plagioclase feldspar, andlesser amounts of Ca, Mg, andor Fe sulfides (e.g., oldhamite). The compositionaldifference between the volcanic smooth plains and the older terrain reflects differentabundances of these minerals and points to the crystallization of the smooth plains from amore chemically evolved magma source. High-degree partial melts of enstatite chondritematerial provide a generally good compositional and mineralogical match for much ofthe surface of Mercury. An exception is Fe, for which the low surface abundance onMercury is still higher than that of melts from enstatite chondrites and may indicate anexogenous contribution from meteoroid impacts.

  6. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L.

    PubMed

    Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung

    2018-01-04

    Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.

  7. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  8. Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Aksenov, Sergey M.; Rastsvetaeva, Ramiza K.; Blass, Günter; Varlamov, Dmitry A.; Pekov, Igor V.; Belakovskiy, Dmitry I.; Gurzhiy, Vladislav V.

    2015-08-01

    The new mineral calcinaksite, ideally KNaCa(Si4O10) · H2O, the first hydrous and Ca-dominant member of the litidionite group, is found in a xenolith of metamorphosed carbonate-rich rock from the southern lava flow of the Bellerberg volcano, Eastern Eifel region, Rheinland-Pfalz, Germany. It is associated with wollastonite, gehlenite, brownmillerite, Ca2SiO4 (larnite or calcio-olivine), quartz, aragonite, calcite, jennite, tobermorite and ettringite. Calcinaksite occurs as clusters of colourless to light-grey subhedral prismatic crystals. The mineral is brittle, with Mohs' hardness of 5; Dmeas is 2.62(2) g/cm3 and Dcalc is 2.623 g/cm3. The IR spectrum shows the presence of H2O molecules forming three different H-bonds. Calcinaksite is optically biaxial (+), α = 1.542(2), β = 1.550(2), γ = 1.565(3), 2 V meas = 75(10). The chemical composition (electron-microprobe data, H2O determined by the Alimarin method, wt%) is: Na2O 6.69, K2O 12.01, CaO 15.04, FeO 0.59, SiO2 61.46, H2O 4.9, total 100.69. The empirical formula is H2.11 K0.99Na0.84Ca1.04Fe0.03Si3.98O11. The crystal structure was solved and refined to R 1 = 0.053, wR 2 = 0.075 based upon 3057 reflections having I > 3σ( I). Calcinaksite is triclinic, space group P , a = 7.021(2), b = 8.250(3), c = 10.145(2) Å. α = 102.23(2)°, β = 100.34(2)°, γ = 115.09(3)°, V = 495.4(3) Å3, Z = 2. The strongest reflections of the X-ray powder pattern [ d, Å ( I,%) ( hkl)] are: 3.431 (70) (-121, -211, -210, 012, 0-22), 3.300 (67) (-031), 3.173 (95) (-103, -201, -220, 003, 111), 3.060 (100) (-212, 2-11, -221, 200, -1-13, 021, -202), 2.851 (83) (0-23, -122, 1-13, 1-31), 2.664 (62) (1-23, -222, 201).

  9. Apatite-hosted melt inclusions in Damiao massif anorthosite complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Veksler, I. V.; Zhang, Z.

    2014-12-01

    Models for the nelsonite formation are currently highly contentious, with liquid immiscibility and fractional crystallization as frequently proposed formation mechanisms. The nelsonites in the Damiao massif anorthosite complex in the North China Craton and experimental evidence are revisited for the existence of silica-free CaO-FeO-Fe2O3-TiO2-P2O5 immiscible nelsonitic liquids. Our results of differential scanning calorimetry (DSC) demonstrate that nelsonite with the composition of one-third apatite and two-thirds Fe-Ti oxides by weight completely melts well above 1450 ºC, which is in good agreement with numerous experimental studies of the CaO-P2O5-FexO system in connection to metallurgy. Thus, the composition cannot be molten at temperatures relevant for crystallization of the Damiao magma. A review of experimental studies of liquid immiscibility and analyses of natural immiscible glasses show that all the liquids on the Fe- and P-rich side of the miscibility gap have at least 20 wt. % of aluminosilicate components. Main results of this study come from the analyses of apatite-hosted melt inclusions in Damiao nelsonite. The inclusions range from ~3 to 200 μm in diameter. They are ubiquitous and meet all the morphological criteria of primary melt inclusions crystallised into assemblages of daughter minerals. Almost all of them contain vermiculite and chlorite, and some contain biotite, amphibole, phlogopite and Fe-Ti oxides. Out of dozens analysed inclusions, only three have high contents of SiO2 (62.1-73.8 wt. %) and low contents of FeO (0.25-2.35 wt. %). Bulk compositions of other inclusions show large variations in SiO2 (20.79-50.16 wt. %) and FeOt (13.44-32.78 wt. %). With a few exceptions, the inclusions are very low in CaO (0.04-1.51 wt. %, and high in Al2O3 (10-21.17 wt. %). Despite the high Fe content, the compositions differ from those of the typical immiscible Fe-rich melts. It appears that the cumulus apatite crystallised from Fe-rich, hydrated silicate melt. We propose that the inclusions at Damiao record a trend of intercumulus melt evolution, which was strongly affected by separation of a hydrothermal fluid phase and the losses of alkali and Ca silicate components from the melt into the fluid.

  10. Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27wt.% V 2O 3

    DOE PAGES

    Nakano, Jinichiro; Duchesne, Marc; Bennett, James; ...

    2014-11-15

    Thermodynamic phase equilibria in synthetic slags (Al 2O 3–CaO–FeO–SiO 2–V 2O 3) were investigated with 0–27 wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500 °C in a 64 vol.% CO/36 vol.% CO 2 atmosphere (Po 2 ≈ 10 –8 atm at 1500 °C) for 72 h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity regionmore » expanded and a composition range exhibiting crystals was reduced. The mullite (Al 6Si 2O 13) crystalline phase was not present in the slags above 9 wt.% FeO while the karelianite (V 2O 3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Furthermore, based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.« less

  11. Heterogeneous Distribution of Chromium on Mercury

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Boujibar, A.; Crapster-Pregont, E.; Frank, E. A.; McCoy, T. J.; McCubbin, F. M.; Starr, R. D.; Vander Kaaden, K. E.; Vorburger, A.; Weider, S. Z.

    2018-05-01

    Mercury's surface has an average Cr/Si ratio of 0.003 (Cr 800 ppm), with at least a factor of 2 systematic uncertainty. Cr is heterogeneously distributed and correlated with Mg, Ca, S, and Fe and anti-correlated with Al.

  12. Particulate matter and polycyclic aromatic hydrocarbons from forest fires: impacts on air quality and occupational risks assessment

    NASA Astrophysics Data System (ADS)

    Oliveira, Marta Madalena Marques de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  13. Reciprocal interaction between human microvascular endothelial cells and mesenchymal stem cells on macroporous granules of nanostructured-hydroxyapatite agglomerates

    NASA Astrophysics Data System (ADS)

    Laranjeira, Marta de Sousa

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  14. Analysis of vegetation dynamics using time-series vegetation index data from Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Arlete da Silva

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  15. Biological effects of polyacrylic acid-coated and non-coated superparamagnetic iron oxide nanoparticles in in vitro and in vivo experimental models

    NASA Astrophysics Data System (ADS)

    Couto, Diana Manuel Mocho de Bastos

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  16. Impact evaluation of the large scale integration of electric vehicles in the security of supply

    NASA Astrophysics Data System (ADS)

    Bremermann, Leonardo Elizeire

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  17. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two mostmore » metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.« less

  18. Exploring Anticorrelations and Light Element Variations in Northern Globular Clusters Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Overbeek, Jamie C.; Allende Prieto, Carlos; Beers, Timothy C.; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Schneider, Donald P.; Sobeck, Jennifer S.; Smith, Verne V.; Zamora, Olga; Zasowski, Gail

    2015-05-01

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that 28Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  19. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  20. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    NASA Astrophysics Data System (ADS)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  1. The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2006-05-01

    Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, δFe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both δFe 3+ and δFe 2+ are negatively correlated with total iron oxide content and Fe 3+/ΣFe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/ΣFe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe 2+ and ΔFe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe 2+ in a range of coordination states from 4- to 6-fold. The lower δFe 2+-values for the most oxidized melts are consistent with a larger proportion of Fe 2+ in 4-fold coordination compared with more reduced glasses and melts.

  2. Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Deligeer, W.; Gao, Y. W.; Asuha, S.

    2011-02-01

    Mesoporous γ-Fe2O3/SiO2 nanocomposite containing 30 mol% of γ-Fe2O3 was prepared by a template-free sol-gel method, and its removal ability for methyl orange (MO) was investigated. The nanocomposite was characterized using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) absorption measurements, nitrogen adsorption-desorption measurements, and magnetic measurements. The synthesized γ-Fe2O3/SiO2 nanocomposite has a mesoporous structure with an average pore size of 3.5 nm and a specific surface area of 245 m2/g, and it exhibits ferrimagnetic characteristics with the maximum saturation magnetization of 20.9 emu/g. The adsorption of MO on the nanocomposite reaches the maximum adsorbed percentage of ca. 80% within a few minutes, showing that most of MO can be removed in a short time. The MO adsorption data fit well with both Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity of MO is estimated to be 476 mg/g.

  3. Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite

    PubMed Central

    Bindi, Luca; Chen, Ming; Xie, Xiande

    2017-01-01

    We report the first natural occurrence of the Fe-analogue of akimotoite, ilmenite-structured MgSiO3, a missing phase among the predicted high-pressure polymorphs of Fe-pyroxene, with the composition (Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)Σ=1.00Si1.00O3. The new mineral was approved by the International Mineralogical Association (IMA 2016-085) and named hemleyite in honour of Russell J. Hemley. It was discovered in an unmelted portion of the heavily shocked L6 Suizhou chondrite closely associated to olivine, clinoenstatite and Fe-bearing pyroxene with a composition nearly identical to that of hemleyite. We also report the first single-crystal X-ray diffraction study of a Si-bearing, ilmenite-structured phase. The fact that hemleyite formed in a meteorite exposed to high pressures (<20 GPa) and temperatures (<2000 °C) during impact-induced shocks indicates that it could play a crucial role at the bottom of the Earth’s mantle transition zone and within the uppermost lower mantle. PMID:28198399

  4. Compressive strength and magnetic properties of calcium silicate-zirconia-iron (III) oxide composite cements

    NASA Astrophysics Data System (ADS)

    Ridzwan, Hendrie Johann Muhamad; Shamsudin, Roslinda; Ismail, Hamisah; Yusof, Mohd Reusmaazran; Hamid, Muhammad Azmi Abdul; Awang, Rozidawati Binti

    2018-04-01

    In this study, ZrO2 microparticles and γ-Fe2O3 nanoparticles have been added into calcium silicate based cements. The purpose of this experiment was to investigate the compressive strength and magnetic properties of the prepared composite cement. Calcium silicate (CAS) powder was prepared by hydrothermal method. SiO2 and CaO obtained from rice husk ash and limestone respectively were autoclaved at 135 °C for 8 h and sintered at 950°C to obtain CAS powder. SiO2:CaO ratio was set at 45:55. CAS/ZrO2 sample were prepared with varying ZrO2 microparticles concentrations by 0-40 wt. %. Compressive strength value of CAS/ZrO2 cements range from 1.44 to 2.44 MPa. CAS/ZrO2/γ-Fe2O3 sample with 40 wt. % ZrO2 were prepared with varying γ-Fe2O3 nanoparticles concentrations (1-5 wt. %). The additions of γ-Fe2O3 nanoparticles showed up to twofold increase in the compressive strength of the cement. X-Ray diffraction (XRD) results confirm the formation of mixed phases in the produced composite cements. Vibrating sample magnetometer (VSM) analysis revealed that the ferromagnetic behaviour has been observed in CAS/ZrO2/γ-Fe2O3 composite cements.

  5. PIXE investigation of aerosol composition over the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Meter, S. L.; Formenti, P.; Piketh, S. J.; Annegarn, H. J.; Kneen, M. A.

    1999-04-01

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures. Periods of diminished sulphur concentrations were also identified, indicating a well-mixed regional air mass. These results will contribute towards validating global climate model predictions of aerosol forcing over central Africa.

  6. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.

    PubMed

    Bose, Susmita; Banerjee, Dishary; Robertson, Samuel; Vahabzadeh, Sahar

    2018-05-04

    Calcium phosphate (CaP) ceramics show significant promise towards bone graft applications because of the compositional similarity to inorganic materials of bone. With 3D printing, it is possible to create ceramic implants that closely mimic the geometry of human bone and can be custom-designed for unusual injuries or anatomical sites. The objective of the study was to optimize the 3D-printing parameters for the fabrication of scaffolds, with complex geometry, made from synthesized tricalcium phosphate (TCP) powder. This study was also intended to elucidate the mechanical and biological effects of the addition of Fe +3 and Si +4 in TCP implants in a rat distal femur model for 4, 8, and 12 weeks. Doped with Fe +3 and Si +4 TCP scaffolds with 3D interconnected channels were fabricated to provide channels for micronutrients delivery and improved cell-material interactions through bioactive fixation. Addition of Fe +3 into TCP enhanced early-stage new bone formation by increasing type I collagen production. Neovascularization was observed in the Si +4 doped samples after 12 weeks. These findings emphasize that the additive manufacturing of scaffolds with complex geometry from synthesized ceramic powder with modified chemistry is feasible and may serve as a potential candidate to introduce angiogenic and osteogenic properties to CaPs, leading to accelerated bone defect healing.

  7. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Zuckerman, B.

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.

  8. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  9. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  10. Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang

    2016-04-01

    In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.

  11. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.

  12. Mechanochemical synthesis of magnetically hard anisotropic RFe10Si2 powders with R representing combinations of Sm, Ce and Zr

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Hadjipanayis, G. C.

    2017-01-01

    Alloy synthesis consisting of mechanical activation followed by annealing was explored as a method of manufacturing medium-grade permanent magnet materials with a reduced content of the critical rare earth elements. Four RxFe10Si2 alloys with R=Sm, Sm0.7Zr0.3, Sm0.3Ce0.3Zr0.4 and Ce0.6Zr0.4 (nominal compositions) were prepared from mixtures of Sm2O3, CeO2, ZrO2, Fe2O3 and Si powders in the presence of a reducing agent Ca and a CaO dispersant. The collected alloy particles typically consisted of few joined submicron crystals. For R=Sm, X-ray diffraction analysis reveals a significant amount of the unwanted Th2Zn17-type compound forming alongside the desired ThMn12-type 1:12 compound. A more pure 1:12 phase could be obtained for R=Ce0.6Zr0.4, but it exhibited a room-temperature coercivity of less than 1 kOe. The most pure 1:12 phase and the highest values of the coercivity (10.8 kOe) and calculated maximum energy product (13.8 MGOe) were obtained for R=Sm0.7Zr0.3 processed at 1150 °C. The calculated maximum energy products of the Sm0.3Ce0.3Zr0.4Fe10Si2 particles, with half of their rare earths constituents represented by the relatively abundant Ce, was 10.1 MGOe.

  13. Oxygen production by electrolysis of molten lunar regolith

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1990-01-01

    The goal of this study was threefold. First, the theoretical energy requirements of the process were to be defined. This includes studies of the relevant oxidation-reduction reactions in the melt, their kinetics and energies of reaction, and experimental determination of production efficiencies and melt resistivities as functions of melt composition and applied potential. Second, the product(s) of silicate electrolysis were to be characterized. This includes: (1) evaluating the phase relationships in the systems SiO2-TiO2-Al2O3-MgO-FeO-CaO and Fe-Si; (2) estimating the compositions of the metal products as a function of applied potential and feedstock composition based on phase equilibria in the Fe-Si system and free energy values for SiO2 and FeO reported in the literature; (3) definition of compositions of products in actual experiments; and (4) definition of the form the product takes (whether phases separate or remain fixed, whether crystals settle or float in the remaining melt, and how large crystals form). Third, materials for these highly corrosive high-temperature silicate melts were to be identified. This includes identifing materials that may be either inert or thermodynamically stable in these melts, and experimental testing of the materials to confirm that they do not deteriorate. The results are discussed within this framework.

  14. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grau-Atienza, A.; Serrano, E.; Linares, N.

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) withmore » hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.« less

  15. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).

  16. The Eclogite-Garnetite transformation in the MORB + H 2O system

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuaki; Maruyama, Shigenori

    2004-08-01

    To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.

  17. Experimental investigation of Fe3+-rich majoritic garnet and its effect on majorite geobarometer

    NASA Astrophysics Data System (ADS)

    Tao, Renbiao; Fei, Yingwei; Bullock, Emma S.; Xu, Cheng; Zhang, Lifei

    2018-03-01

    Majoritic garnet [(Ca, Mg, Fe2+)3(Fe3+, Al, Si)2(SiO4)3] is one of the predominant and important constituents of upper mantle peridotite and ultra-deep subducted slabs. Majoritic substitution in garnet depends on pressure, and it has been used to estimate the formation pressure of natural majoritic garnet. Ferric iron (Fe3+) substitution occurs in natural majoritic garnets from mantle diamonds and shocked meteorites. However, available majorite geobarometers were developed without considering the effect of Fe3+ substitution in the structure. In this study, we systematically synthesized Fe3+- bearing majoritic garnets from 6.5 GPa to 15 GPa to evaluate the effect of Fe3+ on the majorite geobarometer. The Fe3+ contents of synthetic majoritic garnets were analyzed using the "Flank method" with the electron probe microanalyzer (EPMA). The results were compared with those based on the charge balance calculations. From the known synthesis pressures and measured Fe3+ contents, we developed a new majorite geobarometer for Fe3+-bearing majoritic garnets. Our results show that the existing majorite geobarometer, which does not take into account the Fe3+ substitution, could underestimate the formation pressure of majoritic garnets, especially for samples with a high majoritic component.

  18. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Cruickshank, Laura A.

    The crystal structure of an optically anisotropic kimzeyite garnet from Magnet Cove, Arkansas, USA, where it was first discovered, was refined with the Rietveld method, cubic space group, Ia\\overline 3 d, and monochromatic [λ = 0.41422 (2) Å] synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The Rietveld refinement reduced χ 2and overallR(F 2) values are 1.840 and 0.0647, respectively. The sample, with the general garnet formula [8]X 3 [6]Y 2 [4]Z 3 [4]O 12, contains an intergrowth of two cubic phases that occur initially as oscillatory growth zoning, and patchy intergrowths arise later from fluid-enhanced dissolution and re-precipitation. The twomore » compositions obtained with electron-probe microanalyses (EPMA) are Ca 3.00(Zr 1.31Ti 4+ 0.46Fe 3+ 0.22Mn 3+ 0.01) Σ2[Al 0.76Fe 3+ 1.01Si 1.23] Σ3O 12for phase 1aand Ca 2.99(Zr 1.48Ti 4+ 0.37Fe 3+ 0.15) Σ2[Al 0.87Fe 3+ 0.98Si 1.15] Σ3O 12for phase 1b. The weight percentage, unit-cell parameter (Å), distances (Å), and site occupancy factors (s.o.f.s) for phase 1aare as follows: 42.6 (2)%,a= 12.46553 (3) Å, average = 2.482,Y—O = 2.059 (2),Z—O = 1.761 (2) Å, Ca (Xs.o.f.) = 0.960 (4), Zr (Ys.o.f.) = 0.809 (3), and Fe (Zs.o.f.) = 0.623 (2). The corresponding values for phase 1bare 57.4 (2)%,a= 12.47691 (2) Å, average = 2.482,Y—O = 2.062 (1),Z—O = 1.762 (1) Å, Ca (Xs.o.f.) = 0.957 (3), Zr (Ys.o.f.) = 0.828 (2) and Fe (Zs.o.f.) = 0.617 (2). The main structural differences between the two phases are in the unit-cell parameter, Δa= 0.01138 Å,Y(s.o.f.), andY—O distance. Structural mismatch between the two cubic phases in a crystal gives rise to strain-induced optical anisotropy.« less

  20. Characterization of Three Carbon- and Nitrogen-Rich Particles from Comet 81P/WILD

    NASA Technical Reports Server (NTRS)

    Gallien, J.-P.; Khodja, H.; Herzog, G. F.; Taylor, S.; Koepsell, E.; Daghlian, C. P.; Flynn, G. J.; Sitnitsky, I.; Lanzirotti, A.; Sutton, S. R.; hide

    2007-01-01

    Comets may sample the early solar system s complement of volatile-forming elements - including C and N - more fully and reliably than do the terrestrial planets or asteroids. Until recently, all elemental analyses of unambiguously cometary material were carried out remotely. The return of the Stardust mission makes it possible to analyze documented material from P81/Wild 2 in the laboratory Wild 2 particles fragmented when they stopped in the aerogel collectors. We have studied three fragments thought to be rich in C and N by using several techniques: FTIR to characterize organic matter; synchrotron-induced x-ray fluorescence (SXRF) to determine Fe and certain element/Fe ratios; SEM to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and nuclear reaction analysis (NRA) to measure C, N, O, and Si.

  1. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  2. Compositional variation in minerals of the chevkinite group

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.

    2002-01-01

    The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC + REEA + M3C+2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO* Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

  3. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions. Evaporation coefficients derived for Fe (g), Mg (g), and SiO (g) from the Hashimoto (1983) experiments are similar to those found by Alexander [Alexander C. M. O'D. (2004) Erratum. Meteoritics Planet. Sci. 39, 163] in his EQR treatment of the same data and also adequately describe the FeO-bearing stages of the Wang et al. (2001) experiments. From the Yu et al. (2003) experiments at 1723 K, αNa = 0.26 ± 0.05, and αK = 0.13 ± 0.02 in vacuum, and αNa = 0.042 ± 0.020, and αK = 0.017 ± 0.002 in 9 × 10 -5 bar H 2. In the FeO-free stages of the Wang et al. (2001) experiments, αMg and αSiO are significantly different from their respective values in the FeO-bearing portions of the same experiments and from the vacuum values obtained at the same temperature by Richter [Richter F. M., Davis A. M., Ebel D. S., Hashimoto A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521-540] for CMAS compositions much lower in MgO. When corrected for temperature, the values of αMg and αSiO that best describe the FeO-free stages of the Wang et al. (2001) experiments also adequately describe the FeO-free stage of the Cohen et al. (2004) H 2 experiments, but αFe that best describes the FeO-bearing stage of the latter experiment differs significantly from the temperature-corrected value derived from the Hashimoto (1983) vacuum data.

  4. The Thermal History of Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Benoit, P. H.; Sears, D. W. G.

    1992-07-01

    In an attempt to decipher the complicated thermal history of the enstatite chondrites, the CaS enstatite (Larimer and Buseck, 1974; Fogel et al., 1989), cubic sulfide (Skinner and Luce, 1971) and sphalerite (Kissin, 1989; El Goresy and Ehlers, 1989) systems have been applied, but the results have not been straightforward. The CaS-En thermometer gives metamorphic temperatures which appear reasonable, but which do not correlate well with petrologic type. The cubic sulfides yield reasonable temperatures for the EH chondrites, but the values for EL chondrites are very low. To some extent, the problem has been the lack of low petrologic type EL chondrites. Here we discuss data for the recently discovered EL3 chondrites (Chang et al., 1992) and we examine the applicability of the Fe-Ni-P system for thermometry. The CaS-En thermometer uses three reactions including equilibria between metal, CaS, SiO2, enstatite and FeS. The method is crucially dependent on the activity coefficients for Si and CaSiO3 which are in solid solutions with metal and enstatite, respectively. The cubic sulfide thermometer uses the solubility of FeS in MgS and MnS, while the ZnS thermometer (which is pressure-dependent) uses the solubility of FeS in ZnS. Current equilibration temperature estimates for enstatite chondrites including the EL3 chondrites are listed in Table 1. Table 1. Estimates of equilibration temperatures (degrees C) for enstatite chondrites.* Petrologic type EH EL System 3 4 5 6 3 4 5 6 En-CaS 1030 950 830 - 830 - - 1025 Cubic sulf 400 680 600 - <<400 - - <400 ZnS 410 (1859)+ - - 500 - - 550 Fe-Ni-P <450 500 550 - <<450 - - <450 *Literature data (see text), present data (bold type). +Heavily shocked. In an attempt to use the Fe-Ni-P system as a thermometer for enstatite chondrites, we used the phase diagram of Doan and Goldstein (1970). Like the other systems, this required extrapolation to lower temperatures (Fig. 1). The temperatures calculated from this system mirror those of the sulfides, suggesting major differences in the thermal history of the EL and EH chondrites. Two points may be made from the data in Table 1. The EH3 and EL3 chondrites have similar En-CaS equilibration temperatures to those of the higher petrologic types which we suspect reflect pre-metamorphic equilibria. Second, both the cubic sulfides and the phosphides yield metamorphic temperatures for the EH chondrites which are similar to those for ordinary chondrites, while EL chondrites yield very low temperatures. The EL chondrite parent body must have cooled at especially slow rates, perhaps because it was much larger than the EH parent body, or maybe the cooling rate on EL body was governed by the attenuation of the heat source rather than burial depth. Chang Y., Benoit P.H. and Sears D.W.G. (1992) Lunar and Planet. Sci. 23, 217-218. Doan A.S. and Goldstein J.I. (1970) Met. Trans. 1, 1759-1767. El Goresy A. and Ehlers K (1989) Geochim. Cosmochim. Acta 53, 1657-1668. Fogel R.A., Hess P.C. and Rutherford M.C. (1989) Geochim. Cosmochim. Acta 53, 2735-2746. Kissin S.A.(1989) Geochim. Cosmochim. Acta 53, 1649-1655. Larimer J.W. and Buseck P.R. (1974) Geochim. Cosmochim. Acta 38, 471-477. Skinner B.J. and Luce F.D. (1971) Amer. Min. 56, 1269-1296. Figure 1, which in the hard copy appears here, shows isotherm from the Fe-Ni-P phase diagram with data for enstatite chondrites superimposed.

  5. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate

    USGS Publications Warehouse

    Deike, R.G.; Granina, L.; Callender, E.; McGee, J.J.

    1997-01-01

    Phosphate-bearing, ferric iron and siliceous crusts ranging in age from Recent to approximately 65,000 yr B.P. are observed in sediments of Lake Baikal. In younger sediments the crusts are at the base of a spectrum of secondary iron and manganese oxides that accumulate near the sediment/water interface in the zone of positive oxidation potential beneath an oxygenated water column. In areas where the average Quaternary sedimentation rates have been slow (e.g. 0.026 mm/yr), the crusts are more common, and span a wider range of ages. No crusts have been found where the Quaternary sedimentation mode has been deltaic and rapid (0.15 mm/yr). Independent core correlation based on magnetic properties of the sediment suggests that crusts can be correlated over most of Academician Ridge, an area that is particularly sensitive to climatic events affecting the concentration of suspended sediment. These crusts may be indicative of periods of low suspended sediment concentration, which occur during sustained transitions from glacial periods of high detrital input, to interglacial periods of high diatom sedimentation. The crusts are dominated by iron-rich and siliceous amorphous mineral phases, with an FeO:SiO2 by weight of 3:1. Regardless of age or location in the lake the Fe phase always includes Ca, P and Mn. Extensive microprobe data for these four elements recast as normalized elemental weight percent reveal linear trends of Ca:P and Fe:P. With increasing P, Ca also increases such that the two elements maintain a linear relationship passing very close to the origin and with a mean molar Ca:P=0.3 (too low for well-characterized apatite). Conversely, with increasing P, Fe decreases (mean molar Fe:P=3.4). There is no correlation between Mn and P. Molar Fe:P ratios for vivianite (an Fe(II) phosphate mineral observed in sediments closely below some crusts) are clustered around a stoichiometric composition. The covariant increase in Ca:P and the corresponding decrease in Fe:P may be explained by: (1) coupled adsorption of aqueous Ca and P by a colloidal ferric hydrous oxide; (2) loss of Fe from a Ca-P-Fe phase; or (3) oxidation of vivianite to a metastable mineral phase that gradually loses Ca and gains Fe. The first explanation is favored, because there is no petrographic evidence for either the existence of an originating Ca-P-Fe phase, or, for the oxidation of vivianite. Further, it is suggested that by continually equalizing surface charge, Ca allows more phosphate to be adsorbed leading to thicker crusts and longer preservation after burial.

  6. Pyroxenoids of pyroxmangite-pyroxferroite series from xenoliths of Bellerberg paleovolcano (Eifel, Germany): Chemical variations and specific features of cation distribution

    NASA Astrophysics Data System (ADS)

    Shchipalkina, N. V.; Aksenov, S. M.; Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Schäfer, C.; Ternes, B.; Shüller, W.

    2016-11-01

    The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. Poverline 1 . The crystallochemical formulas ( Z = 2) are, respectively, M(1-2)(Mn0.5Ca0.4Na0.1)2 M(3-6)(Fe, Mn)4 M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1-3)(Mn, Fe)3 M(4-6)[(Fe, Mn)0.7Mg0.3]3 M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1-7) sites and the preferred incorporation of Ca and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.

  7. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  8. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  9. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  10. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Romppanen, Sari; Häkkänen, Heikki; Kaski, Saara

    2017-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples.

  11. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.

  12. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  13. The development of magnetic degradable DP-Bioglass for hyperthermia cancer therapy.

    PubMed

    Wang, Tzu-Wei; Wu, Hsi-Chin; Wang, Wei-Ren; Lin, Feng-Huei; Lou, Pei-Jen; Shieh, Ming-Jium; Young, Tai-Horng

    2007-12-01

    In this study, a novel magnetic degradable material was developed by adding Fe ions into DP-Bioglass (Na(2)O-CaO-P(2)O(5)-SiO(2)) as thermoseed for hyperthermia cancer therapy under an alternating magnetic field. We have investigated the properties of developed magnetic DP-Bioglass including morphology, chemical composition, and magnetism. The degradability was conducted by measuring the released concentrations of Na, Ca, Si, P, and Fe ions. The biocompatibility was analyzed by biological assays, and the functional hyperthermia effect to cancer cells was evaluated by in vitro cell culture test. In the results, the morphology of synthesized magnetic DP-Bioglass was revealed in sphere and rod shape with particle size around 50-100 nm. From the hysteresis loop analysis, it showed that the group of Fe/Bioglass = 0.2 possessed the maximum magnetization property. When cultured with fibroblasts, the magnetic DP-Bioglass had no significant influence on cell viability and mediated low cytotoxicity. The thermal-induced property demonstrated that after exposure to an alternating magnetic field, the cell number of human Caucasian lung carcinoma cells (A549) was significantly decreased when temperature was increasing to 45 degrees C. In brief, successfully incorporated with Fe ions by sol-gel method, this magnetic degradable DP-Bioglass possessed the potential and properties of hyperthermia effect to lung carcinoma cells. Copyright 2007 Wiley Periodicals, Inc.

  14. Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore

    NASA Astrophysics Data System (ADS)

    Sun, Yongsheng; Zhang, Qi; Han, Yuexin; Gao, Peng; Li, Guofeng

    2018-02-01

    An innovative process of coal-based reduction followed by magnetic separation and dephosphorization was developed to simultaneously recover iron and phosphorus from one typical high-phosphorus refractory iron ore. The experimental results showed that the iron minerals in iron ore were reduced to metallic iron during the coal-based reduction and the phosphorus was enriched in the metallic iron phase. The CaO-SiO2-FeO-Al2O3 slag system was used in the dephosphorization of metallic iron. A hot metal of 99.17% Fe and 0.10% P was produced with Fe recovery of 84.41%. Meanwhile, a dephosphorization slag of 5.72% P was obtained with P recovery of 67.23%. The contents of impurities in hot metal were very low, and it could be used as feedstock for steelmaking after a secondary refining. Phosphorus in the dephosphorization slag mainly existed in the form of a 5CaO·P2O5·SiO2 solid solution where the P2O5 content is 13.10%. At a slag particle size of 20.7 μm (90% passing), 94.54% of the P2O5 could be solubilized in citric acid, indicating the slag met the feedstock requirements in phosphate fertilizer production. Consequently, the proposed process achieved simultaneous Fe and P recovery, paving the way to comprehensive utilization of high-phosphorus refractory iron ore.

  15. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  16. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  17. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.

    PubMed

    Shankhwar, Nisha; Srinivasan, A

    2016-05-01

    Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Preparation and Characterization of Fluorescent SiO2 Microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  19. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  20. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  1. The mass balance of soil evolution on late Quaternary marine terraces, northern California

    NASA Technical Reports Server (NTRS)

    Merritts, Dorothy J.; Chadwick, Oliver A.; Hendricks, David M.; Brimhall, George H.; Lewis, Christopher J.

    1992-01-01

    Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.

  2. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  3. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  4. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  5. The melting of subducted banded iron formations

    NASA Astrophysics Data System (ADS)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  6. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    NASA Astrophysics Data System (ADS)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  7. Characteristics and environmental aspects of slag: a review

    USGS Publications Warehouse

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.

  8. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    PubMed

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  9. NGC 6705 a young α-enhanced open cluster from OCCASO data

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Chiappini, C.; Anders, F.; Antoja, T.; Miret-Roig, N.; Romero-Gomez, M.; Blanco-Cuaresma, S.; Pancino, E.; Aguado, D. S.; del Pino, A.; Diaz-Perez, L.; Gallart, C.

    2018-03-01

    Context. The stellar [α/Fe] abundance is sometimes used as a proxy for stellar age, following standard chemical evolution models for the Galaxy, as seen by different observational results. Aim. In this work, we aim to show that the open cluster NGC 6705/M 11 has a significant α-enhancement [α/Fe] > 0.1 dex, despite its young age ( 300 Myr), challenging the current paradigm. Methods: We used high resolution (R > 65 000) high signal-to-noise ( 70) spectra of eight red clump stars, acquired within the OCCASO survey. We determined very accurate chemical abundances of several α elements, using an equivalent width methodology (Si, Ca and Ti), and spectral synthesis fits (Mg and O). Results: We obtain [Si/Fe] = 0.13 ± 0.05, [Mg/Fe] = 0.14 ± 0.07, [O/Fe] = 0.17 ± 0.07, [Ca/Fe] = 0.06 ± 0.05, and [Ti/Fe] = 0.03 ± 0.03. Our results place these clusters within the group of young [α/Fe]-enhanced field stars recently found by several authors in the literature. The ages of our stars have an uncertainty of around 50 Myr, much more precise than for field stars. By integrating the cluster's orbit in several non-axisymmetric Galactic potentials, we establish the M 11's most likely birth radius as lying between 6.8-7.5 kpc from the Galactic centre, not far from its current position. Conclusions: With the robust open cluster age scale, our results prove that a moderate [α/Fe]-enhancement is no guarantee for a star to be old, and that not all α-enhanced stars can be explained with an evolved blue straggler scenario. Based on our orbit calculations, we further argue against a Galactic bar origin of M 11. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A66

  10. Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species of the bustamite group from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Rastsvetaeva, R. K.; Van, K. V.; Belakovskiy, D. I.; Pekov, I. V.; Gurzhiy, V. V.; Schüller, W.; Ternes, B.

    2015-12-01

    A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (-), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2 V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group Pbar 1; the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (01bar 2, 1bar 20), 2.885 (100) (221, 2bar 11, 1bar 21), 2.691 (21) (222, 2bar 10), 2.397 (21) (02bar 2, 21bar 1, 203, 031), 1.774 (37) (412, 3bar 21). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.

  11. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation.

    PubMed

    Li, Guolian; Xie, Fazhi; Zhang, Jin; Wang, Jingrou; Yang, Ying; Sun, Ruoru

    2016-09-01

    Phosphorus (P) in a water body is mainly controlled by the interaction between surface sediment and the overlying water column after the complete control of external pollution. Significant enhancement of P in a water body would cause eutrophication of lakes. Thus, a better understanding is needed of the occurrences of P between the sediment and water column in eutrophic lakes. Here, we measured total phosphorus (TP) and major elements (Fe, Al, Ca, Mn, Si) in the water column, and total nitrogen, organic matter, TP and major oxides (Fe 2 O 3 , Al 2 O 3 , CaO, SiO 2 ) in surface sediment of Chaohu Lake, a continuously eutrophic lake. The results showed that the rank of TP levels was western lake > eastern lake > southern lake. There were significantly positive correlations between TP (including water TP and sedimentary TP) and Fe, Al, Mn, while the correlation coefficients between water TP and sedimentary TP were -0.43, -0.41 and 0.18 for the western, eastern and southern lake respectively. The negative and significant correlations of water TP and sedimentary TP may indicate that the risk of sedimentary P release was great in the western and eastern lake during algae bloom sedimentation, while the southern lake showed weak P exchange between the sediment and water column.

  12. Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process

    NASA Astrophysics Data System (ADS)

    Feng, Cong; Chu, Man-sheng; Tang, Jue; Liu, Zheng-gen

    2018-06-01

    Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets (HVTMP) prepared by gas-based direct reduction were investigated, and the effects of smelting parameters on the slag/metal separation behaviors were analyzed. Relevant mechanisms were elucidated using X-ray diffraction analysis, FACTSAGE 7.0 calculations, and scanning electron microscopy observations. The results show that, when the smelting temperature, time, and C/O ratio are increased, the recoveries of V and Cr of HVTMP in pig iron are improved, the recovery of Fe initially increases and subsequently decreases, and the recovery of TiO2 in slag decreases. When the smelting CaO/SiO2 ratio is increased, the recoveries of Fe, V, and Cr in pig iron increase and the recovery of TiO2 in slag initially increases and subsequently decreases. The appropriate smelting separation parameters for HVTMP are as follows: smelting temperature of 1873 K; smelting time of 30-50 min; C/O ratio of 1.25; and CaO/SiO2 ratio of 0.50. With these optimized parameters (smelting time: 30 min), the recoveries of Fe, V, Cr, and TiO2 are 99.5%, 91.24%, 92.41%, and 94.86%, respectively.

  13. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  14. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  15. SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson

    2015-02-01

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.

  16. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  17. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  18. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  19. Electron impact excitation coefficients for laboratory and astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Davis, J.; Kepple, P. C.; Blaha, M.

    1976-01-01

    Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.

  20. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  1. Mineral identification of black-jade gemstone from Aceh Indonesia

    NASA Astrophysics Data System (ADS)

    Ismail; Nizar, Akmal; Mursal

    2018-04-01

    One of the gemstones in Aceh Indonesia is called black-jade where the name of black-jade is a local name. Unfortunately, detail information about this gemstone is still limited. No one knows whether this gemstone can be categorized as jade or not until this study is presented. We have utilized X-Ray Fluorescent (XRF) to study the black-jade gemstone from Aceh Tengah (Takengon) and Nagan Raya regions in Indonesia. Our results show that the black-jade gemstone from Aceh Tengah contains 39.6% of SiO2, 35% of Fe2O3, 17% of MgO, 3% of CaO, and 2% of NiO. While, the black-jade gemstone from Nagan Raya contains a little bit less SiO2 but more Fe2O3 than that of black-jade from Aceh Tengah: 38.4% of SiO2, 39% of Fe2O3, 17% of MgO, 0.5% of CaO, and 2.6% of NiO. By comparing the results to the available mineral data (jadeite, nephrite-actinolite, nephrite-tremolite, serpentine-clinochrysotile, serpentine-antigorite, and vesuvianite), we found that oxide compounds contained in the black-jade gemstone from Aceh are found in the serpentine-antigorite, except H2O. The total difference between the oxide compositions in black-jade and serpentine-antigorite is 43% with its average difference of 11%. This means that the oxide composition in black-jade is almost the same as in the serpentine-antigorite. Accordingly, the black-jade gemstone from Aceh Indonesia is a type of serpentine-antigorite-jade.

  2. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    PubMed Central

    Kolel-Veetil, Manoj K.; Keller, Teddy M.

    2010-01-01

    The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  3. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.

  4. Davinciite, Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2013-12-01

    This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452-1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1-2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs' hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 ( Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified formula is Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2. The IR-spectrum is given and the crystal structure is described. The position of davinciite in the crystal chemical taxonomy of the eudialyte group is shown, and its relationships with the other eudialyte-group minerals (acentric eudialyte, andrianovite, and kentbrooksite) are characterized. The type material of davinciite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

  5. Iron silicides at pressures of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Zhang, Feiwu; Oganov, Artem R.

    2010-01-01

    The Earth's core is expected to contain around 10 wt % light elements (S, Si, O, possibly C, H, etc.) alloyed with Fe and Ni. Very little is known about these alloys at pressures and temperatures of the core. Here, using the evolutionary crystal structure prediction methodology, we investigate Fe-Si compounds at pressures of up to 400 GPa, i.e. covering the pressure range of the Earth's core. Evolutionary simulations correctly find that at atmospheric pressure the known non-trivial structure with P213 symmetry is stable, while at pressures above 20 GPa the CsCl-type structure is stable. We show that among the possible Fe silicides (Fe3Si, Fe2Si, Fe5Si3, FeSi, FeSi2 and FeSi3) only FeSi with CsCl-type structure is thermodynamically stable at core pressures, while the other silicides are unstable to decomposition into Fe + FeSi or FeSi + Si. This is consistent with previous works and suggests that Si impurities contribute to stabilization of the body-centered cubic phase of Fe in the inner core.

  6. The role of water in generating Fe-depletion and the calc-alkaline trend

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.

    2006-12-01

    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is <1, and TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally- and observationally-demonstrated effects of water on suppression of plagioclase and early formation of oxides relative to silicates during magma fractionation, and the resulting FeO* depletion with respect to decreasing MgO.

  7. Deformation of Ordinary Chondrite Under Very Reducing Conditons: Implications for Liquid Metal Compositions, HSE Partitioning and Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Corgne, A.

    2008-12-01

    One important method in which to gain insight into metallic liquid compositions and their ability to control HSE (highly siderophile element) distribution is through experimentation. Deformation experiments can additionally provide information into mechanisms and chemical consequences of dynamic liquid metal segregation under a variety of conditions. We report results on metallic liquid HSE compositions and their distribution from a set of deformation experiments on a natural H6 ordinary chondrite, performed under very reducing conditions and a series of phase equilibria experiments focused on HSE partitioning between Si-rich and S-rich Fe molten alloys. The deformation experiments were conducted at temperatures between 925°C and 950°C, at 1.3 GPa confining pressure with a strain rate of 10-4/s. Major element analyses of both silicate and metal phases show that they are considerably reduced and the typically lithophile elements are behaving like siderophiles. Fe-Ni-Si compositions are found in the shear zones produced during the deformation experiment. Metallic compositions also include (Mg,Fe,Ca)S, Fe-Ni-Si, FeP, and Fe-Ni-S quench metal. Silicate phases include forsterite (Fo92-96) and enstatite (En98). Highly siderophile element (HSE) concentrations have been measured in the sulphide ((Fe,Mg,Ca)S) and metal (Fe- Ni-Si) phases by LA-ICPMS and compared with results from an earlier set of experiments on the same material but which were not performed under reducing conditions. The partitioning of the PGE is modified by the changing conditions with elements such as Ir and Os having higher DMetal/Sulphide values under reducing conditions. Partitioning experiments between molten FeS and Ni-, Si-bearing molten Fe were performed at 1.5-5.0 GPa and 1500-1750° to further investigate this observation. The starting material is synthetic, doped with a range of trace and HSE elements. The results confirm the preference of the HSE for the metallic phase with DMetal/Sulphide > 100 in most cases, in contrast to Cu and Ag, which have D values near or below 1, respectively. Our results also suggest the possibility of significant PGE fractionation since D values are larger for Ir and Os and smaller for Pd and Au, with Pt, Ru, Rh having intermediate values. It is not clear with the present data set whether T and P variations can affect significantly HSE partitioning. These results have been applied to the most naturally reduced material we know, the Enstatite chondrites. Several E chondrites have bulk HSE data available, but no HSE data available on sulphide and metallic phases themselves. We have now a set of HSE data for individual metallic phases in several enstatite chondrites, both EH and ELs. The bulk data show that for elements such as Os and Pd, the abundances are positively correlated and overall Pd is much higher in abundance. We find in the experiments that DPd ranges between 10-100, but do not fully explain the bulk trends. Additional phases, such as FeP have therefore been analyzed and we find that Pd is concentrated in FeP and the presence of schreibersite may help explain the high Pd ratios (e.g. Pd/Ir) observed in the Enstatite chondrites.

  8. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and fixed in the rocks at temperatures from 400 °C to 550 °C. Significance of the results is to provide evidence that the Fe of ores originated from basalt, and Fe-oxides precipitated across the critical state of water. Simultaneously, Ca, Mg and Fe are fixed in the deeper altered rocks (mafic minerals). But, Fe was dissolved at relatively low temperatures (100-300 °C). Si, Al, and K were easily mobile from basalt by upward flowing fluids from 300 °C to 400 °C and transported to the upper part (silicified and argillized rock).

  9. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed Phase Regions in the Deep Lower Mantle?

    NASA Astrophysics Data System (ADS)

    Giles, G. F.; Spera, F. J.; Yuen, D. A.

    2005-12-01

    The recent discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle (LM) compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~70 percent by mass of the LM. Using results from experimental phase equilibria, first-principles computations and thermodynamic relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the perovskite to post-perovskite phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~-1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv to pPv transition at XFeSiO3=0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core-mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper into the LM into the D" thermal boundary layer resting upon the (CMB). For various LM geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~5 mole percent or less), two perched layers are found. This is the divariant analog to the univariant double-crosser. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the LM, the higher the mixed phase layer. In a hotter Hadean Earth with interior temperatures everywhere 200-500 K warmer pPv is not stable unless the LM bulk composition is Fe-enriched compared to the present upper mantle.

  10. Phase Relations and Stability Studies in the Si3N4-SiO2-Y2O3 Pseudo- Ternary System. (6) Development of Microstructure, Strength and Fracture Toughness of Hot-Pressed Si3N4. (7) Sintering of SiC with Boron Compounds. (8).

    DTIC Science & Technology

    1976-04-01

    Analyses of Westinghouse Sij^ Starting Powder ( wt %) Al 0.08 Ag < Ü.001 B 0.001 Ca 0.016 Cr 0.01 Fe > O.i Mg 0.001 Mn 0.05 Mo < 0.003 Ni < 0.01...and atter milling, showed that the WC and plastic contamination in the milled powders were in the range of 1.5-3 wt "» and 0.7-1.5 wt0», respectively...Oxidation of I As, John Witley, New York (1966). 14 FIGURE CAPTIONS Figure 1 - Experimental phase relations in the Si NI -Si0o-Y 0 system determined

  11. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  12. Tularosa Basin Play Fairway Analysis: Water Chemistry

    DOE Data Explorer

    Adam Brandt

    2015-12-15

    This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.

  13. Impact of soils and cropping systems on composition of mineral elements of dry cacao beans

    USDA-ARS?s Scientific Manuscript database

    In view of its high economic value, cacao (Theobroma cacao L.) researchers are seeking technological innovations that increase production and improve the quality of cacao beans. The objective of this study was to characterize the mineral (P, K, Ca, Mg, Si, Fe, Mn, Zn, Cu, Cd, Ba) composition of caca...

  14. Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.

    DTIC Science & Technology

    1980-04-01

    Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe

  15. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and serve as a bio-signature. This experimental finding well explains the tendency of magnetite-rich BIFs to have lower δ30Si values than hematite-rich BIFs. [1] Konhauser et al., Earth-Science Rev, 2017 [2] Wu et al., GCA, 2012 [3] Zheng et al., GCA, 2016 [4] Reddy et al., GCA, 2016

  16. Preparation of SiO2-Protecting Metallic Fe Nanoparticle/SiO2 Composite Spheres for Biomedical Application

    PubMed Central

    Hsieh, Pin-Wei; Tseng, Ching-Li; Kuo, Dong-Hau

    2015-01-01

    Functionalized Fe nanoparticles (NPs) have played an important role in biomedical applications. In this study, metallic Fe NPs were deposited on SiO2 spheres to form a Fe/SiO2 composite. To protect the Fe from oxidation, a thin SiO2 layer was coated on the Fe/SiO2 spheres thereafter. The size and morphology of the SiO2@Fe/SiO2 composite spheres were examined by transmission electron microscopy (TEM). The iron form and its content and magnetic properties were examined by X-ray diffraction (XRD), inductively-coupled plasma mass spectrometry (ICP-MS) and a superconducting quantum interference device (SQUID). The biocompatibility of the SiO2@Fe/SiO2 composite spheres was examined by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) tests. The intracellular distribution of the SiO2@Fe/SiO2 composite spheres was observed using TEM. XRD analysis revealed the formation of metallic iron on the surface of the SiO2 spheres. According to the ICP-MS and SQUID results, using 0.375 M FeCl3·6H2O for Fe NPs synthesis resulted in the highest iron content and magnetization of the SiO2@Fe/SiO2 spheres. Using a dye loading experiment, a slow release of a fluorescence dye from SiO2@Fe/SiO2 composite spheres was confirmed. The SiO2@Fe/SiO2 composite spheres co-cultured with L929 cells exhibit biocompatibility at concentrations <16.25 µg/mL. The TEM images show that the SiO2@Fe/SiO2 composite spheres were uptaken into the cytoplasm and retained in the endosome. The above results demonstrate that the SiO2@Fe/SiO2 composite spheres could be used as a multi-functional agent, such as a magnetic resonance imaging (MRI) contrast agent or drug carriers in biomedical applications.

  17. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  18. New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process

    NASA Astrophysics Data System (ADS)

    Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo

    2013-03-01

    This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.

  19. The CaGeO3 Ca3Fe2Ge3O12 garnet join: an experimental study

    NASA Astrophysics Data System (ADS)

    Iezzi, Gianluca; Boffa-Ballaran, Tiziana; McCammon, Catherine; Langenhorst, Falko

    2005-06-01

    Germanate garnets are often used as isostructural analogues of silicate garnets to provide insight into the crystal chemistry and symmetry of the less accessible natural garnet solid solutions. We synthesised two series of germanate garnets at 3 GPa along the joinVIIICa3VI(CaGe)IVGe3O12 VIIICa3VIFe2IVGe3O12 at 900 °C and 1,100 °C. Samples with compositions close to the CaGeO3 end-member consist of tetragonal garnet with a small amount of triclinic CaGe2O5. Samples with nominal compositions between XFe=0.4 and 1.0 consist of a mixture of tetragonal and cubic garnets; whereas, single-phase cubic garnets were obtained for compositions with XFe>1.2 (XFe gives the iron content expressed in atoms per formula unit, and varies between 0 and 2 along the join). Run products which were primarily single-phase garnet were investigated using Mössbauer spectroscopy. Spectra from samples synthesised at 1,100°C consist of one well-resolved doublet that can be assigned to Fe3+ in the octahedral site of the garnet structure. A second doublet, present primarily in samples synthesised at 900°C, can be assigned to Fe2+ at the octahedral sites of the garnet structure. The relative abundance of Fe2+ decreases with increasing iron content. Transmission electron microscopy analyses confirm this tendency and show that the garnets are essentially defect-free. The unit-cell parameters of tetragonal VIIICa3VI(CaGe)IVGe3O3 garnet decrease with increasing synthesis temperature, and the deviation from cubic symmetry becomes smaller. Cubic garnets show a linear decrease of unit-cell parameter with increasing iron content. The results are discussed in the context of iron incorporation into VIIIMg3VI(MgSi)IVSi3O3 majorite.

  20. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    NASA Astrophysics Data System (ADS)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.; James, A. D.; Trigo-Rodríguez, J. M.; Fegley, B., Jr.; Plane, J. M. C.

    2017-02-01

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (I.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.

  1. Is the X-discontinuity really related to the presence of eclogite bodies in the mantle?

    NASA Astrophysics Data System (ADS)

    Woodland, Alan; Knapp, Nadia; Klimm, Kevin

    2013-04-01

    A local seismic feature observed at ~300 km depth is referred to as the X-discontinuity (X-disc, e.g. Revenaugh & Jordan 1991). Several petrological explanations have been proposed for this discontinuity, but Pushcharovsky & Pushcharovsky (2012) attribute it to the formation of stishovite in eclogitic bodies, based upon the suggestion of Williams & Revenaugh (2005). If this link between the X-disc and the presence of eclogite is valid, it could have important geodynamic implications. In their model, stishovite appears in the eclogitic assemblage either through the transformation of previously existing free coesite or by exsolution of "excess" SiO2 from Ca-Eskola-bearing clinopyroxene (Ca0.50.5Si2O6). Essential to this model is if the amount of free SiO2 is enough to produce the observed seismic impedance contrast or not. To test whether exsolution of stishovite from Ca-Eskola-bearing clinopyroxene is a feasible mechanism, we have undertaken high-pressure experiments to determine the maximum Ca-Eskola component that can be incorporated in clinopyroxene over a range of P-T conditions, both shallower and deeper than that corresponding to the position of the X-disc. One series of experiments were performed in the simplified CaO-MgO-Al2O3-SiO2±Na2O system and one with 3 "natural" analog eclogite compositions (K2O-Na2O-CaO-MgO-FeO-Al2O3-SiO2). For the CMAS-experiments, all samples have the typical eclogitic assemblage of clinopyroxene + garnet ± SiO2 ± kyanite. With increasing pressure, the amount of garnet increases at the expense of clinopyroxene. Maximizing the Ca-Eskola content of clinopyroxene requires coexistence with a free SiO2 phase and an elevated Al2O3 content, but not necessarily the presence of kyanite. Ca-Eskola contents of ~20 mol % are obtained at 4 GPa, but decrease steadily with increasing pressure so that ˜ 4 mol % is present at pressures corresponding to the depth of the X-disc. Experiments in natural analog eclogite compositions produced even less Ca-Eskola component in clinopyroxene. Thus no sharp change in Ca-Eskola content occurs as a function of pressure and at depths corresponding to the X-discontinuity exsolution of all Ca-Eskola component will yield only < 1 wt% free SiO2. This amount is insufficient to produce a large enough impedance contrast to explain the X-disc. If the X-disc is related to the appearance of stishovite in eclogite as proposed by Williams & Revenaugh (2005), then free SiO2 must be already present in the mineral assemblage. However, our preliminary results suggest that in an unmodified MORB-type eclogite only minor amounts of free SiO2 will be present. Greater amounts of free SiO2 can only be reached in eclogite residues after melt extraction at high pressures of ~5 GPa, where as residues from melting at lower pressures (i.e. 2.5 GPa) do not produce any free SiO2. Therefore, if at all, only subducted oceanic crust that first experienced melting at high pressures can contain enough free SiO2 to produce the observed impedance contrast of the X-disc as it transforms to stishovite. Pushcharovsky DY & Pushcharovsky YM (2012) Earth-Sci Revs, 113, 94-109. Revenaugh J & Jordan TH (1991) J Geophys Res, 96, 19,781- 19,810, Williams Q & Revenaugh J (2005) Geology, 33, 1-4.

  2. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  3. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment

    NASA Astrophysics Data System (ADS)

    Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.

    2016-09-01

    Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.

  4. Sound Velocities of Iron-Nickel and Iron-Nickel-Silicon Alloys at High Pressure

    NASA Astrophysics Data System (ADS)

    Miller, R. A.; Jackson, J. M.; Sturhahn, W.; Zhao, J.; Murphy, C. A.

    2014-12-01

    Seismological and cosmochemical studies suggest Earth's core is primarily composed of iron with ~5 to 10 wt% nickel and some light elements [e.g. 1]. To date, the concentration of nickel and the amount and identity of light elements remain poorly constrained due in part to the difficulty of conducting experimental measurements at core conditions. The vibrational properties of a variety iron alloys paired with seismic observations can help better constrain the composition of the core. We directly measured the partial phonon density of states of bcc- and hcp-structured Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high pressures. The samples were compressed using a panoramic diamond anvil cell. A subset of the experiments were conducted using neon as a pressure transmitting medium. Measurements of high statistical quality were performed with nuclear resonant inelastic x-ray scattering (NRIXS) at sector 3-ID-B of the Advanced Photon Source [2, 3, 4]. The unit cell volume of each sample was determined at each compression point with in-situ x-ray diffraction at sector 3-ID-B before and after each NRIXS measurement. The Debye, compressional, and shear sound velocities were determined from the low energy region of the partial phonon density of states paired with the volume measurements. We will present partial phonon density of states and sound velocities for Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high-pressure and compare with those of pure iron. References: [1] McDonough, W.F. (2004): Compositional Model for the Earth's Core. Elsevier Ltd., Oxford. [2] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2011.07.001. [3] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Grüneisen parameter of hcp-Fe to 171 GPa, Geophys. Res. Lett., doi:10.1029/2011GL049531. [4] Murphy, C.A., J.M. Jackson, and W. Sturhahn (2013): Experimental constraints on the thermodynamics and sound velocities of hcp-Fe to core pressures, J. Geophys. Res., doi:10.1002/jgrb.50166.

  5. X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Mazur, Anton S.; Bazai, Ayya V.; Shilovskikh, Vladimir V.; Galuskin, Evgeny V.; Chukanov, Nikita V.; Rusakov, Vyacheslav S.; Zhukov, Yurii M.; Avdontseva, Evgenia Yu.; Aksenov, Sergey M.; Krivovichev, Sergey V.

    2017-09-01

    Two wiluite samples from the Wiluy River, Yakutia, Russia have been investigated by means of single-crystal and powder X-ray diffraction, electron microprobe analysis, 1H, 27Al, 11B, and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR), thermogravimetric analysis (DSC/TGA), X-ray photoelectron spectroscopy (XPS) at the Si2p, Ca2p, Al2p, Mg1s, B1s and Fe2p core levels, 57Fe Mössbauer spectroscopy, infrared (IR) spectroscopy and optical measurements. The crystal structures have been refined in the P4/ nnc space group [ a = 15.7027(3), c = 11.7008(3) Å, V = 2885.1(1) Å3 for 1 and a = 15.6950(2), c = 11.6787(4) Å, V = 2876.9(1) Å3 for 2] to R 1 = 0.022 and R 1 = 0.021, respectively. In the crystal structure of wiluite, five-coordinated Y1 site is predominantly occupied by Mg. IR spectra of wiluite substantially different from those of vesuvianite, in particular, by the presence of additional bands in the range 1080‒1415 cm-1, which correspond to symmetric B‒O stretching vibrations of the BO 3 3- and BO 4 5- groups. According to the MAS NMR data, tetrahedrally coordinated T1 site is occupied by B3+ with minor amounts of Al3+. The general formula of wiluite can be written as follows ( Z = 2): Ca19Mg(Al,Mg,Fe,Ti,Mn)12(B,Al,◻)5(Si2O7)4(SiO4)10(O,OH)9O2-3. The diversity of vesuvianite-group minerals is largely determined by the population of the Y1 sites. However, wiluite is characterized by the presence of additional T1 and T2 sites and should be considered as special among other vesuvianite-group minerals. The reasonability of subdivision of the wiluite subgroup within the vesuvianite group is discussed.

  6. Remediation of AMD using industrial waste adsorbents

    NASA Astrophysics Data System (ADS)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  7. Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD

    NASA Astrophysics Data System (ADS)

    Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin

    2003-04-01

    FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.

  8. Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki

    2017-05-01

    We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.

  9. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements

    PubMed Central

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-01-01

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO3 (48.5%), SiO2 (21.1%), Al2O3 (13.8%), SO3 (10.06%), Fe2O3 (2.25%) and others (4.29%). SA fly ash consists of Al2O3 (19.7%), SiO2 (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al2O3 (15%), SiO2 (25.4%), Zn (20.6%), SO3 (10.9%), Fe2O3 (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7–14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements. PMID:28787970

  10. Concentrations of asbestos fibers and metals in drinking water caused by natural crocidolite asbestos in the soil from a rural area.

    PubMed

    Wei, Binggan; Ye, Bingxiong; Yu, Jiangping; Jia, Xianjie; Zhang, Biao; Zhang, Xiuwu; Lu, Rongan; Dong, Tingrong; Yang, Linsheng

    2013-04-01

    Asbestos fibers and metals in drinking water are of significant importance to the field of asbestos toxicology. However, little is known about asbestos fibers and metals in drinking water caused by naturally occurring asbestos. Therefore, concentrations of asbestos fibers and metals in well and surface waters from asbestos and control areas were measured by scanning electron microscopy (SEM), inductively coupled plasma (ICP) optical emission spectrometer, and ICP-mass spectrometry in this study. The results indicated that the mean concentration of asbestos fibers was 42.34 millions of fibers per liter by SEM, which was much higher than the permission exposure level. The main compositions of both asbestos fibers in crocidolite mineral and in drinking water were Na, Mg, Fe, and Si based on energy dispersive X-ray analysis. This revealed that the drinking water has been contaminated by asbestos fibers from crocidolite mineral in soil and rock. Except for Cr, Pb, Zn, and Mn, the mean concentrations of Ni, Na, Mg, K, Fe, Ca, and SiO2 were much higher in both surface water and well waters from the asbestos area than in well water from the control area. The results of principal component and cluster analyses indicated that the metals in surface and well waters from the asbestos area were significantly influenced by crocidolite mineral in soil and rock. In the asbestos area, the mean concentrations of asbestos fibers and Ni, Na, Mg, K, Fe, Ca, and SiO2 were higher in surface and well waters, indicating that asbestos fibers and the metals were significantly influenced by crocidolite in soil and rock.

  11. Overview Of 100 Sols Of Chemcam Operations At Gale Crater

    NASA Astrophysics Data System (ADS)

    Maurice, Sylvestre; Wiens, Roger; MSL Science Team

    2013-04-01

    The Curiosity rover carries the ChemCam instrument suite, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument that can analyze the chemical composition of geological samples at distances up to 7 meters from the rover, and a high resolution camera for context imaging (RMI). In the first 100 sols after landing, ChemCam performed 343 single point measurements on approximately 50 different rocks or soil areas, for over 12,000 laser shots. Each time at least two RMI images are acquired before and after the laser shots to visualize the area of investigation and the geological context. LIBS lines are identified using primarily a martian dedicated database; to date, ChemCam has detected unambiguously major elements (Si, Al, Fe, Mg, Ca, Na, K, O), minor/trace elements of interest (Li, Cr, Mn, Rb, Sr, Ba, Ti, S, C, H). These observations allow a qualitative/quantitative assessment of the presence of dust (first few shots), the sample surface composition and chemical heterogeneity with depth. Several techniques have been developed to analyze ChemCam's data: (1) Univariate analysis refers to peak height studies of well-chosen LIBS lines and a training dataset to build calibration curves. Peak ratios K/Si, Na/Si, Al/Si, Fe+Mg/Si, or Mg/Mg+Fe have been calculated from the onboard calibration targets. The technique also applies to minor and trace elements which yield low intensity emission lines, such as Lin, Rb, H, C. (2) Multivariate methods give better results in terms of elemental composition, since they examine simultaneously and statistically several peaks of the same elements. A Partial Least Squares (PLS) regression algorithm is used for rapid major-element abundance determination. (3) Composition trends, clusters and end-members can also be identified using component analysis methods. Independent Component Analysis (ICA) identifies components that are directly related to Chemical elements: Al, Ca, Fe, H, K, Mg, Na, O, Si, Ti, but also mixture like a "soil" component. On top of this classification, clustering methods such as k-means and hierarchical clustering allow the differentiation and filation of different geochemical populations encountered so far at Mars. The ChemCam instruments are performing very well. The 100-sol dataset is rich of thousands of spectra and hundreds of images. We will present a status of the data set acquired during that period, a review of the analysis techniques and an introduction to the results which have been obtained so far.

  12. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clustersmore » may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.« less

  13. β-FeSi II as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko

    2006-04-01

    β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.

  14. Basic refractory and slag management for petcoke carbon feedstock in gasifiers

    DOEpatents

    Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

    2014-04-22

    The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

  15. Refinement of pressure calibration for multi-anvil press experiments

    NASA Astrophysics Data System (ADS)

    Ono, S.

    2016-12-01

    Accurate characterization of the pressure and temperature environment in high-pressure apparatuses is of essential importance when we apply laboratory data to the study of the Earth's interior. Recently, the synchrotron X-ray source can be used for the high-pressure experiments, and the in situ pressure calibration has been a common technique. However, this technique cannot be used in the laboratory-based experiments. Even now, the conventional pressure calibration is of great interest to understand the Earth's interior. Several high-pressure phase transitions used as the pressure calibrants in the laboratory-based multi-anvil experiments have been investigated. Precise determinations of phase boundaries of CaGeO3 [1], Fe2SiO4 [2], SiO2, and Zr [3] were performed by the multi-anvil press or the diamond anvil cell apparatuses combined with the synchrotron X-ray diffraction technique. The transition pressures in CaGeO3 (garnet-perovskite), Fe2SiO4 (alfa-gamma), and SiO2 (coesite-stishovite) were in general agreement with those reported by previous studies. However, significant discrepancies for the slopes, dP/dT, of these transitions between our and previous studies were confirmed. In the case of Zr study [3], our experimental results elucidate the inconsistency in the transition pressure between omega and beta phase in Zr observed in previous studies. [1] Ono et al. (2011) Phys. Chem. Minerals, 38, 735-740.[2] Ono et al. (2013) Phys. Chem. Minerals, 40, 811-816.[3] Ono & Kikegawa (2015) J. Solid State Chem., 225, 110-113.

  16. Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.

    2017-12-01

    Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (<1 µm in size); 2) veins consisting of white acicular crystals (up to 100 µm in width). In addition, large equant quartz crystals (>100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg and Sr are consistent with published data for deep-sea corals. Also, Sr is similar to experimental data on inorganic aragonite. Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca of the fluid from which acicular aragonite grew were calculated based on partition coefficients from inorganic aragonite precipitated at 100 bars.

  17. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian, E-mail: snove418562@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081; Fan, Xi’an, E-mail: groupfxa@163.com

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{submore » 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.« less

  18. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh

    PubMed Central

    Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal

    2015-01-01

    The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953

  19. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    NASA Astrophysics Data System (ADS)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  20. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  1. Equations of state and anisotropy of Fe-Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.

    2017-12-01

    Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a measurably distinct effect on the c/a axial ratio of iron, as does alloying iron-nickel with silicon. We investigate the relationship between the c/a axial ratio and elastic anisotropy of iron alloys and discuss the implications for inner core seismic anisotropy.

  2. Nepheline structural and chemical dependence on melt composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, José; Crum, Jarrod; Neill, Owen

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize largemore » fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.« less

  3. Understanding the magnetic behavior of heat treated CaO-P2O5-Na2O-Fe2O3-SiO2 bioactive glass using electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2014-09-01

    Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.

  4. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  5. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    PubMed

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo

    2017-11-01

    Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been analyzed. The ab initio local stress has opened the way for obtaining accurate local elastic properties reflecting local valence-electron behaviors.

  7. Analysis of optical and magnetooptical spectra of Fe{sub 5}Si{sub 3} and Fe{sub 3}Si magnetic silicides using spectral magnetoellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashchenko, S. A., E-mail: lsa@iph.krasn.ru; Popov, Z. I.; Varnakov, S. N.

    The optical, magnetooptical, and magnetic properties of polycrystalline (Fe{sub 5}Si{sub 3}/SiO{sub 2}/Si(100)) and epitaxial Fe{sub 3}Si/Si(111) films are investigated by spectral magnetoellipsometry. The dispersion of the complex refractive index of Fe{sub 5}Si{sub 3} is measured using multiangle spectral ellipsometry in the range of 250–1000 nm. The dispersion of complex Voigt magnetooptical parameters Q is determined for Fe{sub 5}Si{sub 3} and Fe{sub 3}Si in the range of 1.6–4.9 eV. The spectral dependence of magnetic circular dichroism for both silicides has revealed a series of resonance peaks. The energies of the detected peaks correspond to interband electron transitions for spin-polarized densities ofmore » electron states (DOS) calculated from first principles for bulk Fe{sub 5}Si{sub 3} and Fe{sub 3}Si crystals.« less

  8. Thermodynamics of Palladium (Pd) and Tantalum (Ta) Relevant to Secondary Copper Smelting

    NASA Astrophysics Data System (ADS)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S. H.; Reuter, M. A.

    2017-02-01

    The slag-to-metal distribution ratios of palladium (Pd), L_{{Pd}}^{s/m} , in the range of oxygen partial pressure ( pO2) from 10-10 to 10-7 atm at 1473 K to 1623 K (1200 °C to 1350 °C); distribution ratios of tantalum (Ta), L_{{Ta}}^{s/m} , in the range of pO2 from 10-16 to 10-12 atm at 1673 K and 1873 K (1400 °C and 1600 °C), have been determined in this study. The L_{{Pd}}^{s/m} in FeO x -CaO-SiO2-MgO and copper at 1573 K (1300 °C) and pO2 = 10-8 atm is dependant strongly on basicity of slag, i.e. (CaO + MgO)/SiO2 or optical basicity. The current results suggest that Pd presents in the FeO x -CaO-SiO2-MgO slag predominantly as Pd2+. The activity coefficient of PdO in the slag at 1573 K (1300 °C) and pO2 = 10-8 atm was calculated to be in the range of 3.89 × 10-3 to 2.63 × 10-2. The L_{{Pd}}^{s/m} was also found to increase with increasing of pO2 and with decreasing of temperature. It was observed that Ta mostly partition to slag phase and very small amount of Ta was found in liquid copper at the high temperature and reduced condition studied. It can be suggested that to promote recovery of palladium from Pd-containing e-waste, a slag with lower silica content and basic flux based, high temperature with reducing atmosphere, is highly desired particularly in secondary copper smelting.

  9. Iron silicide formation at different layers of (Fe/Si)3 multilayered structures determined by conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.

    2014-07-01

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.

  10. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the star-to-star scatter and mean [Na/Fe] ratios appear higher in the cluster, perhaps indicating additional self-enrichment.« less

  11. Elemental and carbonaceous characterization of TSP and PM10 during Middle Eastern dust (MED) storms in Ahvaz, Southwestern Iran.

    PubMed

    Shahsavani, Abbas; Yarahmadi, Maryam; Hadei, Mostafa; Sowlat, Mohammad Hossein; Naddafi, Kazem

    2017-08-21

    Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM 10 in Ahvaz, Iran. TSP and PM 10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM 10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM 10 was 1548.72 μg/m 3 (1965.11 μg/m 3 ) and 1152.35 μg/m 3 (1510.34 μg/m 3 ), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM 10 , respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM 10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM 10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM 10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz's ambient air.

  12. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    NASA Astrophysics Data System (ADS)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  13. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing.

    PubMed

    Wang, Lei; Liu, Lian-you; Gao, Shang-yu; Hasi, Eerdun; Wang, Zhi

    2006-01-01

    Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.

  14. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-01

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe3O4), SiCF/Fe3O4, were prepared via the chemical deposition of Fe3O4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe3O4 electrodes were fabricated at different Fe3O4 feeding ratios to determine the optimal Fe3O4 content that can maintain a high total surface area of SiCF/Fe3O4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe3O4. The SiCF/Fe3O4 electrode fabricated with a Fe3O4/SiCF feeding ratio of 1.5:1 (SiCF/Fe3O4(1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g-1 at a scan rate of 5 mV s-1 with a rate performance of 81.8% from 5 to 500 mV s-1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe3O4(1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe3O4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe3O4(1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  15. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  16. Reassessment of the volkonskoite-chromian smectite nomenclature problem.

    USGS Publications Warehouse

    Foord, Eugene E.; Starkey, Harry C.; Taggart, Joseph E.; Shawe, Daniel R.

    1987-01-01

    The name volkonskoite was first used in 1830 to describe a bright blue-green, chromium-bearing clay material from the Okhansk region, west of the Ural Mountains, U.S.S.R. Since that time, the name has been applied to numerous members of the smectite group of clay minerals, although the reported chromium content has ranged from 1% to about 30% Cr2O3. The name has also been applied to some chromian chlorites. Because volkonskoite has been used for materials that differ not only in their chromium content but also in their basic structure, the species status of the mineral has been unclear.To resolve this uncertainty, two specimens of volkonskoite from (1) Mount Efimiatsk, the type locality in the Soviet Union (USNM 16308) and (2) the Okhansk region in the Perm Basin, U.S.S.R. (USNM R4820), were examined by several mineralogical techniques. Neotype sample 16308 has the following structural formula:(Ca0.11Mg0.11Fe2+0.03K0.02)(Cr1.18Mg0.78Fe3+0.29Ca0.02)(Si3.50Al0.51)O10(OH)2 ⋅3.64H2O.Sample R4820 has the following structural formula:(Ca0.25Mg0.05Fe2+0.01K0.03Mn0.01)(Cr1.07Mg0.75Fe3+0.35(Si3.59Al0.43)O10(OH)2 ⋅4.22H2O.Mössbauer spectroscopy indicates that 91% and 98% of the iron is present as Fe3+ in samples 16308 and R4820, respectively. X-ray powder diffraction patterns of both samples have broad lines corresponding to minerals of the smectite group.On the basis of these data, volkonskoite appears to be a dioctahedral member of the smectite group that contains chromium as the dominant cation in the octahedral layer. Smectites containing less than this amount of octahedral chromium should not be called volkonskoite, but should be named by chemical element adjectives, e.g., chromian montmorillonite, chromian nontronite.

  17. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGES

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; ...

    2016-09-15

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca 3U xZr 2–xFe 3O 12 (x = 0.5–0.7), along with the endmember phase, Ca 3(Zr 2)SiFe 3+ 2O 12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in themore » phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe 3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca 3U xZr 2–xFe 3O 12 as viable waste form phases for U and other actinides.« less

  18. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  19. High Resolution Optical Spectroscopy of Hot Post-AGB Star Candidates LS IV-04 1 and LB3116

    NASA Astrophysics Data System (ADS)

    Şahin, T.

    2018-04-01

    We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of T eff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s-1, [M/H] = -1.81 dex, and v sin i= 5 km s-1 for LSIV-04 1 and T eff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s-1, and [Fe/H] = -0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s-1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = -0.2 dex, [Si/Fe] = -0.4 dex, [S/Fe] = -0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e. V LSR = 73 km s-1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.

  20. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, Li; Hongbin, Pu; Chunlei, Zheng; Zhiming, Chen

    2015-06-01

    β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 °C for 5 min and the optimal annealing temperature is 900 °C. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105 cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 °C for 5 min. Project supported by the National Natural Science Foundation of China (No. 51177134) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM6286).

  1. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  2. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  3. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  4. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.

    PubMed

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T

    2002-12-15

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  5. Properties of Desert Sand and CMAS Glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  6. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  7. Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.

    2016-05-01

    SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.

  8. Investigation on Viscosity and Nonisothermal Crystallization Behavior of P-Bearing Steelmaking Slags with Varying TiO2 Content

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai

    2017-02-01

    The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.

  9. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  10. Static compression of Fe 0.83Ni 0.09Si 0.08 alloy to 374 GPa and Fe 0.93Si 0.07 alloy to 252 GPa: Implications for the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Asanuma, Hidetoshi; Ohtani, Eiji; Sakai, Takeshi; Terasaki, Hidenori; Kamada, Seiji; Hirao, Naohisa; Ohishi, Yasuo

    2011-10-01

    The pressure-volume equations of state of iron-nickel-silicon alloy Fe 0.83Ni 0.09Si 0.08 (Fe-9.8 wt.% Ni-4.0 wt.% Si) and iron-silicon alloy Fe 0.93Si 0.07 (Fe-3.4 wt.% Si) have been investigated up to 374 GPa and 252 GPa, respectively. The present compression data covered pressures of the Earth's core. We confirmed that both Fe 0.83Ni 0.09Si 0.08 and Fe 0.93Si 0.07 alloys remain in the hexagonal close packed structure at all pressures studied. We obtained the density of these alloys at the pressure of the inner core boundary (ICB), 330 GPa at 300 K by fitting the compression data to the third order Birch-Murnaghan equation of state. Using these density values combined with the previous data for hcp-Fe, hcp-Fe 0.8Ni 0.2, and hcp-Fe 0.84Si 0.16 alloys and comparing with the density of the PREM inner core, we estimated the Ni and Si contents of the inner core. The Si content of the inner core estimated here is slightly greater than that estimated previously based on the sound velocity measurement of the hcp-Fe-Ni-Si alloy at high pressure.

  11. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.

    2017-02-20

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, precludemore » equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.« less

  12. Phase relations of aluminous silica to 120 GPa and lowermost mantle dynamics

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.-P.

    2012-04-01

    Basalts have 3-10 times higher concentrations of Al, Ti, Ca and Na and more than 5 times lower concentration of Mg than peridotite. The resulting lower mantle basaltic mineralogy has no ferropericlase and low proportion of Mg-perovskite and post-perovskite with high Fe/Mg-ratio. Oversaturation of silica and alumina produces separate silica-dominated phases and Al-rich phases (NAL and Ca-ferrite phases). At pressures of 60-100 GPa common basalts crystallize 15-20% CaCl2-structured silica, 15-25% Ca-ferrite, 35-40% Mg-perovskite and 20-30% Ca-perovskite. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere may occur within the strongly heterogeneous D" zone. The silica-dominated phases have considerable solubility of alumina [1]. At 3500-4000 K the transition from the CaCl2-phase to seifertite (a-PbO2-structure) of pure SiO2 occurs at 130-140 GPa, with a dp/dT-slope of about 10 MPa/K [2]. The transition pressure is reduced with Al-saturation. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. To delineate the phase transition, the samples were compressed incrementally with intermittent laser heating. Slow reaction rates required 20-40 min heating at 3500-4000 K for each heating step. The XRD data and pressure estimates were acquired repeatedly during heating and after quenching to room temperature. The first crystallization of seifertite at 3500-4000 K was recorded at about 118 and 108 GPa in samples with 4 and 6 wt% AlO1.5, respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. Due to the presence of the Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in natural basaltic compositions, the Al-solubility limits for the silica-dominated phases in basaltic lithologies may be similar to those in the binary system SiO2-AlO1.5. Phase transitions in response to increasing pressure are generally associated with densification. Because of the strong partitioning of light and voluminous AlO1.5 into seifertite, however, the densification effect is more than offset by the lighter alumina component. The unit cell data of ref. [1] indicate a volume increase of about 3.8% associated with the transition. The associated density reduction would be strongly dependent on the substitution mechanism. O-vacancy and cation (3Si4+ → 4Al3+) substitutions yield density reductions of 5.4% and 1.9%, respectively [1]. The large density reduction accompanying the seifertite transition may limit the role of gravitational accretion of evolved MORB to the LLSVPs. Segregation of Fe-rich picritic, komatiitic or peridotitic rocks with no separate silica phase may be more likely. Deep-mantle cumulates and solidified melts of peridotitic to komatiitic composition were mostly produced in the Hadean and early Archean, indicating that the antipodal and near-equatorial LLSVPs, stabilized by Earth's rotation, could also represent ancient structures.

  13. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.

  14. Research on the self-absorption corrections for PGNAA of large samples

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Bo; Liu, Zhi; Chang, Kang; Li, Rui

    2017-02-01

    When a large sample is analysed with the prompt gamma neutron activation analysis (PGNAA) neutron self-shielding and gamma self-absorption affect the accuracy, the correction method for the detection efficiency of the relative H of each element in a large sample is described. The influences of the thickness and density of the cement samples on the H detection efficiency, as well as the impurities Fe2O3 and SiO2 on the prompt γ ray yield for each element in the cement samples, were studied. The phase functions for Ca, Fe, and Si on H with changes in sample thickness and density were provided to avoid complicated procedures for preparing the corresponding density or thickness scale for measuring samples under each density or thickness value and to present a simplified method for the measurement efficiency scale for prompt-gamma neutron activation analysis.

  15. Multicomponent diffusion in basaltic melts at 1350 °C

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.

  16. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  17. Kinetics of Reduction of CaO-FeO x -MgO-PbO-SiO2 Slags by CO-CO2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Sharif; Wright, Steven

    2017-08-01

    Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10-6 to 4 × 10-5 mol O cm-2 s-1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.

  18. Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona.

    USGS Publications Warehouse

    Foord, E.E.; Taggart, J.E.; Conklin, N.M.

    1983-01-01

    XRD studies have shown the fine-grained, light blue-green mineral previously identified as turquoise or chrysocolla to be the rare species fraipontite + or - admixed sauconite. Composite microprobe and XRF analyses gave SiO2 24.8, Al2O3 17.3, CaO 0.34, CuO 5.2, ZnO 40.95, H2O (ign. loss, 900oC) 12.8, = 101.39, yielding the formula (Zn1.84Al0.77Cu0.24box 0.13- Ca0.02)3.00(Si1.51Al0.49)2.00O5(OH)4. Semiquantitative emission spectrographic analysis showed Fe 0.007, Mg 0.01, Ca 0.07, Si 10, Al major, Na 0.015, Zn major, Cu 5%; Mn 15, B 150, Be 7, Ni 50, Pb 15, Sc 15, Ga 70 and Ag 1 ppm. It has a 5.331(8), b 9.23(1), c 7.275(6) A, beta 104.15o; H. 3.5-4; Dcalc 3.44, Dobs. 3.08- 3.10; mean refr. ind. approx 1.61. Much of the fraipontite is admixed with sauconite, which may be forming from the fraipontite. XRF analysis of this material gave SiO2 32.8, Al2O3 10.9, MgO < 0.1, CaO 1.51, Na2O < 0.2, K2O < 0.02, TiO2 < 0.02, P2O5 < 0.02, MnO < 0.02, CuO 4.65, ZnO 39.9, ign. loss 13.9, = 103.7.-G.W.R.

  19. Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin

    NASA Astrophysics Data System (ADS)

    Lysyuk, G. N.

    2011-10-01

    Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.

  20. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-01

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ˜0.1 dex for GCs with metallicities as high as [Fe/H] = -0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Specific features of the atomic structure of metallic layers of multilayered (CoFeZr/SiO2)32 and (CoFeZr/ a-Si)40 nanostructures with different interlayers

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.

    2017-02-01

    Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.

  2. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  3. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  4. Premaximum observations of the type Ia SN 1990N

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Filippenko, Alexei V.; Shields, Joseph C.; Foltz, Craig B.; Phillips, Mark M.; Sonneborn, George

    1991-01-01

    Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N.

  5. Magnetic and structural properties of ferromagnetic Fe 5PB 2 and Fe 5SiB 2 and effects of Co and Mn substitutions

    DOE PAGES

    McGuire, Michael A.; Parker, David S.

    2015-10-22

    Crystallographic and magnetic properties of Fe 5PB 2, Fe 4CoPB 2, Fe 4MnPB 2, Fe 5SiB 2, Fe 4CoSiB 2, and Fe 4MnSiB 2 are reported. All adopt the tetragonal Cr 5B 3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe 5SiB 2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides.more » Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe 5PB 2 and Fe 5SiB 2, with negative thermal expansion seen along the c-axis of Fe 5SiB 2. First principles calculations of the magnetic properties of Fe 5SiB 2 and Fe 4MnSiB 2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less

  6. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi 2O 6, CaSiO 3 and CaSi 2O 5-CaTiSiO 5 system

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Yano, M.; Tejima, Y.; Iijima, M.; Kojitani, H.

    2004-06-01

    Phase transitions of CaMgSi 2O 6 diopside and CaSiO 3 wollastonite were examined at pressures to 23 GPa and temperatures to 2000 °C, using a Kawai-type multiavil apparatus. Enthalpies of high-pressure phases in CaSiO 3 and in the CaSi 2O 5-CaTiSiO 5 system were also measured by high-temperature calorimetry. At 17-18 GPa, diopside dissociates to CaSiO 3-rich perovskite + Mg-rich (Mg,Ca)SiO 3 tetragonal garnet (Gt) above about 1400 °C. The solubilities of CaSiO 3 in garnet and MgSiO 3 in perovskite increase with temperature. At 17-18 GPa below about 1400 °C, diopside dissociates to Ca-perovskite + β-Mg 2SiO 4 + stishovite. The Mg, Si-phases coexisting with Ca-perovskite change to γ-Mg 2SiO 4 + stishovite, to ilmenite, and finally to Mg-perovskite with increasing pressure. CaSiO 3 wollastonite transforms to the walstromite structure, and further dissociates to Ca 2SiO 4 larnite + CaSi 2O 5 titanite. The latter transition occurs at 9-11 GPa with a positive Clapeyron slope. At 1600 °C, larnite + titanite transform to CaSiO 3 perovskite at 14.6±0.6 GPa, calibrated against the α-β transition pressure of Mg 2SiO 4. The enthalpies of formation of CaSiO 3 walstromite and CaSi 2O 5 titanite from the mixture of CaO and SiO 2 quartz at 298 K have been determined as -76.1±2.8, and -27.8±2.1 kJ/mol, respectively. The latter was estimated from enthalpy measurements of titanite solid solutions in the system CaSi 2O 5-CaTiSiO 5, because CaSi 2O 5 titanite transforms to a triclinic phase upon decompression. The enthalpy difference between titanite and the triclinic phase is only 1.5±4.8 kJ/mol. Using these enthalpies of formation and those of larnite and CaSiO 3 perovskite, the transition boundaries in CaSiO 3 have been calculated. The calculated boundaries for the wollastonite-walstromite-larnite + titanite transitions are consistent with the experimental determinations within the errors. The calculated boundary between larnite + titanite and Ca-perovskite has a slope of 1.3-1.8(±0.4) MPa/K, and is located at a pressure about 2 GPa higher than that determined by [Am. Mineral. 79 (1994) 1219].

  7. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-12-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  8. Chemical composition of individual aerosol particles in workplace air during production of manganese alloys.

    PubMed

    Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y

    2000-02-01

    Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.

  9. Phase relations in the system diopside-jadeite at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Lin-Gun

    1980-05-01

    Phase behaviour in the system diopside-jadeite (CaMgSi 2O 6sbnd NaAlSi 2O 6) have been investigated in the pressure region 100-300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO 4(CaFe 2O 4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).

  10. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  11. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Mudholkar, A. V.; Jai Sankar, S.; Ilangovan, D.

    2008-03-01

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which allow one to define two different origins linked to two separate eruptions. One group of pumice is a dacitic type characterized by high Fe, Ti, Mg, Al and Ca with comparatively low contents of Si, rare-earth elements (∑REE, 69 ppm), Rb, Sr, U, Th, Ba, V, Nb, Sc, Mo and Co, which strongly suggest an origin from the 1883 Krakatau eruption. The other group is rhyolitic and is characterized by low contents of Fe, Ti, Mg and Ca and high Si, ∑REE content (121 ppm), Rb, Sr, U, Th, Ba, V, Nb, Mo, Co, and Sc and correlates well with the composition of the Youngest Toba Tuff (YTT) eruption of ˜74 ka from Northern Sumatra and is being reported for the first time. Therefore, correlation of the pumice to the 1883 Krakatau and YTT eruptions indicates that the pumice drifted to the CIOB and eventually sank when it became waterlogged. However, physical properties such as density, specific gravity, porosity and degree of saturation required for sinking of pumice for both 1883 Krakatau and YTT are almost similar.

  12. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  13. Spinel and orthopyroxene exsolved from clinopyroxene in the Haladala pluton in the middle Tianshan (Xinjiang, China)

    NASA Astrophysics Data System (ADS)

    Zhu, Yongfeng; Chen, Jing; Xue, Yunxin; Feng, Wanyi; Jiang, Jiuyang

    2017-12-01

    The Haladala pluton, consisting of troctolite, olivine gabbro and gabbro with zircon SHRIMP U-Pb age of 309 ± 2 Ma (MSWD = 0.72), intruded the Devonian-Carboniferous arc segments in the middle Tianshan. Amphibole, coexisting with magnetite, amphibole, and phlogopite, crystallized in a magma chamber at depth of 20 km (6.9-7.4 kbar, 934-943 °C) based on various thermobaramoters. Two kinds of exsolution textures (spinel rods in clinopyroxene, orthopyroxene lamellae in clinopyroxene) occur in troctolite and olivine gabbro. We describe oriented spinel rods and orthopyroxene lamellae exsolved from the host clinopyroxene based on optical and high-resolution transmission electron microscope (HRTEM) observations. The spinel rods (100) are parallel to their host clinopyroxene (010). Orthopyroxene lamellae (010) are coherent and strictly parallel to their host clinopyroxene (010). Exsolution of spinel rods from the host clinopyroxene is controlled by the reaction of (Ca0.5M2+ 0.5)Fe3+[AlSiO6]in clinopyroxene → (Ca0.86-0.17M2+ 0.14-0.17)(M2 + 1.00-0.96Al0-0.04)[Al0.17-0.10Si1.83-1.90O6] + Fe3O4 + O2.

  14. Enhancing the photocatalytic degradation of Fe-Ti over SiO2 nanocomposite material for paraquat removal

    NASA Astrophysics Data System (ADS)

    Kruanetr, Senee; Wanchanthuek, Ratchaneekorn

    2018-05-01

    The effect of Fe and Ti loaded over SiO2 (called FeTi/SiO2) in paraquat degradation was studied for both the catalytic activity and the catalyst surface properties. Sufficient characterization techniques were used to obtain the physical and chemical properties of the FeTi/SiO2 system, such as the adsorption-desorption isotherm, surface area and porous structure, XRD diffraction, FTIR spectroscopy, UV–vis diffuse reflection spectrometry and XPS spectroscopy. The catalytic activity in paraquat degradation studies showed that the bimetallic Fe-Ti over SiO2 had higher activity than the monometallic of either Fe or Ti over SiO2 and also the order of the Fe and Ti loading was the significant parameter affecting the activity. The XPS showed that the level of Fe3+ over the catalyst was related to the obtained activity. Moreover, the optimum Fe:Ti ratio in the FeTi/SiO2 system was 1:1 (by weight). Finally, the effect of the support pretreatment (SiO2 pretreatment) was studied and showed a negative effect on the expressed activity.

  15. Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae

    2018-03-01

    Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.

  16. New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite

    NASA Astrophysics Data System (ADS)

    Aksenov, Sergey M.; Chukanov, Nikita V.; Göttlicher, Jörg; Möckel, Steffen; Varlamov, Dmitriy; Van, Konstantin V.; Rastsvetaeva, Ramiza K.

    2018-01-01

    Agardite-(Ce) from Clara Mine, Schwarzwald, Germany, has been investigated by means of electron microprobe analysis, single-crystal X-ray analysis, XANES spectroscopy and IR spectroscopy. Hexagonal unit-cell parameters are: a = 13.598(6), c = 5.954(3) Å; V = 953.5(2) Å3; space group P63/ m. The structure has been solved and refined to final R 1 = 3.87%, w R 2 = 5.02 for 786 I > 3 σ( I). Hydrogen atoms have been localized. The crystal-chemical formula is ( Z = 2): A(1)(Ce0.82Ca0.14Sr0.04)Σ1.00 A(2)(Ca0.03Ce0.02)Σ0.05 [Cu5.75(Fe3+, Mn)0.20]Σ5.95 [ T(1)(AsO4) 2.96 T(2) (SbO4)0.04)]Σ3.00 (OH)5.96O0.04·3H2O. Hydrogen bonding in agardite-series minerals has been characterized for the first time. IR spectra of agardite-(Ce) and agardite-(Nd) from Lavrion used for comparison, as well as structural data indicate the presence of isolated H+ cations that do not form strong covalent bonds with coordinating O atoms. Agardite-(Ce) from Clara Mine forms epitaxial growths with the Sb-analogue of auriacusite. The latter mineral was characterized by EDS analyses; its typical empirical formulae are {Ca}_{0.0 6} {Ce}_{0.0 4} {Fe}^{ 3+ }{}_{ 1.0 6} {Cu}_{0. 8 9}[(SbO4)0.58(AsO4)0.38(SiO4)0.04]Σ1.00(O,OH) and {Ca}_{0.0 7 5} {Ce}_{0.0 4} {Fe}^{ 3+ }{}_{0. 9 3} {Cu}_{0. 9 7}[(SbO4)0.59(AsO4)0.35(SiO4)0.06]Σ1.00(O,OH). The formation of uniaxial growths of the Sb-analogue of auriacusite and agardite-(Ce) is caused by the close values of their c parameters (for auriacusite s.s. c = 5.9501(5) Å). Three-valence state of iron and five-valence of antimony in both minerals has been validated by means of Fe K- and Sb L 2,3-edge XANES spectroscopy.

  17. Influence of impurities and defects on the nuclear relaxation in YIG films

    NASA Astrophysics Data System (ADS)

    Wagner, K.; Lütgemeier, H.; Zinn, W.; Gerhardt, R.; Dötsch, H.; Kucera, M.; Englich, J.; Nitsch, K.; Novák, P.

    1996-08-01

    The relaxation of 57Fe nuclei in yttrium iron garnet (YIG) is very sensitive to the way in which charge compensation is achieved in these magnetic insulators. Charge compensation becomes necessary either if nontrivalent impurities are incorporated in the garnet structure or in the presence of intrinsic defects. From measurements of the nuclear relaxation times T1 and T2 in epitaxial YIG films doped with small amounts of Ca, Si or Pb, we conclude that the relaxation behavior at low temperatures depends critically on the presence of certain intrinsic defects, namely Fe 2+. These ions also increase the optical absorption in the near infrared.

  18. New members of the A{sub 2}M′M{sub 2}{sup ″} structure family (A=Ca, Sr, Yb, La; M′=In,Sn,Pb; M″=Si,Ge)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehle, Michael; Dürr, Ines; Fink, Saskia

    The new mixed tetrelides Sr{sub 2}PbGe{sub 2} and Yb{sub 2}SnGe{sub 2}, several mixed Ca/Sr (A{sup II}) germanides A{sub 2}{sup II}(Sn,Pb)Ge{sub 2} and two polymorphs of La{sub 2}InSi{sub 2} represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A{sub 2}M′M{sub 2}{sup ″}(M′=In,Sn,Pb;M″=Si,Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr{sub 2}PbGe{sub 2} (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn{sub 2}AlB{sub 2}-type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. Themore » other borderline case, where only [Ge{sub 2}] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca{sub 2}SnGe{sub 2} and Yb{sub 2}SnGe{sub 2} (Mo{sub 2}FeB{sub 2}-type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the A{sup II} cations: Ca{sub 0.45}Sr{sub 1.55}PbGe{sub 2} (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge{sub 6}]. Tetrameric pieces [Ge{sub 4}] are the conspicuous structure elements in Ca{sub 1.16}Sr{sub 0.84}SnGe{sub 2} and La{sub 2}InSi{sub 2} (La{sub 2}InNi{sub 2}-type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of ’La{sub 2}InSi{sub 2}{sup ′} (exact composition: La{sub 2}In{sub 1.07}Si{sub 1.93}, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si{sub 3}] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M′ elements, give insight into the chemical bonding of this series of p-block metallides. An analysis of the band structure for the border phases Sr{sub 2}PbGe{sub 2} and Ca{sub 2}SnGe{sub 2} shows the considerable π bonding contributions within the Ge building units, which also become apparent from the short Ge–Ge bond lengths. - Graphical abstract: Example of one of the mixed metallides A{sub 2}(In/Sn/Pb)(Si/Ge){sub 2} with planar Si/Ge zig-zag chain segments of variable lengths. - Highlights: • Mixed metallides A{sub 2}(In/Sn/Pb)(Si/Ge){sub 2} were prepared for A=Ca, Sr, Yb, La. • The structures exhibit planar Si/Ge zig-zag chain segments of variable lengths. • In, Sn and Pb atoms are connecting the Si/Ge anions to planar nets. • Atomic size effects are investigated by the synthesis of mixed Ca/Sr germanides. • Bandstructure calculations indicate Si/Ge–Si/Ge π bonding contributions.« less

  19. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less

  20. Melting Experiments in the Fe-FeSi System at High Pressure

    NASA Astrophysics Data System (ADS)

    Ozawa, H.; Hirose, K.

    2013-12-01

    The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.

  1. Silicon isotope fractionations in pure Si and Fe-Si systems and their geological implications

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Beard, B. L.; Reddy, T. R.; Roden, E. E.; Johnson, C.

    2016-12-01

    Amorphous Si or Si-bearing materials are ubiquitous in nature, and are likely precursors to various rock types, such as cherts and banded iron formations (BIFs). Si isotope exchange kinetics and fractionation factors between these materials and aqueous Si, however, are poorly constrained, preventing a mechanistic or quantitative understanding of geological δ30Si records. A series of laboratory experiments were conducted to provide better estimates on Si isotope exchange kinetics and fractionation factors. Equilibrium Si isotope fractionation factors between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aq) in artificial Archean seawater (AAS), determined by a three-isotope method with a 29Si tracer, are -2.3‰ where Fe2+ is absent from the solution, and -3.2‰ where Fe2+ is present in the solution[1]. Aqueous Fe2+ catalyzes Si isotope exchange, and causes larger Si isotope fractionation due to incorporation into the solid that may have changed Si bonding. In contrast, our preliminary results show that Δ30Sigel-aq between pure Si gel and aqueous Si at equilibrium is -0.13‰. Ongoing experiments are intended to approach the isotope equilibrium from multiple directions to resolve potential kinetic effects, and to explore temperature dependence. Nonetheless, the contrast in Δ30Sigel-aq between Fe-Si and pure Si systems highlights a significant impact of Fe on Si isotope fractionations. These results have important implications for Si isotopes in Precambrian cherts and BIFs, as well as in weathering systems in general. Silicon isotope fractionation was also studied in experiments that involved dissimilatory iron reduction of Fe(III)-Si gel by Desulfuromonas acetoxidans in AAS[2], and was found to become larger with progression of Fe reduction. A Δ30Sigel-aq of -3.5‰ was observed at 32% reduction of Fe3+. This result explains lower δ30Si values in magnetite-associated quartz that those in hematite-associated quartz in some BIFs. The large Si isotope fractionation produced in the microbial experiment, even larger than that seen in our Fe(II)-bearing abiologic experiments, suggests that δ30Si can be a potential tracer for magnetite of a microbial origin, or, vice versa, for microbial activities in magnetite. [1] Zheng et al., 2016, GCA 187, 102-122. [2] Reddy et al., 2016, GCA 190, 85-99.

  2. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  3. Magnetite as the indicator of ore genesis for the Huangshaping polymetallic deposit, southern Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Ding, T.; Ma, D.; Lu, J.; Zhang, R.

    2017-12-01

    Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these fluids might have undergone large scale circulation, the extraction from Zn-rich metamorphic basement and Mg, Al-rich strata probably have provided abundant Mg, Al, Zn in the hydrothermal fluids where Group-1 magnetites precipitated. As a conclusion, this study suggests that the compositions of magnetites can be the proxies of ore genesis.

  4. Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Guo, Muxing; Pandelaers, Lieven; Blanpain, Bart; Huang, Shuigen

    Slag valorization in added value construction applications can contribute substantially to the sustainability of steel industry. The present work aims to investigate the crystallization behavior of a typical industrial Basic Oxygen Furnace (BOF) slag (CaO-FeOx-SiO2-based slag) by varying the basicity through hot stage engineering. A sample of industry Basic Oxygen Slag (BOF) was mixed with different quantities of silica (SiO2) to modify basicity. The effect of basicity on solidification microstructure and mineralogy was studied. The results suggest that the mineralogy of the solidified slag can be manipulated to enhance its suitability as raw material for construction applications.

  5. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystal structures of (Mg1-x,Fex)SiO3postperovskite at high pressures

    PubMed Central

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L.; Meng, Yue; Ganesh, P.; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J.

    2012-01-01

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg0.9Fe0.1)SiO3 and (Mg0.6Fe0.4)SiO3 at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO3-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm3) than the former (ρ = 5.694(8) g/cm3) due to both the larger amount of iron and the smaller ionic radius of Fe2+ as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe2+ also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe2+ in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. PMID:22223656

  7. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.

  9. Sorption and coprecipitation of trace concentrations of thorium with various minerals under conditions simulating an acid uranium mill effluent environment

    USGS Publications Warehouse

    Landa, Edward R.; Le, Anh H.; Luck, Rudy L.; Yeich, Philip J.

    1995-01-01

    Sorption of thorium by pre-existing crystals of anglesite (PbSO4), apatite (Ca5(PO4)3(HO)), barite (BaSO4), bentonite (Na0.7Al3.3Mg0.7Si8O20(OH)4), celestite (SrSO4), fluorite (CaF2), galena (PbS), gypsum (CaSO4·2H2O), hematite (Fe2O3), jarosite (KFe3(SO4)2(OH)6), kaolinite (Al2O3·2SiO2·2H2O), quartz (SiO2) and sodium feldspar (NaAlSi3O8) was studied under conditions that simulate an acidic uranium mill effluent environment. Up to 100% removal of trace quantitiees of thorim (approx. 1.00 ppm in 0.01 N H2SO4) from solution occurred within 3 h with fluorite and within 48 h in the case of bentonite. Quartz, jarosite, hematite, sodium feldspar, gypsum and galena removed less than 15% of the thorium from solution. In the coprecipitation studies, barite, anglesite, gypsum and celestite were formed in the presence of thorium (approx. 1.00 ppm). Approximately all of the thorium present in solution coprecipitated with barite and celestite; 95% coprecipitated with anglesite and less than 5% with gypsum under similar conditions. When jarosite was precipitated in the presence of thorium, a significant amount of thorium (78%) was incorporated in the precipitate.

  10. Preparation and development of FeS2 Quantum Dots on SiO2 nanostructures immobilized in biopolymers and synthetic polymers as nanoparticles and nanofibers catalyst for antibiotic degradation.

    PubMed

    Gao, Wei; Razavi, Razieh; Fakhri, Ali

    2018-07-15

    The FeS 2 Quantum Dots (QDs) decorated SiO 2 nanostructure were prepared by hydrothermal synthesis method. Chitosan and polypyrrole as polymers were used for the immobilization process. The characteristic structure of prepared samples was analyzed using several techniques such as X-ray diffraction, scanning and transmittance electron microscopy, photoluminescence and UV-vis spectroscopy. The mean crystallite sizes of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids are 56.12, 76.38, and 83.24nm, respectively. The band gap energy of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids were found out to be 3.0, 2.8, and 2.7eV, respectively. The photocatalysis properties were investigated by degradation of ampicillin under UV light illumination. The effect of experimental variables, such as, pH and time, on photo-degradation efficiency was studied. The results show that the three prepared samples nanopowders under UV light was in pH3 at 60min. As it could be seen that the amount of ampicillin degradation was increased with the loading of FeS 2 QDs on SiO 2 and FeS 2 QDs/SiO 2 on chitosan nanoparticles and polypyrrole nanofiber. The antibacterial experiment was investigated under visible light illumination and the FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids demonstrate good antibacterial compared to FeS 2 QDs/SiO 2 nanocomposites. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  12. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  13. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  14. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    PubMed

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  15. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands.

    PubMed

    Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I

    2012-12-14

    Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.

  16. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.

  17. Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Jak, E.

    2018-02-01

    Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+ x Fe12- x O19- x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-"FeO"-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.

  18. Elemental Gains/Losses Associated with Alteration Fractures in an Eolian Sandstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Yen, A. S.; Gellert, R.; Sutter, B.; Berger, J. A.; Thompson, L. M.; Schmidt, M. E.; Morris, R. V.; Treiman, A. H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity has traversed up section through approximately 100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation unconformably overlies a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Unaltered Stimson sandstone has a basaltic composition similar to the average Mars crustal composition, but is more variable and ranges to lower K and higher Al. Fluids passing through alteration "halos" adjacent to fractures have altered the chemistry and mineralogy of the sandstone. Elemental mass gains and losses in the alteration halos were quantified using immobile element concentrations, i.e., Ti (taus). Alteration halos have elemental gains in Si, Ca, S, and P and large losses in Al, Fe, Mn, Mg, Na, K, Ni, and Zn. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes. The igneous phases were less abundant in the altered sandstone with a lower pyroxene/plagioclase feldspar. Large elemental losses suggest acidic fluids initially removed these elements (Al mobile under acid conditions). Enrichments in Si, Ca, and S suggest secondary fluids (possibly alkaline) passed through these fractures leaving behind X-ray amorphous Si and Ca-sulfates. The mechanism for the large elemental gains in P is unclear. The geochemistry and mineralogy of the altered sandstone suggests a complicated diagenetic history with multiple episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).

  19. Characteristics of anthropogenic magnetic materials in roadside dusts in Seoul, Korea using thermo-magnetic behaviors and electron microscope observations

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Park, Y.

    2006-12-01

    It has been previously reported that magnetic concentration parameter (e.g., magnetic susceptibility) has a close affinity with heavy metal concentration in roadside dust of the Seoul metropolitan area. Magnetic concentration and magnetic particle size show systematic seasonal fluctuations (high and large during winter; low and small in summer) because of seasonal influx variation of anthropogenic magnetic materials. These observations suggest that magnetic parameters could be utilized as a proxy method of assessing heavy metal pollution in urban areas. In order to characterize anthropogenic magnetic materials and to find their potential sources, magnetic extracts from roadside dusts of Seoul metropolitan area were subject to SEM observation, elemental analysis (EDS), and thermo-magnetic experiments. Magnetic materials from vehicle emission and abraded brake lining were also observed for the comparison. The magnetic particles can be classified based on the morphology and elemental composition of the particles. Magnetic spherules are the most frequently observed type of particle throughout the study area. These particles are often associated with the elemental C and Al-Ca-Na-Si materials, and are believed to be the product of fossil fuel combustions in power plants, industries, and domestic heating systems. Aggregates of iron-oxides and Fe-C-S materials are probably originated from vehicle emission, while aggregates of pure Fe and Al-Ca-Fe-K-Mg-Si materials appear to be derived from abrasion of motor vehicle brake system. These aggregates are frequently observed in industrial sections of the city as well as areas of heavy traffic. Angular magnetic particles accompanied by silicates are only observed in park area and probably formed by natural process such as pedogenesis or weathering. Thermo-magnetic experiments indicate that the major magnetic phase in the studied samples is magnetite. Two distinctive behaviors observed are the presence of low Curie temperature magnetic phase and under- recover of susceptibility on cooling. It is considered that Fe-C-S magnetic aggregates possibly behaved like pyrrhotite, and thus recognized as low Curie temperature magnetic phase. A factor causing under-recover of susceptibility is attributed to some of magnetic spherules associated with C and Al-Ca-Na-Si materials which possibly behaved like iron-oxide containing impurities. Overall, this study shows that the magnetic methods in conjunction with SEM observations and elemental analyses for urban roadside dust can be used as a powerful tool for assessment of pollution features in an urban area in terms of source and spatial distribution of anthropogenic magnetic materials and associated heavy metals.

  20. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe-oxides. While the chemistry of Atacama coating does not mirror the Gusev coating, the coating formation mechanism may be similar. The Atacama coatings of surface basalt are derived completely from exogenous sources. If surface Mars rocks have experienced limited wetting conditions as in the Atacama, then Mars coatings may be derived only from dissolution of material adhering to rock.

  1. Impact ionisation mass spectrometry of platinum-coated olivine and magnesite-dominated cosmic dust analogues

    NASA Astrophysics Data System (ADS)

    Hillier, Jon K.; Sternovsky, Z.; Kempf, S.; Trieloff, M.; Guglielmino, M.; Postberg, F.; Price, M. C.

    2018-07-01

    Impact ionisation mass spectrometry enables the composition of cosmic dust grains to be determined in situ by spacecraft-based instrumentation. The proportion of molecular ions in the impact plasma is a function of the impact velocity, making laboratory calibration vital for the interpretation of the mass spectra, particularly at the low velocities typical of lunar or asteroid encounters. Here we present an analysis of laboratory impact ionisation mass spectra from primarily low (<15 km s-1) velocity impacts of both olivine and magnesite-dominated particles onto the SUrface Dust Mass Analyzer (SUDA) laboratory mass spectrometer. The cation mass spectra show characteristic peaks due to their constituent elements, with Mg, Al, Si, C, Ca, O and Fe frequently present. Contaminant species from the conductive coating process (B, Na, K, C, Pt) also occur, at varying frequencies. Possible saponite or talc inclusions in the magnesite particles are revealed by the presence of Si, Fe, Ca and Al in the magnesite mass spectra. Magnesium is clearly present at the lowest impact velocities (3 km s-1), at which alkali metals were presumed to dominate. Peaks attributed to very minor amounts of water or hydroxyl present in the grains are also seen at low velocities in both cation and anion mass spectra, demonstrating the feasibility of impact ionisation mass spectrometry in identifying hydrated or hydrous minerals, during very low velocity encounters or with very low abundances of water or hydroxy groups, in the impinging grains. Velocity thresholds for the reliable identification of the major elements within the magnesite and olivine cation spectra are presented. Additionally, relative sensitivity factors for Mg (5.1), Fe (1.5) and O (0.6) with respect to Si, in the olivine particles, at impact speeds >19 km s-1, were found to be very similar to those previously determined for orthopyroxene-dominated particles, despite different target and projectile materials. This confirms that quantitative analyses of mineral dust grain composition in space is viable despite initially poorly-constrained mineralogy.

  2. An Investigation of Facile One-Pot Synthesis of Li2FeSiO4/C Composite for Li Ion Batteries

    NASA Astrophysics Data System (ADS)

    Thirumoolam, Mani Chandran; Manikandan, Ananda Kumar; Sivaramakrishnan, Balaji; Kaluvan, Hariharan; Gowravaram, Mohan Rao

    2018-03-01

    Li2FeSiO4 and its carbon composite are prepared by an urea-assisted combustion method. The synthesis has been carried out in different urea concentrations, namely 1 Molar (M), 2 M and 3 M urea in the cost-effective ambient atmospheric condition. The x-ray diffraction analysis confirms the orthorhombic structure of Li2FeSiO4 compounds. The urea-assisted combustion reaction enhanced the phase purity of the compound and prevented the oxidation of ferrous ions in Li2FeSiO4. The x-ray photo electron spectroscopy analysis further confirmed the reduction of Fe3+ concentration in Li2FeSiO4 while adding urea. The Li2FeSiO4 compound formation in the presence of urea occurred at a temperature < 623 K. The one-pot synthesis of Li2FeSiO4/C with the help of starch and urea in ambient atmospheric condition resulted in Li2FeSiO4 with an orthorhombic crystal structure. The carbon coating in an amorphous nature is observed and the lattice dimension values of Li2FeSiO4/C are 6.248 Å, 5.330 Å, and 5.029 Å. The lattice parameter has remained unchanged with carbon addition. The addition of 5% carbon to Li2FeSiO4 improves the electrical conductivity and lithium diffusion coefficient to 7.24 × 10-4 S cm-1 and 5.54 × 10-6 cm2, respectively. The coulombic efficiency and capacity retention after 50 cycles of Li2FeSiO4/C composite are around 83% and 95%, respectively.

  3. Recycling of iron and silicon from drinking water treatment sludge for synthesis of magnetic iron oxide@SiO₂ composites.

    PubMed

    Meng, Lingyou; Chan, Yingzi; Wang, Han; Dai, Ying; Wang, Xue; Zou, Jinlong

    2016-03-01

    More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe(3+) (acid-leaching) and Si(4+) (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m(2) g(-1)) or Fe2O3@SiO2 (220.9 m(2) g(-1)) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe-O stretching vibration (580 cm(-1)) and asymmetric Si-O-Si stretching vibrations (1080 cm(-1)) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20-150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.

  4. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hard X-ray total scattering study on the structure of Si-dopped ferric oxyhydroxides and products of their transformation

    NASA Astrophysics Data System (ADS)

    Pieczara, Gabriela; Borkiewicz, Olaf; Manecki, Maciej; Rzepa, Grzegorz

    2016-04-01

    Here we report the results of a detailed structural investigation, using synchrotron-based pair distribution function analyses (PDF) and high-resolution X-ray diffraction (HR-XRD), on a series of Si-bearing synthetic analogues of ferrihydrite with a range of Si/Fe ratio relevant to geological environments and on products of their thermal transformation. Hard X-ray total scattering data suitable for PDF analyses have been collected at the PDF-dedicated beamline 11-ID-B and the HR-XRD data at beamline 11-BM of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Ferrihydrite is a poorly crystalline, nano-sized hydrous ferric oxyhydroxide with a nominal/ideal formula Fe5HO8•4H2O. Its chemical composition however, can vary significantly and the atomic structure is yet to be fully understood despite multitude of structural studies undertaken over the past two decades (Michel et al., 2007; Manceau, 2009). One of the most commonly discussed and still unsettled contention points regarding the structural arrangements of ferrihydrite is related to the presence or absence of tetraherdally coordinated iron(III) within its structure. The majority of experimental work carried out to date focused on pure, synthetic ferrihydrite analogues with chemical composition close to ideal/nominal. This approach is clearly a significant oversimplification of natural ferrihydrite which always contains substantial amounts of admixtures, with Si, C, P, As, Ca, S and Al being the most common. One of the most important and the most commonly encountered impurities is Si, in the form of silicate ion that has strong affinity for ferrihydrite. SiO2content in natural ferrihydrites can vary substantially but generally falls with the range of 2.6-31.5 wt% (Cismasu et al., 2011). In certain environments however, such as modern seafloor hydrothermal vents, higher Si/Fe ratios (up to ca. 3) have been reported (Sun et al., 2013). The results of previous reports indicate that silicate ions not only cause decrease in sample crystallinity, inhibits particle growth, modifies morphology, magnetic ordering and solubility but also strongly affect its surface atomic arrangement. Small amount of silica in ferrihydrite increases its stability with respect to transformation into Si-hematite and cristobalite. Structural properties of substituted synthetic ferrihydrite have received increased scientific attention. This study sheds more light on the structural effect of Si in both, ferrihydrite and its annealed products . Cismasu A.C., Michel, F.M., Tcaciuc, A.P., Tyliszczak, T. & Brown JR, G.E. 2011. Composition and structural aspects of naturally occurring ferrihydrite. Comptes Rendus Geoscience, 343, 210-218. Manceau A. 2009. Evaluation of the structural model for ferrihydrite derived from real-space modelling of high-energy X-ray diffraction data. Clay Minerals, 44, 19-34. Michel, F.M., Ehm, L., Anato, S.M., Lee, P.L., Chupas, P.J., LIU, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. & Parise, J.B. 2007. The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726-1728. Sun Z., Zhou H., Glasby G.P., Sun Z., Yang Q., Yin Z. & Li J., 2013. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents. American Mineralogist, 98, 85-97.

  6. METALLICITY DISTRIBUTION FUNCTIONS, RADIAL VELOCITIES, AND ALPHA ELEMENT ABUNDANCES IN THREE OFF-AXIS BULGE FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2013-03-10

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l, b) = (-5.5, -7), (-4, -9), and (+8.5, +9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R Almost-Equal-To 18,000), high signal-to-noise ratio (S/N {approx} 75-300 pixel{sup -1}) spectra obtained with the Hydra spectrographs on the Blanco 4 m and WIYN 3.5 m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affectedmore » by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H] Almost-Equal-To -1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be {approx}0.4 dex kpc{sup -1}; however, comparison with the minor-axis data suggests that a strong radial gradient does not exist. The (+8.5, +9) field exhibits a higher than expected metallicity, with a median [Fe/H] = -0.23, that might be related to a stronger presence of the X-shaped bulge structure along that line-of-sight. This could also be the cause of an anomalous increase in the median radial velocity for intermediate metallicity stars in the (+8.5, +9) field. However, the overall radial velocity and dispersion for each field are in good agreement with recent surveys and bulge models. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si/Fe], and [Ca/Fe] versus [Fe/H] trends are identical among our three fields, and are in good agreement with past bulge studies. We find that stars with [Fe/H] {approx}< -0.5 are {alpha}-enhanced, and that the [{alpha}/Fe] ratios decline at higher metallicity. At [Fe/H] {approx}< 0, the {alpha}-element trends are indistinguishable from the halo and thick disk, and the variations in the behavior of individual {alpha}-elements are consistent with production in massive stars and a rapid bulge formation timescale.« less

  7. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.

    PubMed

    Huang, Ruth; Huang, Kuo-Lin; Lin, Zih-Yi; Wang, Jian-Wen; Lin, Chitsan; Kuo, Yi-Ming

    2013-11-15

    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO4 into CsSiO3. The ingots were mainly composed of Ni (563,000-693,800 mg/kg), Cu (79,900-87,400 mg/kg), and Fe (35,000-43,600 mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  10. Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines

    NASA Astrophysics Data System (ADS)

    Rozhdestvenskaya, I. V.; Setkova, T. V.; Vereshchagin, O. S.; Shtukenberg, A. G.; Shapovalov, Yu. B.

    2012-01-01

    The crystal structures of synthetic tourmalines with a unique composition containing 3 d elements (Ni, Fe, and Co) have been refined: (Ca0.12▭0.88)(Al1.69Ni{0.81/2+}Fe{0.50/2+})(Al5.40Fe{0.60/3+})(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni{1.20/2+}Cr{0.96/3+}Al0.63Fe{0.18/2+}Mg0.03)(Al4.26Ni{1.20/2+}Cr{0.48/3+}Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co{1.20/2+})(Al5.28Co{0.66/2+}Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038-0.057 and wR 2 = 0.041-0.060. It is found that 3 d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.

  11. UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Julian, T.; Suharyadi, E.

    2018-04-01

    The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.

  12. Determining the Differential Emission Measure from EIS, XRT, and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Warren, H.P.; Schmelz, J.

    2010-01-01

    This viewgraph presentation determines the Differential Emission Measure (DEM) from the EUV Imaging Spectrometer (EIS), X Ray Telescope (XRT), and Atmospheric Imaging Array (AIA). Common observations with Fe, Si, and Ca EIS lines are shown along with observations with Al-mesh, Ti-poly Al-thick and Be-thick XRT filters. Results from these observations are shown to determine what lines and filters are important to better constrain the hot component.

  13. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  14. New members of the A2 M ‧ M2″ structure family (A=Ca, Sr, Yb, La; M ‧ = In , Sn , Pb; M ″ = Si , Ge)

    NASA Astrophysics Data System (ADS)

    Jehle, Michael; Dürr, Ines; Fink, Saskia; Lang, Britta; Langenmaier, Michael; Steckhan, Julia; Röhr, Caroline

    2015-01-01

    The new mixed tetrelides Sr2PbGe2 and Yb2SnGe2, several mixed Ca/Sr (AII) germanides A2II (Sn, Pb)Ge2 and two polymorphs of La2 InSi2 represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A2 M ‧ M2″ (M ‧ = In , Sn , Pb ; M ″ = Si , Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr2PbGe2 (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn2AlB2 -type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. The other borderline case, where only [Ge2 ] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca2SnGe2 and Yb2SnGe2 (Mo2FeB2 -type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the AII cations: Ca0.45Sr1.55PbGe2 (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge6 ]. Tetrameric pieces [Ge4 ] are the conspicuous structure elements in Ca1.16Sr0.84SnGe2 and La2 InSi2 (La2InNi2 -type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of 'La2 In Si2‧ (exact composition: La2In1.07Si1.93, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si3 ] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M ‧ elements, give insight into the chemical bonding of this series of p-block metallides. An analysis of the band structure for the border phases Sr2PbGe2 and Ca2SnGe2 shows the considerable π bonding contributions within the Ge building units, which also become apparent from the short Ge-Ge bond lengths.

  15. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    NASA Astrophysics Data System (ADS)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  16. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  17. Representative composition of the Murray Formation, Gale Crater, Mars, as refined through modeling utilizing Alpha Particle X-ray Spectrometer observations

    NASA Astrophysics Data System (ADS)

    VanBommel, Scott; Gellert, Ralf; Berger, Jeff; Desouza, Elstan; O'Connell-Cooper, Catherine; Thompson, Lucy; Boyd, Nicholas

    2017-04-01

    The Murray formation[1] in Gale Crater is distinctly characterized by depleted MgO and CaO, an elevated Fe/Mn ratio, and enrichments in SiO2, K2O, and Ge, compared to average Mars. Supported by observations with Curiosity's Alpha Particle X-ray Spectrometer[2], this pattern is consistent over several kilometers. However, intermixed dust, Ca-, and Mg-sulfates introduce chemical heterogeneities into the APXS field of view. Better constraints on the composition of what is characteristic of the Murray formation is achieved by applying a least-squares deconvolution[3] to a selection of APXS Murray targets. We subtract the composition of known additions (dust[4], MgSO4, CaSO4) to derive a more-representative Murray composition. Slight variations within Murray are then probed by modeling each target as a mixture of dust, sulfates and the derived representative Murray. The derived composition for what is representative of Murray has several key deviations from the straightforward average of Murray targets. The subtraction of known dust, Mg-, and Ca-sulfate additions suggests further depletion in MgO and CaO in Murray and also suggests a significant decrease in SO3 concentration compared to the average of Murray targets. While veins and concretions are contaminants when considering the composition of the bulk rock, the subtraction of Mg- or Ca-sulfate is independent of sulfate form. Sulfates within the bulk rock (detrital or cements) have been observed in the Murray formation. These sulfates are important and discussed further in [5]. Modeling APXS Murray targets as a mixture of dust, MgSO4, CaSO4, and representative Murray, provides insight into potential subtle variations within the surprisingly consistent Murray formation. For example, the high SiO2 in Buckskin, (sol 1057-1091) is not simply a mixture of representative Murray with sulfates and dust. The elevated Ni (and MgSO4) of Morrison (sol ˜775), the elevated Al2O3 of Mojave (sol ˜800-900), and the gradually increasing Fe/Mn ratio (by decreasing Mn with near-constant FeO) all stand out from this modeling. The constant CaO, after the impact of CaSO4 is removed, as well as the steady SiO2, TiO2, and FeO, aside from Buckskin, are also clearly visible. Along the traverse up Mount Sharp, there also is an apparent downward trend in Mn and Zn and an increasing trend in Cl and Br. The chemical homogeneity of the Murray formation encountered at Gale Crater provides an opportunity to test existing algorithms in new ways. This homogeneity along the traverse is a major finding in itself, however, removing signals of known additions and deriving a composition representative of the Murray formation, is important as it permits the potential to detect and quantify faint variations within the Murray formation as Curiosity continues up Mount Sharp. References: [1] Grotzinger et al. (2015) Science, 350 (6257). [2] Gellert and Clark (2015) Elements, 11, 39-44. [3] VanBommel et al. (2016) XRS, 45(3), 155-161. [4] Berger et al. (2016) GRL, 43 67-75. [5] Thompson et al. (2017) LPSC XLVIII 3020. Acknowledgements: This work has been supported by the Canadian Space Agency (CSA) under contract 9F052-14-0592. The MSL APXS is financed and managed by the CSA with MacDonald Dettwiler and Associates as the primary contractor to build the instrument. Funding is provided by the CSA and NASA. Much appreciation goes to JPL for their support, dedication, and invaluable expertise.

  18. Copernicus observations of distant unreddened stars. I. Line of sight to MU Colombae and HD 28497

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J.M.; York, D.G.

    1977-02-01

    Copernicus UV data on interstellar lines toward ..mu.. Col and HD 28497 are analyzed to study the abundances and physical conditions in the many components found in each line of sight. Despite low mean neutral hydrogen densities toward these stars, a substantial portion of the neutral gas is associated with dense condensations containing H/sub 2/. In several high-velocity components, Fe, Ca, and possibly Si appear to be nearer their cosmic abundances than is typical in interstellar gas; this effect may be related to the correlation of N (Ca II)/N (Na I) with cloud velocity, and suggests a grain-disruption model. Low-velocitymore » ionized gas with n/sub e/=0.1 to 0.3 cm/sup -3/ appears to be associated with an extended H II region near ..mu.. Col; ionized gas of similar density is seen at the same velocities as the four neutral components toward HD 28497. Si III absorption, with a wide profile at high negative velocities, unaccompanied by any detectable Si II, N II, or neutral gas, is reported in both stars. The observed Si III column densities and velocity fields may be explained by collisionally ionized gas at 30,000 to 100,000 K behind radiatively cooling strong shocks.« less

  19. Iron Spin Crossover in the New Hexagonal Aluminous (NAL) Phase

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2017-12-01

    The new hexagonal aluminous (NAL) phase, chemical formula AB2C6O12 (A = Na+, K+, Ca2+; B = Mg2+, Fe2+, Fe3+; C = Al3+, Si4+, Fe3+), is considered a major component ( 20 vol%) of mid-ocean ridge basalt (MORB) at lower-mantle conditions. Given that MORB can be transported back into the Earth's lower mantle via subduction, a thorough knowledge of the NAL phase is essential to fully understand the fate of subducted MORB and its role in mantle dynamics and heterogeneity. In this presentation, the complicated spin crossover of the Fe-bearing NAL phase will be discussed based on a series of first-principles calculations [1], in which the local density approximation + self-consistent Hubbard U (LDA+Usc) method was adopted. As revealed by these calculations, only the ferric iron (Fe3+) substituting Al/Si in the octahedral (C) site undergoes a crossover from the high-spin (HS) to the low-spin (LS) state at 40 GPa, while iron substituting Mg in the trigonal-prismatic (B) site remains in the HS state, regardless of its oxidation state (Fe2+ or Fe3+). The volume/elastic anomalies, iron nuclear quadrupole splittings, and crystal field spltting determined by calculations are in great agreement with experiments [2,3]. The calculations further predict that the HS-LS transition pressure of the NAL phase barely increases with temperature due to the three nearly degenerate LS states of Fe3+, suggesting that the elastic anomalies of this mineral can occur at the top lower mantle. [1] H. Hsu, Phys. Rev. B 95, 020406(R) (2017). [2] Y. Wu et al. Earth Planet. Sci. Lett. 434, 91-100 (2016). [3] S. S. Lobanov et al., J. Geophys. Res. Solid Earth 122, 3565 (2017).

  20. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  1. Evidence for Differential Comminution/Aeolian Sorting and Chemical Weathering of Martian Soils Preserved in Mars Meteorite EET79001

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; McKay, David S.

    2004-01-01

    Impact-melt glasses containing Martian atmospheric gases in Mars meteorite EET79001 are formed from Martian soil fines that had undergone meteoroid-comminution and aeolian sorting accompanied by chemical weathering near Mars surface. Using SiO2 and SO3 as proxy for silicates and salts respectively in Mars soils, we find that SiO2 and SO3 correlate negatively with FeO and MgO and positively with Al2O3 and CaO in these glasses, indicating that the mafic and felsic components are depleted and enriched relative to the bulk host (Lith A/B) respectively as in the case of Moon soils. Though the overall pattern of mineral fractionation is similar between the soil fines on Mars and Moon, the magnitudes of the enrichments/depletions differ between these sample-suites because of pervasive aeolian activity on Mars. In addition to this mechanical processing, the Martian soil fines, prior to impact-melting, have undergone acid-sulfate dissolution under oxidizing/reducing conditions. The S03 content in EET79001,507 (Lith B) glass is approx.18% compared to < 2% in EET79001, 506 (Lith A). SiO2 and SO3 negatively correlate with each other in ,507 glasses similar to Pathfinder soils. The positive correlation found between FeO and SO3 in ,507 glasses as well as Pathfinder rocks and soils is consistent with the deposition of ferric-hydroxysulfate on regolith grains in an oxidizing environment. As in the case of Pathfinder soils, the Al 2O3 vs SiO2 positive correlation and FeO VS S102 negative correlation observed in ,507 glasses indicate that SiO2 from the regolith is mobilized as soluble silicic acid at low pH. The large off-set in the end-member FeO abundance ( SO3=0) between Pathfinder soil-free rock and sulfur-free rock in ,507 glass precursors suggests that the soils comprising the ,507 glasses contain much larger proportion of fine-grained Martian soil fraction that registers strong mafic depletion relative to Lith B. This inference is strongly supported by the Al2O3 - SO3 negative correlation observed in both ,507 glasses and pathfinder soils. Furthermore, the flat MgO-SO3 correlation observed in the case of ,507 glasses shows that the solubilized MgSO4 is mobilized by the aqueous solutions leaving behind the rock-residue with approx.2-3% MgO. This value is similar to the approx.2% MgO found for the soil-free rock at the Pathfinder site. The EET79001 ,506 glasses, in contrast, show that Al2O3 and CaO positively correlate with SO3 indicating that Al is precipitated as amorphous hydroxysulfate at relatively high pH. The FeO - SO3 negative correlation observed in ,506 glasses yields an end-member FeO abundance of approx.21% for the sulfur-free rock, which is consistent with the 22% FeO deduced for the Viking soil-free rock. Further, the FeO and MgO negative correlation with S03 observed in ,506 glasses indicates that the divalent Fe and Mg released from ferromagnesian minerals by acid sulfate dissolution are mobilized away from the reaction sites as soluble sulfates under reducing environment. A similar negative correlation between FeO and SO3 and a positive correlation between Al2O3 and SO3 found in Viking soils suggest that they also had undergone acid-sulfate dissolution under relatively reducing conditions.

  2. Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Bian, Xiufang; Yang, Chuncheng; Zhao, Shuchun; Yu, Mengchun

    2017-03-01

    Magnetic Co-Fe-Si-B amorphous nanoparticles were successfully synthesized by chemical reduction method. ICP, XRD, DSC, and TEM were used to investigate the composition, structure and morphology of Co-Fe-Si-B samples. The results show that the Co-Fe-Si-B samples are amorphous, which consist of nearly spherical nanoparticles with an average particle size about 23 nm. VSM results manifest that the saturation magnetization (Ms) of Co-Fe-Si-B samples ranges from 46.37 to 62.89 emu/g. Two kinds of ferrofluids (FFs) were prepared by dispersing Co-Fe-Si-B amorphous nanoparticles and CoFe2O4 nanoparticles in kerosene and silicone oil, respectively. The magnetic properties, stability and viscosity of the FFs were investigated. The FFs with Co-Fe-Si-B samples have a higher Ms and lower coercivity (Hc) than FFs with CoFe2O4 sample. Under magnetic field, the silicone oil-based FFs exhibit high stability. The viscosity of FFs under different applied magnetic fields was measured by a rotational viscometer, indicating that FFs with Co-Fe-Si-B particles present relative strong response to an external magnetic field. The metal-boride amorphous alloy nanoparticles have potential applications in the preparation of magnetic fluids with good stability and good magnetoviscous properties.

  3. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Mansouri, Kamran

    2016-05-01

    In this study, Fe3O4@SiO2-cytarabine magnetic nanoparticles (MNPs) were prepared via chemical coprecipitation reaction and coating silica on the surface of Fe3O4 MNPs by Stöber method via sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an anticancer drug, cytarabine. The structural properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zetasizer analyzer, and transmission electron microscopy (TEM). The results indicated that the crystalline phase of iron oxide NPs was magnetite (Fe3O4) and the average sizes of Fe3O4@SiO2-cytarabine MNPs were about 23 nm. Also, the surface characterization of Fe3O4@SiO2-cytarabine MNPs by FT-IR showed that successful coating of Fe3O4 NPs with SiO2 and binding of cytarabine drug onto the surface of Fe3O4@SiO2 MNPs were through the hydroxyl groups of the drug. The in vitro cytotoxic activity of Fe3O4@SiO2-cytarabine MNPs was investigated against cancer cell line (HL60) in comparison with cytarabine using MTT colorimetric assay. The obtained results showed that the effect of Fe3O4@SiO2-cytarabine magnetic nanoparticles on the cell lines were about two orders of magnitude higher than that of cytarabine. Furthermore, in vitro DNA binding studies were investigated by UV-vis, circular dichroism, and fluorescence spectroscopy. The results for DNA binding illustrated that DNA aggregated on Fe3O4@SiO2-cytarabine MNPs via groove binding. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Template-etching route to construct uniform rattle-type Fe3O4@SiO2 hollow microspheres as drug carrier.

    PubMed

    Cheng, Lin; Liu, Yuanyuan; Zou, Bingfang; Yu, Yong; Ruan, Weimin; Wang, Yongqiang

    2017-06-01

    Template-etching strategy was put forward to synthesize rattle-type magnetic silica (Fe 3 O 4 @SiO 2 ) hollow microspheres in a controlled way. During the experiment, monodisperse Fe 2 O 3 microspheres were fabricated as physical template to generate uniform Fe 2 O 3 @SiO 2 with controlled shell thicknesses through sol-gel method, and the subsequent Fe 2 O 3 template etching process created variable space between Fe 2 O 3 core and SiO 2 shell, and the final calcination process transformed rattle-type Fe 2 O 3 @SiO 2 hollow microspheres into corresponding Fe 3 O 4 @SiO 2 product in hydrogen/nitrogen atmosphere. Compared with traditional physical template, here template-etching synthesis of rattle-type hollow microspheres saved the insertion of middle shells and their removal, which simplified the synthesis process with controllable core size and shell thickness. The rattle-type Fe 3 O 4 @SiO 2 hollow microspheres as drug carrier show efficient doxorubicin (DOX) loading, and the release rate of DOX loaded the rattle-type Fe 3 O 4 @SiO 2 hollow microspheres exhibit a surprising shell-thickness-dependent and a pH responsive drug release features. Additionally, MTT assays in HeLa cells demonstrated that the Fe 3 O 4 @SiO 2 nanocarriers were non-toxic even at the concentration of 250µgmL -1 for 48h. Thus, our results revealed that the Fe 3 O 4 @SiO 2 -DOX could play an important role in the development of intracellular delivery nanodevices for cancer therapy. Copyright © 2017. Published by Elsevier B.V.

  5. Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe 2SiS 4 and Fe 2GeS 4 Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orefuwa, Samuel A.; Lai, Cheng-Yu; Dobson, Kevin D.

    2014-05-12

    Fe 2SiS 4 and Fe 2GeS 4 crystalline materials posses direct bandgaps of ~1.55 and ~1.4 eV respectively and an absorption coefficient larger than 10^5 cm–1; their theoretical potential as solar photovoltaic absorbers has been demonstrated. However, no solar devices that employ either Fe 2SiS 4 or Fe 2GeS 4 have been reported to date. In the presented work, nanoprecursors to Fe 2SiS 4 and Fe 2GeS 4 have been fabricated and employed to build ultra-thin-film layers via spray coating and rod coating methods. Temperature-dependent X-Ray diffraction analyses of nanoprecursors coatings show an unprecedented low temperature for forming crystalline Femore » 2SiS 4 and Fe 2GeS 4. Fabricating of ultra-thin-film photovoltaic devices utilizing Fe 2SiS 4 and Fe 2GeS 4 as solar absorber material is presented.« less

  6. Chapter 1. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Kanagy, Leslie K.; Cree, Mark E.

    2006-01-01

    A new analytical method for the determination of elements in filtered aqueous matrices using inductively coupled plasma-mass spectrometry (ICP-MS) has been implemented at the U.S. Geological Survey National Water Quality Laboratory that uses collision/reaction cell technology to reduce molecular ion interferences. The updated method can be used to determine elements in filtered natural-water and other filtered aqueous matrices, including whole-water, biota, sediment, and soil digestates. Helium or hydrogen is used as the collision or reaction gas, respectively, to eliminate or substantially reduce interferences commonly resulting from sample-matrix composition. Helium is used for molecular ion interferences associated with the determination of As, Co, Cr, Cu, K, Mg, Na, Ni, V, W and Zn, whereas hydrogen is used for Ca, Fe, Se, and Si. Other elements that are not affected by molecular ion interference also can be determined simply by not introducing a collision/reaction gas into the cell. Analysis time is increased by about a factor of 2 over the previous method because of the additional data acquisition time in the hydrogen and helium modes. Method detection limits for As, Ca, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Se, Si (as SiO2), V, W, and Zn, all of which use a collision/reaction gas, are 0.06 microgram per liter (?g/L) As, 0.04 milligram per liter (mg/L) Ca, 0.02 ?g/L Co, 0.02 ?g/L Cr, 0.04 ?g/L Cu, 1 ?g/L Fe, 0.007 mg/L K, 0.009 mg/L Mg, 0.09 mg/L Na, 0.05 ?g/L Ni, 0.04 ?g/L Se, 0.03 mg/L SiO2, 0.05 ?g/L V, 0.03 ?g/L W, and 0.04 ?g/L Zn. Most method detection limits are lower or relatively unchanged compared to earlier methods except for Co, K, Mg, Ni, SiO2, and Tl, which are less than a factor of 2 higher. Percentage bias for samples spiked at about one-third and two-thirds of the concentration of the highest calibration standard ranged from -8.1 to 7.9 percent for reagent water, -14 to 21 percent for surface water, and -16 to 16 percent for ground water. The percentage bias for reagent water spiked at trace-element concentrations of 0.5 to 3 ?g/L averaged 4.4 percent with a range of -6 to 16 percent, whereas the average percentage bias for Ca, K, Mg, Na, and SiO2 was 1.4 percent with a range of -4 to 10 percent for spikes of 0.5 to 3 mg/L. Elemental results for aqueous standard reference materials compared closely to the certified concentrations; all elements were within 1.5 F-pseudosigma of the most probable concentration. In addition, results from 25 filtered natural-water samples and 25 unfiltered natural-water digestates were compared with results from previously used methods using linear regression analysis. Slopes from the regression analyses averaged 0.98 and ranged from 0.87 to 1.29 for filtered natural-water samples; for unfiltered natural-water digestates, the average slope was 1.0 and ranged from 0.83 to 1.22. Tests showed that accurate measurements can be made for samples having specific conductance less than 7,500 microsiemens per centimeter (?S/cm) without dilution; earlier ICP-MS methods required dilution for samples with specific conductance greater than 2,500 ?S/cm.

  7. ESCA studies of the surface chemistry of lunar fines. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1976-01-01

    The paper presents an ESCA analysis based on the use of a synthetic lunar-glass standard that allows determination of the surface composition of lunar samples with an accuracy that appears to be better than 10% of the amount present for all major elements except Ti. It is found that, on the average, grain surfaces in the lunar fines samples 10084 and 15301 are strongly enriched in Si, moderately enriched in Fe, moderately depleted in Al and Ca, and strongly depleted in Mg. This pattern could not be produced by the deposition of any expected meteoritic vapor. Neither could it be produced by simple inverse-mass-dependent element loss during sputtering. It is suggested that at least part of the pattern may be a simple consequence of agglutinate glass formation in the fines since there is some evidence that Si can become enriched on the surface of silicate melts. These results do not support the strong enrichments in Fe on grain surfaces reported from Auger studies.

  8. Coherency strain and precipitation kinetics: crystalline and amorphous nitride formation in ternary Fe-Ti/Cr/V-Si alloys

    NASA Astrophysics Data System (ADS)

    Schwarz, B.; Rossi, P. J.; Straßberger, L.; Jörg, F.; Meka, S. R.; Bischoff, E.; Schacherl, R. E.; Mittemeijer, E. J.

    2014-09-01

    Specimens of iron-based binary Fe-Si alloy and ternary Fe-Me-Si alloys (with Me = Ti, Cr and V) were nitrided at 580 °C in a NH3/H2-gas mixture applying a nitriding potential of 0.1 atm-1/2 until nitrogen saturation in the specimens was attained. In contrast with recent observations in other Fe-Me1-Me2 alloys, no "mixed" (Me1, Me2) nitrides developed in Fe-Me-Si alloys upon nitriding: first, all Me precipitates as MeN; and thereafter, all Si precipitates as Si3N4. The MeN precipitates as crystalline, finely dispersed, nanosized platelets, obeying a Baker-Nutting orientation relationship (OR) with respect to the ferrite matrix. The Si3N4 precipitates as cubically, amorphous particles; the incoherent (part of the) MeN/α-Fe interface acts as heterogeneous nucleation site for Si3N4. The Si3N4-precipitation rate was found to be strongly dependent on the degree of coherency of the first precipitating MeN. The different, even opposite, kinetic effects observed for the various Fe-Me-Si alloys could be ascribed to the different time dependences of the coherent → incoherent transitions of the MeN particles in the different Fe-Me-Si alloys.

  9. [Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing].

    PubMed

    Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu

    2007-03-01

    The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.

  10. The effect of DEB powder processing on thermal cell performance

    NASA Astrophysics Data System (ADS)

    Szwarc, R.; Walton, R. D.

    During the last twenty years, the system Ca/LiCl-KCl-CaCrO4/Fe has provided the basis for thermal batteries designed for military applications. In connection with greater performance demands, investigations are being conducted concerning the effect of catholyte processing on thermal cell performance. The catholyte layer is composed of three components including the depolarizer (D), CaCrO4, the electrolyte (E), LiCl-KCl eutectic, and the binder (B), finely divided SiO2. The catholyte layer or DEB pellets are produced by blending these components, fusing, pulverizing the cake, and hydrostatically pressing the powder into pellets. A description is given of ten powders which were prepared for the reported study. It was found that the procedure used in powder processing affects the capacity, but not its voltage. Increasing the prebake temperature for CaCrO4 from 400 to 600 C resulted in an increase in capacity.

  11. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    NASA Astrophysics Data System (ADS)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis. Electronic supplementary information (ESI) available: Infrared absorption of the raw powders hematite and quartz (section S1), TEM investigation of the spatial distribution of the γ-Fe2O3 inclusions (section S2), particle size distributions of the Fe2O3@SiO2 nanopowder samples (section S3), ζ-potentials of aqueous dispersions of all γ-Fe2O3@SiO2 nanopowder samples (section S4), silanization of Fe2O3@SiO2 composite nanopowders with [3-(2,3-epoxypropoxy)-propyl]trimethoxysilane (section S5), and animation composed of TEM micrographs of Fe2O3@SiO2 NPs recorded at incrementally altered tilt angles (``Rotating Fe2O3@SiO2 NP.avi''). See DOI: 10.1039/c5nr00845j

  12. How to explain Si isotopes of chert?

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    The variations of d30Si values in diagenetic chert and chert- associated BIFs over time can be used to reconstruct the environmental conditions of the early Earth, and become a hot topic in the Si isotope society. However, there are several different views of explaining the variation of d30Si values over time. Moreover, there are disputes in explaining the distribution of Si isotope in several main reservoirs in surface systems. Those disagreements are caused by lacking key Si isotope fractionation factors associated with the formation processes of chert and its altered products. There are many unexplained observations about Si isotope distributions in Earth's surface systems (Opfergelt and Delmelle, 2012). For example, the deduced Si isotope equilibrium fractionation factors by Rayleigh model at ambient temperature between clay and the solution D30Siclay-solution = -1.5 ‰ and -2.05 ‰ (Hughes et al., 2013) obviously disagree with common sense, which dictates that stiffer chemical bonds will enrich heavier isotopes, i.e., the precipitated minerals will preferentially incorporate heavy isotopes relative to aqueous H4SiO4 due to their shorter Si-O bonds. Another similar case is the fractionation between quartz and solution. Most field observations suggested that solution will be enriched with heavier Si isotope compared to quartz, conflicting to the fact that quartz is the one with much shorter Si-O bonds than aqueous H4SiO4 (ca. 1.610Å vs. 1.639Å). Here we provide equilibrium and kinetic Si isotope fractionation factors associated with the formation of amorphous quartz and other secondary minerals in polymerization, co-precipitation and adsorption processes. The adsorption processes of silica gel to Fe-hydroxides have been carefully examined. The Si isotope fractionations due to the formation of mono-dentate to quadru-dentate adsorbed Fe-Si complexes have been calculated. These data can explain well the experimental observations (e.g., Zheng et al., 2016) and provide further insights into such processes. With the knowledge of Si isotope fractionations of those processes, we can quantitatively evaluate the net Si isotope fractionation during the chert formation processes and can link the Si isotope composition of chert to that of seawater from now to early Archean.

  13. Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags

    NASA Astrophysics Data System (ADS)

    Duan, Sheng-chao; Li, Chuang; Guo, Han-jie; Guo, Jing; Han, Shao-wei; Yang, Wen-sheng

    2018-04-01

    The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step (RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide (MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol-1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface" (SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.

  14. Preparation and thermal stability of the spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Niu, Yongan; Li, Yang

    2014-03-15

    The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less

  15. THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu

    2014-04-10

    We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae.more » Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.« less

  16. A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of porcine brain samples

    NASA Astrophysics Data System (ADS)

    Stedman, J. D.; Spyrou, N. M.

    1994-12-01

    The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.

  17. Discovery of composite diopside-magnetite lamellae in discrete olivine crytals from Colorado Plateau diatremes: indication of former hydrous ringwoodite

    NASA Astrophysics Data System (ADS)

    Sakamaki, K.; Sato, Y.; Marshall, E. W., IV; Ogasawara, Y.

    2016-12-01

    We investigate composite diopside (Di) + magnetite (Mt) lamellae in olivine crystals from Oligocene diatremes of serpentinized ultramafic microbreccia located at Buell Park (AZ) and Green Knobs (NM) in the Colorado Plateau, and propose their genesis as breakdown products of precursor hydrous ringwoodite (γ-olivine) lamellae coexisting with α-olivine host. Among a hundred olivines (2-5 mm across, Fo89-93 in mol%) from both localities, the Di + Mt composite lamellae are recognized in only 15 of relatively Fe-rich grains (Fo89-91.5). The olivine host contains minor amounts of Ca (< 0.01 wt% CaO), Mn, Ni, and Co. Lamellar Di (Di95) contains minor amounts of Al, Na, Cr, Mn, and Ni. Lamellar Mt contains Cr (5.0-43.0 wt% Cr2O3) with minor amounts of Si, Ti, Al, Mn, Ni, and Co. The area fractions of olivine host and the lamellae in a typical grain (sample no. BP02-3) were measured at 98.8 % of the host and 1.2 % of the lamellae that are composed of Di:Mt = 85:15 to 53:47, average 66:34. The estimated average CaO content in a lamella reaches 17 wt% and the reintegrated CaO in the host and the lamellae is 0.22 wt%.We propose that Fe3+ in lamellar Mt was produced by dehydration of hydrous precursor phase via the reaction, Fe2+ + OH- = Fe3+ + O2- + 1/2H2. Converting Fe3+ into Fe2+ in the precursor phase based on this reaction, the composition satisfies the stoichiometry of olivine (X2TO4). Thus, the pre-existing phase certainly is of hydrous and contains Ca and other components with olivine stoichiometry. The most likely phase is lamellar hydrous ringwoodite. The precursor phase, hydrous ringwoodite, might have occurred as lamellae with α-olivine host and have probably decomposed by the following reaction, (1+X+Y+Z) hydrous ringwoodite → α-olivine + X Di + Y Mt + Z H2 (where X:Y:Z=2:1:1). The composite Di-Mt lamellae after hydrous ringwoodite lamellae in α-olivine host certainly suggest the materials originated from a deep mantle setting at least 300 km.

  18. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.

  19. Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe3O4/SiO2 Microspheres with Surface Holes for BSA Release

    PubMed Central

    Zhao, Jing; Zeng, Ming; Zheng, Kaiqiang; He, Xinhua; Xie, Minqiang; Fu, Xiaoyi

    2017-01-01

    Thermoresponsive P(NIPAM-AA)/Fe3O4/SiO2 microspheres with surface holes serving as carriers were prepared using p-Fe3O4/SiO2 microspheres with a thermoresponsive copolymer. The p-Fe3O4/SiO2 microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe3O4/SiO2 microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately 60 nm, which are suitable for loading and transporting biological macromolecules. P(NIPAM-AA) was synthesized inside and outside of the p-Fe3O4/SiO2 microspheres via atom transfer radical polymerization of NIPAM, MBA and AA. The volume phase transition temperature (VPTT) of the specifically designed P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 42.5 °C. The saturation magnetization of P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 72.7 emu/g. The P(NIPAM-AA)/Fe3O4/SiO2 microspheres were used as carriers to study the loading and release behavior of BSA. This microsphere system shows potential for the loading of proteins as a drug delivery platform. PMID:28772770

  20. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    PubMed

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  1. Field emission properties of SiO2-wrapped CNT field emitter.

    PubMed

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-05

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  2. Field emission properties of SiO2-wrapped CNT field emitter

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-01

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  3. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  4. The occurrence of chlorine in serpentine minerals

    USGS Publications Warehouse

    Miura, Y.; Rucklidge, J.; Nord, G.L.

    1981-01-01

    Partially serpentinized dunites containing small amounts of Chlorine (< 0.5%) from Dumont, Quebec, and Horoman, Hokkaido, Japan, and one containing less than 0.05% Chlorine from Higashi-Akaishi-Yama, Ehime, Japan have been examined using the electron probe microanalyzer and scanning transmission electron microscope with X-ray analytical capabilities. Chlorine was found together with Si, Mg, Ca and Fe in the serpentine minerals of the Dumont and Hokkaido dunites but not in the Ehime dunite. Chlorine is found associated only with the most finely crystalline facies of the serpentine (grain size less than 10 nm). The Ehime dunite contained no such fine grained serpentine, and was thus effectively chlorine-free, as are the coarser grained serpentines of the other samples. The finegrained chlorine-bearing serpentine also has a much higher concentration of Fe, and can contain smaller amounts of Ca, Ni and Mn than the coarse-grained variety as well as minute awaruite (FeNi3) grains. This fine-grained serpentine probably represents an early stage in the transformation of olivine to serpentine, with chlorine from hydrothermal solutions assisting the necessary chemical changes. The Cl increases the reaction rate by lowering the activation barrier to reaction by the introduction of reaction steps. ?? 1981 Springer-Verlag.

  5. Compression of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  6. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  7. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  8. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  9. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  10. The 3R polymorph of CaSi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedumkandathil, Reji; Benson, Daryn E.; Grins, Jekabs

    The Zintl phase CaSi{sub 2} commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA′BB′CC′ fashion. In this study we show that sintering of CaSi{sub 2} in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 °C transforms 6R-CaSi{sub 2} quantitatively into 3R-CaSi{sub 2}. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi{sub 2}. First principles density functional calculations reveal that 6R and 3R-CaSi{sub 2} aremore » energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi{sub 2} stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi{sub 2} should revert to 6R at elevated temperatures, which however is not observed up to 800 °C. 3R-CaSi{sub 2} may be stabilized by small amounts of incorporated hydrogen and/or defects. - Graphical abstract: The common 6R form of CaSi{sub 2} can be transformed quantitatively into 3R-CaSi{sub 2} upon sintering in a hydrogen atmosphere. - Highlights: • Quantitative and reproducible bulk synthesis of the rare 3R polymorph of CaSi{sub 2}. • Clarification of the energetic relation between 3R and conventional 6R form. • 3R-CaSi{sub 2} is presumably stabilized by small amounts of incorporated hydrogen and/or defects.« less

  11. Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Imoto, Junpei; Ochiai, Asumi; Furuki, Genki; Suetake, Mizuki; Ikehara, Ryohei; Horie, Kenji; Takehara, Mami; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Law, Gareth T W; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi

    2017-07-14

    Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79-780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs' origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi 2 O 6  · nH 2 O, CsMPs are comprised mainly of Zn-Fe-oxide nanoparticles in a SiO 2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn-Fe-oxide). The 235 U/ 238 U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn-Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form.

  12. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    NASA Astrophysics Data System (ADS)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach application to silicate slags. Metall. Trans. B, 17, 805-815. [5] A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin and Y. Dessureault (2000) The modified quasichemical model - I Binary solutions. Metall. Mater. Trans. B, 31, 651-660. [6] C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen. (2002) FactSage Thermochemical Software and Databases. Calphad, 26, 189-228.

  13. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  14. Effects of hydrogen fugacity and confining pressure on the interdiffusion rate of NaSi-CaAl in plagioclase

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.; Snow, Eleanour

    1989-08-01

    Average? values for NaSi-CaAl interdiffusion in the compositional interval from An0 to An26 have been determined at 1000°C by the method of lamellar homogenization. At 1500 MPa confining pressure (P), ? increases 1 order of magnitude (5.0×10-21 to 4.0×10-20 m2/s) for 4 orders of magnitude increase in hydrogen fugacity (0.029, Mn3O4-Mn2O3 buffer, to 197 MPa, FeO-Fe3O4 buffer). At constant hydrogen fugacity (fH2), ? increases rapidly at low pressure and becomes nearly independent of P above 1000 MPa. (For fH2 = 0.1 MPa, ? = 2.8 × 10-22 m2/s at P = 0.1 MPa, 5.0 × 10-21 at P = 500, 1.3×10-20 at P = 1000, and 1.4×10-20 at P = 1500). The dependence of ? on increasing pressure, when a hydrogen-related species is present, is believed to be due to an increase in the concentration of the structural defect associated with increase in the hydrogen impurity. In most crustal igneous rocks, which are internally buffered near quartz-fayalite-magnetite, the dependence of ? on fH2 is relatively minor compared to the effect of confining pressure.

  15. Phase relations in the Fe-FeSi system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-07-01

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  16. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    NASA Astrophysics Data System (ADS)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  17. Kinetics and equilibrium adsorption study of selenium oxyanions onto Al/Si and Fe/Si coprecipitates.

    PubMed

    Chan, Y T; Liu, Y T; Tzou, Y M; Kuan, W H; Chang, R R; Wang, M K

    2018-05-01

    Inappropriate treatments for the effluents from semiconductor plants might cause the releases and wide distributions of selenium (Se) into the ecosystems. In this study, Al/Si and Fe/Si coprecipitates were selected as model adsorbents as they often formed during the wastewater coagulation process, and the removal efficiency of selenite (SeO 3 ) and selenate (SeO 4 ) onto the coprecipitates were systematically examined. The removal efficiency of SeO 3 and SeO 4 was highly related to surface properties of Al/Si and Fe/Si coprecipitates. The surface-attached Al shell of Al/Si coprecipitates shielded a portion of negative charges from the core SiO 2 , resulting in a higher point of zero charge than that of Fe/Si coprecipitates. Thus, adsorption of SeO 3 /SeO 4 was favorable on the Al/Si coprecipitates. Adsorptions of both SeO 3 and SeO 4 on Al/Si coprecipitates were exothermic reactions. On Fe/Si coprecipitates, while SeO 3 adsorption also showed the exothermic behavior, SeO 4 adsorption occurred as an endothermic reaction. The kinetic adsorption data of SeO 3 /SeO 4 on Al/Si and Fe/Si coprecipitates were described well by the pseudo-second-order kinetic model. SeO 4 and SeO 3 adsorption on Fe/Si or Al/Si were greatly inhibited by the strong PO 4 ligand, whereas the weak ligand such as SO 4 only significantly affected SeO 4 adsorption. The weakest complex between SeO 4 and Al was implied by the essentially SeO 4 desorption as SeO 4 /PO 4 molar ratios decreased from 0.5 to 0.2. These results were further confirmed by the less SeO 4 desorption (41%) from Fe/Si coprecipitates than that from Al/Si coprecipitates (78%) while PO 4 was added sequentially. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  19. The composition, structure, and stability of guinier-preston zones in lunar and terrestrial orthopyroxene

    USGS Publications Warehouse

    Nord, G.L.

    1980-01-01

    Lunar and terrestrial orthopyroxenes (Mg,Fe,Ca)2Si2O6 contain varying abundances of coherent, Ca-enriched Guinier-Preston (G.P.) zones. G.P. zones 5-6 unit cells thick have been found in one lunar sample whereas all other examples (lunar and terrestrial) are only one unit-cell-thick. Electron diffraction maxima from the larger lunar G.P. zones indicate that d100=18.52 A?? whereas, d100=18.2 A?? for the host. This increase in the a direction corresponds to an increase in calcium content in the G.P. zones over that of the host of ???25 mol% Ca2Si2O6. Diffraction patterns of the hk0 net from an area containing G.P. zones show extra spots (h=2 n+1) not observed in the host orthopyroxene (Pbca), that violate the a-glide of the host. The G.P. zones, therefore, have space group Pbc21 if it is assumed that the c-glide of pyroxene is retained and the space group of the G.P. zone is a subgroup of Pbca. The loss of the a-glide in the G.P. zones results in 4 distinct silica chains and 4 distinct cation sites M1A, M1B, M2A, M2B; by symmetry, equivalent M2A or M2B sites are clustered together in only one-half of the unit cell. As one-fourth of the divalent cations in the G.P. zones are calcium, ordering of Ca on M2A or M2B would produce a zone 9 A?? thick extended parallel to (100) with the composition of Ca(Mg,Fe)Si2O6, but constrained by the host to the structure of orthopyroxene. This zone and the Ca-poor half-unit-cell then constitute an 18 A?? thick G.P. zone. Heating experiments of varying duration indicate that the zones become unstable with respect to the host orthopyroxene at ???950??C for Wo0.6 and ???1,050??C for Wo2.5. The zones are interpreted in terms of the pyroxene subsolidus as a metastable phase having either a solvus relationship with orthopyroxene or originating as a distinct phase. The size, distribution, composition and structure of G.P. zones may be an important indicator of the low-temperature thermal history of orthopyroxene. ?? 1980 Springer-Verlag.

  20. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0 30 kbar

    NASA Astrophysics Data System (ADS)

    Putirka, K.; Johnson, Marie; Kinzler, Rosamond; Longhi, John; Walker, David

    1996-02-01

    Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8 30 kbar and 1100 1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6) diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73-0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] -0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=-54.3+299* T104+36.4* T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0 25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures.

  1. First-principles study of magnetism, lattice dynamics, and superconductivity in LaFeSiHx

    NASA Astrophysics Data System (ADS)

    Hung, Linda; Yildirim, Taner

    2018-06-01

    The structural, electronic, magnetic, and vibrational properties of LaFeSiHx for x between 0 and 1 are investigated using density functional theory calculations. We find that the electronic and magnetic properties are strongly controlled by the hydrogen concentration x in LaFeSiHx. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiHx for x ≤0.75 is not magnetic within the virtual crystal approximation or with explicit doping of supercells. The antiferromagnetic configuration breaks the symmetry of Fe d orbitals and increases electron-phonon coupling up to 50 % , especially for modes in the 20-50 meV range that are associated with Fe atomic movement. We find competing nearest and next-nearest-neighbor exchange interactions and significant spin-phonon coupling, qualitatively similar but smaller in magnitude compared those found in LaOFeAs superconductors. Hence, it is likely that the mechanism of superconductivity for LaFeSiHx is, like that of LaOFeAs, also unconventional. We furthermore suggest that LaFeSiHx could be a good proton conductor due to phase stability with a wide range of hydrogen concentrations x <1 .

  2. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE PAGES

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  3. Elemental compositions of two extrasolar rocky planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Klein, B.

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted ontomore » G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.« less

  4. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  5. High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C; Pinkerton, FE; Herbst, JF

    2015-01-15

    We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.

  6. Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients.

    PubMed

    Ju, Shuming; Wang, Liping; Yin, Ningning; Li, Dan; Wang, Yukun; Zhang, Cuiying

    2017-11-01

    Silicon (Si) has been a modulator in plants under abiotic stresses, such as acid rain. To understand how silicon made an effect on rice (Oryza sativa L.) exposed to simulated acid rain (SAR) stress, the growth, physiologic activity, and mineral nutrient content in leaves of rice were investigated. The results showed that combined treatments with Si (1.0, 2.0, or 4.0 mM) and SAR (pH 4.0, 3.0, or 2.0) obviously improved the rice growth compared with the single treatment with SAR. Incorporation of Si into SAR treatment decreased malondialdehyde (MDA) content; increased soluble protein and proline contents; promoted CAT, POD, SOD, and APX activity; and maintained the K, Ca, Mg, Fe, Zn, Cu content balance in leaves of rice seedlings under SAR stress. The moderate concentration of Si (2.0 mM) was better than the low and high concentration of Si (1.0 and 4.0 mM). Therefore, application of Si could be a better strategy for maintaining the crop productivity in acid rain regions.

  7. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbonsmore » produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.« less

  8. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.

    PubMed

    Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun

    2015-10-07

    A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.

  9. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  10. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE PAGES

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; ...

    2018-01-09

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  11. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  12. Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective

    PubMed Central

    Verboom, William H.; Pate, John S.; Aspandiar, Mehrooz

    2010-01-01

    Background and Aims A previous paper (Annals of Botany 103: 673–685) described formation of clayey pavements in lateral root catchments of eucalypts colonizing a recently formed sand dune in south-west Western Australia. Here chemical and morphological aspects of their formation at the site are studied. Methods Chemical and physical examinations of soil cores through pavements and sand under adjacent heath assessed build-up of salts, clay and pH changes in or below pavements. Relationships of root morphology to clay deposition were examined and deposits subjected to scanning electron microscopy and energy-dispersive X-ray analysis. Xylem transport of mineral elements in eucalypt and non-eucalypt species was studied by analysis of xylem (tracheal) sap from lateral roots. Key Results The columns of which pavements are composed develop exclusively on lower-tier lateral roots. Such sites show intimate associations of fine roots, fungal filaments, microbiota and clay deposits rich in Si, Al and Fe. Time scales for construction of pavements by eucalypts were assessed. Cores through columns of pavemented profiles showed gross elevations of bulk density, Al, Fe and Si in columns and related increases in pH, Mg and Ca status in lower profiles. A cutting through the dune exhibited pronounced alkalinity (pH 7–10) under mallee woodland versus acidity (pH 5–6·5) under proteaceous heath. Xylem sap analyses showed unusually high concentrations of Al, Fe, Mg and Si in dry-season samples from column-bearing roots. Conclusions Deposition of Al–Fe–Si-rich clay is pivotal to pavement construction by eucalypts and leads to profound chemical and physical changes in relevant soil profiles. Microbial associates of roots are likely to be involved in clay genesis, with parent eucalypts supplying the required key mineral elements and carbon sources. Acquisition of the Al and Fe incorporated into clay derives principally from hydraulic uplift from ground water via deeply penetrating tap roots. PMID:19897459

  13. Melting relations in the Fe-S-Si system at high pressure and temperature: implications for the planetary core

    NASA Astrophysics Data System (ADS)

    Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa

    2017-12-01

    The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.

  14. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Yang, Shaogui; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-01

    A novel microwave (MW) catalyst, MgFe2O4 loaded on SiC (MgFe2O4-SiC), was successfully synthesized by sol-gel method, and pure MgFe2O4 was used as reference. The MgFe2O4 and MgFe2O4-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe2O4-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe2O4-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe2O4-SiC indicated that degradation efficiency of DB BN (20 mg L-1) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe2O4-SiC obviously decreased. The good stability and applicability of MgFe2O4-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation of DB BN demonstrated that the C-S, C-N and azo bonds in the DB BN molecule were destroyed gradually. MW-induced rad OH and holes could be responsible for the efficient removal involved in the system. These findings make MgFe2O4-SiC become an excellent MW absorbent as well as an effective MW catalyst with rapid degradation of DB BN. Therefore, it may be promising for MgFe2O4-SiC under MW radiation to deal with various dyestuffs and other toxic organic pollutants.

  15. Compression of Fe-Si-H alloys to core pressures

    NASA Astrophysics Data System (ADS)

    Tagawa, Shoh; Ohta, Kenji; Hirose, Kei; Kato, Chie; Ohishi, Yasuo

    2016-04-01

    We examined the compression behavior of hexagonal-close-packed (hcp) (Fe0.88Si0.12)1H0.61 and (Fe0.88Si0.12)1H0.79 (in atomic ratio) alloys up to 138 GPa in a diamond anvil cell (DAC). While contradicting experimental results were previously reported on the compression curve of double-hcp (dhcp) FeHx (x ≈ 1), our data show that the compressibility of hcp Fe0.88Si0.12Hx alloys is very similar to those of hcp Fe and Fe0.88Si0.12, indicating that the incorporation of hydrogen into iron does not change its compression behavior remarkably. The present experiments suggest that the inner core may contain up to 0.47 wt % hydrogen (FeH0.26) if temperature is 5000 K. The calculated density profile of Fe0.88Si0.12H0.17 alloy containing 0.32 wt % hydrogen in addition to geochemically required 6.5 wt % silicon matches the seismological observations of the outer core, supporting that hydrogen is an important core light element.

  16. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, A.J.; Campbell, J.H.

    1998-02-17

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  17. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  18. Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, D.; Cunha, K.; García-Hernández, D. A.

    2017-02-01

    We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ( R ∼ 22,500) H -band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H{sub 2}O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities:more » [Fe/H]{sub Kepler-138} = −0.09 ± 0.09 dex and [Fe/H]{sub Kepler-186} = −0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55±0.10 for Kepler-138 and 0.52±0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.« less

  19. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, H.E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (49.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios. ?? 2009 The Mineralogical Society.

  20. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, Harvey E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (≤9.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios

  1. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Metal insulator transition in nickel substituted FeSi

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Mishra, Ashish; Singh, Durgesh; Venkatesh, R.; Gangrade, Mohan; Ganesan, V.

    2018-04-01

    Resistivity of Fe1-xNixSi has been reported. Metal Insulator transition (MIT) is observed in Nickel (Ni) substituted FeSi for x in the range from 2 to 4 percentage. Two Band Model has been employed in order to calculate activation energy and to predict how band structure renormalized with substitution of nickel in FeSi. At sufficient level of nickel concentration an impurity band forms around Fermi level and contributes to the conduction heavily at low temperatures. Concentration around x = 0.04, displays metallic property below ˜ 70 K and is quantitatively similar to systems like Fe1-xTxSi (T = Co, Mn). Metallic component thus derived from Ni substituted FeSi seems to have an unconventional temperature dependence that may be attributed to the onset of departures from Fermi liquid picture.

  3. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.

    PubMed

    Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki

    2014-01-01

    We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.

  4. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  5. The Type Ic SN 2007gr: a census of the ejecta from late-time optical-infrared spectra

    NASA Astrophysics Data System (ADS)

    Mazzali, Paolo A.; Maurer, I.; Valenti, S.; Kotak, R.; Hunter, D.

    2010-10-01

    Nebular spectra of supernovae (SNe) offer an unimpeded view of the inner region of the ejecta, where most nucleosynthesis takes place. Optical spectra cover most, but not all, of the emitting elements and therefore offer only a partial view of the products of the explosion. Simultaneous optical-infrared spectra, on the other hand, contain emission lines of all important elements, from C and O through to the intermediate mass elements (IME) Mg, Si, S, Ca and to Fe and Ni. In particular, Si and S are best seen in the IR. The availability of IR data makes it possible to explore in greater detail the results of the explosion. SN2007gr is the first Type Ic SN for which such data are available. Modelling the spectra with a non-local thermodynamic equilibrium (NLTE) code reveals that the inner ejecta contain ~1Msolar of material within a velocity of ~4500kms-1. The same mass of 56Ni derived from the light-curve peak (0.076Msolar) was used to power the spectrum, yielding consistent results. Oxygen is the dominant element, contributing ~0.8Msolar. The C/O ratio is <0.2. IME account for ~0.1Msolar. This confirms that SN2007gr was the explosion of a low-mass CO core, probably the result of a star of main-sequence mass ~15Msolar. The ratios of the CaII lines, and those of FeII, are sensitive to the assumed degree of clumping. In particular, the optical lines of [FeII] become stronger, relative to the IR lines, for higher degrees of clumping.

  6. Ca Addition Effects on the Microstructure, Tensile and Corrosion Properties of Mg Matrix Alloy Containing 8 wt.% Mg2Si

    NASA Astrophysics Data System (ADS)

    Lotfpour, M.; Emamy, M.; Dehghanian, C.; Pourbahari, B.

    2018-02-01

    The microstructure, tensile properties and corrosion behavior of the Mg-8 wt.% Mg2Si-x%Ca alloy have been studied by the use of optical microscopy, scanning electron microscopy equipped with energy-dispersive spectroscopy, x-ray diffraction, standard tensile testing, polarization test and electrochemical impedance spectroscopy (EIS) measurements. Microstructural studies indicated that Ca modifies both primary and eutectic Mg2Si phase. It was found that the average size of primary Mg2Si particles is about 60 μm, which is dropped by about 82% in the alloy containing 0.05 wt.% Ca. By the addition of different Ca contents, Ca-rich intermetallics (i.e., CaSi2 and CaMgSi) were formed. The modification mechanism of adding Ca during solidification was found to be due to the strong effect of CaMgSi phase as a heterogonous nucleation site, apart from CaSi2 which was reported before, for Mg2Si intermetallics. Tensile testing results ascertained that Ca addition enhances both ultimate tensile strength (UTS) and elongation values. The optimum amount of Ca was found to be 0.1 wt.%, which improved UTS and elongation values from about 130 MPa and 2% to 165 MPa and 5.5%, whereas more Ca addition (i.e., 3 wt.%) reduced the tensile properties of the alloy to about 105 MPa and 1.8%, which can be due to the formation of CaMgSi intermetallics with deteriorating needle-like morphology. Polarization and EIS tests also showed that the Mg-3%Si-0.5%Ca alloy pronounces as the best anti-corrosion alloy. Nevertheless, further added Ca (up to 3 wt.%) deteriorated the corrosion resistance due to predominance of worse galvanic coupling effect stemmed from the presence of stronger CaMgSi cathode in comparison with Mg2Si. With higher Ca additions, an adverse effect was seen on corrosion resistance of the Mg-3%Si alloy, as a result of forming a weak film on the alloy specimen surface.

  7. Spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO tunnel contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Mizue, E-mail: mizue.ishikawa@toshiba.co.jp; Sugiyama, Hideyuki; Inokuchi, Tomoaki

    2015-08-31

    We investigate spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co{sub 2}FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co{sub 2}FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ∼1000 mV in which themore » increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co{sub 2}FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.« less

  8. Coupled extremely light Ca and Fe isotopes in peridotites

    NASA Astrophysics Data System (ADS)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  9. The thermal expansion of (Fe1-y Ni y )Si.

    PubMed

    Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G

    2017-08-23

    We have measured the thermal expansion of (Fe 1-y Ni y )Si for y  =  0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.

  10. Implantation of Fe3O4 Nanoparticles in Shells of Au@m-SiO2 Yolk@Shell Nanocatalysts with Both Improved Recyclability and Catalytic Activity.

    PubMed

    Li, Yanan; Jin, Chenjing; Yuan, Ganyin; Han, Jie; Wang, Minggui; Guo, Rong

    2017-08-01

    Multifunctional nanocatalysts of Au@Fe 3 O 4 /m-SiO 2 yolk@shell hybrids had been developed through a template-assisted synthesis, where Fe 3 O 4 nanoparticles (∼12 nm) and m-SiO 2 shells were sequentially assembled on surfaces of Au/SiO 2 core/shell templates, followed by selective etching of the inner SiO 2 cores, leading to the formation of Au@Fe 3 O 4 /m-SiO 2 yolk@shell hybrids. The Fe 3 O 4 nanoparticles were implanted in the inner surfaces of m-SiO 2 shells with partially exposed surfaces to the inner cavity. The novel design not only ensures a high surface area (540.0 m 2 /g) and saturation magnetization (48.6 emu/g) of the hybrids but also enables interaction between Au and Fe 3 O 4 nanoparticles. Catalytic tests toward the reduction of 4-nitrophenol in the presence of NaBH 4 indicated that Au@Fe 3 O 4 /m-SiO 2 yolk@shell nanocatalysts not only showed high stability and recyclability but also maintained improved catalytic activity as a result of the synergetic effect resulting from Au and Fe 3 O 4 interactions.

  11. A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells.

    PubMed

    Su, Xiaoqian; Chan, Chunyu; Shi, Jingyu; Tsang, Ming-Kiu; Pan, Yi; Cheng, Changming; Gerile, Oudeng; Yang, Mo

    2017-06-15

    A novel graphene quantum dot (GQD)@Fe 3 O 4 @SiO 2 based nanoprobe was reported for targeted drug delivery, sensing, dual-modal imaging and therapy. Carboxyl-terminated GQD (C-GQD) was firstly conjugated with Fe 3 O 4 @SiO 2 and then functionalized with cancer targeting molecule folic acid (FA). DOX drug molecules were then loaded on GQD surface of Fe 3 O 4 @SiO 2 @GQD-FA nanoprobe via pi-pi stacking, which resulted in Fe 3 O 4 @SiO 2 @GQD-FA/DOX conjugates based on a FRET mechanism with GQD as donor molecules and DOX as acceptor molecules. Meanwhile, we successfully performed in vitro MRI and fluorescence imaging of living Hela cells and monitored intracellular drug release process using this Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe. Cell viability study demonstrated the low cytotoxicity of Fe 3 O 4 @SiO 2 @GQD-FA nanocarrier and the enhanced therapeutic efficacy of Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe for cancer cells. This luminomagnetic nanoprobe will be a potential platform for cancer accurate diagnosis and therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Computer simulation of CaSiO3 glass under compression: correlation between Si-Si pair radial distribution function and intermediate range order structure

    NASA Astrophysics Data System (ADS)

    Lan, Mai Thi; Thuy Duong, Tran; Iitaka, Toshiaki; Van Hong, Nguyen

    2017-06-01

    The structural organization of CaSiO3 glass at 600 K and under pressure of 0-100 GPa is investigated by molecular dynamics simulation (MDS). Results show that the atomic structure of CaSiO3 comprises SiO n and CaO m units considered as basic structural polyhedra. At low pressure, most of the basic structural polyhedra are SiO4, CaO5, CaO6 and CaO7. At high pressure most of the basic structural polyhedra are SiO5, SiO6 and CaO9, CaO10 and CaO11. The distribution of basic structural polyhedra is not uniform resulting in formation of Ca-rich and Si-rich regions. The distribution of SiO4, SiO5 and SiO6 polyhedra is also not uniform, but it tends to form SiO4-, SiO5-, and SiO6-clusters. For the Si-O network, under compression there is a gradual transition from the tetrahedral network (SiO4) to the octahedral network (SiO6) via SiO5 polyhedra. The SiO5-clusters are the same as immediate-phase in the transformation process. The size and shape of SiO4 tetrahedra change strongly under compression. While the size of SiO5 and SiO6 has also changed significantly, but the shape is almost unchanged under compression. The SiO n polyhedra can connect to each other via one common oxygen ion (corner-sharing bond), two common oxygen ions (edge-sharing bond) or three common oxygen ions (face-sharing bond). The Si-Si bond length in corner-sharing bonds is much longer than the ones in edge-sharing and face-sharing bonds. The change of intermediate range order (IRO) structure under compression relating to edge- and face-sharing bonds amongst SiO n at high pressure is the origin of the first peak splitting of the radial distribution functions of Si-Si pair. Under compression, the number of non-bridging oxygen (NBO) decreases. This makes the Si-O network more polymerized. At low pressure, most of the Ca2+ ions incorporate into the Si-O network via NBOs. At high pressure, the amount of NBO decreases, Ca2+ ions mainly incorporate into the Si-O network via bridging oxygen (BO) that belongs to SiO5 and SiO6 with a negative charge. And this is the principle for immobilization of heavy metal as well as fissile materials in hazardous waste (nuclear waste).

  13. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  14. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermicmore » enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy barely forms amorphous phase, which, in turn, leads to high V{sub f} and resultant high B{sub s}.« less

  15. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  16. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.

    PubMed

    Zheng, Jinmin; Dong, Yalei; Wang, Weifeng; Ma, Yanhua; Hu, Jing; Chen, Xiaojiao; Chen, Xingguo

    2013-06-07

    In this work, a facile approach was successfully developed for in situ catalyzing Au nanoparticles loaded on Fe3O4@SiO2 magnetic nanospheres via Sn(2+) linkage and reduction. After the Fe3O4@SiO2 MNPs were first prepared via a sol-gel process, only one step was needed to synthesize the Fe3O4@SiO2-Au magnetic nanocomposites (Fe3O4@SiO2-Au MNCs), so that both the synthesis step and the reaction cost were remarkably decreased. Significantly, the as-synthesized Fe3O4@SiO2-Au MNCs showed high performance in the catalytic reduction of 4-nitrophenol to 4-aminophenol and could be reused for several cycles with convenient magnetic separability. This approach provided a useful platform based on Fe3O4@SiO2 MNPs for the fabrication of Au or other noble metal magnetic nanocatalysts, which would be very useful in various catalytic reductions.

  17. Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.

    2017-08-01

    P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.

  18. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  19. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Lützenkirchen-Hecht, D.

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-raymore » photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.« less

  20. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH.

    PubMed

    Tahervand, Samaneh; Jalali, Mohsen

    2016-06-01

    The sorption, desorption, and speciation of cadmium (Cd), nickel (Ni), and iron (Fe) in four calcareous soils were investigated at the pH range of 2-9. The results indicated that sorption of Fe by four soils was higher than 80 % at pH 2, while in the case of Cd and Ni was less than 30 %. The most common sequence of metal sorption at pH 2-9 for four soils was in the order of Fe ≫ Ni > Cd. Cadmium and Ni sorption as a function of pH showed the predictable trend of increasing metal sorption with increase in equilibrium pH, while the Fe sorption trend was different and characterized by three phases. With regard to the order of Cd, Ni, and Fe sorption on soils, Cd and Ni showed high affinity for organic matter (OM), whereas Fe had high tendency for calcium carbonate (CaCO3). Results of metal desorption using 0.01 M NaCl demonstrated that metal sorption on soils containing high amounts of CaCO3 was less reversible in comparison to soils containing high OM. In general, Cd and Ni desorption curves were characterized by three phases; (1) the greatest desorption at pH 2, (2) the low desorption at pH 3-7, and (3) the least desorption at pH > 7. The MINTEQ speciation solubility program showed that the percentage of free metals declined markedly with increase of pH, while the percentage of carbonate and hydroxyl species increased. Furthermore, MINTEQ predicted that saturation index (SI) of metals increased with increasing pH.

  1. Where was the Iron Synthesized in Cassiopeia A?

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2003-01-01

    We investigate the properties of Fe-rich knots on the east limb of the Cassiopeia A supernova remnant observed with Chandra/AXAF CCD Imaging Spectrometer (ACIS). Using analysis methods developed in a companion paper, we constrain the ejecta density profile and the Lagrangian mass coordinates of the knots from their fitted ionization age and electron temperature. Fe-rich knots which also have strong emission from Si, S, Ar, and Ca are clustered around mass coordinates q approx. equal to 0.35 - 0.4 in the shocked ejecta of 2 solar masses; this places them 0.7 - 0.8 solar masses out from the center (or 2 - 2.1 solar masses, allowing for the mass of a compact object). We also find an Fe clump that is evidently devoid of line emission from lower mass elements, as would be expected for a region that had undergone alpha-rich freeze out. This clump has a similar mass coordinate to the other Fe knots.

  2. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  3. Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition

    NASA Technical Reports Server (NTRS)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.

  4. Melting phase relations in the MgSiO3-CaSiO3 system at 24 GPa

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuichi; Zhou, Youmo; Irifune, Tetsuo

    2017-12-01

    The Earth's lower mantle is composed of bridgmanite, ferropericlase, and CaSiO3-rich perovskite. The melting phase relations between each component are key to understanding the melting of the Earth's lower mantle and the crystallization of the deep magma ocean. In this study, melting phase relations in the MgSiO3-CaSiO3 system were investigated at 24 GPa using a multi-anvil apparatus. The eutectic composition is (Mg,Ca)SiO3 with 81-86 mol% MgSiO3. The solidus temperature is 2600-2620 K. The solubility of CaSiO3 component into bridgmanite increases with temperature, reaching a maximum of 3-6 mol% at the solidus, and then decreases with temperature. The same trend was observed for the solubility of MgSiO3 component into CaSiO3-rich perovskite, with a maximum of 14-16 mol% at the solidus. The asymmetric regular solutions between bridgmanite and CaSiO3-rich perovskite and between MgSiO3 and CaSiO3 liquid components well reproduce the melting phase relations constrained experimentally. [Figure not available: see fulltext.

  5. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Fitria, D.; Ardiansah, B.; Rahayu, D. U. C.

    2017-04-01

    A novel heterogeneous organobase catalyst of Fe3O4/SiO2-guanidine was prepared in three stages. First, Fe3O4 nanoparticle was obtained by co-precipitation method using seaweed Sargassum Sp. as natural reductant. Fe3O4 was then coated by SiO2 using TEOS as silica source, resulting Fe3O4/SiO2. Finally, Fe3O4/SiO2-Guanidine was obtained by modifying Fe3O4/SiO2 with guanidine in the suitable reaction condition. This organobase catalyst was characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Particle Size Analyzer (PSA). The material was then used as a highly active catalyst in aldol condensation reaction between acetophenone and cinnamaldehyde to produce 1,5-diphenylpenta-2,4-dien-1-one. The structure elucidation of the organic product was confirmed by UV-Vis, FTIR, and LC-MS.

  6. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO2-CaO-MgO-Al2O3 molten slag at 1723 K.

    PubMed

    Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z

    2017-06-21

    Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.

  7. Variations in the abundance of iron on Mercury's surface from MESSENGER X-Ray Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Solomon, Sean C.

    2014-06-01

    We present measurements of Mercury's surface composition from the analysis of MESSENGER X-Ray Spectrometer data acquired during 55 large solar flares, which each provide a statistically significant detection of Fe X-ray fluorescence. The Fe/Si data display a clear dependence on phase angle, for which the results are empirically corrected. Mercury's surface has a low total abundance of Fe, with a mean Fe/Si ratio of ˜0.06 (equivalent to ˜1.5 wt% Fe). The absolute Fe/Si values are subject to a number of systematic uncertainties, including the phase-angle correction and possible mineral mixing effects. Individual Fe/Si measurements have an intrinsic error of ˜10%. Observed Fe/Si values display small variations (significant at two standard deviations) from the planetary average value across large regions in Mercury's southern hemisphere. Larger differences are observed between measured Fe/Si values from more spatially resolved footprints on volcanic smooth plains deposits in the northern hemisphere and from those in surrounding terrains. Fe is most likely contained as a minor component in sulfide phases (e.g., troilite, niningerite, daubréelite) and as Fe metal, rather than within mafic silicates. Variations in surface reflectance (i.e., differences in overall reflectance and spectral slope) across Mercury are unlikely to be caused by variations in the abundance of Fe.

  8. Low Temperature Reaction Experiments Between Basalt, Seawater and CO2, and Implications for Carbon Dioxide Sequestration in Deep-Sea Basalts

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Teagle, D. A. H.; Matter, J. M.

    2015-12-01

    Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.

  9. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    PubMed

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity.

  10. Mechanisms of iron-silica aqueous interaction and the genesis of Precambrian iron formation

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Catalano, J. G.; Moynier, F.; Pringle, E. A.

    2015-12-01

    Iron formations (IFs), Fe- and Si-rich chemical sediments common in Precambrian successions, preserve key information about the compositional, biological, and oxidative evolution of the Precambrian ocean. Stable Si isotopes (δ30Si) of IF have been used to infer paleo-oceanic composition, and secular variations in δ30Si may reflect ancient biogeochemical cycles. The δ30Si of primary Fe-Si precipitates that formed IF depends not only on the δ30Si of aqueous silica but also on the precipitation mechanism. Multiple formation mechanisms for these primary precipitates are plausible. Aqueous Si may have adsorbed on newly precipitated iron oxyhydroxide surfaces; alternatively, Fe and Si may have coprecipitated as a single phase. Here we explore variations in the Si isotope fractionation factor (ɛ) with Fe-Si aqueous interaction mechanism (adsorption vs. coprecipitation). In adsorption experiments, sodium silicate solutions (pH 8.1, 125-2000 µM Si) were reacted with iron oxide particles (hematite, ferrihydrite, goethite, and magnetite) for 24 to 72 hours. Resultant solutions had δ30Si between 0 and +6‰. Calculated ɛ varied significantly with oxide mineralogy and morphology. For ferrihydrite, ɛ = -1.7‰; for hematite, ɛ = -2 to -5‰, depending on particle morphology. Apparent ɛ decreased upon surface site saturation, implying a smaller isotope effect for polymeric Si adsorption than monomeric adsorption. In coprecipitation experiments, solutions of Na-silicate and Fe(II) chloride (0.4-10 mM) were prepared anaerobically, then air-oxidized for 3 days to induce precipitation. At low Si concentrations, magnetite formed; near silica saturation, lepidocrocite and ferrihydrite formed. The Si isotope fractionation factor for coprecipitation was within the range of ɛ observed for adsorption (ɛ = -2.3 ± 1.0‰). These results indicate that the mechanism of Fe-Si interaction affects ɛ, presumably due to varying silicate coordination environments. These isotopic analyses will be paired with Si K-edge and Fe K-edge X-ray absorption spectra of the solids to illustrate how Si bonding environment affects ɛ. Effective reconstruction of paleo-oceanic δ30Si may require additional constraints on the relative importance of Si adsorption and Fe-Si coprecipitation in the production of IF primary precipitates.

  11. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro

    2010-07-13

    We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.

  12. Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton

    NASA Astrophysics Data System (ADS)

    Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.

    2016-11-01

    We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.

  13. Effects of Fe2O3 on the properties of ceramics from steel slag

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhao, Li-hua; Wang, Ya-kun; Cang, Da-qiang

    2018-04-01

    Ferric oxide is one of the key factors affecting both the microstructure and the properties of CaO-MgO-SiO2-based ceramics. Research on this effect is significant in the utilization of iron-rich solid wastes in ceramics. Ceramic samples with various Fe2O3 contents (0wt%, 5wt%, and 10wt%) were prepared and the corresponding physical properties and microstructure were studied. The results indicated that Fe2O3 not only played a fluxing role, but also promoted the formation of crystals. Ceramics with 5wt% of Fe2O3 addition attained the best mechanical properties with a flexural strength of 132.9 MPa. Iron ions were dissolved into diopside, consequently causing phase transformation from diopside and protoenstatite to augite, thereby contributing to the enhancement of its properties. An excess amount of Fe2O3 addition (10wt% or more) resulted in deteriorated properties due to the generation of an excess volume of liquid and the formation of high-porosity structures within ceramics.

  14. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  15. Robust diamond-like Fe-Si network in the zero-strain Na xFeSiO 4 cathode

    DOE PAGES

    Ye, Zhuo; Zhao, Xin; Li, Shouding; ...

    2016-07-14

    Sodium orthosilicates Na 2 MSiO 4 ( M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na 2FeSiO 4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.

  16. The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering

    NASA Astrophysics Data System (ADS)

    McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.

    2000-03-01

    β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.

  17. High-silica glass inclusions in olivine of Luna-24 samples

    NASA Technical Reports Server (NTRS)

    Roedder, E.; Weiblen, P. W.

    1977-01-01

    Optical examination of nine polished grain mounts of Luna-24 drill-core material (0.09-0.50 mm size) revealed melt inclusions in olivine crystals. Two inclusions consist of clear glass with exceptionally high Si, yet contain no visible daughter minerals and have had no reaction effects with the olivine walls. Their compositions (one has SiO2 93.8, Al2O3 1.51, FeO 2.32, MgO 1.61, CaO 0.06, Na2O less than 0.05, K2O 0.11, total 99.41%; the other is similar) are unique and quite unlike the high-Si high-K melt of granitic composition that is found as inclusions in late-stage minerals of these (and the Apollo) samples, from silicate liquid immiscibility. The host olivines are Fo73 and Fo51. The origin of the melt in the inclusions and the lack of reaction effects are perplexing unsolved problems.

  18. New structure of high-pressure body-centered orthorhombic Fe 2SiO 4

    DOE PAGES

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki; ...

    2015-08-01

    Here, a structural change in Fe 2SiO 4 spinel and the structure of a new high pressure phase are determined by Rietveld 26 profile fitting of x-ray diffraction data up to 64 GPa at ambient temperature. The compression curve of the spinel is discontinuous at approximately 20 GPa. Fe Kβ x-ray emission measurements at high pressure show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe 2SiO 4) with space group Imma and Z=4 was observed at approximately 34 GPa. The structure of I-Fe 2SiO 4 has two crystallographically distinct FeO 6 octahedra, which are arranged in layers parallel to (101) and (011) and are very similar to the layers of FeO 6 octahedra that constitute the spinel structure. Silicon also exists in six-fold coordination in I-Fe 2SiO 4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A Martensitic transformation of each slab of the spinel structure with translation vector [more » $$\\vec{1/8}$$ $$\\vec{1/8}$$ $$\\vec{1/8}$$] generates the I-Fe 2SiO 4 structure. Laser heating of I-Fe 2SiO 4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO 2 stishovite.« less

  19. Interpreting Assemblages with Titanite (Sphene): It Does not have to be Greek to You.

    NASA Technical Reports Server (NTRS)

    Xirouchakis, Dimitrios M.; Lindsley, Donald H.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Assemblages with titanite, pyroxene(s), olivine, ilmenite, magnetite, and quartz can be used to constrain the intensive and compositional variables that operate during crystallization. Such assemblages are relatively rare in metamorphic rocks, but they are more common in igneous rocks and more frequently reported in plutonic than volcanic rocks. We used the program QUILF, enhanced with thermodynamic data for titanite, to compute stable reactions among titanite (CaTiOSiO4), Fe-Mg-Ti ilmenite and magnetite (hereafter ilmenite and magnetite), Ca-Mg-Fe pyroxenes and olivine, and quartz, and to evaluate some of the factors that control titanite stability. Calculations at 1, 3, and 6 Kbar and 650, 850, 1100 0 C, in the system CaO - MgO - FeO Fe2O3 - TiO2 - SiO2, suggest that the reactions: Augitc + Ilmenite = Titanite + Magnetite + Quartz and Augite + Ilmenite + Quartz = Titanite + Orthopyroxene, impose well defined fugacity of O2, alpha(sub SiO2), , and compositional restrictions to the assemblages: (1) Titanite + Magnetite + Quartz, (2) Titanite + Orthopyroxene, (3) Augite + Ilmenite, and consequently titanite stability. From our calculations in this system we can draw the following general conclusions: (1) The assemblage Titanite + Magnetite + Quartz is always a good indicator of relatively high fugacity of O2, and it is likely more common in relatively iron-rich bulk compositions and for decreasing temperature and pressure conditions. (2) At high temperatures (>= 650 C) titanite is not stable in quartz-saturated rocks that contain the assemblage Orthopyroxene + Augite + Ilmenite + Magnetite. (3) In quartz-saturated rocks the coexistence of titanite and magnetite with either orthopyroxene or olivine requires a confluence of conditions relating bulk composition, fugacity of O2, and slow cooling. Thus, such assemblages must be rare. (4) Regardless of T and fugacity of O2 conditions, and bulk-composition, titanite is not stable in quartz-absent rocks that contain Olivine + Orthopyroxene + Augite + Ilmenite + Magnetite. Decreasing temperature and pressure conditions appear to favor titanite crystallization, thus, it is not unsurprising that titanite is frequently observed in slowly cooled rocks, albeit, in association with amphibole. We argue that the titanite + amphibole association is likely favored by high water activity, regardless of oxygen fugacity. Because water activity increases during crystallization of a pluton, the association titanite + amphibole, and consequently titanite, is likely to be more common in plutonic rocks than in volcanic rocks.

  20. Effect of Fe substitution on the structural, magnetic and electron-transport properties of half-metallic Co 2TiSi

    DOE PAGES

    Jin, Y.; Waybright, J.; Kharel, P.; ...

    2017-01-11

    The structural, magnetic and electron-transport properties of Co 2Ti 1-xFe xSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investigated. The rapidly quenched Co 2Ti 0.5Fe 0.5Si crystallized in the cubic L2 1 structure whereas Co 2Ti 0.75Fe 0.25Si and Co 2TiFe 0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie temperature increased from 360 K for Co 2TiSi to about 800 K for Co 2Ti 0.5Fe 0.5Si. The measured magnetization also increased due to partial substitution of Fe for Ti atoms. The ribbons are moderately conductingmore » and show positive temperature coefficient of resistivity with the room temperature resistivity being between 360 μΩcm and 440 μΩcm. The experimentally observed structural and magnetic properties are consistent with the results of first-principle calculations. Our calculations also indicate that the Co 2Ti 1-xFe xSi compound remains nearly half-metallic for x ≤ 0.5. In conclusion, the predicted large band gaps and high Curie temperatures much above room temperature make these materials promising for room temperature spintronic and magnetic applications.« less

  1. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  2. A discussion on improving hydration activity of steel slag by altering its mineral compositions.

    PubMed

    Wang, Qiang; Yan, Peiyu; Feng, Jianwen

    2011-02-28

    This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.

    2017-03-01

    LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.

  4. Esperance: Multiple episodes of aqueous alteration involving fracture fills and coatings at Matijevic Hill, Mars

    USGS Publications Warehouse

    Clark, Benton C.; Morris, Richard V.; Herkenhoff, Kenneth E.; Farrand, William H.; Gellert, Ralf; Jolliff, Bradley L.; Arvidson, Raymond E.; Squyres, Steven W.; Mittelfehldt, David W.; Ming, Douglas W.; Yen, Albert S.

    2016-01-01

    In the search for evidence of past aqueous activity by the Mars Exploration Rover Opportunity, fracture-filling veins and rock coatings are prime candidates for exploration. At one location within a segment of remaining rim material surrounding Endeavour Crater, a set of “boxwork” fractures in an outcrop called Esperance are filled by a bright, hydrated, and highly siliceous (SiO2 ~ 66 wt%) material, which has overall a montmorillonite-like chemical composition. This material is partially covered by patches of a thin, dark coating that is sulfate-rich (SO3 ~ 21 wt%) but also contains significant levels of Si, Fe, Ca, and Mg. The simultaneous presence of abundant S, Si, and Fe indicates significant mineralogical complexity within the coating. This combination of vein and coating compositions is unlike previous analyses on Mars. Both materials are heterogeneously eroded, presumably by eolian abrasion. The evidence indicates at least two separate episodes of solute precipitation from aqueous fluids at this location, possibly widely separated in time. In addition to the implications for multiple episodes of alteration at the surface of the planet, aqueous chemical environments such as these would have been habitable at the time of their formation and are also favorable for preservation of organic material.

  5. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    NASA Astrophysics Data System (ADS)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  6. Ultra-reduced phases in Apollo 16 regolith: Combined field emission electron probe microanalysis and atom probe tomography of submicron Fe-Si grains in Apollo 16 sample 61500

    NASA Astrophysics Data System (ADS)

    Gopon, Phillip; Spicuzza, Michael J.; Kelly, Thomas F.; Reinhard, David; Prosa, Ty J.; Fournelle, John

    2017-09-01

    The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. ; Spicuzza et al. ). Additional examples of Fe-silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X-ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe-Si and Si0 minerals in lunar regolith return material. The new Fe-Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.

  7. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    NASA Astrophysics Data System (ADS)

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  8. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  9. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  10. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  11. Surface-structural Control on Minor Element Zoning and Growth Mechanism in Synthetic Magmatic Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Deakin, M.; Baker, D. R.

    2006-12-01

    Because in situ observations of actively growing surfaces are technically impractical, our understanding of crystal growth mechanisms at hydrothermal and magmatic conditions lags behind that of minerals that can be grown from aqueous solutions at or near room temperature. Growing silicate minerals from hydrous synthetic carbonate melts offers the opportunity to relate directly minor element incorporation to their surface microtopography. Natural hydrothermal diopside was used to seed experiments in which synthetic clinopyroxene crystals were grown at 800 degrees C and 10 kbars for 24 hours, from alkaline melts modelled after the lavas of the Tanzanian volcano Oldoinyo Lengai. The melts were prepared from Na2CO3, K2CO3, CaCO3, MgCO3 and Fe3O4 reagents. One run was anhydrous and the others contained either 2.5 or 5 wt. % H2O. Euhedral tabular crystals ranging in size from 100 to 300 ìm across were found in all three runs, hand-picked and freed from their carbonate matrix by overnight immersion in dilute acetic acid. The crystals consist of \\{110\\} prism, \\{100\\} and \\{001\\} pinacoids and a \\{111\\} dipyramid. AFM images resolved a distinct surface microtopography on each form: arrays of broad macrosteps on \\{100\\}, lens- shaped islands on \\{001\\} facets and striated fiber-like crystallites on \\{110\\}. EMP analyses of polished grain mounts show that compositional zoning of Na and Fe occurs not only among non-equivalent growth sectors but also within single \\{100\\} sectors. Electron microprobe maps of sequentially polished sections indicate that zoning within \\{100\\} sectors reflects differential uptake of Na and Fe on symmetrically non-equivalent steps. Near the crystal surface, the non- equivalent coeval vicinal faces of growth hillocks on \\{100\\} are either diopside-like, Na.007Ca1.00(Mg0.754Fe2+0.22Mn2+0.013Al_{0.003)Si2.00O6 , or acmitic, Ca0.63Na0.35(Mg0.64Fe3+ 0.36)Al0.01Si1.99O6 in composition. Step-specific incorporation of minor elements in a clinopyroxene face has only been documented once, in a hydrothermal diopside from Orford (Quebec), where Fe(II) and Mn(II) were differentially incorporated on steps oriented parallel to [010] on \\{100\\} faces. This natural example and our synthetic crystals reflect growth regimes where minor element incorporation was limited by surface-structural kinetics rather than diffusion- controlled kinetics. Such step-specific surface-structural control has never been reported in clinopyroxenes grown from silicate melts. Is it present, but more subtle, or do silicate melts promote a significantly different growth regime? Comparing zoning patterns in synthetic silicates grown from carbonate versus silicate melts could put new constraints on current models of element partitioning.

  12. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Chukanov, Nikita V.; Aksenov, Sergey M.; Mazur, Anton S.; Avdontseva, Evgenia Yu; Shilovskikh, Vladimir V.; Krivovichev, Sergey V.

    2017-12-01

    Alumovesuvianite (IMA 2016-014), ideally Ca19Al(Al,Mg)12Si18O69(OH)9, is a new vesuvianite-group member found in the rodingite zone at the contact of a gabbroid rock with host serpentinite in the abandoned Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. It occurs as prismatic tetragonal crystals up to 4 × 4 × 6 mm3 in size encrusting walls of cavities in a granular diopside. Associated minerals are diopside, grossular and prehnite. Single crystals of alumovesuvianite are transparent colorless or light pink with a vitreous lustre. The dominant crystal forms are {100}, {110}, {210}, {111}, {101} and {001}. The Mohs hardness is 6.5. The specific gravitiy is D meas = 3.31(1) g/cm3 and D calc = 3.36 g/cm3, respectively. The mineral is optically uniaxial (-), ω = 1.725(2), ɛ = 1.722(2). The chemical composition, determined by SEM-WDS (wavelength-dispersive spectroscopy on a scanning electron microscope; all oxides except H2O) and TG (thermogravimety; H2O) analysis, is: SiO2 37.1 wt%, Al2O3 18.8 wt%, CaO 36.6 wt%, MgO 2.48 wt%, Mn2O3 0.67 wt%, Fe2O3 0.22 wt%, H2O 2.61 wt%, total 98.5 wt%. The empirical formula based on 19 Ca atoms per formula unit and taking into account the MAS-NMR (magic-angle spinning nuclear magnetic resonance) data, is: Ca19.00(Al0.92Fe3+ 0.08)Σ1.00(Al9.83Mg1.80Mn3+ 0.25)Σ11.88Si17.98O69.16(OH)8.44. The most intense IR absorption bands lie in the ranges 412-609, 897-1024, and 3051-3671 cm-1. The eight strongest lines of the powder X-ray diffraction pattern are ( I-d(Å)- hkl): 22-2.96-004, 100-2.761-432, 61-2.612-224, 25-2.593-600, 20-1.7658-831, 20-1.6672-734, 21-1.6247-912, and 22-1.3443-880. Alumovesuvianite is tetragonal, space group P4/ n, unit-cell parameters refined from the powder data are a = 15.5603(5) Å, c = 11.8467(4) Å, V = 2868.3(4) Å3, Z = 2. The crystal structure has been refined to R 1 = 0.036 for 3098 unique observed reflections with | F o| ≥ 4σ F . The structure refinement provides the < Y1A-O > bond length of 1.916 Å and the scattering factor for the Y1 site of 16 e - , which is in good agreement with the total occupancy of this site as (Al0.73Mn3+ 0.20Fe3+ 0.07)Σ1.00 and is confirmed by the 27Al MAS NMR data. Alumovesuvianite is a new member of the vesuvianite group with Al3+ as a dominant cation in the Y1 site. The name alumovesuvianite is given to highlight the species-defining role of Al.

  13. Experimental study and thermodynamic modeling of the phase relation in the Fe-S-Si system with implications for the distribution of S and Si in a partially solidified core

    NASA Astrophysics Data System (ADS)

    Tao, R.; Fei, Y.

    2017-12-01

    Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.

  14. Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix.

    PubMed

    Fuentes-García, J A; Diaz-Cano, A I; Guillen-Cervantes, A; Santoyo-Salazar, J

    2018-03-23

    Currently, superparamagnetic functionalized systems of magnetite (Fe 3 O 4 ) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe 3 O 4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe 3 O 4 NPs in silicon dioxide (SiO 2 ) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe 3 O 4 NPs (6-17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO 2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe 3 O 4 NPs dispersion was sampled in the range of 2-12 h to observe the SiO 2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe 3 O 4 in SiO 2 matrix. Low magnetization (M s ) of 0.001 emu and a coercivity (H c ) of 24.75 Oe indicate that the embedded SSD Fe 3 O 4 in amorphous SiO 2 reduces the M s by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe 3 O 4 of 1.2 nm on average embedded in SiO 2 matrix with uniaxial anisotropy response according to Fe 3+ and Fe 2+ electron spin coupling and rotation by intrinsic Neél contribution.

  15. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  16. Study on the Anti-Poison Performance of Al-Y-P Master Alloy for Impurity Ca in Aluminum Alloys.

    PubMed

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-11-26

    In this article, the anti-poison performance of novel Al-6Y-2P master alloy for impurity Ca in hypereutectic Al-Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al-6Y-2P master alloy, types of Al-xSi-2Ca-3Y-1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al-2Ca-3Y-1P alloy. With the increase of Si content in Al-xSi-2Ca-3Y-1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al-6Y-2P master alloy for hypereutectic Al-18Si alloys.

  17. Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture

    PubMed Central

    Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua

    2017-01-01

    Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622

  18. A Resumable Fluorescent Probe BHN-Fe3O4@SiO2 Hybrid Nanostructure for Fe3+ and its Application in Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng

    2017-12-01

    A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.

  19. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  20. Chemical Composition of lower Mount Sharp at Gale Crater, Mars, as measured by the APXS

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Perrett, G. M.; Desouza, E.; Thompson, L. M.; Yen, A. S.; Berger, J. A.

    2015-12-01

    From sol 810 through to 950 the MSL Curiosity Rover carried out detailed investigations at Pahrump, which likely represents the lowest strata of Mount Sharp. The bulk chemistry is very different compared to previously encountered formations like Sheepbed at Yellowknifebay, which resembled an average Mars composition. The bedrock is significantly depleted in Mg and Ca, elevated in Al and Si and enriched in Zn (~2000 ppm), Se (~50 ppm) and Pb(~100 ppm). The composition varies only slightly over the ~10 meter elevation explored at Pahrump and is chemically homogenous on a 10 cm scale. However, some clear trends uphill are present. Zn and Se decrease with elevation, the Fe/Mn ratio, a possible indicator for the Fe3+ content, increases from 50 to 100. Elevated 2.5% P2O5 were encountered at higher elevations. SO3 ranges from 5 to 8% in the drill samples, higher abundances were found in Ca-sulfate veins and diagenetic features that contain ~15% (Mg,Ni)-sulfates. The Pahrump bedrock may be traced ~500m to the north and south. Bonanza King (sol 755, Hidden Valley) and Spokane (sol 989) share the same major chemistry, including similar trends in minor and trace elements. Most recently the rover approached a contact between Pahrump-like bedrock and an overlying, more resistant unit identified from orbit at Marias Pass. High SiO2, ranging from 63 to 72%, was found close to the contact, above which the sandstone composition changes abruptly to that of average Mars. Increased Si is correlated with elevated P and Ti, lower Al and Fe, and a dramatic decrease in Zn, Ni and Cr to very low values of a few 100 ppm and less. The elevated silica and associated elemental trends observed at Marias Pass share characteristics with the high silica bedrock examined at HomePlate in Gusev Crater, where acidic leaching or silica mobilization has been proposed. The stratigraphy together with data from 4 drill samples for SAM and Chemin might shed light on the formation history of this extensive facies at the base of Mount Sharp.

  1. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount of Cu and Mo mineralization having addition of Si and K with removal of Fe, Mg, Ca, and Na. Keywords: Mass balance calculation; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey

  2. Chemo-stratigraphy in the Murray Formation Using ChemCam

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Anderson, R. B.; Bridges, N.; Bridges, J.; Calef, F. J., III; Clegg, S. M.; Le Deit, L.; Fisk, M. R.; Forni, O.; Gasnault, O.; Kah, L. C.; Kronyak, R. E.; Lanza, N.; Lasue, J.; Mangold, N.; Maurice, S.; Milliken, R.; Ming, D. W.; Nachon, M.; Newsom, H. E.; Rapin, W.; Stack, K.; Sumner, D. Y.; Wiens, R. C.

    2015-12-01

    Curiosity has completed a detailed chemo-stratigraphy analysis at the Pahrump exposure of the Murray formation. In total >570 chemical measurements and supporting remote micro images to classify texturally were collected. Chemical trends with both stratigraphic position and with texture were evaluated. From these data emerges a complex aqueous history where sediments have interacted with fluids with variable chemistry in distinct episodes. The ChemCam data collected at the nearby "Garden City" (GC) vein complex provides constraints on the chemical evolution of the Pahrump. GC is thought be stratigraphically above the Pahrump outcrop. Fluids producing the veins likely also migrated through the Pahrump sediments. Multiple episodes of fluids are evident at GC, forming distinct Ca sulfate, F-rich, enhanced MgO, and FeO-rich veins. These different fluid chemistries could be the result of distinct fluids migrating through the section from a distance with a pre-established chemical signature, fluids locally evolved from water rock interactions, or both. Texturally rocks have been classified into two distinct categories: fine grained or as cross-bedded sandstones. The sandstones have significantly lower SiO2, Al2O3, and K2O and higher FeO, and CaO. Fine grained rocks have further been sub-classified as resistant and recessive with other textural features such as laminations and pits noted.The strongest chemical trend in the fine-grained sandstones shows enhancements in MgO and FeO in erosion-resistant materials compared to fine grained recessive units, suggesting that increased abundance of Mg- and/or iron-rich cements may provide additional strength. The MgO and FeO variations with texture are independent of stratigraphic locations (e.g resistant material at both the bottom and top of the outcrop both are enhanced in MgO and FeO). The presence of the GC MgO and FeO rich veins provides additional evidence for fluids rich in these elements were present in the outcrop. Other elemental trends results including SiO2, Al2O3, K2O and Na2O will be explored in addition to key trace element signatures such as Li, Cr and F to understand the chemical evolution of the outcrop.

  3. Microstructure and degradation behavior of forged Fe-Mn-Si alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Hodgson, Michael A.; Cao, Peng

    2015-03-01

    This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.

  4. EPR measurement of the effect of glass composition on the oxidation states of europium

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Haskin, L. A.

    1974-01-01

    An investigation was conducted concerning the dependence of the concentration ratio of Eu(2+) to Eu(3+) on composition for silicate liquids whose compositional end members are CaAl2Si2O8 and MgSiO3, MG2SiO4, CaMgSi2O6, CaMgSiO4, CaSiO3, or Ca2SiO4. The liquids were quenched to produce glasses. An electron paramagnetic resonance spectrometer was used to determine the concentration ratios of Eu(2+) to Eu(3+) in the glasses.

  5. Improvement on controllable fabrication of streptavidin-modified three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background.

    PubMed

    Jiang, Hongrong; Zeng, Xin; Xi, Zhijiang; Liu, Ming; Li, Chuanyan; Li, Zhiyang; Jin, Lian; Wang, Zhifei; Deng, Yan; He, Nongyue

    2013-04-01

    In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning electronic microscope (SEM), energy dispersive spectrometer analysis (EDS), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and ultraviolet and visible spectrophotometer (UV-Vis). TEM and SEM characterizations showed that the FeO4@SiO2@Au nanocomposites were obtained successfully with three-layer structures, especially a layer of thin, smooth and continuous gold shell. The average diameter of Fe3O4@SiO2@Au nanocomposites was about 600 nm and an excellent dispersity was observed for the as-prepared nanoparticles. EDS characterizations demonstrated that the nanocomposites contained three elements of the precursors, Fe, Si, and Au. Furthermore, FT-IR showed that the silica and gold shell were coated successfully. UV-Vis and VSM characterizations showed that the Fe3O4@SiO2@Au nanocomposites exhibited good optical and magnetic property, and the saturation magnetization was 25.76 emu/g. In conclusion, the Fe3O4@SiO2@Au magnetic nanocomposites with three-layer core-shell structures were prepared. Furthermore, Fe3O4@SiO2@Au magnetic nanocomposites were modified with streptavidin (SA) successfully, and it was validated that they performed low fluorescence background, suggesting that they should have good applications especially in bioassay based on fluorescence detection through bonding the biotinylated fluorescent probes.

  6. Refractory Abundances of Terrestrial Planets and Their Stars: Testing [Si/Fe] Correlations with TESS and PLATO

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Fortney, Jonathan

    2018-01-01

    In standard models for planet formation, solid material in protoplanetary disks coagulate and collide to form rocky bodies. It therefore seems reasonable to assume that their chemical composition will follow the abundances of refractory elements, such as Si and Fe, in the host star, which has also accreted material from the disk. Backed by planet formation simulations which validate this assumption, planetary internal structure models have begun to use stellar abundances to break degeneracies in low-mass planet compositions inferred only from mass and radius. Inconveniently, our own Solar System contradicts this approach, as its terrestrial bodies exhibit a range of rock/iron ratios and the Sun's [Si/Fe] ratio is offset from the mean planetary [Si/Fe]. In this work, we explore what number and quality of observations we need to empirically measure the exoplanet-star [Si/Fe] correlation, given future transit missions, RV follow-up, and stellar characterization. Specifically, we generate synthetic datasets of terrestrial planet masses and radii and host star abundances assuming that the planets’ bulk [Si/Fe] ratio exactly tracks that of their host stars. We assign measurement uncertainties corresponding to expected precisions for TESS, PLATO, Gaia, and future RV instrumentation, and then invert the problem to infer the planet-star [Si/Fe] correlation given these observational constraints. Comparing the result to the generated truth, we find that 1% precision on the planet radii is needed to test whether [Si/Fe] ratios are correlated between exoplanet and host star. On the other hand, lower precisions can test for systematic offsets between planet and star [Si/Fe], which can constrain the importance of giant impacts for extrasolar terrestrial planet formation.

  7. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Xiang-Yu; Jiang, Xiao-Ping; Ye, Jing-Jing; Zhang, Ye-Wang; Zhang, Xiao-Yun

    2015-01-01

    Fe3O4@SiO2-graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe3O4@SiO2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe3O4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe3O4@SiO2 NPs was 24 ± 0.3 nm, similar to that of Fe3O4@SiO2-NH2. Fe3O4@SiO2-GO composites were synthesized by linking of Fe3O4@SiO2-NH2 NPs to GO with the catalysis of EDC and NHS. The prepared composites were used for immobilization of cellulase. A high immobilization yield and efficiency of above 90 % were obtained after the optimization. The half-life of immobilized cellulase (722 min) was 3.34-fold higher than that of free enzyme (216 min) at 50 °C. Compared with the free cellulase, the optimal temperature of the immobilized enzyme was not changed; but the optimal pH was shifted from 5.0 to 4.0, and the thermal stability was enhanced. The immobilized cellulase could be easily separated and reused under magnetic field. These results strongly indicate that the cellulase immobilized onto the Fe3O4@SiO2-GO composite has potential applications in the production of bioethanol.

  8. Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH-sensitive controlled release of doxorubicin.

    PubMed

    Wu, Juan; Jiang, Wei; Shen, Yewen; Jiang, Wei; Tian, Renbing

    2017-01-01

    Multifunctional nanocarriers based on the Fe 3 O 4 nanoparticles core and mesoporous silica shell (mSiO 2 ) were synthesized for controlled drug release through magnetic targeting and pH-sensitive performances. The developed Fe 3 O 4 @mSiO 2 nanocarriers exhibited a suitable size (63nm) and good magnetic responsibility, doxorubicin (DOX) could be successfully loaded into the mesoporous of Fe 3 O 4 @mSiO 2 via electrostatic interaction, and the drug loading content and loading efficiency are 29.3% and 93.6%, respectively. The chitosan (CS) was employed to wrap the Fe 3 O 4 @mSiO 2 -DOX as the blocking agent to inhibit premature drug release, and the final CS/Fe 3 O 4 @mSiO 2 -DOX exhibited excellent pH-sensitivity, 86.1% DOX was released within 48h at pH4.0. Furthermore, all the release behaviors fit the Higuchi model very well and a purely diffusion-controlled process played a major role on DOX release from CS/Fe 3 O 4 @mSiO 2 -DOX. In addition, MTT assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the CS/Fe 3 O 4 @mSiO 2 -DOX had high anti-tumor activity, while the Fe 3 O 4 @mSiO 2 nanocarriers were practically non-toxic. Thus, our results revealed that the CS/Fe 3 O 4 @mSiO 2 -DOX could play an important role in the development of intracellular delivery nanodevices for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  10. Low-voltage operation of Si-based ferroelectric field effect transistors using organic ferroelectrics, poly(vinylidene fluoride-trifluoroethylene), as a gate dielectric

    NASA Astrophysics Data System (ADS)

    Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2016-04-01

    Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.

  11. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  12. Provenance analysis of the Oligocene turbidites (Andaman Flysch), South Andaman Island: A geochemical approach

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P. C.; Ghosh, Biswajit

    2015-07-01

    The Oligocene-aged sandstone-shale turbidites of the Andaman Flysch are best exposed along the east coast of the South Andaman Island. Previously undocumented sandstone-shale geochemistry, investigated here, provides important geochemical constraints on turbidite provenance. The average 70.75 wt% SiO2, 14.52 wt% Al2O3, 8.2 wt% FeMgO and average 0.20 Al2O3/SiO2 and 1.08 K2O/Na2O ratios in sandstones, compare with quartzwackes. The shale samples have average 59.63 wt% SiO2, 20.29 wt% Al2O3, 12.63 wt% FeMgO and average 2.42 K2O/Na2O and 0.34 Al2O3/SiO2 ratios. Geochemical data on CaO-Na2O-K2O diagram fall close to a granite field and on K2O/Na2O-SiO2 diagram within an active continental margin tectonic setting. The range and average values of Rb and Rb/Sr ratios are consistent with acid-intermediate igneous source rocks, while the values and ratios for Cr and Ni are with mafic rocks. Combined geochemical, petrographic and palaeocurrent data indicate a dominantly plutonic-metamorphic provenance with a lesser contribution from sedimentary and volcanic source, which is possibly the Shan-Thai continental block and volcanic arc of the north-eastern and eastern Myanmar. Chemical index of alteration (CIA) values suggests a moderate range of weathering of a moderate relief terrane under warm and humid climate.

  13. Magneto-acoustic wave energy in sunspots: observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2011-11-01

    We have reproduced some sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numericalsimulations. The results of the simulations arecompared with the oscillations observed simultaneously at different heights from the SiI lambda10827Å line, HeI lambda10830Å line, the CaII H core and the FeI blends at the wings of the CaII H line. The simulations show a remarkable agreement with the observations, and we have used them to quantify the energy contribution of the magneto-acoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is 5-10 times lower than the amount needed to balance the chromospheric radiative losses.

  14. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  15. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    PubMed

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  16. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    PubMed Central

    Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.

    2018-01-01

    The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632

  18. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  19. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    PubMed Central

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  20. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    PubMed

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

Top