Sample records for si projected range

  1. Influence of heat-treated Al-Si coating on the weldability and microstructural inhomogeneity for hot stamped steel resistance nut projection welds

    NASA Astrophysics Data System (ADS)

    Chun, Eun-Joon; Lim, Sung-Sang; Kim, Young-Tae; Nam, Ki-Sung; Kim, Young-Min; Park, Young-Whan; Murugan, Siva Prasad; Park, Yeong-Do

    2018-03-01

    Resistance nut projection weldability of Al-Si coated hot stamped steel (HSS) was investigated under the viewpoint of weldable current range and joint strength (pull-out load). The microstructural inhomogeneities in the welds were also studied in order to elucidate the factors affecting the joint strength of the welds. The weldability of the given Al-Si coated HSS was compared with the weldability of an identical HSS without the Al-Si coating (Al-Si coating was polished out) and Zn coated dual phase steel. The weldable current range of Al-Si coated HSS was found to be narrower than that of the other materials. Furthermore, the average pull-out load within the weldable current range of the Al-Si coated HSS was the lowest among the three materials. The reason for poor weld mechanical property of the Al-Si coated hot-stamped steel was attributed to the microstructural inhomogeneities such as unmixed Al-Si coating layer at the edge of the nugget and the second phase Fe3(Al, Si) intermetallic compound. The formation of Fe3(Al, Si) phase was attributed to the solidification segregation of Al and Si during the weld solidification and was confirmed with the numerical analysis of solidification segregation.

  2. Thin film multilayer filters for solar EUV telescopes.

    PubMed

    Chkhalo, N I; Drozdov, M N; Kluenkov, E B; Kuzin, S V; Lopatin, A Ya; Luchin, V I; Salashchenko, N N; Tsybin, N N; Zuev, S Yu

    2016-06-10

    Al, with a passband in the wavelength range of 17-60 nm, and Zr, with a passband in the wavelength range of 6.5-17 nm, thin films on a support grid or support membrane are frequently used as UV, visible, and near-IR blocking filters in solar observatories. Although they possess acceptable optical performance, these filters also have some shortcomings such as low mechanical strength and low resistance to oxidation. These shortcomings hinder meeting the requirements for filters of future telescopes. We propose multilayer thin film filters on the basis of Al, Zr, and other materials with improved characteristics. It was demonstrated that stretched multilayer films on a support grid with a mesh size up to 5 mm can withstand vibration loads occurring during spacecraft launch. A large mesh size is preferable for filters of high-resolution solar telescopes, since it allows image distortion caused by light diffraction on the support grid to be avoided. We have investigated the thermal stability of Al/Si and Zr/Si multilayers assuming their possible application as filters in the Intergelioprobe project, in which the observation of coronal plasma will take place close to the Sun. Zr/Si films show high thermal stability and may be used as blocking filters in the wavelength range of 12.5-17 nm. Al/Si films show lower thermal stability: a significant decrease in the film's transmission in the EUV spectral range and an increase in the visible spectrum have been observed. We suppose that the low thermal stability of Al/Si films restricts their application in the Intergelioprobe project. Thus, there is a lack of filters for the wavelength range of λ>17  nm. Be/Si and Cr/Si filters have been proposed for the wavelength range near 30.4 nm. Although these filters have lower transparency than Al/Si, they are superior in thermal stability. Multilayer Sc/Al filters with relatively high transmission at a wavelength of 58.4 nm (HeI line) and simultaneously sufficient rejection in the wavelength range near 30.4 nm (HeII line) have been fabricated. They are planned to be used in the project KORTES, whose telescopes will have an EUV channel at 58.4 nm.

  3. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex.

    PubMed

    Stehberg, Jimmy; Dang, Phat T; Frostig, Ron D

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.

  4. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    PubMed Central

    Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339

  5. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010.

    PubMed

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio; Aretz, Stefan; Bapat, Bharati; Bernstein, Inge T; Burn, John; Cotton, Richard G H; den Dunnen, Johan T; Frebourg, Thierry; Greenblatt, Marc S; Hofstra, Robert; Holinski-Feder, Elke; Lappalainen, Ilkka; Lindblom, Annika; Maglott, Donna; Møller, Pål; Morreau, Hans; Möslein, Gabriela; Sijmons, Rolf; Spurdle, Amanda B; Tavtigian, Sean; Tops, Carli M J; Weber, Thomas K; de Wind, Niels; Woods, Michael O

    2011-04-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer/home.php). The meeting also canvassed the recent exciting developments in models to evaluate the pathogenicity of unclassified variants using in silico data, tumor pathology information, and functional assays, and made further plans for the future progress and sustainability of the pilot program. © 2011 Wiley-Liss, Inc.

  6. Research and Development of Silicon Carbide (SiC) Junction Recovery Diodes for Picosecond Range, High Power Opening Switches

    NASA Astrophysics Data System (ADS)

    Grekhov, Igor V.

    2002-07-01

    This report results from a contract tasking Ioffe Institute as follows: The purpose of the proposed project is to develop, fabricate, test, and characterize silicon carbide power semiconductor opening switches operating in the picosecond range of switch time. Special SiC diode structures will be fabricated and investigated, including Junction Recovery Diodes (JRD). The operation of such diodes is founded on the superfast recovery of the junction's blocking ability after switching the device from forward to reverse bias conditions. Our estimations show that the parameters of JRD devices can be substantially improved in case of SiC devices, compared to both Si and GaAs capabilities. We expect i) to increase the speed of switch operation, the specific commutated power, and the operation frequency repetition; ii) to reduce the weight and size of pulse devices; and iii) to achieve better reliability of the devices due to the unique thermal conductivity and radiation hardness of SiC.

  7. Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Jak, E.

    2018-02-01

    Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+ x Fe12- x O19- x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-"FeO"-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.

  8. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  9. Mechanism of oxide thickness and temperature dependent current conduction in n+-polySi/SiO2/p-Si structures — a new analysis

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-10-01

    The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.

  10. Cryogenic Characterization of FBK RGB-HD SiPMs

    NASA Astrophysics Data System (ADS)

    Aalseth, C. E.; Acerbi, F.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Ampudia, P.; Antonioli, P.; Arcelli, S.; Ardito, R.; Arnquist, I. J.; Asner, D. M.; Back, H. O.; Batignani, G.; Bertoldo, E.; Bettarini, S.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Bunker, R.; Bussino, S.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Candela, A.; Cantini, C.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cereseto, R.; Chen, Y.; Chepurnov, A.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Citterio, M.; Cocco, A. G.; Colocci, M.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Antone, I.; D'Incecco, M.; Da Rocha Rolo, M. D.; Daniel, M.; Davini, S.; De Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Guido, G.; De Rosa, G.; Dellacasa, G.; Demontis, P.; Derbin, A. V.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dormia, I.; Dussoni, S.; Empl, A.; Ferri, A.; Filip, C.; Fiorillo, G.; Fomenko, K.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Garcia Abia, P.; Gendotti, A.; Ghisi, A.; Giagu, S.; Gibertoni, G.; Giganti, C.; Giorgi, M.; Giovanetti, G. K.; Gligan, M. L.; Gola, A.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Grassi, M.; Grate, J. W.; Grigoriev, G. Y.; Gromov, M.; Guan, M.; Guerra, M. B. B.; Guerzoni, M.; Gulino, M.; Haaland, R. K.; Harrop, B.; Hoppe, E. W.; Horikawa, S.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; Jimenez Cabre, S.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kim, S.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kugathasan, R.; Kuss, M.; Li, X.; Lissia, M.; Lodi, G. U.; Loer, B.; Longo, G.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mais, L.; Mandarano, A.; Mapelli, L.; Marcante, M.; Margotti, A.; Mari, S. M.; Mariani, M.; Maricic, J.; Marinelli, M.; Marras, D.; Martoff, C. J.; Mascia, M.; Messina, A.; Meyers, P. D.; Milincic, R.; Moggi, A.; Moioli, S.; Monasterio, S.; Monroe, J.; Monte, A.; Morrocchi, M.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Nania, R.; Napolitano, J.; Navrer Agasson, A.; Nikulin, I.; Nosov, V.; Nozdrina, A. O.; Nurakhov, N. N.; Oleinik, A.; Oleynikov, V.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pavletcov, V.; Pazzona, F.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perotti, F.; Perruzza, R.; Piemonte, C.; Pilo, F.; Pocar, A.; Portaluppi, D.; Poudel, S. S.; Pugachev, D. A.; Qian, H.; Radics, B.; Raffaelli, F.; Ragusa, F.; Randle, K.; Razeti, M.; Razeto, A.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Rivetti, A.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rubbia, A.; Sablone, D.; Salatino, P.; Samoylov, O.; Sands, W.; Sant, M.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Sechi, E.; Segreto, E.; Seifert, A.; Semenov, D. A.; Serci, S.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sobrero, G.; Sokolov, A.; Sotnikov, A.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E. V.; Vacca, A.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Wahl, J.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Williams, R.; Wojcik, M. M.; Wu, S.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zappa, F.; Zappalà, G.; Zhu, C.; Zichichi, A.; Zuzel, G.

    2017-09-01

    We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A cryogenic setup was used to operate the SiPMs at varying temperatures and a custom data acquisition system and analysis software were used to precisely characterize the primary dark noise, the correlated noise, and the gain of the devices. We demonstrate that FBK RGB-HD SiPMs with low quenching resistance (RGB-HD-LRq) can be operated from 40 K to 300 K with gains in the range 105 to 106 and noise rates at a level of around 1 Hz/mm2.

  11. Spectrophotovoltaic orbital power generation, phase 2

    NASA Technical Reports Server (NTRS)

    Lo, S. K.; Stoltzman, D.; Knowles, G.; Lin, R.

    1981-01-01

    A subscale model of the spectral splitting concentrator system with 10" aperture is defined and designed. The model is basically a scaled down version of Phase 1 design with an effective concentration ratio up to 1000:1. The system performance is predicted to be 21.5% for the 2 cell GaAs/Si system, and 20% for Si/GaAs at AM2 using realistic component efficiencies. Component cost of the model is projected in the $50K range. Component and system test plans are also detailed.

  12. Silicon Carbide Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2006-01-01

    Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.

  13. A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2

    DOT National Transportation Integrated Search

    2018-02-02

    The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...

  14. Simulation of temperature dependent dielectric breakdown in n{sup +}-polySi/SiO{sub 2}/n-6H-SiC structures during Poole-Frenkel stress at positive gate bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Piyas, E-mail: piyas@vcfw.org; Mandal, Krishna C., E-mail: mandalk@cec.sc.edu

    2016-08-14

    We present for the first time a thorough investigation of trapped-hole induced gate oxide deterioration and simulation results of time-dependent dielectric breakdown (TDDB) of thin (7–25 nm) silicon dioxide (SiO{sub 2}) films thermally grown on (0 0 0 1) silicon (Si) face of n-type 6H-silicon carbide (n-6H-SiC). Gate oxide reliability was studied during both constant voltage and current stress with positive bias on the degenerately doped n-type poly-crystalline silicon (n{sup +}-polySi) gate at a wide range of temperatures between 27 and 225 °C. The gate leakage current was identified as the Poole-Frenkel (PF) emission of electrons trapped at an energy 0.92 eV belowmore » the SiO{sub 2} conduction band. Holes were generated in the n{sup +}-polySi anode material as well as in the oxide bulk via band-to-band ionization depending on the film thickness t{sub ox} and the energy of the hot-electrons (emitted via PF mechanism) during their transport through oxide films at oxide electric fields E{sub ox} ranging from 5 to 10 MV/cm. Our simulated time-to-breakdown (t{sub BD}) results are in excellent agreement with those obtained from time consuming TDDB measurements. It is observed that irrespective of stress temperatures, the t{sub BD} values estimated in the field range between 5 and 9 MV/cm better fit to reciprocal field (1/E) model for the thickness range studied here. Furthermore, for a 10 year projected device lifetime, a good reliability margin of safe operating field from 8.5 to 7.5 MV/cm for 7 nm and 8.1 to 6.9 MV/cm for 25 nm thick SiO{sub 2} was observed between 27 and 225 °C.« less

  15. Cryogenic Characterization of FBK RGB-HD SiPMs

    DOE PAGES

    Aalseth, C. E.

    2017-09-26

    We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, the correlated noise, and the gain of the SiPMs at varying temperatures. A custom-made data acquisition system and analysis software were used to precisely characterize these parameters. We demonstrate that FBK RGB-HD SiPMs with low quenching resistance (RGB-HD-LRmore » $$_q$$) can be operated from 40 K to 300 K with gains in the range $10^5$ to $10^6$ and noise rates on the order of a few Hz/mm$^2$.« less

  16. Quantitative Analysis of Etching Rate Profiles for 11B+-Implanted Si3N4 Film

    NASA Astrophysics Data System (ADS)

    Nakata, Jyoji; Kajiyama, Kenji

    1983-01-01

    Etching rate enhancement for 11B+-implanted Si3N4 film was investigated both experimentally and theoretically. The etching solution was concentrated H3PO4 at ˜165°C Film thicknesses were precisely measured by ellipsometry. Enhancement resulted from Si-N bond breaking. This was confirmed by a decrease of infrared absorption at a 12.0 μm wavelength for Si-N bond vibration. Main and additional peaks were observed in the etching rate profile. The former was due to nuclear damage and was well represented by the calculated etching rate profile deduced from the nuclear deposited energy density distribution. The latter existed in the surface region only when the ion projected range was shorter than the film thickness. This peak was possibly caused by charge accumulation in the insulating Si3N4 film during 11B+ implantation.

  17. Leakage current conduction, hole injection, and time-dependent dielectric breakdown of n-4H-SiC MOS capacitors during positive bias temperature stress

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas; Mandal, Krishna C.

    2017-01-01

    The conduction mechanism(s) of gate leakage current JG through thermally grown silicon dioxide (SiO2) films on the silicon (Si) face of n-type 4H-silicon carbide (4H-SiC) has been studied in detail under positive gate bias. It was observed that at an oxide field above 5 MV/cm, the leakage current measured up to 303 °C can be explained by Fowler-Nordheim (FN) tunneling of electrons from the accumulated n-4H-SiC and Poole-Frenkel (PF) emission of trapped electrons from the localized neutral traps located at ≈2.5 eV below the SiO2 conduction band. However, the PF emission current IPF dominates the FN electron tunneling current IFN at oxide electric fields Eox between 5 and 10 MV/cm and in the temperature ranging from 31 to 303 °C. In addition, we have presented a comprehensive analysis of injection of holes and their subsequent trapping into as-grown oxide traps eventually leading to time-dependent dielectric breakdown during electron injection under positive bias temperature stress (PBTS) in n-4H-SiC metal-oxide-silicon carbide structures. Holes were generated in the heavily doped n-type polycrystalline silicon (n+-polySi) gate (anode) as well as in the oxide bulk via band-to-band ionization by the hot-electrons depending on their energy and SiO2 film thickness at Eox between 6 and 10 MV/cm (prior to the intrinsic oxide breakdown field). Transport of hot electrons emitted via both FN and PF mechanisms was taken into account. On the premise of the hole-induced oxide breakdown model, the time- and charge-to-breakdown ( tBD and QBD ) of 8.5 to 47 nm-thick SiO2 films on n-4H-SiC were estimated at a wide range of temperatures. tBD follows the Arrhenius law with activation energies varying inversely with initial applied constant field Eox supporting the reciprocal field ( 1 /E ) model of breakdown irrespective of SiO2 film thicknesses. We obtained an excellent margin (6.66 to 6.33 MV/cm at 31 °C and 5.11 to 4.55 MV/cm at 303 °C) of normal operating field for a 10-year projected lifetime of 8.5 to 47 nm-thick SiO2 films on n-4H-SiC under positive bias on the n+-polySi gate. Furthermore, the projected maximum operating oxide field was little higher in metal gate devices compared to n+-polySi gate devices having an identically thick thermal SiO2 films under PBTS.

  18. Mechanistic analysis of temperature-dependent current conduction through thin tunnel oxide in n+-polySi/SiO2/n+-Si structures

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-09-01

    We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.

  19. Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input.

    PubMed

    Lee, Taehee; Kim, Uhnoh

    2012-04-01

    In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.

  20. "Group IV Nanomembranes, Nanoribbons, and Quantum Dots: Processing, Characterization, and Novel Devices"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    liu, feng

    This theoretical project has been carried out in close interaction with the experimental project at UW-Madison under the same title led by PI Max Lagally and co-PI Mark Eriksson. Extensive computational studies have been performed to address a broad range of topics from atomic structure, stability, mechanical property, to electronic structure, optoelectronic and transport properties of various nanoarchitectures in the context of Si and other solid nanomembranes. These have been done by using combinations of different theoretical and computational approaches, ranging from first-principles calculations and molecular dynamics (MD) simulations to finite-element (FE) analyses and continuum modeling.

  1. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  2. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  3. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringel, Steven

    This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less

  4. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    NASA Technical Reports Server (NTRS)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  5. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  6. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  7. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  8. Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application

    NASA Astrophysics Data System (ADS)

    Ahmad, Salleh; Fleury, Julien; de la Taille, Christophe; Seguin-Moreau, Nathalie; Dulucq, Frederic; Martin-Chassard, Gisele; Callier, Stephane; Thienpont, Damien; Raux, Ludovic

    2015-06-01

    Triroc is the latest addition to SiPM readout ASICs family developed at Weeroc, a start-up company from the Omega microelectronics group of IN2P3/CNRS. This chip is developed under the framework TRIMAGE European project which is aimed for building a cost effective tri-modal PET/MR/EEG brain scan. To ensure the flexibility and compatibility with any SiPM in the market, the ASIC is designed to be capable of accepting negative and positive polarity input signals. This 64-channel ASIC, is suitable for SiPM readout which requires high accuracy timing and charge measurements. Targeted applications would be PET prototyping with time-of-flight capability. Main features of Triroc includes high dynamic range ADC up to 2500 photoelectrons and TDC fine time binning of 40 ps. Triroc requires very minimal external components which means it is a good contender for compact multichannel PET prototyping. Triroc is designed by using AMS 0.35 μm SiGe technology and it was submitted in March 2014. The detail design of this chip will be presented.

  9. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  10. Wettability of Si and Al–12Si alloy on Pd-implanted 6H–SiC

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Ting; Liu, Gui-Wu; Huang, Zhi-Kun; Zhang, Xiang-Zhao; Xu, Zi-Wei; Qiao, Guan-Jun

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51572112 and 51172177), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151340), the Six Talent Peaks Project of Jiangsu Province, China (Grant Nos. 2014-XCL-002 and TD-XCL-004), the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. [2015]26), and the Qing Lan Project of Jiangsu Province, China (Grant No. [2016]15).

  11. Bose-Einstein correlation of kaons in Si + Au collisions at 14.6 A GeV/c

    NASA Technical Reports Server (NTRS)

    Akiba, Y.; Beavis, D.; Beery, P.; Britt, H. C.; Budick, B.; Chasman, C.; Chen, Z.; Chi, C. Y.; Chu, Y. Y.; Cianciolo, V.

    1993-01-01

    The E-802 spectrometer at the Brookhaven Alternating Gradient Synchrotron, enhanced by a trigger for selection of events with one or more specified particles, has been used to measure the momentum-space correlation between pairs of K(+)s emitted in central Si + Au collisions at 14.6 A GeV/c. This correlation has been projected onto the Lorentz-invariant relative four-momentum axis. Fits to this correlation function yield a size for the kaon source that is comparable to that found using pi(+) pairs from a similar rapidity range, once a transformation from the particle-pair frames to a single source frame is made.

  12. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    NASA Astrophysics Data System (ADS)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  13. Quantitative determination of airborne respirable non-fibrous alpha-silicon carbide by x-ray powder diffractometry.

    PubMed

    Bye, E; Føreland, S; Lundgren, L; Kruse, K; Rønning, R

    2009-06-01

    The purpose of the present investigation was to establish a method for the determination of airborne respirable non-fibrous silicon carbide (SiC). The main application is within the industrial production of SiC. Due to the complex airborne aerosol mixture of crystalline compounds in the SiC industry, X-ray powder diffractometry was selected as the most appropriate method. Without any international standard material for the respirable fraction of non-fibrous SiC, pure and suitable products from three SiC plants in Norway were selected. These products have a median particle diameter in the range 4.4-5.1 mum. The method is based on thin sample technique, with the dust deposited on a polycarbonate filter. Absorption correction is done by standard procedures with the use of a silver filter, situated below the polycarbonate filter. The diffraction line used for quantitative determination was selected carefully. This was done to avoid interferences from quartz, cristobalite, and graphite, which all are airborne components present in the atmosphere during the industrial process. The instrumental limit of detection for the method is 12 microg. This method has been used to determine airborne non-fibrous SiC in a comprehensive ongoing project in the Norwegian SiC industry for further epidemiological studies. The method is fully applicable for compliance work.

  14. Characteristics of a ceramic-substrate x-ray diode and its application to computed tomography

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a silicon X-ray diode (Si-XD) at a tube current of 2.0 mA and tube voltages ranging from 50 to 70 kV. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-ray photons, and Xray photons are directly detected using the Si-XD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. To investigate the X-ray-electric conversion, we performed the event-pulseheight (EPH) analysis using a multichannel analyzer. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. In PC-CT at a tube voltage of 70 kV, the image contrast of iodine media fell with increasing lower-level voltage of the event pulse using a comparator.

  15. Electrical properties of sub-100 nm SiGe nanowires

    NASA Astrophysics Data System (ADS)

    Hamawandi, B.; Noroozi, M.; Jayakumar, G.; Ergül, A.; Zahmatkesh, K.; Toprak, M. S.; Radamson, H. H.

    2016-10-01

    In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGe-on oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method. Project support by the Swedish Foundation for Strategic Research “SSF” (No. EM-011-0002) and the Scientific and Technological Research Council of Turkey (No. TÜBİTAK).

  16. Engineered Emitters for Improved Silicon Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kamat, Ronak A.

    In 2014, installation of 5.3GW of new Photovoltaic (PV) systems occurred in the United States, raising the total installed capacity to 16.36GW. Strong growth is predicted for the domestic PV market with analysts reporting goals of 696GW by 2020. Conventional single crystalline silicon cells are the technology of choice, accounting for 90% of the installations in the global commercial market. Cells made of GaAs offer higher efficiencies, but at a substantially higher cost. Thin film technologies such as CIGS and CdTe compete favorably with multi-crystalline Si (u-Si), but at 20% efficiency, still lag the c-Si cell in performance. The c-Si cell can be fabricated to operate at approximately 25% efficiency, but commercially the efficiencies are in the 18-21% range, which is a direct result of cost trade-offs between process complexity and rapid throughput. With the current cost of c-Si cell modules at nearly 0.60/W. The technology is well below the historic metric of 1/W for economic viability. The result is that more complex processes, once cost-prohibitive, may now be viable. An example is Panasonic's HIT cell which operates in the 22-24% efficiency range. To facilitate research and development of novel PV materials and techniques, RIT has developed a basic solar cell fabrication process. Student projects prior to this work had produced cells with 12.8% efficiency using p type substrates. This thesis reports on recent work to improve cell efficiencies while simultaneously expanding the capability of the rapid prototyping process. In addition to the p-Si substrates, cells have been produced using n-Si substrates. The cell emitter, which is often done with a single diffusion or implant has been re-engineered using a dual implant of the same dose. This dual-implanted emitter has been shown to lower contact resistance, increase Voc, and increase the efficiency. A p-Si substrate cell has been fabricated with an efficiency of 14.6% and n-Si substrate cell with a 13.5% efficiency. Further improvements could be made through the incorporation of a front-surface field, surface texturing and nitride ARC.

  17. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  18. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    NASA Technical Reports Server (NTRS)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  19. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  20. Spectral studies of SiCl4 + N2O + Ar and SiH4 + Ar mixtures in a shock tube in 160-550 nm range

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1978-01-01

    Gases containing SiO, SiO2, SiH, and Si2 were produced in the reflected-shock region of a shock tube by heating SiCl4 + N2O + Ar and SiH4 + Ar mixtures with shock waves. Spectral absorption characteristics were measured in the 160-550 nm wavelength range and in the 2800-3600 K temperature range and compared to calculated values. The sums of the squares of electronic transition moments at equilibrium separation were derived. It was found that absorption by SiO2 and other known bands of SiO, SiH, and Si2 were too weak to be measured. The cross section of absorption by a continuum, believed due to SiH, varied from 2.5 x 10 to the -17th sq cm at 280 nm to 1.6 x 10 to the -18th sq cm at 440 nm.

  1. CTE homogeneity, isotropy and reproducibility in large parts made of sintered SiC

    NASA Astrophysics Data System (ADS)

    Bougoin, Michel; Castel, Didier; Levallois, Franck

    2017-11-01

    For Herschel SiC primary mirror purpose, a new approach of comparative CTE measurement has been developed; it is based on the well known bimetallic effect ("biceramic" in this case) and also optical measurements. This method offers a good CTE comparison capability in the range of 170-420K (extensible to 5-420K) depending of the thermal test facilities performance, with a resolution of only 0.001 μm/m.K. The Herschel primary mirror is made of 12 SiC segments which are brazed together. The CTE of each segment has been compared with the one of a witness sample and no visible change, higher than the measurement accuracy, has been observed. Furthermore, a lot of samples have been cut out from a spare segment, from different places and also from all X, Y and Z direction of the reference frame. No deviation was seen in all of these tests, thus demonstrating the very good homogeneity, reproducibility and isotropy of the Boostec® SiC material. Some recent literature about SiC material measurements at cryogenic temperature shows a better behaviour of Boostec® SiC material in comparison with other kind of SiC which are also candidate for space optics, in particular for isotropy purpose. After a review of the available literature, this paper describes the comparative CTE measurement method and details the results obtained during the measurement campaigns related to Herschel project.

  2. Joining and Integration of Silicon Nitride Ceramics for Aerospace and Energy Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2009-01-01

    Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si3N4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si3N4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si3N4 and St. Gobain Si3N4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si3N4/Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

  3. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    NASA Astrophysics Data System (ADS)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  4. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Meng

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less

  5. On coarse projective integration for atomic deposition in amorphous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Claire Y., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov; Sinno, Talid, E-mail: talid@seas.upenn.edu; Han, Sang M., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to themore » application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.« less

  6. On Coarse Projective Integration for Atomic Deposition in Amorphous Systems

    DOE PAGES

    Chuang, Claire Y.; Han, Sang M.; Zepeda-Ruiz, Luis A.; ...

    2015-10-02

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of timescales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity and computational efficiency. Coarse projective integration, an example application of the ‘equation-free’ framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute gradients of slowly-evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of thismore » technique in realistic settings is the ‘lifting’ operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO 2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO 2 using only a few measures of the island size distribution. In conclusion, the approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.« less

  7. Polymer Coats Leads on Implantable Medical Device

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Langley Research Center s Soluble Imide (LaRC-SI) was discovered by accident. While researching resins and adhesives for advanced composites for high-speed aircraft, Robert Bryant, a Langley engineer, noticed that one of the polymers he was working with did not behave as predicted. After putting the compound through a two-stage controlled chemical reaction, expecting it to precipitate as a powder after the second stage, he was surprised to see that the compound remained soluble. This novel characteristic ended up making this polymer a very significant finding, eventually leading Bryant and his team to win several NASA technology awards, and an "R&D 100" award. The unique feature of this compound is the way that it lends itself to easy processing. Most polyimides (members of a group of remarkably strong and incredibly heat- and chemical-resistant polymers) require complex curing cycles before they are usable. LaRC-SI remains soluble in its final form, so no further chemical processing is required to produce final materials, like thin films and varnishes. Since producing LaRC-SI does not require complex manufacturing techniques, it has been processed into useful forms for a variety of applications, including mechanical parts, magnetic components, ceramics, adhesives, composites, flexible circuits, multilayer printed circuits, and coatings on fiber optics, wires, and metals. Bryant s team was, at the time, heavily involved with the aircraft polymer project and could not afford to further develop the polymer resin. Believing it was worth further exploration, though, he developed a plan for funding development and submitted it to Langley s chief scientist, who endorsed the experimentation. Bryant then left the high-speed civil transport project to develop LaRC-SI. The result is an extremely tough, lightweight thermoplastic that is not only solvent-resistant, but also has the ability to withstand temperature ranges from cryogenic levels to above 200 C. The thermoplastic s unique characteristics lend it to many commercial applications; uses that Bryant believed would ultimately benefit industry and the Nation. "LaRC-SI," he explains, "is a product created in a government laboratory, funded with money from the tax-paying public. What we discovered helps further the economic competitiveness of the United States, and it was our goal to initiate the technology transfer process to ensure that our work benefited the widest range of people." Several NASA centers, including Langley, have explored methods for using LaRC-SI in a number of applications from radiation shielding and as an adhesive to uses involving replacement of conventional rigid circuit boards. In the commercial realm, LaRC-SI can now be found in several commercial products, including the thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, another "R&D 100" award winner (Spinoff 2005).

  8. Silicon Carbide Gas Sensors for Propulsion Emissions and Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J.; Neudeck, P. G.; Lukco, D.; Trunek, A.; Spry, D.; Lampard, P.; Androjna, D.; Makel, D.; Ward, B.

    2007-01-01

    Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.

  9. Opacity Measurement and Theoretical Investigation of Hot Silicon Plasma

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yang, Jiamin; Zhang, Jiyan; Hu, Zhimin; Zhao, Yang; Qing, Bo; Yang, Guohong; Wei, Minxi; Yi, Rongqing; Song, Tianming; Li, Hang; Yuan, Zheng; Lv, Min; Meng, Xujun; Xu, Yan; Wu, Zeqing; Yan, Jun

    2016-01-01

    We report on opacity measurements of a silicon (Si) plasma at a temperature of (72 ± 5) eV and a density of (6.0 ± 1.2) mg cm-3 in the photon energy range of 1790-1880 eV. A 23 μg cm-2 Si foil tamped by 50 μg cm-2 CH layers on each side was heated to a hot-dense plasma state by X-ray radiation emitted from a D-shaped gold cavity that was irradiated by intense lasers. Absorption lines of 1s - 2p transitions of Si xiii to Si ix ions have been measured using point-projection spectroscopy. The transmission spectrum of the silicon plasma was determined by comparing the light passing through the plasma to the light from the same shot passing by the plasma. The density of the Si plasma was determined experimentally by side-on radiography and the temperature was estimated from the radiation flux data. Radiative hydrodynamic simulations were performed to obtain the temporal evolutions of the density and temperature of the Si plasma. The experimentally obtained transmission spectra of the Si sample plasma have been reproduced using a detailed term account model with the local thermodynamic equilibrium approximation. The energy levels, oscillator strengths and photoionization cross-sections used in the calculation were generated by the flexible atomic code. The experimental transmission spectrum was compared with the theoretical calculation and good agreement was found. The present experimental spectrum and theoretical calculation were also compared with the new opacities available in the Los Alamos OPLIB database.

  10. Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation

    NASA Astrophysics Data System (ADS)

    Zheng, Xue-Feng; Fan, Shuang; Chen, Yong-He; Kang, Di; Zhang, Jian-Kun; Wang, Chong; Mo, Jiang-Hui; Li, Liang; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-02-01

    The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor (HEMT) becomes one of the most important reliability issues with the downscaling of feature size. In this paper, the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K. Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current. By comparing the experimental data with the numerical transport models, it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current. However, good agreement is found between the experimental data and the two-dimensional variable range hopping (2D-VRH) model. Therefore, it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer. Moreover, the activation energy of surface leakage current is extracted, which is around 0.083 eV. Finally, the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied. It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV, which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201206), the New Experiment Development Funds for Xidian University, China (Grant No. SY1213), the 111 Project, China (Grant No. B12026), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051325002).

  11. Fabrication and characterization of the normally-off N-channel lateral 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Qing-Wen, Song; Xiao-Yan, Tang; Yan-Jing, He; Guan-Nan, Tang; Yue-Hu, Wang; Yi-Meng, Zhang; Hui, Guo; Ren-Xu, Jia; Hong-Liang, Lv; Yi-Men, Zhang; Yu-Ming, Zhang

    2016-03-01

    In this paper, the normally-off N-channel lateral 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFFETs) have been fabricated and characterized. A sandwich- (nitridation-oxidation-nitridation) type process was used to grow the gate dielectric film to obtain high channel mobility. The interface properties of 4H-SiC/SiO2 were examined by the measurement of HF I-V, G-V, and C-V over a range of frequencies. The ideal C-V curve with little hysteresis and the frequency dispersion were observed. As a result, the interface state density near the conduction band edge of 4H-SiC was reduced to 2 × 1011 eV-1·cm-2, the breakdown field of the grown oxides was about 9.8 MV/cm, the median peak field-effect mobility is about 32.5 cm2·V-1·s-1, and the maximum peak field-effect mobility of 38 cm2·V-1·s-1 was achieved in fabricated lateral 4H-SiC MOSFFETs. Projcet supported by the National Natural Science Foundation of China (Grant Nos. 61404098, 61176070, and 61274079), the Doctoral Fund of Ministry of Education of China (Grant Nos. 20110203110010 and 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), and the Key Specific Projects of Ministry of Education of China (Grant No. 625010101).

  12. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  13. Simulation of a high-efficiency silicon-based heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  14. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  15. Recent progress in Si thin film technology for solar cells

    NASA Astrophysics Data System (ADS)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  16. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    DTIC Science & Technology

    2016-05-16

    have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process

  17. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    DTIC Science & Technology

    2015-04-09

    out during 2013. A set of growth experiments to deposit CdTe and ZnTe thin films on GaAs and Si substrates was carried out to test the system...After several dummy runs, a few growth runs to deposit CdTe and ZnTe, both doped and undoped, were grown on 3-inch diameter Si substrates or part of...to deposit CdTe and ZnTe on Si and GaAs substrates for use in this project. Some layers have been processed to make solar cells. Project 3

  18. The Salinas Airshower Learning And Discovery Project (SALAD)

    NASA Astrophysics Data System (ADS)

    Hernandez, Victor; Niduaza, Rommel; Ruiz Castruita, Daniel; Knox, Adrian; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura

    2015-04-01

    The SALAD project partners community college and high school STEM students in order to develop and investigate cosmic ray detector telescopes and the physical concepts, using a new light sensor technology based on silicon photomultiplier (SiPM) detectors. Replacing the conventional photomultiplier with the SiPM, offers notable advantages in cost and facilitates more in depth, hands-on learning laboratory activities. The students in the SALAD project design, construct and extensively evaluate the SiPM detector modules. These SiPM modules, can be completed in a short time utilizing cost effective components. We describe our research to implement SiPM as read out light detectors for plastic scintillators in a cosmic ray detector telescope for use in high schools. In particular, we describe our work in the design, evaluation and the assembly of (1) a fast preamplifier, (2) a simple coincidence circuit using fast comparators, to discriminate the SiPM noise signal pulses, and (3) a monovibrator circuit to shape the singles plus the AND logic pulses for subsequent processing. To store the singles and coincidence counts data, an Arduino micro-controller with program sketches can be implemented. Results and findings from our work would be described and presented. US Department of Education Title V Grant Award PO31S090007

  19. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    DTIC Science & Technology

    2007-01-01

    found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band

  20. New Primary Standards for Establishing SI Traceability for Moisture Measurements in Solid Materials

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Bell, S.; Choi, B. Il; Cortellessa, G.; Fernicola, V.; Georgin, E.; Hudoklin, D.; Ionescu, G. V.; Ismail, N.; Keawprasert, T.; Krasheninina, M.; Aro, R.; Nielsen, J.; Oğuz Aytekin, S.; Österberg, P.; Skabar, J.; Strnad, R.

    2018-01-01

    A European research project METefnet addresses a fundamental obstacle to improving energy-intensive drying process control: due to ambiguous reference analysis methods and insufficient methods for estimating uncertainty in moisture measurements, the achievable accuracy in the past was limited and measurement uncertainties were largely unknown. This paper reports the developments in METefnet that provide a sound basis for the SI traceability: four new primary standards for realizing the water mass fraction were set up, analyzed and compared to each other. The operation of these standards is based on combining sample weighing with different water vapor detection techniques: cold trap, chilled mirror, electrolytic and coulometric Karl Fischer titration. The results show that an equivalence of 0.2 % has been achieved between the water mass fraction realizations and that the developed methods are applicable to a wide range of materials.

  1. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    NASA Astrophysics Data System (ADS)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  2. Final Report: Biological and Synthetic Nanostructures Controlled at the Atomistic Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, A; van Buuren, T

    2007-02-21

    Nanotechnology holds great promise for many application fields, ranging from the semiconductor industry to medical research and national security. Novel, nanostructured materials are the fundamental building blocks upon which all these future nanotechnologies will be based. In this Strategic Initiative (SI) we conducted a combined theoretical and experimental investigation of the modeling, synthesis, characterization, and design techniques which are required to fabricate semiconducting and metallic nanostructures with enhanced properties. We focused on developing capabilities that have broad applicability to a wide range of materials and can be applied both to nanomaterials that are currently being developed for nanotechnology applications andmore » also to new, yet to be discovered, nanomaterials. During this 3 year SI project we have made excellent scientific progress in each of the components of this project. We have developed first-principles techniques for modeling the structural, electronic, optical, and transport properties of materials at the nanoscale. For the first time, we have simulated nanomaterials both in vacuum and in aqueous solution. These simulation capabilities harness the worldleading computational resources available at LLNL to model, at the quantum mechanical level, systems containing hundreds of atoms and thousands of electrons. Significant advances in the density functional and quantum Monte Carlo techniques employed in this project were developed to enable these techniques to scale up to simulating realistic size nanostructured materials. We have developed the first successful techniques for chemically synthesizing crystalline silicon and germanium nanoparticles and nanowires. We grew the first macroscopic, faceted superlattice crystals from these nanoparticles. We have also advanced our capabilities to synthesize semiconductor nanoparticles using physical vapor deposition techniques so that we are now able to control of the size, shape and surface structure of these nanoparticles. We have made advances in characterizing the surface of nanoparticles using x-ray absorption experiments. Throughout this SI a number of long-term, strategic external collaborations have been established. These collaborations have resulted in 30 joint publications, strategic hires of postdocs and graduate students from these groups into groups at LLNL and the submission of joint research grants. We have developed collaborations on the theory and modeling of nanomaterials with the groups of Profs. Ceder and Marzari (MIT), Crespi (Penn State), Freeman (Northwestern), Grossman and Lester (UC Berkeley), Mitas (North Carolina State), and Needs (Cambridge). We are collaborating with Dr. Alivisatos's group in the Molecular Foundry at Lawrence Berkeley Laboratory on the fabrication, characterization and modeling of inorganic nanomaterials. We are working with Prof. Majumdar's group at UC Berkeley on the characterization of nanomaterials. We are working with the molecular diamond group at Chevron-Texaco who has developed a process for extracting mono-disperse samples of nano-scale diamonds from crude oil. We are collaborating with Dr. Chen at UCSF to develop CdSe nanoparticle-biolabels. As a result of the outstanding scientific achievements and the long-term collaborations developed during this strategic initiative we have been extremely successful in obtaining external funding to continue and grow this research activity at the LLNL. We have received two DARPA grants to support the further development of our computational modeling techniques and to develop carbon nanotube based molecular separation devices. We have received two new Office of Science BES grants to support our nanomaterials modeling and synthesis projects. We have received funding from the NA22 office of DOE to develop the materials modeling capabilities begun in this SI for modeling detector materials. We have received funding from Intel Corporation to apply the modeling techniques developed in this initiative to examine silicon nanowires fabricated on computer chips. We are also pursuing several additional sources of funding from BES, the DHS, and NIH to support the continuation of the research programs developed in this SI. The remainder of this report and the attached publications describe the background to this SI research project and the details of the scientific achievements that have been made.« less

  3. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Chaney, R.; Thompson, S.

    1977-01-01

    The potential for a three step SiF2 polymer transport purification process was examined. The process involves reacting low cost mg silicon with SiF4 to yield SiF2 gas which is condensed to form polymeric (SiF2)x. The polymer is then heated above 400 C to yield Si, SiF4 and higher Si sub n F sub 2n+2 homologues. This report presents and discusses continuing progress on (1) observations on (SiF2)x polymer formation and depolymerization on the small coil, (2) mass balance studies, (3) partial pressures of SiF2 and SiF4, (4) AlF3 mass spectral studies, and (5) material analysis studies.

  4. DARPA Advanced High Current Density Cathodes for Defense Applications: Development Phase

    DTIC Science & Technology

    1993-03-01

    Project Number 01-0624-07-0857 Report Number SAIC-93/1018 March 1, 1993 Science Apphcations Internatia Corporation An Employee-Owned Company OTIC a...Density Cathodes for Defense Applications: Development Phase FINAL REPORT Contract Number N00014-90-C-2118 Project Number 01-0624-07-0857 Report...of a typical Si-TaSi2 boule used for the eutectic advanced cathode materials in this project . The seed for the boule is at right in the photograph. v

  5. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film

    NASA Astrophysics Data System (ADS)

    Chen, Da; Huang, Shihua; He, Lü

    2017-04-01

    SiO{}xN{}y films with different oxygen concentrations were fabricated by reactive magnetron sputtering, and the resistive switching characteristics and conduction mechanism of Cu/SiO{}xN{}y/ITO devices were investigated. The Cu/SiO{}xN{}y/ITO device with SiO{}xN{}y deposited in 0.8-sccm O{}2 flow shows a reliable resistive switching behavior, including good endurance and retention properties. As the conductivity of SiO{}xN{}y increases with the increase of the oxygen content dynamical electron trapping and detrapping is suggested to be the conduction mechanism. The temperature dependent I-V measurement indicates that the carrier transport can be ascribed to the hopping conduction rather than the metallic conductive filament. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  6. FTIR study of silicon carbide amorphization by heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C-SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C-SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  7. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  8. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  9. Network structure of SiO2 and MgSiO3 in amorphous and liquid States

    NASA Astrophysics Data System (ADS)

    Lan, Mai Thi; Thuy Duong, Tran; Viet Huy, Nguyen; Van Hong, Nguyen

    2017-03-01

    Network structure of SiO2 and MgSiO3 at 300 K and 3200 K is investigated by molecular dynamics simulation and visualization of simulation data. Structural organization of SiO2 and MgSiO3 is clarified via analysis the short range order (SRO) and intermediate range order (IRO). Network topology is determined via analyzing the bond between structural units, the cluster of structural units as well as spatial distribution of structural units. The polyamorphism as well as structural and dynamic heterogeneities are also discussed in this work.

  10. Electricity from sunlight. [low cost silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.

    1978-01-01

    The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.

  11. Magnetic susceptibility of ultrahigh pressure eclogite: The role of retrogression

    NASA Astrophysics Data System (ADS)

    Xu, Haijun; Jin, Zhenmin; Mason, Roger; Ou, Xingong

    2009-09-01

    Retrograde metamorphism played the dominant role in changing the low-field rock magnetic properties and density of 198 specimens of variably retrograded eclogites from the main borehole of the Chinese Continental Scientific Drilling Project (CCSD) and from surface outcrops in the Donghai area in the southern part of the Sulu UHP belt, China. Bulk magnetic susceptibility ( κ) of unretrogressed UHP eclogite is controlled by whole-rock chemical composition and ranges from 397 to 2312 μSI with principal magnetic susceptibility carrying minerals paramagnetic garnet, omphacite, rutile and phengite. Partially retrograded eclogites show large variations in magnetic susceptibility between 804 and 24,277 μSI, with high mean magnetic susceptibility values of 4372 ± 4149 μSI caused by appreciable amounts of Fe-Ti oxide minerals such as magnetite, ilmenite and/or titanohematite produced by retrograde metamorphic reactions. Completely retrograded eclogites have lower susceptibilities of 1094 ± 600 μSI and amphibolite facies mineral assemblages lacking high magnetic susceptibility minerals. Jelínek's corrected anisotropy ( Pj) of eclogites ranges from 1.001 to 1.540, and shows a positive correlation with low-field magnetic susceptibility ( κ). Arithmetic mean bulk density ( ρ) shows a steady decrease from 3.54 ± 0.11 g/cm 3 (fresh eclogite) to 2.98 ± 0.06 g/cm 3 (completely retrograded eclogite). Retrograde metamorphic changes in mineral composition during exhumation appear to be the major factor causing variations in low field magnetic susceptibility and anisotropy. Retrograde processes must be taken into account when interpreting magnetic surveys and geophysical well logs in UHP metamorphic terranes, and petrophysical properties such as density and low-field magnetic susceptibility could provide a means for semi-quantifying the degree of retrogression of eclogite during exhumation.

  12. Radiation Hardened Silicon-on-Insulator Structures with N+ Ion Modified Buried SiO2 Layer

    NASA Astrophysics Data System (ADS)

    Tyschenko, I. E.; Popov, V. P.

    2009-12-01

    Radiation-resistant silicon-on-insulator structures were produced by N+ ion implantation into thermally grown SiO2 film and subsequent hydrogen transfer of the Si layer to the nitrogen-implanted substrate under conditions of vacuum wafer bonding. Accumulation of the carriers in the buried SiO2 was investigated as a function of fluence of nitrogen ions in the range (1-6)×1015 cm2 and as a function of total radiation dose ranging from 104 to 107 rad (Si). It was found that the charge generated near the nitrided bonding interface was reduced by a factor of four compared to the thermal SiO2/Si interface.

  13. Analysis of optical and magnetooptical spectra of Fe{sub 5}Si{sub 3} and Fe{sub 3}Si magnetic silicides using spectral magnetoellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashchenko, S. A., E-mail: lsa@iph.krasn.ru; Popov, Z. I.; Varnakov, S. N.

    The optical, magnetooptical, and magnetic properties of polycrystalline (Fe{sub 5}Si{sub 3}/SiO{sub 2}/Si(100)) and epitaxial Fe{sub 3}Si/Si(111) films are investigated by spectral magnetoellipsometry. The dispersion of the complex refractive index of Fe{sub 5}Si{sub 3} is measured using multiangle spectral ellipsometry in the range of 250–1000 nm. The dispersion of complex Voigt magnetooptical parameters Q is determined for Fe{sub 5}Si{sub 3} and Fe{sub 3}Si in the range of 1.6–4.9 eV. The spectral dependence of magnetic circular dichroism for both silicides has revealed a series of resonance peaks. The energies of the detected peaks correspond to interband electron transitions for spin-polarized densities ofmore » electron states (DOS) calculated from first principles for bulk Fe{sub 5}Si{sub 3} and Fe{sub 3}Si crystals.« less

  14. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  15. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  16. Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration

    DOE PAGES

    Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.; ...

    2017-10-18

    Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less

  17. Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.

    Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less

  18. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towardsmore » dense integration of photonic components on the mainstream complementary metal–oxide–semiconductor platform.« less

  19. Thermodynamic design of a high temperature chemical vapor deposition process to synthesize α-SiC in Si-C-H and Si-C-H-Cl systems

    NASA Astrophysics Data System (ADS)

    Kang, Yura; Yoo, Chang-Hyoung; Nam, Deok-Hui; Lee, Myung-Hyun; Seo, Won-Seon; Hong, Suklyun; Jeong, Seong-Min

    2018-03-01

    In this study, we thermodynamically reviewed the suitable growth process conditions of α-SiC in the Si-C-H system using tetramethylsilane (TMS) and in the Si-C-H-Cl system using methyltrichlorosilane (MTS). In the Si-C-H-Cl system, pure solid SiC was obtained at high temperatures under a larger range of hydrogen dilution ratios than that tolerated in the Si-C-H system. X-ray diffraction and micro-Raman analysis of the products obtained at 1900, 2000, and 2100 °C showed that the α-SiC becomes more dominant with increasing temperature in the Si-C-H-Cl system. While TMS was unsuitable for high temperature processing due to its high C/Si ratio, MTS was found to be appropriate for growing α-SiC crystals at high temperatures under a range of conditions. These results indicate that a novel method to grow α-SiC single crystals through HTCVD using MTS as a precursor could be established.

  20. Alternate electrode materials for the SP100 reactor

    NASA Astrophysics Data System (ADS)

    Randich, E.

    1992-05-01

    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB2 (C) CVD coating on SiMo substrates; (2) development of a ZrB2 (C) CVD coating on SiGe substrates; (3) development of CVI W for porous graphite electrodes; and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB2 coatings on SiGe and graphite substrates, and later into developing ZrB2 coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB2 during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  1. Modeling Parasitic Energy Losses and the Impact of Advanced Tribological Concepts on Fuel Efficiency - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, George

    2016-11-28

    Our primary task for this project was to perform FMEP calculations for a broad range of parameters including engine type [spark ignition (SI) or compression ignition (CI)], engine size, engine mode (speed and load), lubricant viscosity, asperity friction, surface finish, oil type (mineral or synthetic), and additive (friction modifier), as discussed previously [1–3]. The actual analysis was limited to a large diesel engine and it included both load and speed dependencies as well as lubricant viscosity and speed.

  2. Scaling Projections for Sb-based p-channel FETs

    DTIC Science & Technology

    2010-01-01

    the products of long-standing programs on antimonide growth by molecular beam epitaxy at the QinetiQ Corp. (for InSb) and at the Naval Research...electron mobilities in the channels of III–V HEMTs at room temperature are much higher than in Si or Ge, e.g., in InAs they are in the range of 20–30,000 cm2... HEMT structures. IEEE Trans Electron Dev 1985;32:11. [25] Awano Y, Kosugi M, Kosemura K, Mimura T, Abe M. Short-channel effects in subquarter

  3. Low temperature ECR-CVD of SiN X for III-V device passivation

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; MacKenzie, K.; Johnson, D.; Shul, R. J.; Pearton, S. J.; Ren, F.

    1998-06-01

    Electron Cyclotron Resonance SiH 4/N 2 and SiH 4/NH 3 discharges have been employed for deposition of SiN X over a range of temperatures (25-120°C), source powers (200-700 W), pressures (15-40 mTorr), SiH 4 percentages (20-50%) and additional Ar flow rates (0-30 sccm). Deposition rates were in the range 100-700 Å min -1, with refractive indices of 1.7-2.3. The SiH 4/N 2 chemistry allowed a wider process window for tailoring the stress in the SiN X films, with chuck temperature, ECR source power, chamber pressure, SiH 4 composition and Ar addition all producing a transition from compressive to tensile stress, or vice-versa.

  4. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  5. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    PubMed

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  6. Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2017-04-01

    We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.

  7. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  8. High-efficiency Thin-film Fe 2SiS 4 and Fe 2GeS 4-based Solar Cells Prepared from Low-Cost Solution Precursors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, Daniela Rodica; Liu, Mimi; Hwang, Po-yu

    The project aimed to provide solar energy education to students from underrepresented groups and to develop a novel, nano-scale approach, in utilizing Fe 2SiS 4 and Fe 2GeS 4 materials as precursors to the absorber layer in photovoltaic thin-film devices. The objectives of the project were as follows: 1. Develop and implement one solar-related course at Delaware State University and train two graduate students in solar research. 2. Fabricate and characterize high-efficiency (larger than 7%) Fe 2SiS 4 and Fe 2GeS 4-based solar devices. The project has been successful in both the educational components, implementing the solar course at DSUmore » as well as in developing multiple routes to prepare the Fe 2GeS 4 with high purity and in large quantities. The project did not meet the efficiency objective, however, a functional solar device was demonstrated.« less

  9. Confinement effects on thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Karoly J. T.

    We present the results of four projects investigating the effects of confinement on polymeric systems. The first study dealt with polymer blends that are quenched using a spincoating technique rather than a temperature quench. The mass fraction of two blends was varied to determine the effect of the substrate-blend interface on the thin film phase separation morphology. Quantitative measurements of the morphology on three different substrates revealed significant differences in the phase separation morphology as a result of the different wetting properties of the polymer blend on the substrates. The second project dealt with the effect of mechanical confinement on the phase separation of polymer blend thin films. We measured the phase separation morphology of polystyrene/poly (methyl methacrylate) (PS/PMMA) blend films of thickness h on a silicon oxide (SiOx) substrate with a SiOx capping layer. A novel phase separation morphology was observed for small capping layer thicknesses L as well as a transition from lateral to lamellar morphology as L is increased. A simple model is presented which explains the observed lateral morphology, and the morphology transition, in terms of a balance between the free energy increase associated with forming the interfaces between PS-rich and PMMA-rich domains, and the free energy increase associated with the elastic bending of the SiOx capping layer. Direct control of the amplitude and period of the deformation is achieved by varying h and L. Reasonable agreement is obtained between the predicted amplitude of the rippling of the film surface and that measured directly using atomic force microscopy. For temperatures greater than the glass transition temperature Tg, thin freely-standing polymer films are unstable to the formation of holes. In the third project, we have studied the formation and growth of two types of holes: those which form spontaneously when the films are heated above Tg, and those purposely nucleated using a heated scanning tunneling microscope tip. For both types of holes, we observe exponential growth of the hole radius, corresponding to the viscous regime of hole formation, and a decrease in the film viscosity with decreasing film thickness h for h < 250 nm. In the last project the thermal stability of freely-standing films was enhanced by symmetrically confining the films between thin layers of silicon oxide to form SiOx/PS/SiOx trilayer films. Aggressive annealing of the films produced a novel morphology consisting of long, parallel domains with a well-defined periodicity. A simple model is presented which describes the scaling behavior of the morphology. We discuss the direct control of the morphology through manipulation of the individual film thicknesses and the long-range Van der Waals or dispersion interactions.

  10. Structural properties of a-Si films and their effect on aluminum induced crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AICmore » is diminished, leading larger poly-Si grain size.« less

  11. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  12. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish

    2018-01-01

    Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.

  13. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less

  14. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less

  15. Effect of Trace Levels of Si on Microstructure and Grain Boundary Segregation in DOP-26 Iridium Alloy

    NASA Astrophysics Data System (ADS)

    Pierce, Dean; Muralidharan, Govindarajan; Heatherly, Lee; Fox, Ethan

    2018-03-01

    The thermodynamics and kinetics of Silicon (Si) segregation to grain boundaries in Iridium alloy DOP-26 with added trace levels of Si of 6, 11, 29, and 36 wppm was studied by Auger Electron Spectroscopy. The four alloys were annealed at 1500 or 1535 °C for 19 or 76 hours followed by cooling at three different rates. Si enrichment at the grain boundaries (GB) increased with increasing bulk Si content, with the grain boundary Si enrichment factors ranging from 62 to 344, depending on the bulk Si content and the cooling rate. Grain boundary Si contents increased with decreasing cooling rate in all alloys, indicating that Si GB segregation is influenced by both thermodynamic and kinetic factors in the alloys and temperature ranges of the study. A Langmuir-McLean isotherm-based model was successfully used to predict the temperature dependence of GB Si segregation in DOP-26 alloys with Si additions and estimate the temperature independent free energy of Si segregation to grain boundaries in DOP-26.

  16. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-12-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24-76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication.

  17. Atomistic Simulation of Displacement Cascades in Zircon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  18. A new apparatus for electron tomography in the scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less

  19. Prompt Photon Measurements with the PHENIX MPC-EX Detector

    NASA Astrophysics Data System (ADS)

    Lajoie, John

    2012-10-01

    The MPC-EX detector is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Covering a large pseudorapidity range, 3.1 < |η| < 3.8, the MPC-EX and MPC access low-x partons in the Au nucleus in d+Au collisions through prompt photon measurements. With the addition of the MPC-EX, the neutral pion reconstruction range extends to energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward 0̂ and jet measurements, it also provides the necessary 0̂ rejection to make a prompt photon measurement feasible. With this 0̂ rejection, prompt photon yields at high pT, pT> 3 GeV, can be statistically extracted using a double ratio method. The prompt photon RdAu measured with the MPC-EX will quantify the level of gluon shadowing or saturation in the Au nucleus at low-x, x˜ 10-3, with a projected systematic error band a factor of four smaller than current global fits to current measurements.

  20. A New High-Flux Chemical and Materials Crystallography Station at the SRS Daresbury. 1. Design, Construction and Test Results.

    PubMed

    Cernik, R J; Clegg, W; Catlow, C R; Bushnell-Wye, G; Flaherty, J V; Greaves, G N; Burrows, I; Taylor, D J; Teat, S J; Hamichi, M

    1997-09-01

    A new single-crystal diffraction facility has been constructed on beamline 9 of the SRS at Daresbury Laboratory for the study of structural problems in chemistry and materials science. The station utilizes up to 3.8 mrad horizontally from the 5 T wiggler magnet which can be focused horizontally and vertically. The horizontal focusing is provided by a choice of gallium-cooled triangular bent Si (111) or Si (220) monochromators, giving a wavelength range from 0.3 to 1.5 A. Focusing in the vertical plane is achieved by a cylindrically bent zerodur mirror with a 300 mum-thick palladium coating. The station is equipped with a modified Enraf-Nonius CAD-4 four-circle diffractometer and a Siemens SMART CCD area-detector system. High- and low-temperature facilities are available to cover the temperature range from about 80 to 1000 K. Early results on test compounds without optimization of the beam optics demonstrate that excellent refined structures can be obtained from samples giving diffraction patterns too weak to be measured with conventional laboratory X-ray sources, fulfilling a major objective of the project.

  1. Climate Benchmark Missions: CLARREO

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in observing the small but critical climate change signals. CLARREO is the recommended attack on this challenge, and builds on the last decade of climate observation advances in the Earth Observing System as well as metrological advances at NIST (National Institute of Standards and Technology) and other standards laboratories.

  2. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin.

    PubMed

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh

    2017-05-15

    The present work describes a label free electrochemical aptasensor for selective detection of epirubicin. In this project, 5'-thiole terminated aptamer was self-assembled on carbon screen printed electrode, which modified with electrodeposited gold nanoparticles on magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid (Fe 3 O 4 @SiO 2 /DABCO) by Au-S bond. The interactions of epirubicin with aptamer on the AuNPs/Fe 3 O 4 @SiO 2 /DABCO/SPE have been studied by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. Under optimized conditions, the peak current of epirubicin increased linearly with increasing epirubicin concentration, due to the switching in the aptamer conformation and formation of aptamer- epirubicin complex instead of aptamer on the modified electrode surface. The Apt/AuNPs/Fe 3 O 4 @SiO 2 /DABCO/SPE is sensitive, selective and has two linear range from 0.07µM to 1.0µM and 1.0µM to 21.0µM with a detection limit of 0.04µM. The applicability of the aptasensor was successfully assessed by determination of epirubicin in a human blood serum sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Pieter Cullis' quest for a lipid-based, fusogenic delivery system for nucleic acid therapeutics: success with siRNA so what about mRNA?

    PubMed

    Tam, Ying K; Madden, Thomas D; Hope, Michael J

    2016-11-01

    For the best part of 40 years, lipids and membrane fusion have been at the center of Pieter's research. Projects range from the purely academic quest of understanding the roles of lipids in biological membranes, to the translation of this knowledge into the most advanced lipid nanoparticle (LNP) drug delivery systems in clinical trials to-date. Pieter's pioneering work in lipid polymorphism and characterizing the unique properties of unsaturated phospatidyethanolamines (PE), together with the introduction of ionizable, dialkylamino lipids to trigger membrane fusion at acidic pH, provided the foundation on which a new generation of highly potent, well-tolerated LNPs for intravenous delivery of nucleic acid therapeutics has been built. In this contribution to the special edition honoring Pieter's achievements we highlight key research conducted in Pieter's laboratory and at several biotechnology companies, some spun out of his research group, which resulted in the development of a fusogenic delivery system for siRNA therapeutics. Patisiran®, an LNP encapsulating siRNA for hepatic gene silencing, is currently in Phase III clinical trials for treatment of Transthyretin amyloidosis as are several other siRNA products employing this delivery technology. Finally, we describe more recent work in which the platform shows real promise in the rapidly growing new field of mRNA therapeutics.

  4. Effects of oxygen-inserted layers on diffusion of boron, phosphorus, and arsenic in silicon for ultra-shallow junction formation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.

    2018-03-01

    The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.

  5. Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Liu, Ying; Li, Jun; Wang, Yiwei

    2012-08-01

    FeSiAl is widely used in switching power supply, filter inductors and pulse transformers. But when used under higher frequencies in some particular condition, it is required to reduce its high-frequency loss. Preparing a homogeneous insulating coating with good heat resistance and high resistivity, such as AlN and Al2O3, is supposed to be an effective way to reduce eddy current loss, which is less focused on. In this project, mixed AlN and Al2O3 insulating layers were prepared on the surface of FeSiAl powders after 30 min exposure at 1100 °C in high purity nitrogen atmosphere, by means of surface nitridation and oxidation. The results revealed that the insulating layers increase the electrical resistivity, and hence decrease the loss factor, improve the frequency stability and increase the quality factor, especially in the high-frequency range. The morphologies, microstructure and compositions of the oxidized and nitrided products on the surface were characterized by Scanning Electron Microscopy/Energy Disperse Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy, Selected Area Electron Diffraction and X-ray Photoelectron Spectroscopy.

  6. Development of a database system for near-future climate change projections under the Japanese National Project SI-CAT

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Kawahara, S.; Araki, F.; Matsuoka, D.; Ishikawa, Y.; Fujita, M.; Sugimoto, S.; Okada, Y.; Kawazoe, S.; Watanabe, S.; Ishii, M.; Mizuta, R.; Murata, A.; Kawase, H.

    2017-12-01

    Analyses of large ensemble data are quite useful in order to produce probabilistic effect projection of climate change. Ensemble data of "+2K future climate simulations" are currently produced by Japanese national project "Social Implementation Program on Climate Change Adaptation Technology (SI-CAT)" as a part of a database for Policy Decision making for Future climate change (d4PDF; Mizuta et al. 2016) produced by Program for Risk Information on Climate Change. Those data consist of global warming simulations and regional downscaling simulations. Considering that those data volumes are too large (a few petabyte) to download to a local computer of users, a user-friendly system is required to search and download data which satisfy requests of the users. We develop "a database system for near-future climate change projections" for providing functions to find necessary data for the users under SI-CAT. The database system for near-future climate change projections mainly consists of a relational database, a data download function and user interface. The relational database using PostgreSQL is a key function among them. Temporally and spatially compressed data are registered on the relational database. As a first step, we develop the relational database for precipitation, temperature and track data of typhoon according to requests by SI-CAT members. The data download function using Open-source Project for a Network Data Access Protocol (OPeNDAP) provides a function to download temporally and spatially extracted data based on search results obtained by the relational database. We also develop the web-based user interface for using the relational database and the data download function. A prototype of the database system for near-future climate change projections are currently in operational test on our local server. The database system for near-future climate change projections will be released on Data Integration and Analysis System Program (DIAS) in fiscal year 2017. Techniques of the database system for near-future climate change projections might be quite useful for simulation and observational data in other research fields. We report current status of development and some case studies of the database system for near-future climate change projections.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Rajesh; Lovelock, D. Michael; Zhang, Pengpeng

    Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior–inferior (SI) internal and anterior–posterior externalmore » signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01–0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01–0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%–10.8%) of gate width (range 1.6–3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients.« less

  8. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    NASA Astrophysics Data System (ADS)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the paragenesis of Web+Wad+Rt. With increasing Glk content in the starting composition, Gkl+Wad+Rt association is formed. At a pressure of >17 GPa, an association of two phases with Prv-type structure is stable within a narrow range of starting compositions. Addition of Al to the starting material allows us to simulate the composition of natural bridgmanites, since lower mantle bridgmanites are characterized by significant Al contents. In addition, this study shows that, in contrast to Al, the high contents of Ti can stabilize bridgmanite-like compounds at considerably lower pressure (18 GPa) in comparison with pure MgSiO3 bridgmanite. Small crystals of titanium-rich phases, including Ti-Al-Brd and Web were examined by single-crystal X-ray diffractometer, which allowed us to study the influence of Ti on crystallochemical peculiarities of the mantle phases and on the phase transformations. This study was supported by the Foundation of the President of the Russian Federation for Young Ph.D. (projects no. MK 1277.2017.5 to E.A. Sirotkina) and partly supported by the Russian Foundation for Basic Research (project nos. 17-55-50062 to E.A. Sirotkina and A.V.Bobrov) [1] Ringwood, A.E. The chemical composition and origin of the Earth. In: Advances in Earth science. Hurley, P.M. (Editors), M.I.T. Press, Cambridge. 1966. P. 287-356 [2] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394. [3] Wilson, M. (1989) Igneous Petrogenesis—A global tectonic approach, 466 p. Kluwer, Dordrecht.

  9. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in the large time/space scale averages that are key to understanding decadal changes.

  10. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    NASA Astrophysics Data System (ADS)

    Friedland, E.

    2017-01-01

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  11. Controllable growth of GeSi nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin

    2018-06-01

    We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).

  12. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  13. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  14. Geometric structure of thin SiO xN y films on Si(100)

    NASA Astrophysics Data System (ADS)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  15. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. L. Davis; J. L. Rempe; D. L. Knudson

    Silicon carbide (SiC) temperature monitors 05R4-02-A KG1403 (300 LO) and 05R4-01-A KG1415 (400 LO B) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak irradiation temperatures. HTTL measurements indicate that the peak irradiation temperature for the 300 LO monitor was 295 {+-} 20 C and the peak irradiation temperature for the 400 LO B monitor was 294 {+-} 25 C. Two silicon carbide (SiC) temperature monitors irradiated in the Advanced Test Reactor (ATR) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak temperature during irradiation. These monitors were irradiated as part ofmore » the University of Wisconsin Pilot Project with a target dose of 3 dpa. Temperature monitors were fabricated from high density (3.203 g/cm3) SiC manufactured by Rohm Haas with a nominal size of 12.5 mm x 1.0 mm x 0.75 mm (see Attachment A). Table 1 provides identification for each monitor with an expected peak irradiation temperature range based on preliminary thermal analysis (see Attachment B). Post irradiation calculations are planned to reduce uncertainties in these calculated temperatures. Since the early 1960s, SiC has been used as a post-irradiation temperature monitor. As noted in Reference 2, several researchers have observed that neutron irradiation induced lattice expansion of SiC annealed out when the post-irradiation annealing temperature exceeds the peak irradiation temperature. As noted in Reference 3, INL uses resistivity measurements to infer peak irradiation temperature from SiC monitors. Figure 1 depicts the equipment at the HTTL used to evaluate the SiC monitors. The SiC monitors are heated in the annealing furnace using isochronal temperature steps that, depending on customer needs, can range from 50 to 800 C. This furnace is located under a ventilation hood within the stainless steel enclosure. The ventilation system is activated during heating so that any released vapors are vented through this system. Annealing temperatures are recorded using a National Institute of Standards and Technology (NIST) traceable thermocouple inserted into an alumina tube in the furnace. After each isochronal annealing, the specimens are placed in a specialized fixture located in the constant temperature chamber (maintained at 30 C) for a minimum of 30 minutes. After the 30 minute wait time, each specimen's resistance is measured using the specialized fixture and a calibrated DC power analyzer. This report discusses the evaluation of the SiC monitors and presents the results. Testing was conducted in accordance with Reference 3. Sections 2 and 3 present the data collected for each monitor and provide interpretation of the data. Section 4 presents the evaluated temperature results.« less

  17. Silicon incorporation in GaAs: From delta-doping to monolayer insertion

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Newman, R. C.; Roberts, C.

    1995-08-01

    Raman spectroscopy was used to study the incorporation of Si into doping layers in GaAs, grown by molecular beam epitaxy at a temperature of 400 °C, for Si concentrations ranging from the δ-doping level to a ML coverage. The strength of the scattering by local vibrational modes of substitutional Si was almost constant for Si areal concentration [Si]A in the range 5×1012<[Si]A<5×1013 cm-2 but then decreased, dropping below the detection limit for [Si]A≳3×1014 cm-2. At these concentrations a new vibrational band emerged at a frequency close to 470 cm-1 and developed into the optic zone center phonon of a coherently strained epitaxial layer of Si embedded in GaAs when a coverage of ≊1.5 ML (9.3×1014 cm-2) was reached. These findings strongly indicate that the observed saturation and the eventual decrease of the concentration of substitutional silicon is caused by an increasing incorporation of deposited Si into two-dimensional islands of covalently bonded Si.

  18. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  19. CMOS-Compatible SOI MESFETS for Radiation-Hardened DC-to-DC Converters

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2013-01-01

    A radiation-tolerant transistor switch has been developed that can operate between 196 and +150 C for DC-to-DC power conversion applications. A prototype buck regulator component was demonstrated to be performing well after a total ionizing dose of 300 krad(Si). The prototype buck converters showed good efficiencies at ultra-high switching speeds in the range of 1 to 10 MHz. Such high switching frequency will enable smaller, lighter buck converters to be developed as part of the next project. Switching regulators are widely used in commercial applications including portable consumer electronics.

  20. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  1. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    PubMed Central

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    Abstract A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24–76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N–H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a ‘silicone’ polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460–1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication. PMID:28567174

  2. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer.

    PubMed

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiN x ) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiN x is precisely measured in the temperature range 24-76 °C using the SiN x rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiN x ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si 3 N 4 , while the value for the PVD-SiN x ring is slightly higher. Both SiN x rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiN x needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiN x is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiN x rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al 2 O 3 , Ga 2 O 3 Ta 2 O 5 , HfO 2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication.

  3. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles

    PubMed Central

    2014-01-01

    We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636

  4. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  5. High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x

    NASA Astrophysics Data System (ADS)

    Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.

    2017-02-01

    The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x  =  0.5  +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx  ≈  0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.

  6. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.

    Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less

  7. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  8. Digitised evaluation of speech intelligibility using vowels in maxillectomy patients.

    PubMed

    Sumita, Y I; Hattori, M; Murase, M; Elbashti, M E; Taniguchi, H

    2018-03-01

    Among the functional disabilities that patients face following maxillectomy, speech impairment is a major factor influencing quality of life. Proper rehabilitation of speech, which may include prosthodontic and surgical treatments and speech therapy, requires accurate evaluation of speech intelligibility (SI). A simple, less time-consuming yet accurate evaluation is desirable both for maxillectomy patients and the various clinicians providing maxillofacial treatment. This study sought to determine the utility of digital acoustic analysis of vowels for the prediction of SI in maxillectomy patients, based on a comprehensive understanding of speech production in the vocal tract of maxillectomy patients and its perception. Speech samples were collected from 33 male maxillectomy patients (mean age 57.4 years) in two conditions, without and with a maxillofacial prosthesis, and formant data for the vowels /a/,/e/,/i/,/o/, and /u/ were calculated based on linear predictive coding. The frequency range of formant 2 (F2) was determined by differences between the minimum and maximum frequency. An SI test was also conducted to reveal the relationship between SI score and F2 range. Statistical analyses were applied. F2 range and SI score were significantly different between the two conditions without and with a prosthesis (both P < .0001). F2 range was significantly correlated with SI score in both the conditions (Spearman's r = .843, P < .0001; r = .832, P < .0001, respectively). These findings indicate that calculating the F2 range from 5 vowels has clinical utility for the prediction of SI after maxillectomy. © 2017 John Wiley & Sons Ltd.

  9. Experimental analysis of silicon oxycarbide thin films and waveguides

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Somaschini, Claudio; Iseni, Giosue; Melloni, Andrea

    2017-05-01

    Silicon oxycarbide (SiOC) thin films are produced with reactive rf magnetron sputtering of a silicon carbide (SiC) target on Si (100) and SiO2/Si substrates under varying deposition conditions. The optical properties of the deposited SiOC thin films are characterized with spectroscopic ellispometry at multiple angles of incidence over a wavelength range 300- 1600 nm. The derived optical constants of the SiOC films are modeled with Tauc-Lorentz model. The refractive index n of the SiOC films range from 1.45 to 1.85 @ 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 1000 nm. The topography of SiOC films is studied with SEM and AFM giving rms roughness of 0.9 nm. Channel waveguides with a SiOC core with a refractive index of 1.7 have been fabricated to demonstrate the potential of sputtered SiOC for integrated photonics applications. Propagation loss as low as 0.39 +/- 0.05 dB/mm for TE and 0.41 +/- 0.05 dB/mm for TM polarizations at telecommunication wavelength 1550 nm is demonstrated.

  10. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    NASA Astrophysics Data System (ADS)

    Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid

    2016-03-01

    Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 - 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 - 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy superlattice structure display PL of high intensity while exhibiting a characteristic decay time that is up to 1000 times shorter than that found in conventional Si/SiGe nanostructures. The non-exponential PL decay found experimentally in Si/SiGe nanostructures can be interpreted as resulting from variations in the separation distance between electrons and holes at the Si/SiGe heterointerface. The results demonstrate that a sharp Si/SiGe heterointerface acts to reduce the carrier radiative recombination lifetime and increase the PL quantum

  11. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  12. Development of an iral coated SiC-C functionally gradient composite for oxidation protection of graphite and carbon-carbon composites. Final report, 15 July 1992-14 July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, M.R.; Richards, A.C.; Ohuchi, F.S.

    1995-10-27

    This report is the final summary for AFOSR project number F49620-92-J-0367. The purpose of this research was to evaluate the oxidation protection afforded to graphite or C/C composites by combining IrAl with SiC-C functionally gradient coatings FGCs. This project involved the design and construction of a novel cold wall levitation chemical vapor deposition (LCVD) reactor capable of producing continuous FGCs, and the modification of an existing physical vapor deposition (PVD) system to allow for codeposition of Ir and Al. The SiC-C FGCs were produced using the SiCl4-C3H8-H2 gas system. By continuously varying the Si to C ratio in the gasmore » stream the composition of the coatings could be precisely controlled and tailored to fit a predetermined compositional profile. IrAl was deposited onto the SiC-C FGC by alternately depositing layers of Ir and Al and reacting them at 700 deg C, in vacuum, to form IrAl. Analysis of the as reacted film indicated that IrAl had indeed formed, however, a secondary reaction had occurred between the Ir and SiC producing IrSi3 and graphite. Cracking of the IrAl coating was also observed and was attributed to the CTE mismatch between SiC and the IrAl coating. Upon exposure to a high temperature oxidizing flame (<2100 deg C for 5 min.), the IrAl formed a protective layer of alumina, however, the extensive cracking of the IrAl layer allowed the SiC-C FGC layer to oxidize.« less

  13. Tunable dual-channel filter based on the photonic crystal with air defects.

    PubMed

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  14. Effects of rapid thermal annealing on crystallinity and Sn surface segregation of {{Ge}}_{1-{\\boldsymbol{x}}}{{Sn}}_{{\\boldsymbol{x}}} films on Si (100) and Si (111)

    NASA Astrophysics Data System (ADS)

    Miao, Yuan-Hao; Hu, Hui-Yong; Song, Jian-Jun; Xuan, Rong-Xi; Zhang, He-Ming

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).

  15. Defect Reduction in GaAs/Si Films with the a-Si Buffer Layer Grown by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hai-Yang; He, Yun-Rui; Deng, Can; Wang, Qi; Duan, Xiao-Feng; Huang, Yong-Qing; Ren, Xiao-Min

    2015-08-01

    Not Available Supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications, the National Basic Research Program of China under Grant No 2010CB327601, the Natural Science Foundational Science and Technology Cooperation Projects under Grant No 2011RR000100, the 111 Project of China under Grant No B07005, and the Doctoral Program of Higher Specialized Research Fund under Grant No 20130005130001.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert; Bennion, Kevin

    This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less

  17. Epitaxial growth of 6H silicon carbide in the temperature range 1320 C to 1390 C

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1974-01-01

    High-quality epitaxial layers of 6H SiC have been grown on 6H SiC substrates with the grown direction perpendicular to the crystal c-axis. The growth was by chemical vapor deposition from methyltrichlorosilane (CH3SiCl3) in hydrogen at temperatures in the range of 1320 to 1390 C. Epitaxial layers up to 80 microns thick were grown at rates of 0.4 microns/min. Attempts at growth on the (0001) plane of 6H SiC substrates under similar conditions resulted in polycrystalline cubic SiC layers. Optical and X-ray diffraction techniques were used to characterize the grown layers.

  18. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  19. The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys

    PubMed Central

    Lim, Jeon Taik; Youn, Ji Won; Seo, Seok Yong; Kim, Ki Young; Kim, Suk Jun

    2017-01-01

    The mechanical strength of an Al-30% Si alloy in the mushy zone was estimated by using a novel centrifugation apparatus. In the apparatus, the alloy melt was partially solidified, forming a porous structure made of primary Si platelets (Si foam) while cooling. Subsequently, pressure generated by centrifugal force pushed the liquid phase out of the foam. The estimated mechanical strength of the Si foam in the temperature range 850–993 K was very low (62 kPa to 81 kPa). This is about two orders of magnitude lower than the mechanical strength at room temperature as measured by compressive tests. When the centrifugal stress was higher than the mechanical strength of the foam, the foam fractured, and the primary Si crystallites were extracted along with the Al-rich melt. Therefore, to maximize the centrifugal separation efficiency of the Al-30% Si alloy, the centrifugal stress should be in the range of 62–81 kPa. PMID:28772695

  20. Trapping time of excitons in Si nanocrystals embedded in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    de Jong, E. M. L. D.; de Boer, W. D. A. M.; Yassievich, I. N.; Gregorkiewicz, T.

    2017-05-01

    Silicon (Si) nanocrystals (NCs) are of great interest for many applications, ranging from photovoltaics to optoelectonics. The photoluminescence quantum yield of Si NCs dispersed in SiO2 is limited, suggesting the existence of very efficient processes of nonradiative recombination, among which the formation of a self-trapped exciton state on the surface of the NC. In order to improve the external quantum efficiency of these systems, the carrier relaxation and recombination need to be understood more thoroughly. For that purpose, we perform transient-induced absorption spectroscopy on Si NCs embedded in a SiO2 matrix over a broad probe range for NCs of average sizes from 2.5 to 5.5 nm. The self-trapping of free excitons on surface-related states is experimentally and theoretically discussed and found to be dependent on the NC size. These results offer more insight into the self-trapped exciton state and are important to increase the optical performance of Si NCs.

  1. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and serve as a bio-signature. This experimental finding well explains the tendency of magnetite-rich BIFs to have lower δ30Si values than hematite-rich BIFs. [1] Konhauser et al., Earth-Science Rev, 2017 [2] Wu et al., GCA, 2012 [3] Zheng et al., GCA, 2016 [4] Reddy et al., GCA, 2016

  2. G T-Mohr Start-up Reactivity Insertion Transient Analysis Using Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fard, Mehdi Reisi; Blue, Thomas E.; Miller, Don W.

    2006-07-01

    As a part of a Department of Energy-Nuclear Engineering Research Initiative (NERI) Project, we at OSU are investigating SiC semiconductor detectors as neutron power monitors for Generation IV power reactors. As a part of this project, we are investigating the power monitoring requirements for a specific type of Generation IV reactor, namely the GT-MHR. To evaluate the power monitoring requirements for the GT-MHR that are most demanding for a SiC diode power monitor, we have developed a Simulink model to study the transient behavior of the GT-MHR. In this paper, we describe the application of the Simulink code to themore » analysis of a series of Start-up Reactivity Insertion Transients (SURITs). The SURIT is considered to be a limiting protectable accident in terms of establishing the dynamic range of a SiC power monitor because of the low count rate of the detector during the start-up and absence of the reactivity feedback mechanism at the beginning of transient. The SURIT is studied with the ultimate goal of identifying combinations of 1) reactor power scram setpoints and 2) cram initiation times (the time in which a scram must be initiated once the setpoint is exceeded) for which the GT-MHR core is protected in the event of a continuous withdrawal of a control rod bank from the core from low powers. The SURIT is initiated by withdrawing a rod bank when the reactor is cold (300 K) and sub-critical at the BOEC (Beginning of Equilibrium Cycle) condition. Various initial power levels have been considered corresponding to various degrees of sub-criticality and various source strengths. An envelope of response is determined to establish which initial powers correspond to the worst case SURIT. (authors)« less

  3. Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira

    2011-10-01

    Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 °C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.

  4. HST/WFC3 flux calibration ladder: Vega

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Bohlin, Ralph; Pirzkal, Nor; MacKenty, John

    2014-08-01

    Vega is one of only a few stars calibrated against an SI-traceable blackbody, and is the historical flux standard. Photometric zeropoints of the Hubble Space Telescope's instruments rely on Vega, through the transfer of its calibration via stellar atmosphere models to the suite of standard stars. HST's recently implemented scan mode has enabled us to develop a path to an absolute SI traceable calibration for HST IR observations. To fill in the crucial gap between 0.9 and 1.7 micron in the absolute calibration, we acquired -1st order spectra of Vega with the two WFC3 infrared grisms. At the same time, we have improved the calibration of the -1st orders of both WFC3 IR grisms, as well as extended the dynamic range of WFC3 science observations by a factor of 10000. We describe our progress to date on the WFC3 `flux calibration ladder' project to provide currently needed accurate zeropoint measurements in the IR

  5. The NASA data systems standardization program - Radio frequency and modulation

    NASA Technical Reports Server (NTRS)

    Martin, W. L.

    1983-01-01

    The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.

  6. Structure and superconductivity in the ternary silicide CaAlSi

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Huang, Gui-Qin; Liu, Mei

    2007-06-01

    Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.

  7. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  8. Hybrid single mode lasers fabricated using Si/SiO2/SiON micromachined platforms

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Mansour, K.

    2003-01-01

    We have devised a hybridization scheme that, given suitable Fabri-Perot (F-P) ain medium, allows us to fabricate small, mechanically robust single frequency lasers in a wide spectral range, limited only by the transparency of the SiON material.

  9. Data collection via CRS&SI technology to determine when to impose SLR.

    DOT National Transportation Integrated Search

    2013-12-01

    The research team and its partners have completed the project objectives to deploy : Commercial Remote Sensing and Spatial Information, CRS&SI, technology and to : launch a website, DSS-SLR, to display information or data retrieved via satellite. The...

  10. 40 CFR 91.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... families within a given manufacturer's product line. Banking means the retention of marine SI engine... or trading as permitted by these regulations. Eligible sales means marine SI engines sold for... based on the projected applicable production/sales volume of the engine family. “Reserved credits” are...

  11. Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Gubbels, Timothy; Barnes, Robert

    2011-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar irradiance 6) Broadband reflected and emitted radiative fluxes 7) Cloud properties 8) Surface albedo There are two methods the CLARREO mission will rely on to achieve these critical decadal change benchmarks: direct and reference inter-calibration. A quantitative analysis of the strengths and weaknesses of the two methods has led to the recommended CLARREO mission approach. The project consists of two satellites launched into 90-degree, precessing orbits separated by 90 degrees. The instrument suite receiver on each spacecraft includes one emitted infrared spectrometer, two reflected solar spectrometers: dividing the spectrum from ultraviolet through near infrared, and one global navigation receiver for radio occultation. The measurements will be acquired for a period of three years minimum, with a five-year lifetime goal, enabling follow-on missions to extend the climate record over the decades needed to understand climate change. The current work concentrates on the reflected solar instrument giving an overview of its design and calibration approach. The calibration description includes the approach to achieving an SI-traceable system on orbit. The calibration overview is followed by a preliminary error budget based on techniques currently in place at the National Institute of Standards and Technology (NIST).

  12. Low CTE glass, SiC & Beryllium for lightweight mirror substrates

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Cayrel, Marc

    2005-10-01

    This paper is intended to analyze the relative merits of low CTE glass, SiC and Beryllium as candidates for lightweight mirror substrates in connection with real practical experience and example or three major projects using these three materials and running presently at SAGEM-REOSC. Beryllium and SiC have nice thermal and mechanical properties but machined glass ceramic can still well compete technically or economically in some cases.

  13. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE PAGES

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  14. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  15. Chronology, geochemistry and Sr-Nd isotope studies of Jurassic intrusions in the Diyanqinamu porphyry Mo mine, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Sun, Hairui; Huang, Zhilong; Li, Wenbo; Leng, Chengbiao; Ma, Deyun; Zhang, Xingchun

    2014-07-01

    Available cores of porphyritic granite and aplitic granite from the Diyanqinamu porphyry Mo deposit in the north central Great Xing’an Range presented an opportunity to examine and analyze Mesozoic igneous rocks far from the Paleo-Pacific subduction zone. The Diyanqinamu granites are highly fractionated I-type, distinguished from the M-, A- or S-type granite by: high SiO2, and Rb; low Zr, Nb, Y, and Ce; low Fe2O3total/MgO and (K2O + Na2O)/CaO ratios; low alumina saturation index (<1.1); low initial ISr ratios (0.70137-0.70451); positive εNd(t) values (2.37-3.77); and negative correlation between P2O5 and SiO2. The aplitic granites were generated by fractional crystallization of the porphyritic granite, as evidenced by: spatial proximity; consistent zircon U-Pb ages (156 Ma) within error; correlations between other oxides and SiO2 in Haker diagrams; low Ba, Sr, Nb, P, Ti, Eu; linear relationship in both (La/Yb)N vs. La and Sr vs. Ba diagrams; and, decreasing LREE and ∑REE with increasing SiO2. The Diyanqinamu granites have young depleted-mantle two-stage model ages (avg. TDM2 = 660 Ma) similar to those of most Mesozoic voluminous felsic magmas in northeastern China, and were likely sourced from pre-existent crustal components both “old” and juvenile that had been juxtaposed during the tectonic evolution of the Paleo-Asian Ocean. These granites project in the transitional field from syn-collision to post-collision tectonic settings on tectonic discrimination diagrams, implying emplacement in an extensional environment. Extensional volcanism and basin formation in the Great Xing’an Range region in Late Jurassic is coeval with the Diyanqinamu granites, demonstrating that post-orogenic lithospheric extension related to the closure of the Mongol-Okhotsk Ocean was the main driving force for Late Jurassic magmatism in this region.

  16. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  17. Low cost silicon solar array project. Task 1: Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Mui, J. Y. P.

    1976-01-01

    The kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst were investigated. The hydrogenation of SiCl4 to form HSiCl3 and the direct synthesis of H2SiCl2 from HCl gas and metallurgical silicon metal were also studied. The purification of SiH4 using activated carbon adsorbent was studied along with a process for storing SiH4 absorbed on carbon. The latter makes possible a higher volumetric efficiency than compressed gas storage. A mini-plant designed to produce ten pounds per day of SiH4 is described.

  18. Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity

    NASA Astrophysics Data System (ADS)

    Meyer, Swen; Ludwig, Ralf

    2013-04-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating 7 test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. The Rio Mannu Basin, located in Sardinia; Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2, it ranges from 62 to 946 meters in elevation, at mean annual temperatures of 16°C and precipitation of about 700 mm, the annual runoff volume is about 200 mm. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) was setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. In a field campaign about 250 soil samples were collected and lab-analyzed. Different geostatistical regionalization methods were tested to improve the model setup. The soil parameterization of the model was tested against publically available soil data. Results show a significant improvement of modeled soil moisture outputs. To validate WaSiMs evapotranspiration (ETact) outputs, Landsat TM images were used to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season. WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. Output results were analyzed for climate induced changes on selected hydrological variables. While the climate projections reveal increased precipitation rates in the spring season, first simulation results show an earlier onset and an increased duration of the dry season, imposing an increased irrigation demand and higher vulnerability of agricultural productivity.

  19. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  20. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length

    PubMed Central

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-01-01

    AIM To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results. PMID:29564210

  1. Potential variation around grain boundaries in BaSi{sub 2} films grown on multicrystalline silicon evaluated using Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Masakazu; Tsukahara, Daichi; Toko, Kaoru

    2014-12-21

    Potential variations across the grain boundaries (GBs) in a 100 nm thick undoped n-BaSi{sub 2} film on a cast-grown multicrystalline Si (mc-Si) substrate are evaluated using Kelvin probe force microscopy (KFM). The θ-2θ X-ray diffraction pattern reveals diffraction peaks, such as (201), (301), (410), and (411) of BaSi{sub 2}. Local-area electron backscatter diffraction reveals that the a-axis of BaSi{sub 2} is tilted slightly from the surface normal, depending on the local crystal plane of the mc-Si. KFM measurements show that the potentials are not significantly disordered in the grown BaSi{sub 2}, even around the GBs of mc-Si. The potentials are highermore » at GBs of BaSi{sub 2} around Si GBs that are formed by grains with a Si(111) face and those with faces that deviate slightly from Si(111). Thus, downward band bending occurs at these BaSi{sub 2} GBs. Minority carriers (holes) undergo a repelling force near the GBs, which may suppress recombination as in the case of undoped n-BaSi{sub 2} epitaxial films on a single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies in the range from 10 to 55 meV. The potentials are also higher at the BaSi{sub 2} GBs grown around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for hole transport ranges from 5 to 55 meV. These results indicate that BaSi{sub 2} GBs formed on (111)-dominant Si surfaces do not have a negative influence on the minority-carrier properties, and thus BaSi{sub 2} formed on underlayers, such as (111)-oriented Si or Ge and on (111)-oriented mc-Si, can be utilized as a solar cell active layer.« less

  2. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficienciesmore » in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.« less

  3. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji

    2018-06-01

    Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).

  4. Highly efficient holograms based on c-Si metasurfaces in the visible range.

    PubMed

    Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V

    2018-04-16

    This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.

  5. Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition

    NASA Astrophysics Data System (ADS)

    Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.

    2018-03-01

    The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.

  6. InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Albert, B. R.; Kimerling, L. C.; Michel, J.

    2018-02-01

    InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2-5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104-3 × 107 cm-2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm-2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ˜0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9-2.4 eV varies from 16.6% to 34.3%.

  7. Recent progress in liquid crystal projection displays

    NASA Astrophysics Data System (ADS)

    Hamada, Hiroshi

    1997-05-01

    An LC-projector usually contains 3 monochrome TFT-LCDs with a 3-channel dichroic system or a single TFT-LCD with a micro color filter. The liquid crystal operation mode adopted in a TFT-LCD is TN. The optical throughput of an LC-projector is reduced by a pair of polarizers, an aperture ratio of a TFT- LCD and a color filter in a single-LCD projector. In order to eliminate absorption loss by a color filter, a single LCD projection system which consists of a monochrome LCD with a microlens array and a color splitting system using tilted dichroic mirrors or another optical element such as a holographic optical element or a blazed grating has been developed. And LC rear projection TVs have started to challenge CRT-based rear projection TVs. In addition to this system, new technologies to improve optical throughput have been developed to the practical stage such as an active- matrix-addressed PDLC and a reflective type LCD on a Si-LSI chip. Merits and technical issues of newly developed systems and conventional systems including a-Si TFT-LCDs and p-Si TFT-LCDs are discussed mainly in terms of optical throughput.

  8. Therapeutic siRNAs for dominant genetic skin diseases including pachyonychia congenita

    PubMed Central

    Leachman, Sancy A.; Hickerson, Robyn P.; Hull, Peter R.; Smith, Frances J. D.; Milstone, Leonard M.; Lane, E. Birgitte; Bale, Sherri J.; Roop, Dennis R.; McLean, W. H. Irwin; Kaspar, Roger L.

    2008-01-01

    The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this “first-in-skin” siRNA may herald a paradigm shift in the treatment of dominant negative genetic disorders. PMID:18495438

  9. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita.

    PubMed

    Leachman, Sancy A; Hickerson, Robyn P; Hull, Peter R; Smith, Frances J D; Milstone, Leonard M; Lane, E Birgitte; Bale, Sherri J; Roop, Dennis R; McLean, W H Irwin; Kaspar, Roger L

    2008-09-01

    The field of science and medicine has experienced a flood of data and technology associated with the human genome project. Over 10,000 human diseases have been genetically defined, but little progress has been made with respect to the clinical application of this knowledge. A notable exception to this exists for pachyonychia congenita (PC), a rare, dominant-negative keratin disorder. The establishment of a non-profit organization, PC Project, has led to an unprecedented coalescence of patients, scientists, and physicians with a unified vision of developing novel therapeutics for PC. Utilizing the technological by-products of the human genome project, such as RNA interference (RNAi) and quantitative RT-PCR (qRT-PCR), physicians and scientists have collaborated to create a candidate siRNA therapeutic that selectively inhibits a mutant allele of KRT6A, the most commonly affected PC keratin. In vitro investigation of this siRNA demonstrates potent inhibition of the mutant allele and reversal of the cellular aggregation phenotype. In parallel, an allele-specific quantitative real-time RT-PCR assay has been developed and validated on patient callus samples in preparation for clinical trials. If clinical efficacy is ultimately demonstrated, this "first-in-skin" siRNA may herald a paradigm shift in the treatment of dominant-negative genetic disorders.

  10. Development of ceramic matrix composites for application in the ceramic technology for Advanced Heat Engines Project: Phase 2a, Development of in-situ toughened silicon nitride. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollinger, J.; Newson, D.; Yeh, H.

    1992-06-01

    The objective of this program was to develop a net shape forming process for an in-situ reinforced Si{sub 3}N{sub 4} (AS-700). AS-700 was initially developed using cold isostatic pressing (CIP) of alcohol milled powders. The CIP`ed AS-700 material exhibited a moderate strength (690 MPa) and high toughness (9 MPa{radical}m) at room temperature. In addition to net-shape process development, optimization of AS-700 properties was also investigated through the refinement of densification processes, and evaluation of the effect of Si{sub 3}N{sub 4} powder properties on resulting microstructure and mechanical properties. Slip casting was chosen as the net-shape forming process. A slip castingmore » process was successfully developed for forming green parts ranging from thin plates to thick cylinders, and to large complex shaped turbine rotors. The densification cycle was optimized to achieve full density parts without any cracks or warpage, and with comparable properties and microstructure to the CIP`ed baseline AS-700 material. The evaluation of six (6) alternate Si{sub 3}N{sub 4} powders indicated that Si{sub 3}N{sub 4} powders have a very strong influence on the development of resulting AS-700 in-situ microstructures and mechanical properties. The AS-700 slip casting process and optimized densification process were then combined and a number of test specimens were fabricated. The mechanical properties and microstructure of the optimized slip cast AS-700 Si{sub 3}N{sub 4} were then fully characterized. The key property values are: 695 MPa at room temperature, 446 MPa at 1370{degree}C flexural strengths and 8.25 MPa{radical}m toughness.« less

  11. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%. PMID:29641503

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GLASS, S. JILL; LOEHMAN, RONALD E.; HOSKING, F. MICHAEL

    The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of themore » stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.« less

  13. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Koichi; Kirimoto, Kenta; Sun, Yong

    2017-02-01

    A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  14. Structural and photoluminescence properties of silicon nanowires extracted by means of a centrifugation process from plasma torch synthesized silicon nanopowder.

    PubMed

    Le Borgne, Vincent; Agati, Marta; Boninelli, Simona; Castrucci, Paola; De Crescenzi, Maurizio; Dolbec, Richard; El Khakani, My Ali

    2017-07-14

    We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several μm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ∼5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of 'chaplet-like' structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ∼5 to ∼3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.

  15. Structural and photoluminescence properties of silicon nanowires extracted by means of a centrifugation process from plasma torch synthesized silicon nanopowder

    NASA Astrophysics Data System (ADS)

    Le Borgne, Vincent; Agati, Marta; Boninelli, Simona; Castrucci, Paola; De Crescenzi, Maurizio; Dolbec, Richard; El Khakani, My Ali

    2017-07-01

    We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several μm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ˜5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of ‘chaplet-like’ structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ˜5 to ˜3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.

  16. Hot isostatic pressing of SiC particulate reinforced metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loh, N.L.; Wei, Z.; Xu, Z.

    1996-12-31

    Two as-cast SiC particulate reinforced A359-based composites were hot isostatically pressed for a fixed length of time but at various pressures (in the range 100--150 MPa) and temperatures (in the range 450--550 C). It was found that HIP treatment generally increased the ductility but reduced the yield stress drastically. The improvement of ductility was attributed to a reduction of the porosity levels. Quantitative image analyses showed that the HIP treatment reduced the porosity levels significantly. It is of interest to observe that increasing HIP temperature is more effective than increasing HIP pressure in terms of improvement in strength and ductility.more » Another interesting observation is that most eutectic Si particles were spheroidized during HIP. The spheroidization of Si was believed to contribute to the improvement of mechanical properties, because fracture initiation of the composites was observed to be related to either the breaking of Si particles or the debonding of Si particles from the nearby SiC particles.« less

  17. Design of Strain-Engineered GeSn/GeSiSn Quantum Dots for Mid-IR Direct Bandgap Emission on Si Substrate

    NASA Astrophysics Data System (ADS)

    Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui

    2018-06-01

    Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

  18. Low-Cost III-V Photovoltaic Materials by Chloride Vapor Transport Deposition Using Safe Solid Precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, Shannon; Aloni, Shaul; Weiss, Robert

    Si-based photovoltaic devices dominate the market. As photovoltaic (PV) manufacturing costs have plummeted, technologies which increase efficiency have become critical. Si cell efficiencies are nearing theoretical limits and Si-based PV modules are unlikely to reach the 25-30% efficiency range. The use of III-V semiconductors is an obvious technical solution to improve efficiency, especially if they can be integrated directly with existing Si technology as tandems. High coefficients of light absorption along with tunable bandgaps and lattice constants have resulted in record conversion efficiencies for both one-sun and concentrator PV applications. GaAs, for example, has been used to manufacture single-junction photovoltaicsmore » with world-record efficiencies of 28.8% at one sun.2 However, costs for III-Vs must be dramatically reduced to produce cost-effective, high-efficiency PV solutions. III-V costs are controlled by two factors: semiconductor growth and the substrate. III-V growth is dominated today by metal-organic vapor phase epitaxy (MOVPE) with a lesser role played by molecular beam epitaxy (MBE). MOVPE costs are high due to the expense and low utilization (~30%) of precursors, modest growth rates (~100 nm min-1), equipment complexity, and safety infrastructure needed to handle toxic, pyrophoric gases.3 MBE costs are high due to slow growth rates and limitations of scalability. Details comparing plausible low-cost III-V growth methods are available in a review article published as a result of this project. The primary goal of this project was to demonstrate that close-spaced vapor transport (CSVT) using chloride (from HCl) as a transport agent can be used for the rapid growth of device-ready III-V layers from safe, solid-source precursors. In pursuit of this goal, we designed, built, and installed a new Cl-CSVT reactor based on insights from our previous H2O-CSVT growth system and in collaboration with equipment professionals at Malachite Technologies. This system was successfully used to grow epitaxial GaAs with controlled n-type doping, having mobilities similar to MOVPE. Detailed technical information and results can also be found in the primary publication resulting from this project. This work sets the stage for tackling the development of high-performance III-V single junctions and tandem devices directly on Si substrates, which was beyond the capabilities of our H2O-CSVT system. The design of the reactor’s source and substrate transfer system should allow for direct deposition of device structures. The collective innovations of our Cl-CSVT system might ultimately serve as an enabling process for commercialization of the technology through a collaboration with appropriate industrial partners.« less

  19. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  20. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  1. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  2. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET of the Si ions ranged from 48 to 158 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to -rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE(sub max) value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/ m for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.

  3. Determining rates of chemical weathering in soils - Solute transport versus profile evolution

    USGS Publications Warehouse

    Stonestrom, David A.; White, A.F.; Akstin, K.C.

    1998-01-01

    SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.

  4. Apollo 16 geochemical X-ray fluorescene experiment: Preliminary report

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Lowman, P.; Schmadebeck, R.; Blodgett, H.; Eller, E.; Yin, L.; Lamothe, R.; Osswald, G.

    1972-01-01

    The lunar surface was mapped with respect to Mg, Al and Si as Al/Si and Mg/Si ratios along the projected ground tracks swept out by the orbiting Apollo 16 spacecraft. The results confirm the observations made during the Apollo 15 flight and provide data for a number of features not covered before. The data are consistent with the idea that the moon has a widespread differentiated crust (the highlands). The Al/Si and Mg/Si chemical ratios correspond to those for anorthositic gabbro through gabbroic anorthosites or feldspathic basalts. The X-ray results suggest the occurrence of this premare crust, or material similar to it, at the Descartes landing site.

  5. Apollo 16 geochemical X-ray fluorescence experiment: Preliminary report

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Lowman, P.; Schmadebeck, R.; Blodgett, H.; Eller, E.; Yin, L.; Lamothe, R.; Osswald, G.

    1972-01-01

    The lunar surface was mapped with respect to Mg, Al, and Si, as Al/Si and Mg/Si ratios along the projected ground tracks swept out by the orbiting Apollo 16 spacecraft. The results confirm the observations made during the Apollo 15 flight and provide data for a number of features not covered before. The data are consistent with the idea that the moon has a widespread differentiated crust (the highlands). The Al/Si and Mg/Si chemical ratios correspond to that for anorthositic gabbro through gabbroic anorthosites or feldspathic basalts. The X-ray results suggest the occurrence of this premare crust or material similar to it as the Descartes landing site.

  6. Exploring teachers' beliefs and knowledge about scientific inquiry and the nature of science: A collaborative action research project

    NASA Astrophysics Data System (ADS)

    Fazio, Xavier Eric

    Science curriculum reform goals espouse the need to foster and support the development of scientific literacy in students. Two critical goals of scientific literacy are students' engagement in, and developing more realistic conceptions about scientific inquiry (SI) and the nature of science (NOS). In order to promote the learning of these curriculum emphases, teachers themselves must possess beliefs and knowledge supportive of them. Collaborative action research is a viable form of curriculum and teacher development that can be used to support teachers in developing the requisite beliefs and knowledge that can promote these scientific literacy goals. This research study used a collective case study methodology to describe and interpret the views and actions of four teachers participating in a collaborative action research project. I explored the teachers' SI and NOS views throughout the project as they investigated ideas and theories, critically examined their current curricular practice, and implemented and reflected on these modified curricular practices. By the end of the research study, all participants had uniquely augmented their understanding of SI and NOS. The participants were better able to provide explanatory depth to some SI and NOS ideas; however, specific belief revision with respect to SI and NOS ideas was nominal. Furthermore, their idealized action research plans were not implemented to the extent that they were planned. Explanations for these findings include: impact of significant past educational experiences, prior understanding of SI and NOS, depth of content and pedagogical content knowledge of the discipline, and institutional and instructional constraints. Nonetheless, through participation in the collaborative action research process, the teachers developed professionally, personally, and socially. They identified many positive outcomes from participating in a collaborative action research project; however, they espoused constraints to implementing innovative actions. Indeed, local school cultures were barriers to the participants' development. A model of teacher development embracing all the developmental areas is presented---an integration of social, personal, and professional development. Implications and recommendations for future research on teachers' beliefs and knowledge, as well as the viability of collaborative action research to facilitate teacher and curriculum development are presented.

  7. High-alumina low-silica HT stone wool fibers: a chemical compositional range with high biosolubility.

    PubMed

    Guldberg, Marianne; Jensen, Søren Lund; Knudsen, Torben; Steenberg, Thomas; Kamstrup, Ole

    2002-04-01

    Man-made vitreous fibers (MMVF) are classified within the European Union (EU) as carcinogenic category 3 (possibly carcinogenic), but criteria exist to exonerate fibers from this classification. The HT stone wool fiber type is a MMVF that fulfills European regulatory requirements for exoneration from classification as a carcinogen based on in vivo testing. The chemical composition of the fibers and the results of the in vivo and in vitro studies that defined the chemical compositional range for a CAS registry number for these fibers are presented and discussed. Results from in vitro dissolution measurements at pH 4.5 of 52 fiber compositions (9-23 wt% Al(2)O(3) and 32-47 wt% SiO(2)) ranging from traditional stone wool to the biosoluble HT fibers are presented. The results are evaluated as a function of the ratio Al/(Al+Si) in the glass network and as a function of the fraction of Si-O-Si linkages in the glass. It is suggested that the dissolution mechanism for these fibers relates to the density of the surface silica layer on dissolving fibers and that the fraction of Si-O-Si linkages influences this. (c) 2002 Elsevier Science (USA).

  8. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbonsmore » produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.« less

  9. Deposition of silicon carbide thin films by pulsed excimer laser ablation technique in the 25-700°C deposition temperature range

    NASA Astrophysics Data System (ADS)

    El Khakani, My A.; Gat, E.; Beaudoin, Yves; Chaker, Mohamed; Monteil, C.; Guay, Daniel; Letourneau, G.; Pepin, Henri

    1995-04-01

    Laser ablation deposition technique was used to deposit silicon carbide thin films on both Si(100) and quartz substrates. The deposition was accomplished by ablating SiC sintered ceramic targets, using a KrF (248 nm) excimer laser. At a laser intensity of about 1 X 109 W/cm2, substrate temperatures in the (25-700) degree(s)C range were investigated. When the deposition temperature is varied from 27 to 650 degree(s)C, (i) the density of a-SiC films increases from 2.6 to 3.0 g cm-3, while their mean roughness value (for a film thickness of about 1 micrometers ) slightly changes from 0.44 to 0.5 nm; (ii) the optical transmission of a-SiC films is significantly improved (the absorption coefficient at 632.8 nm wavelength was reduced by a factor of about 5); and (iii) their Si-C bond density, as determined by FTIR spectroscopy, increases from (13.1 +/- 1.3) to (23.4 +/- 2.4) 1022 bond cm-3. The increased number of Si-C bonds is correlated to the increase of the optical transmission. Over all the investigated deposition temperature range, the a-SiC films were found to be under high compressive stress around a mean value of about 1.26 GPa. The control of the stress of a-SiC films was achieved by means of post- thermal annealings and the annealed a-SiC films were successfully used to fabricate x-ray membranes.

  10. Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

    NASA Astrophysics Data System (ADS)

    Chiriacò, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto; Ragusa, Andrea; Sbenaglia, Enzo Antonio; Dipaola, Lucia; Casciaro, Sergio

    2013-07-01

    Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5-5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.

  11. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    NASA Astrophysics Data System (ADS)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  12. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE PAGES

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; ...

    2017-11-09

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  13. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  14. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  15. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  16. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Albert P.

    2013-04-26

    This project utilizes Silicon Carbide (SiC) materials platform to fabricate advanced sensors to be used as high-temperature downhole instrumentation for the DOE’s Geothermal Technologies Program on Enhanced Geothermal Systems. The scope of the proposed research is to 1) develop a SiC pressure sensor that can operate in harsh supercritical conditions, 2) develop a SiC temperature sensor that can operate in harsh supercritical conditions, 3) develop a bonding process for adhering SiC sensor die to well casing couplers, and 4) perform experimental exposure testing of sensor materials and the sensor devices.

  17. University of Texas Southwestern Medical Center: High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  18. University of Texas Southwestern Medical Center (UTSW): High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  19. Ceramic fibers from Si-B-C polymer precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.

    1993-01-01

    Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.

  20. Shock-tube studies of silicon-compound vapors

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1977-01-01

    Test gas mixtures containing SiO, SiO2, Si2, and SiH were produced in a shock tube by processing shock waves through a mixture of SiCl4 + N2O + Ar, SiH4 + Ar, or SiH4 + O2 + Ar. Absorption spectra of the test gases were studied photographically in the reflected shock region using a xenon flash lamp as the light source in the range of wavelengths between 250 and 600 nm. SiO was found to be a dominant species in the vapors produced by the SiCl4 + N2O and SiH4 + O2 mixtures. Spontaneous combustion was observed in the SiH4 + O2 + Ar mixture prior to the shock arrival, and the resulting solid SiO2 particles evaporated behind the shock wave. Spectral absorption characteristics of SiO, SiO2, Si2, and SiH were determined by studying the test gases.

  1. Study of Viability and Challenges of using SiPMs as an Alternative to PMT’s in Scintillation Detectors for Nuclear Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliev, Metodi

    The goals of this project are to identify fundamental and practical problems and features with SiPMs as they relate to IAEA detector needs, Identify published results and implementations of scintillation detectors tat use SiPMs that are of interest to IAEA, asses how effectively the fundamental problems were addresses, and perform simulations and experiments as needed to reproduce crucial results and make recommendations.

  2. Pattern Laser Annealing by a Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Komiya, Yoshio; Hoh, Koichiro; Murakami, Koichi; Takahashi, Tetsuo; Tarui, Yasuo

    1981-10-01

    Preliminary experiments with contact-type pattern laser annealing were made for local polycrystallization of a-Si, local evaporation of a-Si and local formation of Ni-Si alloy. These experiments showed that the mask patterns can be replicated as annealed regions with a resolution of a few microns on substrates. To overcome shortcomings due to the contact type pattern annealing, a projection type reduction pattern laser annealing system is proposed for resistless low temperature pattern forming processes.

  3. Light harvesting with Ge quantum dots embedded in SiO{sub 2} or Si{sub 3}N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosentino, Salvatore, E-mail: Salvatore.cosentino@ct.infn.it; Raciti, Rosario; Simone, Francesca

    2014-01-28

    Germanium quantum dots (QDs) embedded in SiO{sub 2} or in Si{sub 3}N{sub 4} have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 °C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3–9 nm range in the SiO{sub 2} matrix, or in the 1–2 nm range in the Si{sub 3}N{sub 4} matrix, as measured by transmission electron microscopy. Thus, Si{sub 3}N{sub 4} matrix hosts Ge QDs at higher density and more closely spaced thanmore » SiO{sub 2} matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs embedded in Si{sub 3}N{sub 4} matrix in comparison with those in the SiO{sub 2} host. Light absorption by Ge QDs is shown to be more effective in Si{sub 3}N{sub 4} matrix, due to the optical bandgap (0.9–1.6 eV) being lower than in SiO{sub 2} matrix (1.2–2.2 eV). Significant photoresponse with a large measured internal quantum efficiency has been observed for Ge QDs in Si{sub 3}N{sub 4} matrix when they are used as a sensitive layer in a photodetector device. These data will be presented and discussed, opening new routes for application of Ge QDs in light harvesting devices.« less

  4. Visible and near IR Si--H vibrational overtones in SiH/sub 4/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, R.A.; Lampe, F.W.; O'Keefe, J.F.

    1984-06-15

    Absorption spectra in the 12 000 to 18 000 cm/sup -1/ range have been recorded for gaseous SiH/sub 4/ using intracavity photoacoustic detection with cw dye lasers. The observed transitions correspond to the ..delta..v = 6--9 overtones of the Si--H local mode stretch and show considerable rotational structure.

  5. Visible and near IR Si-H vibrational overtones in SiH/sub 4/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, R.A.; Lampe, F.W.; O'Keefe, J.F.

    1985-01-01

    Absorption spectra in the 12,000 to 18,000 cm/sup -1/ range have been recorded for gaseous SiH/sub 4/ using intracavity photoacoustic detection with cw dye lasers. The observed transitions correspond to the ..delta.. nu = 6-9 overtones of the Si-H local mode stretch and show considerable rotational structure.

  6. Electrical transport in transverse direction through silicon carbon alloy multilayers containing regular size silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Mandal, Aparajita; Kole, Arindam; Dasgupta, Arup; Chaudhuri, Partha

    2016-11-01

    Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel-Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.

  7. Microhardness, Friction and Wear of SiC and Si3N4 Materials as a Function of Load, Temperature and Environment.

    DTIC Science & Technology

    1981-10-01

    microstructures which may be developed and finally to relate properties to structure and composition (28-31). Sialon materials are alloys of Si3N4 with oxides...techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of fabrication...microhardness techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of

  8. Technical Note: Intrafractional changes in time lag relationship between anterior-posterior external and superior-inferior internal motion signals in abdominal tumor sites.

    PubMed

    Regmi, Rajesh; Lovelock, D Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D; Goodman, Karyn A; Wu, Abraham J; Mageras, Gig S

    2015-06-01

    To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior-inferior (SI) internal and anterior-posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01-0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01-0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%-10.8%) of gate width (range 1.6-3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients.

  9. Technical Note: Intrafractional changes in time lag relationship between anterior–posterior external and superior–inferior internal motion signals in abdominal tumor sites

    PubMed Central

    Regmi, Rajesh; Lovelock, D. Michael; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Goodman, Karyn A.; Wu, Abraham J.; Mageras, Gig S.

    2015-01-01

    Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate. Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior–inferior (SI) internal and anterior–posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated. Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01–0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01–0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%–10.8%) of gate width (range 1.6–3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm. Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients. PMID:26127033

  10. Polymorphism in the Sc 2Si 2O 7-Y 2Si 2O 7 system

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Alba, María D.; Becerro, Ana. I.

    2007-04-01

    This paper examines the structural changes with temperature and composition in the Sc 2Si 2O 7-Y 2Si 2O 7 system; members of this system are expected to form in the intergranular region of Si 3N 4 and SiC structural ceramics when sintered with the aid of Y 2O 3 and Sc 2O 3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β- RE2Si 2O 7 polymorph, with γ- RE2Si 2O 7 and δ- RE2Si 2O 7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc 2Si 2O 7 in β-Y 2Si 2O 7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc 2-xY xSi 2O 7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β- RE2Si 2O 7 structure. Finally, it is interesting to note that, although Sc 2Si 2O 7 shows a unique stable polymorph ( β), Sc 3+ is able to replace Y 3+ in γ-Y 2Si 2O 7 in the compositional range 1.86⩽ x⩽2 (where x is Sc 2-xY xSi 2O 7) as well as in δ-Y 2Si 2O 7 for compositions much closer to the pure Y 2Si 2O 7.

  11. Optimisation of Critical Infrastructure Protection: The SiVe Project on Airport Security

    NASA Astrophysics Data System (ADS)

    Breiing, Marcus; Cole, Mara; D'Avanzo, John; Geiger, Gebhard; Goldner, Sascha; Kuhlmann, Andreas; Lorenz, Claudia; Papproth, Alf; Petzel, Erhard; Schwetje, Oliver

    This paper outlines the scientific goals, ongoing work and first results of the SiVe research project on critical infrastructure security. The methodology is generic while pilot studies are chosen from airport security. The outline proceeds in three major steps, (1) building a threat scenario, (2) development of simulation models as scenario refinements, and (3) assessment of alternatives. Advanced techniques of systems analysis and simulation are employed to model relevant airport structures and processes as well as offences. Computer experiments are carried out to compare and optimise alternative solutions. The optimality analyses draw on approaches to quantitative risk assessment recently developed in the operational sciences. To exploit the advantages of the various techniques, an integrated simulation workbench is build up in the project.

  12. Petrogenesis of High-CaO Lavas Recovered from Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, S.

    2015-12-01

    Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.

  13. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liwei; Deng, Xunming; Abken, Anka

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and hasmore » an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH) about 5.7% and a running time about 480 hrs, which are very promising results; we have also completed a techno-economic analysis of our PEC system, which indicates that a projected hydrogen generation cost of $2/gge is achievable with a 50 Ton-per-day (TPD) scale under certain conditions.« less

  14. Molecular dynamics analysis of silicon chloride ion incidence during Si etching in Cl-based plasmas: Effects of ion incident energy, angle, and neutral radical-to-ion flux ratio

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    Profile anomalies and surface roughness are critical issues to be resolved in plasma etching of nanometer-scale microelectronic devices, which in turn requires a better understanding of the effects of ion incident energy and angle on surface reaction kinetics. This paper presents a classical molecular dynamics (MD) simulation of Si(100) etching by energetic Clx+ (x = 1-2) and SiClx+ (x = 0-4) ion beams with different incident energies Ei = 20-500 eV and angles θi = 0-85°, with and without low-energy neutral Cl radicals (neutral-to-ion flux ratios Γn/Γi = 0 and 100). An improved Stillinger-Weber interatomic potential was used for the Si/Cl system. Numerical results indicated that in Cl+, Cl2+, SiCl3+, and SiCl4+ incidences for θi = 0° and Γn/Γi = 0, the etching occurs in the whole Ei range investigated; on the other hand, in SiCl+ and SiCl2+ incidences, the deposition occurs at low Ei < 300 and 150 eV, respectively, while the etching occurs at further increased Ei. For SiCl+ and SiCl2+, the transition energies from deposition and etching become lowered for Γn/Γi = 100. Numerical results further indicated that in the SiCl+ incidence for Γn/Γi = 0, the etching occurs in the whole θi range investigated for Ei >= 300 eV; on the other hand, for Ei = 100 and 150 eV, the deposition occurs at low θi < 60° and 40°, respectively, while the etching occurs at further increased θi; in addition, for Ei <= 50 eV, the deposition occurs in the whole θi range investigated.

  15. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  16. Assessing soil ecosystem services using empirical indicators

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Struyf, Eric; Staes, Jan; Meire, Patrick

    2014-05-01

    Studying the soil from the ecosystem services (ES) approach is a way to embrace the complexity and multiple functions of the soil systems and its interactions with the environment and with humans. The ES approach is ideal for developing a sustainable and integrated land management and to concern people about the value of conserving soil. However, this approach is generally used up to know only for soil provisioning services as well as the potential for carbon storage, but not for other services such as soil erosion or water buffering. In addition, those studies carried out are focussed in coarse spatial scale, without identifying the spatial or temporal variability. One of the reasons of this bias arises from the difficulties of obtaining a broad and reliable dataset of indicators from empirical sources. This constrain is sorted out with the action of SOGLO project (the Soil System Under Global Change), an interuniversity attraction pole project (2012-2017) involving different universities from Belgium. The project brings the opportunity to obtain a unique soil dataset for an improved and integrated analysis of the feedbacks between the soil system and fluxes of sediment, carbon (C), nutrients and water in response to anthropogenic forcings at different spatial and temporal scales in experimental sites in both Brazil and in Belgium. Within this broad project, the objective of the present work is to elucidate how different land uses in Belgium (forest, grassland, cropland with conventional tillage and with reduced tillage both with crop rotation) affect the delivery and trade-off of soil ecosystem services. We did this by measuring and comparing a range of indicators of soil ecosystem services in different lands uses during a range of 5 years. Specifically we investigated quantity of SOC in the soil and DOC in the soil solution and at the discharge point (SOC storage service/water buffering services); Si, N, P in the soil, dissolved in the soil solution and at the discharge point (regulating of P, N, Si cycles/ water buffering services); infiltration capacity, water retention curves and soil erosion (soil stability/water buffering services) and vegetation cover (biomass production service). We then examined the relationships and trade off between services spatially and seasonally. The results will be given during at the conference session but our hypothesis is that the performance of soil services is related even seasonally, and the degradation of one service enhances de degradation of the others.

  17. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents.

    PubMed

    Kamitakahara, M; Kawashita, M; Miyata, N; Kokubo, T; Nakamura, T

    2002-11-01

    Polydimethylsiloxane (PDMS)-CaO-SiO(2) hybrids with starting compositions containing PDMS/(Si(OC(2)H(5))(4)+PDMS) weight ratio=0.30, H(2)O/Si(OC(2)H(5))(4) molar ratio=2, and Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratios=0-0.2, were prepared by the sol-gel method. The apatite-forming ability of the hybrids increased with increasing calcium content in the Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0-0.1. The hybrids with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0.1-0.2 formed apatite on their surfaces in a simulated body fluid (SBF) within 12 h. The hybrid with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio of 0.10 showed an excellent apatite-forming ability in SBF with a low release of silicon into SBF. It also showed mechanical properties analogous to those of human cancellous bones. This hybrid is expected to be useful as a new type of bioactive material.

  18. Fabrication of quantum dots in undoped Si/Si 0.8Ge 0.2 heterostructures using a single metal-gate layer

    DOE PAGES

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...

    2016-08-01

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si 0.8Ge 0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratiomore » used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less

  19. SiC lightweight telescopes for advanced space applications. I - Mirror technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter

    1992-01-01

    A SiC based telescope is an extremely attractive emerging technology which offers the lightweight and stiffness features of beryllium, the optical performance of glass to diffraction limited visible resolution, superior optical/thermal stability to cryogenic temperatures, and the cost advantages of an aluminum telescope. SSG has developed various SiC mirrors with and without a silicon coating and tested these mirrors over temperature ranges from +50 C to -250 C. Our test results show less than 0.2 waves P-V in visible wavefront change and no hysteresis over this wide temperature range. Several SSG mirrors are representative of very lightweight SiC/Si mirrors including (1) a 9 cm diameter, high aspect ratio mirror weighing less than 30 grams and (2) a 23 cm diameter eggcrated mirror weighing less than 400 grams. SSG has also designed and analyzed a 0.6 meter SiC based, on axis, three mirror reimaging telescope in which the primary mirror weighs less than 6 kg and a 0.5 meter GOES-like scan mirror. SSG has also diamond turned several general aspheric SiC/Si mirrors with excellent cryo optical performance.

  20. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  1. Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing.

    PubMed

    Wen, C; Wan, W; Li, F H; Tang, D

    2015-04-01

    The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Making Mercury's Core with Light Elements

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  3. Evidence for the formation of SiGe nanoparticles in Ge-implanted Si 3N 4

    DOE PAGES

    Mirzaei, S.; Kremer, F.; Feng, R.; ...

    2017-03-14

    SiGe nanoparticles were formed in an amorphous Si 3N 4 matrix by Ge + ion implantation and thermal annealing. The size of the nanoparticles was determined by transmission electron microscopy and their atomic structure by x-ray absorption spectroscopy. Nanoparticles were observed for excess Ge concentrations in the range from 9 to 12 at. % after annealing at temperatures in the range from 700 to 900 °C. The average nanoparticle size increased with excess Ge concentration and annealing temperature and varied from an average diameter of 1.8±0.2 nm for the lowest concentration and annealing temperature to 3.2±0.5 nm for the highestmore » concentration and annealing temperature. Our study demonstrates that the structural properties of embedded SiGe nanoparticles in amorphous Si 3N 4 are sensitive to the implantation and post implantation conditions. Furthermore, we demonstrate that ion implantation is a novel pathway to fabricate and control the SiGe nanoparticle structure and potentially useful for future optoelectronic device applications.« less

  4. Electrical spin injection from CoFe2O4 into p-Si semiconductor across MgO tunnel barrier for spin electronics

    NASA Astrophysics Data System (ADS)

    Panda, J.; Maji, Nilay; Nath, T. K.

    2017-05-01

    The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.

  5. The Effectiveness of the Improved NaHPO4-SnF2-ZrSiO4-SiO2 Prophylactic Paste.

    DTIC Science & Technology

    1976-03-01

    C-1119 Howard University -College of Dentistry Research Washington, DC 20001 DOD DISTRIBUTION STATEMENT Approved for public release; distribution...AORESS 10. PROGRAM ELEMENT. PROJECT. TASK Howard University AREA 6 WORK UNIT NUMBERS College of Dentistry Research Washington, DC 20001 1I. CONTROLLING

  6. Diffusive charge transport in graphene on SiO 2

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  7. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products.

  8. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO2/SiO2:Ag thin films

    NASA Astrophysics Data System (ADS)

    Güner, S.; Budak, S.; Gibson, B.; Ila, D.

    2014-08-01

    We have deposited five periodic SiO2/SiO2 + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO2:Ag layers were 2.7-5 nm and SiO2 buffer layers were 1-15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO2 were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO2 was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 1014 and 1 × 1016 ions/cm2 values. Optical absorption spectra were recorded in the range of 200-900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  9. Integrated Silicon Carbide Power Electronic Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Rahul

    2017-11-07

    Research involved in this project is aimed at monolithically integrating an anti-parallel diode to the SiC MOSFET switch, so as to avoid having to use an external anti-parallel diode in power circuit applications. SiC MOSFETs are replacing Si MOSFETs and IGBTs in many applications, yet the high bandgap of the body diode in SiC MOSFET and consequent need for an external anti-parallel diode increases costs and discourages circuit designers from adopting this technology. Successful demonstration and subsequent commercialization of this technology would reduce SiC MOSFET cost and additionally reduce component count as well as other costs at the power circuitmore » level. In this Phase I project, we have created multiple device designs, set up a process for device fabrication at the 150mm SiC foundry XFAB Texas, demonstrated unit-processes for device fabrication in short loops and started full flow device fabrication. Key findings of the development activity were: The limits of coverage of photoresist over the topology of thick polysilicon structures covered with oxide, which required larger feature dimensions to overcome; and The insufficient process margin for removing oxide spacers from polysilicon field ring features which could result in loss of some features without further process development No fundamental obstacles were uncovered during the process development. Given sufficient time for additional development it is likely that processes could be tuned to realize the monolithically integrated SiC JBS diode and MOSFET. Sufficient funds were not available in this program to resolve processing difficulties and fabricate the devices.« less

  10. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  11. The VeTOOLS Project: an example of how to strengthen collaboration between scientists and Civil Protections in disaster risk reduction

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Bartolini, Stefania; Becerril, Laura

    2016-04-01

    VeTOOLS is a project funded by the European Commission's Humanitarian Aid and Civil Protection department (ECHO), and aims at creating an integrated software platform specially designed to assess and manage volcanic risk. The project facilitates interaction and cooperation between scientists and Civil Protection Agencies in order to share, unify, and exchange procedures, methodologies and technologies to effectively reduce the impacts of volcanic disasters. The project aims at 1) improving and developing volcanic risk assessment and management capacities in active volcanic regions; 2) developing universal methodologies, scenario definitions, response strategies and alert protocols to cope with the full range of volcanic threats; 4) improving quantitative methods and tools for vulnerability and risk assessment; and 5) defining thresholds and protocols for civil protection. With these objectives, the VeTOOLS project points to two of the Sendai Framework resolutions for implementing it: i) Provide guidance on methodologies and standards for risk assessments, disaster risk modelling and the use of data; ii) Promote and support the availability and application of science and technology to decision-making, and offers a good example on how a close collaboration between science and civil protection is an effective way to contribute to DRR. European Commission ECHO Grant SI2.695524

  12. Explosion and combustion properties of alkylsilanes I : temperature-composition limits of explosion for methyl-,dimethyl-,trimethyl-,tetramethyl-,and vinylsilane at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Schalla, Rose L; Mcdonald, Glen E

    1954-01-01

    The explosion limits of five alkylsilanes were determined as a function of temperature and composition at a pressure of 1 atmosphere. Over a fuel concentration range of 2 to 10 percent, the lowest temperatures (zero C) below which explosion did not occur for the five fuels studied were: tetramethylsilane (CHsub3)sub4Si, 450 degrees; trimethlysilane (CHsub3)sub3SiH, 310 degrees;dimethylsilane (CHsub3)sub2SiHsub2, 220 degrees; methylsilane CHsub3SiHsub3, 130 degrees; and vinylsilane Hsub2C=CH-SiHsub3, 90 degrees. Explosion limits for hydrocarbons analogous to these silanes fall in a temperature range of 500 degrees to 600 degrees C. Since the explosion temperatures of the alkylsilanes are lower than those of the hydrocarbons and since they decrease as hydrogen atoms are substituted for methyl groups, it was concluded that the Si-H bond is more readily susceptible to oxidation than the C-H bond.

  13. Un cosmologiste oublié: Jean Henri Lambert

    NASA Astrophysics Data System (ADS)

    Débarbat, Suzanne; Lévy, Jacques

    Si les travaux de Kepler ont eu une large influence sure les progrès réalisés en astronomie au cours du 17e siècle, le Siècle de lumières a vu apparaître de nouvelles conceptions. La court vie de J.H. lambert s'inscrit dans le 18e siècle. Il s'agit d'un nom bien connu dans différents domaines (photométrie, projections cartographiques, mathématiques appliquées, etc.); mais il n'est guàre mentionné en cosmologie, alors que Lambert y a fourni une contribution originale offrant quelques suprenantes anticipations...

  14. Annealing effects on capacitance-voltage characteristics of a-Si/SiN(x) multilayer prepared using hot-wire chemical vapour deposition.

    PubMed

    Panchal, A K; Rai, D K; Solanki, C S

    2011-04-01

    Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.

  15. Hole injection and dielectric breakdown in 6H-SiC and 4H-SiC metal-oxide-semiconductor structures during substrate electron injection via Fowler-Nordheim tunneling

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas; Mandal, Krishna C.

    2015-12-01

    Hole injection into silicon dioxide (SiO2) films (8-40 nm thick) is investigated for the first time during substrate electron injection via Fowler-Nordheim (FN) tunneling in n-type 4H- and 6H-SiC (silicon carbide) based metal-oxide-semiconductor (MOS) structures at a wide range of temperatures (T) between 298 and 598 K and oxide electric fields Eox from 6 to 10 MV/cm. Holes are generated in heavily doped n-type polycrystalline silicon (n+ -polySi) gate serving as the anode as well as in the bulk silicon dioxide (SiO2) film via hot-electron initiated band-to-band ionization (BTBI). In absence of oxide trapped charges, it is shown that at a given temperature, the hole injection rates from either of the above two mechanisms are higher in n-4H-SiC MOS devices than those in n-6H-SiC MOS structures when compared at a given Eox and SiO2 thickness (tox). On the other hand, relative to n-4H-SiC devices, n-6H-SiC structures exhibit higher hole injection rates for a given tox during substrate electron injection at a given FN current density je,FN throughout the temperature range studied here. These two observations clearly reveal that the substrate material (n-6H-SiC and n-4H-SiC) dependencies on time-to-breakdown (tBD) or injected charge (electron) to breakdown (QBD) of the SiO2 film depend on the mode of FN injections (constant field/voltage and current) from the substrate which is further verified from the rigorous device simulation as well.

  16. Improved PECVD Si x N y film as a mask layer for deep wet etching of the silicon

    NASA Astrophysics Data System (ADS)

    Han, Jianqiang; Yin, Yi Jun; Han, Dong; Dong, LiZhen

    2017-09-01

    Although plasma enhanced chemical vapor deposition (PECVD) silicon nitride (Si x N y ) films have been extensively investigated by many researchers, requirements of film properties vary from device to device. For some applications utilizing Si x N y film as the mask Layer for deep wet etching of the silicon, it is very desirable to obtain a high quality film. In this study, Si x N y films were deposited on silicon substrates by PECVD technique from the mixtures of NH3 and 5% SiH4 diluted in Ar. The deposition temperature and RF power were fixed at 400 °C and 20 W, respectively. By adjusting the SiH4/NH3 flow ratio, Si x N y films of different compositions were deposited on silicon wafers. The stoichiometry, residual stress, etch rate in 1:50 HF, BHF solution and 40% KOH solution of deposited Si x N y films were measured. The experimental results show that the optimum SiH4/NH3 flow ratio at which deposited Si x N y films can perfectly protect the polysilicon resistors on the front side of wafers during KOH etching is between 1.63 and 2.24 under the given temperature and RF power. Polysilicon resistors protected by the Si x N y films can withstand 6 h 40% KOH double-side etching at 80 °C. At the range of SiH4/NH3 flow ratios, the Si/N atom ratio of films ranges from 0.645 to 0.702, which slightly deviate the ideal stoichiometric ratio of LPCVD Si3N4 film. In addition, the silicon nitride films with the best protection effect are not the films of minimum etch rate in KOH solution.

  17. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, Ranjan; Ericson, Milton Nance; Frank, Steven Shane

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz tomore » 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.« less

  18. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  19. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  20. A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals.

    PubMed

    Lü, Yongjun; Cheng, Hao; Chen, Min

    2012-06-07

    The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni(95)Si(5), Ni(90)Si(10), and the glass transitions of Ni(80)Si(20) and Ni(75)Si(25). The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni(95)Si(5) and Ni(90)Si(10). For the two glass-forming alloys, Ni(80)Si(20) and Ni(75)Si(25), the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.

  1. A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals

    NASA Astrophysics Data System (ADS)

    Lü, Yongjun; Cheng, Hao; Chen, Min

    2012-06-01

    The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni95Si5, Ni90Si10, and the glass transitions of Ni80Si20 and Ni75Si25. The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni95Si5 and Ni90Si10. For the two glass-forming alloys, Ni80Si20 and Ni75Si25, the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.

  2. Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si

    NASA Technical Reports Server (NTRS)

    Manasevit, H. M.; Gergis, I. S.; Jones, A. B.

    1982-01-01

    Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.

  3. The National Si-Soft Project

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Trappey, Charles V.

    2003-06-01

    Taiwan's electronics industry emerged in the 1960s with the creation of a small but well planned integrated circuit (IC) packaging industry. This industry investment led to bolder investments in research, laboratories, and the island's first semiconductor foundries in the 1980s. Following the success of the emerging IC manufacturers and design houses, hundreds of service firms and related industries (software, legal services, substrate, chemical, and test firms among others) opened for business and completed Taiwan's IC manufacturing supply chain. The challenge for Taiwan's electronics industry is to take the lead in the design, manufacture, and marketing of name brand electronic products. This paper introduces the Si-Soft (silicon software) Project, a national initiative that builds on Taiwan's achievements in manufacturing (referred to as Si-Hard or silicon hardware) to launch a new wave of companies. These firms will contribute to the core underlying technology (intellectual property) used in the creation of electronic products.

  4. Role of external neutrons of weakly bound nuclei in reactions with their participation

    NASA Astrophysics Data System (ADS)

    Naumenko, M. A.; Penionzhkevich, Yu E.; Samarin, V. V.; Sobolev, Yu G.

    2018-05-01

    The paper presents the results of measurement of the total cross sections for reactions 4,6He+Si and 6,7,9Li+Si in the beam energy range 5–50 A MeV. The enhancements of the total cross sections for reaction 6He+Si compared with reaction 4He+Si and 9Li+Si compared with reactions 6,7Li+Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He+Si and 9Li+Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.

  5. Metrication of clinical laboratory data in SI units.

    PubMed

    Lehmann, H P

    1976-01-01

    The development and general concepts of the Système International d'Unités (SI units) are discussed. The basic and derived quantities and units of the SI used for clinical laboratory data are reviewed. Ranges of normal values for a number of body fluid constituents are given in the units in current general use and in SI units, with corresponding conversion factors.

  6. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  7. Biplanar x-ray fluoroscopy for sacroiliac joint fusion.

    PubMed

    Vanaclocha-Vanaclocha, Vicente; Verdú-López, Francisco; Sáiz-Sapena, Nieves; Herrera, Juan Manuel; Rivera-Paz, Marlon

    2016-07-01

    Chronic pain originating from the sacroiliac joint (SI) can cause severe dysfunction. Although many patients respond to conservative management with NSAIDs, some do need further treatment in the form of SI joint fusion (SIJF). To achieve safe and successful SIJF, intraoperative x-ray fluoroscopy is mandatory to avoid serious damages to nearby vascular and neural structures. Each step of the procedure has to be confirmed by anteroposterior (AP) and lateral projections. With a single-arm x-ray, the arch has to be moved back and forth for the AP and lateral projections, and this lengthens the procedure. To achieve the same results in less time, the authors introduced simultaneous biplanar fluoroscopy with 2 x-ray arches. After the patient is positioned prone with the legs spread apart in the so-called Da Vinci position, one x-ray arch for the lateral projection is placed at a right angle to the patient, and a second x-ray machine is placed with its arch between the legs of the patient. This allows simultaneous AP and lateral x-ray projections and, in the authors' hands, markedly speeds up the procedure. Biplanar fluoroscopy allows excellent AP and lateral projections to be made quickly at any time during the surgical procedure. This is particularly useful in cases of bilateral SI joint fusion if both sides are done at the same time. The video can be found here: https://youtu.be/TX5gz8c765M .

  8. Development of land use regression models for particle composition in twenty study areas in Europe.

    PubMed

    de Hoogh, Kees; Wang, Meng; Adam, Martin; Badaloni, Chiara; Beelen, Rob; Birk, Matthias; Cesaroni, Giulia; Cirach, Marta; Declercq, Christophe; Dėdelė, Audrius; Dons, Evi; de Nazelle, Audrey; Eeftens, Marloes; Eriksen, Kirsten; Eriksson, Charlotta; Fischer, Paul; Gražulevičienė, Regina; Gryparis, Alexandros; Hoffmann, Barbara; Jerrett, Michael; Katsouyanni, Klea; Iakovides, Minas; Lanki, Timo; Lindley, Sarah; Madsen, Christian; Mölter, Anna; Mosler, Gioia; Nádor, Gizella; Nieuwenhuijsen, Mark; Pershagen, Göran; Peters, Annette; Phuleria, Harisch; Probst-Hensch, Nicole; Raaschou-Nielsen, Ole; Quass, Ulrich; Ranzi, Andrea; Stephanou, Euripides; Sugiri, Dorothea; Schwarze, Per; Tsai, Ming-Yi; Yli-Tuomi, Tarja; Varró, Mihály J; Vienneau, Danielle; Weinmayr, Gudrun; Brunekreef, Bert; Hoek, Gerard

    2013-06-04

    Land Use Regression (LUR) models have been used to describe and model spatial variability of annual mean concentrations of traffic related pollutants such as nitrogen dioxide (NO2), nitrogen oxides (NOx) and particulate matter (PM). No models have yet been published of elemental composition. As part of the ESCAPE project, we measured the elemental composition in both the PM10 and PM2.5 fraction sizes at 20 sites in each of 20 study areas across Europe. LUR models for eight a priori selected elements (copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)) were developed. Good models were developed for Cu, Fe, and Zn in both fractions (PM10 and PM2.5) explaining on average between 67 and 79% of the concentration variance (R(2)) with a large variability between areas. Traffic variables were the dominant predictors, reflecting nontailpipe emissions. Models for V and S in the PM10 and PM2.5 fractions and Si, Ni, and K in the PM10 fraction performed moderately with R(2) ranging from 50 to 61%. Si, NI, and K models for PM2.5 performed poorest with R(2) under 50%. The LUR models are used to estimate exposures to elemental composition in the health studies involved in ESCAPE.

  9. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  10. Reliability, Construct Validity and Interpretability of the Brazilian version of the Rapid Upper Limb Assessment (RULA) and Strain Index (SI).

    PubMed

    Valentim, Daniela Pereira; Sato, Tatiana de Oliveira; Comper, Maria Luiza Caíres; Silva, Anderson Martins da; Boas, Cristiana Villas; Padula, Rosimeire Simprini

    There are very few observational methods for analysis of biomechanical exposure available in Brazilian-Portuguese. This study aimed to cross-culturally adapt and test the measurement properties of the Rapid Upper Limb Assessment (RULA) and Strain Index (SI). The cross-cultural adaptation and measurement properties test were established according to Beaton et al. and COSMIN guidelines, respectively. Several tasks that required static posture and/or repetitive motion of upper limbs were evaluated (n>100). The intra-raters' reliability for the RULA ranged from poor to almost perfect (k: 0.00-0.93), and SI from poor to excellent (ICC 2.1 : 0.05-0.99). The inter-raters' reliability was very poor for RULA (k: -0.12 to 0.13) and ranged from very poor to moderate for SI (ICC 2.1 : 0.00-0.53). The agreement was good for RULA (75-100% intra-raters, and 42.24-100% inter-raters) and to SI (EPM: -1.03% to 1.97%; intra-raters, and -0.17% to 1.51% inter-raters). The internal consistency was appropriate for RULA (α=0.88), and low for SI (α=0.65). Moderate construct validity were observed between RULA and SI, in wrist/hand-wrist posture (rho: 0.61) and strength/intensity of exertion (rho: 0.39). The adapted versions of the RULA and SI presented semantic and cultural equivalence for the Brazilian Portuguese. The RULA and SI had reliability estimates ranged from very poor to almost perfect. The internal consistency for RULA was better than the SI. The correlation between methods was moderate only of muscle request/movement repetition. Previous training is mandatory to use of observations methods for biomechanical exposure assessment, although it does not guarantee good reproducibility of these measures. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications

    NASA Astrophysics Data System (ADS)

    Kumari, Sulakshna; Gustavsson, Johan S.; Wang, Ruijun; Haglund, Emanuel P.; Westbergh, Petter; Sanchez, Dorian; Haglund, Erik; Haglund, Åsa; Bengtsson, Jörgen; Le Thomas, Nicolas; Roelkens, Gunther; Larsson, Anders; Baets, Roel

    2015-02-01

    We present a GaAs-based VCSEL structure, BCB bonded to a Si3N4 waveguide circuit, where one DBR is substituted by a free-standing Si3N4 high-contrast-grating (HCG) reflector realized in the Si3N4 waveguide layer. This design enables solutions for on-chip spectroscopic sensing, and the dense integration of 850-nm WDM data communication transmitters where individual channel wavelengths are set by varying the HCG parameters. RCWA shows that a 300nm-thick Si3N4 HCG with 800nm period and 40% duty cycle reflects strongly (<99%) over a 75nm wavelength range around 850nm. A design with a standing-optical-field minimum at the III-V/airgap interface maximizes the HCG's influence on the VCSEL wavelength, allowing for a 15-nm-wide wavelength setting range with low threshold gain (<1000 cm-1).

  12. Hydrothermally-altered dacite terrains in the Methana peninsula Greece: Relevance to Mars

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Jonatanson, Victoria; Bandfield, Joshua L.; Amador, Elena S.; Rivera-Hernández, Frances; Mann, P.; Mertzman, Stanley A.

    2017-04-01

    Dacitic rocks, often indicative of crustal recycling on Earth, have been identified in some regions on Mars, as have possible hydrothermally/aqueously-altered dacites. To enable more robust identification of unaltered and altered dacites on Mars and other planetary bodies, we undertook a spectroscopic-structural-compositional study of altered and unaltered dacites from a dacitic volcanic region in Methana, Greece. Dacites erupted in this region range from fresh to pervasively hydrothermally altered, resulting in friable, Si-enriched products, as well as fumarolic deposition of Si and S-rich precipitates. Spectrally, fresh dacites are unremarkable in the 0.35-2.5 μm region with low, generally flat, reflectance and few, if any, absorption bands. Dacite infrared spectra exhibit Si-O absorption features in the 8-10 μm region (which are characteristic of Si-bearing rocks, in general). With increasing alteration, reflectance over the 0.35-2.5 μm range increases, absorption bands in the 1.4 and 1.9 μm region, associated with H2O/OH, and in the 2.2-2.3 μm region, associated with SiOH, become deeper, Fe3+-associated absorption bands in the 0.43 and 0.9 μm region appear, and the Christiansen feature near 8 μm moves to shorter wavelengths. Silica-rich coatings appear to be spectrally indistinguishable from Si-rich alteration. Alteration-formed sulfates may be detectable by the presence of diagnostic absorption features in the 0.35-2.5 μm region. Spectral similarities between different poorly crystalline high-Si phases make it difficult to uniquely determine the processes that formed high-Si surfaces that have been identified on Mars. However, the samples described here show a variety of spectral features that correspond to variable amounts of alteration. We find a similar range of spectral features, likely due to similar phases, on Mars, perhaps indicating a similar range of alteration environments. Comparison of laboratory spectra to Mars observational data also suggests that the major Si-rich regions likely consist of assemblages that more mineralogically complex than those included in this study.

  13. Return on Scientific Investment - RoSI: a PMO dynamical index proposal for scientific projects performance evaluation and management.

    PubMed

    Caous, Cristofer André; Machado, Birajara; Hors, Cora; Zeh, Andrea Kaufmann; Dias, Cleber Gustavo; Amaro Junior, Edson

    2012-01-01

    To propose a measure (index) of expected risks to evaluate and follow up the performance analysis of research projects involving financial and adequate structure parameters for its development. A ranking of acceptable results regarding research projects with complex variables was used as an index to gauge a project performance. In order to implement this method the ulcer index as the basic model to accommodate the following variables was applied: costs, high impact publication, fund raising, and patent registry. The proposed structured analysis, named here as RoSI (Return on Scientific Investment) comprises a pipeline of analysis to characterize the risk based on a modeling tool that comprises multiple variables interacting in semi-quantitatively environments. This method was tested with data from three different projects in our Institution (projects A, B and C). Different curves reflected the ulcer indexes identifying the project that may have a minor risk (project C) related to development and expected results according to initial or full investment. The results showed that this model contributes significantly to the analysis of risk and planning as well as to the definition of necessary investments that consider contingency actions with benefits to the different stakeholders: the investor or donor, the project manager and the researchers.

  14. Low-Energy Yield Spectroscopy as a Novel Technique for Determining Band Offsets: Application to the c-Si\\(100\\)/a-Si:H Heterostructure

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; di Gaspare, L.; Capellini, G.; Bittencourt, C.; Evangelisti, F.

    1995-10-01

    We present a new experimental method for determining band lineups at the semiconductor heterojunctions and apply it to the c-Si100/a-Si:H heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum due to the high escape depth and the high dynamical range of the technique, thus allowing a direct and precise determination of the band lineup. A value of ΔEV = 0.44+/-0.02 eV was found for the valence band discontinuity.

  15. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  16. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    of SiC /Si 3N 4 ceramic upon pyrolysis . This material was used to produce adherent coatings on a variety of substrates, and also infiltration ...the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant accomplishments...projects in the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant

  17. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Sherman, Sarah; Garcia, Michael; Baker, Michael; Seaman, Caroline

    2004-07-01

    The Hawaii Scientific Drilling Project recovered ˜3 km of basalt by coring into the flank of Mauna Kea volcano at Hilo, Hawaii. Rocks recovered from deeper than ˜1 km were deposited below sea level and contain considerable fresh glass. We report electron microprobe analyses of 531 glasses from the submarine section of the core, providing a high-resolution record of petrogenesis over ca. 200 Kyr of shield building of a Hawaiian volcano. Nearly all the submarine glasses are tholeiitic. SiO2 contents span a significant range but are bimodally distributed, leading to the identification of low-SiO2 and high-SiO2 magma series that encompass most samples. The two groups are also generally distinguishable using other major and minor elements and certain isotopic and incompatible trace element ratios. On the basis of distributions of high- and low-SiO2 glasses, the submarine section of the core is divided into four zones. In zone 1 (1079-˜1950 mbsl), most samples are degassed high-SiO2 hyaloclastites and massive lavas, but there are narrow intervals of low-SiO2 hyaloclastites. Zone 2 (˜1950-2233 mbsl), a zone of degassed pillows and hyaloclastites, displays a continuous decrease in silica content from bottom to top. In zone 3 (2233-2481 mbsl), nearly all samples are undegassed low-SiO2 pillows. In zone 4 (2481-3098 mbsl), samples are mostly high-SiO2 undegassed pillows and degassed hyaloclastites. This zone also contains most of the intrusive units in the core, all of which are undegassed and most of which are low-SiO2. Phase equilibrium data suggest that parental magmas of the low-SiO2 suite could be produced by partial melting of fertile peridotite at 30-40 kbar. Although the high-SiO2 parents could have equilibrated with harzburgite at 15-20 kbar, they could have been produced neither simply by higher degrees of melting of the sources of the low-SiO2 parents nor by mixing of known dacitic melts of pyroxenite/eclogite with the low-SiO2 parents. Our hypothesis for the relationship between these magma types is that as the low-SiO2 magmas ascended from their sources, they interacted chemically and thermally with overlying peridotites, resulting in dissolution of orthopyroxene and clinopyroxene and precipitation of olivine, thereby generating high-SiO2 magmas. There are glasses with CaO, Al2O3, and SiO2 contents slightly elevated relative to most low-SiO2 samples; we suggest that these differences reflect involvement of pyroxene-rich lithologies in the petrogenesis of the CaO-Al2O3-enriched glasses. There is also a small group of low-SiO2 glasses distinguished by elevated K2O and CaO contents; the sources of these samples may have been enriched in slab-derived fluid/melts. Low-SiO2 glasses from the top of zone 3 (2233-2280 mbsl) are more alkaline, more fractionated, and incompatible-element-enriched relative to other glasses from zone 3. This excursion at the top of zone 3, which is abruptly overlain by more silica-rich tholeiitic magmas, is reminiscent of the end of Mauna Kea shield building higher in the core.

  18. Optimal charging scheduler for electric vehicles on the Florida turnpike : final research project report.

    DOT National Transportation Integrated Search

    2017-06-01

    This project developed a methodology to simulate and analyze roadway traffic patterns : and expected penetration and timing of electric vehicles (EVs) with application directed : toward the requirements for electric vehicle supply equipment (EVSE) si...

  19. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays.

    PubMed

    Semichaevsky, Andrey V; Johnson, Harley T; Yoon, Jongseung; Nuzzo, Ralph G; Li, Lanfang; Rogers, John

    2011-06-10

    Efficiency of ultrathin flexible solar photovoltaic silicon microcell arrays can be significantly improved using nonimaging solar concentrators. A fluorophore is introduced to match the solar spectrum and the low-reflectivity wavelength range of Si, reduce the escape losses, and allow the nontracking operation. In this paper we optimize our solar concentrators using a luminescent/nonluminescent photon transport model. Key modeling results are compared quantitatively to experiments and are in good agreement with the latter. Our solar concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators with the same projected area.

  20. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  1. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  2. Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films

    NASA Astrophysics Data System (ADS)

    Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei

    2016-05-01

    Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.

  3. Synthesis and structure of a stuffed derivative of α-quartz, Mg 0.5AlSiO 4

    DOE PAGES

    Xu, Hongwu; Heaney, Peter J.; Yu, Ping; ...

    2015-10-01

    A structural derivative of quartz with the composition Mg 0.5AlSiO 4 has been grown from glass and characterized using synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM), and 29Si nuclear magnetic resonance (NMR) spectroscopy. Rietveld analysis of the XRD data indicates that the framework of Mg 0.5AlSiO 4 is isostructural with α-quartz, rather than β-quartz, as is consistent with previous theoretical modeling (Sternitzke and Müller 1991). Al and Si exhibit long-range disorder over the framework tetrahedral sites, indicated by the absence of the superlattice reflections corresponding to the doubling of c relative to that of quartz. Nevertheless, 29Si NMR measurementsmore » show that Al and Si exhibit partial short-range order with an ordering degree of 56%. Electron diffraction reveals superlattice reflections indicative of doubled periodicities along the a-axes. In conclusion, Fourier electron density maps show that Mg occupies channel sites that each are bonded to six O atoms, in contrast to the tetrahedral coordination of Li in the β-quartz-type framework for β-eucryptite, LiAlSiO 4. Furthermore, the concentrations of Mg in adjacent channels are different, resulting in framework distortions that generate the superstructures along a.« less

  4. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    PubMed Central

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361

  5. Measurements of Breakdown Field and Forward Current Stability in 3C-SiC P-N Junction Diodes Grown on Step-Free 4H-SiC

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.

    2005-01-01

    This paper reports on initial fabrication and electrical characterization of 3C-SiC p-n junction diodes grown on step-free 4H-SiC mesas. Diodes with n-blocking-layer doping ranging from approx. 2 x 10(exp 16)/cu cm to approx.. 5 x 10(exp 17)/cu cm were fabricated and tested. No optimization of junction edge termination or ohmic contacts was employed. Room temperature reverse characteristics of the best devices show excellent low-leakage behavior, below previous 3C-SiC devices produced by other growth techniques, until the onset of a sharp breakdown knee. The resulting estimated breakdown field of 3C-SiC is at least twice the breakdown field of silicon, but is only around half the breakdown field of <0001> 4H-SiC for the doping range studied. Initial high current stressing of 3C diodes at 100 A/sq cm for more than 20 hours resulted in less than 50 mV change in approx. 3 V forward voltage. 3C-SiC, pn junction, p+n diode, rectifier, reverse breakdown, breakdown field,heteroepitaxy, epitaxial growth, electroluminescence, mesa, bipolar diode

  6. Grain-boundary type and distribution in silicon carbide coatings and wafers

    NASA Astrophysics Data System (ADS)

    Cancino-Trejo, Felix; López-Honorato, Eddie; Walker, Ross C.; Ferrer, Romelia Salomon

    2018-03-01

    Silicon carbide is the main diffusion barrier against metallic fission products in TRISO (tristructural isotropic) coated fuel particles. The explanation of the accelerated diffusion of silver through SiC has remained a challenge for more than four decades. Although, it is now well accepted that silver diffuse through SiC by grain boundary diffusion, little is known about the characteristics of the grain boundaries in SiC and how these change depending on the type of sample. In this work five different types (coatings and wafers) of SiC produced by chemical vapor deposition were characterized by electron backscatter diffraction (EBSD). The SiC in TRISO particles had a higher concentration of high angle grain boundaries (aprox. 70%) compared to SiC wafers, which ranged between 30 and 60%. Similarly, SiC wafers had a higher concentration of low angle grain boundaries ranging between 15 and 30%, whereas TRISO particles only reached values of around 7%. The same trend remained when comparing the content of coincidence site lattice (CSL) boundaries, since SiC wafers showed a concentration of more than 30%, whilst TRISO particles had contents of around 20%. In all samples the largest fractions of CSL boundaries (3 ≤ Σ ≤ 17) were the Σ3 boundaries. We show that there are important differences between the SiC in TRISO particles and SiC wafers which could explain some of the differences observed in diffusion experiments in the literature.

  7. Computer simulation of CaSiO3 glass under compression: correlation between Si-Si pair radial distribution function and intermediate range order structure

    NASA Astrophysics Data System (ADS)

    Lan, Mai Thi; Thuy Duong, Tran; Iitaka, Toshiaki; Van Hong, Nguyen

    2017-06-01

    The structural organization of CaSiO3 glass at 600 K and under pressure of 0-100 GPa is investigated by molecular dynamics simulation (MDS). Results show that the atomic structure of CaSiO3 comprises SiO n and CaO m units considered as basic structural polyhedra. At low pressure, most of the basic structural polyhedra are SiO4, CaO5, CaO6 and CaO7. At high pressure most of the basic structural polyhedra are SiO5, SiO6 and CaO9, CaO10 and CaO11. The distribution of basic structural polyhedra is not uniform resulting in formation of Ca-rich and Si-rich regions. The distribution of SiO4, SiO5 and SiO6 polyhedra is also not uniform, but it tends to form SiO4-, SiO5-, and SiO6-clusters. For the Si-O network, under compression there is a gradual transition from the tetrahedral network (SiO4) to the octahedral network (SiO6) via SiO5 polyhedra. The SiO5-clusters are the same as immediate-phase in the transformation process. The size and shape of SiO4 tetrahedra change strongly under compression. While the size of SiO5 and SiO6 has also changed significantly, but the shape is almost unchanged under compression. The SiO n polyhedra can connect to each other via one common oxygen ion (corner-sharing bond), two common oxygen ions (edge-sharing bond) or three common oxygen ions (face-sharing bond). The Si-Si bond length in corner-sharing bonds is much longer than the ones in edge-sharing and face-sharing bonds. The change of intermediate range order (IRO) structure under compression relating to edge- and face-sharing bonds amongst SiO n at high pressure is the origin of the first peak splitting of the radial distribution functions of Si-Si pair. Under compression, the number of non-bridging oxygen (NBO) decreases. This makes the Si-O network more polymerized. At low pressure, most of the Ca2+ ions incorporate into the Si-O network via NBOs. At high pressure, the amount of NBO decreases, Ca2+ ions mainly incorporate into the Si-O network via bridging oxygen (BO) that belongs to SiO5 and SiO6 with a negative charge. And this is the principle for immobilization of heavy metal as well as fissile materials in hazardous waste (nuclear waste).

  8. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  9. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  10. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  11. Thermo-mechanical performance of precision C/SiC mounts

    NASA Astrophysics Data System (ADS)

    Goodman, William A.; Mueller, Claus E.; Jacoby, Marc T.; Wells, Jim D.

    2001-12-01

    For complex shaped, lightweight, high precision opto- mechanical structures that must operate in adverse environments and over wide ranges of temperature, we consider IABG's optical grade silicon carbide composite ceramic (C/SiC) as the material of choice. C/SiC employs conventional NC machining/milling equipment to rapidly fabricate near-net shape parts, providing substantial schedule, cost, and risk savings for high precision components. Unlike powder based SiC ceramics, C/SiC does not experience significant shrinkage during processing, nor does it suffer from incomplete densification. If required, e.g. for large-size components, a fully-monolithic ceramic joining technique can be applied. Generally, the thermal and mechanical properties of C/SiC are tunable in certain ranges by modifying certain process steps. This paper focuses on the thermo-mechanical performance of new, high precision mounts designed by Schafer Corporation and manufactured by IABG. The mounts were manufactured using standard optical grade C/SiC (formulation internally called A-3). The A-3 formulation has a near-perfect CTE match with silicon, making it the ideal material to athermally support Schafer produced Silicon Lightweight Mirrors (SLMs) that will operate in a cryogenic environment. Corresponding thermo- mechanical testing and analysis is presented in this manuscript.

  12. An integrated general purpose SiPM based optical module with a high dynamic range

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Engel, R.; Hebbeker, T.; Kemp, J.; Middendorf, L.; Peters, C.; Schumacher, J.; Šmída, R.; Veberič, D.

    2018-06-01

    Silicon photomultipliers (SiPMs) are semiconductor-based light-sensors offering a high gain, a mechanically and optically robust design and high photon detection efficiency. Due to these characteristics, they started to replace conventional photomultiplier tubes in many applications in recent years. This paper presents an optical module based on SiPMs designed for the application in scintillators as well as lab measurements. The module hosts the SiPM bias voltage supply and three pre-amplifiers with different gain levels to exploit the full dynamic range of the SiPMs. Two SiPMs, read-out in parallel, are equipped with light guides to increase the sensitive area. The light guides are optimized for the read-out of wavelength shifting fibers as used in many plastic scintillator detectors. The optical and electrical performance of the module is characterized in detail in laboratory measurements. Prototypes have been installed and tested in a modified version of the Scintillator Surface Detector developed for AugerPrime, the upgrade of the Pierre Auger Observatory. The SiPM module is operated in the Argentinian Pampas and first data proves its usability in such harsh environments.

  13. First-principles study of magnetism, lattice dynamics, and superconductivity in LaFeSiHx

    NASA Astrophysics Data System (ADS)

    Hung, Linda; Yildirim, Taner

    2018-06-01

    The structural, electronic, magnetic, and vibrational properties of LaFeSiHx for x between 0 and 1 are investigated using density functional theory calculations. We find that the electronic and magnetic properties are strongly controlled by the hydrogen concentration x in LaFeSiHx. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiHx for x ≤0.75 is not magnetic within the virtual crystal approximation or with explicit doping of supercells. The antiferromagnetic configuration breaks the symmetry of Fe d orbitals and increases electron-phonon coupling up to 50 % , especially for modes in the 20-50 meV range that are associated with Fe atomic movement. We find competing nearest and next-nearest-neighbor exchange interactions and significant spin-phonon coupling, qualitatively similar but smaller in magnitude compared those found in LaOFeAs superconductors. Hence, it is likely that the mechanism of superconductivity for LaFeSiHx is, like that of LaOFeAs, also unconventional. We furthermore suggest that LaFeSiHx could be a good proton conductor due to phase stability with a wide range of hydrogen concentrations x <1 .

  14. Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu

    2018-05-01

    Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.

  15. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  16. Low temperature synthesis of highly oriented p-type Si1-xGex (x: 0-1) on an insulator by Al-induced layer exchange

    NASA Astrophysics Data System (ADS)

    Toko, K.; Kusano, K.; Nakata, M.; Suemasu, T.

    2017-10-01

    A composition tunable Si1-xGex alloy has a wide range of applications, including in electronic and photonic devices. We investigate the Al-induced layer exchange (ALILE) growth of amorphous Si1-xGex on an insulator. The ALILE allowed Si1-xGex to be large grained (> 50 μm) and highly (111)-oriented (> 95%) over the whole composition range by controlling the growth temperature (≤ 400 °C). From a comparison with conventional solid-phase crystallization, we determined that such characteristics of the ALILE arose from the low activation energy of nucleation and the high frequency factor of lateral growth. The Si1-xGex layers were highly p-type doped, whereas the process temperatures were low, thanks to the electrically activated Al atoms with the amount of solid solubility limit. The electrical conductivities approached those of bulk single crystals within one order of magnitude. The resulting Si1-xGex layer on an insulator is useful not only for advanced SiGe-based devices but also for virtual substrates, allowing other materials to be integrated on three-dimensional integrated circuits, glass, and even a plastic substrate.

  17. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  18. Systems-Oriented Workplace Learning Experiences for Early Learners: Three Models.

    PubMed

    O'Brien, Bridget C; Bachhuber, Melissa R; Teherani, Arianne; Iker, Theresa M; Batt, Joanne; O'Sullivan, Patricia S

    2017-05-01

    Early workplace learning experiences may be effective for learning systems-based practice. This study explores systems-oriented workplace learning experiences (SOWLEs) for early learners to suggest a framework for their development. The authors used a two-phase qualitative case study design. In Phase 1 (spring 2014), they prepared case write-ups based on transcribed interviews from 10 SOWLE leaders at the authors' institution and, through comparative analysis of cases, identified three SOWLE models. In Phase 2 (summer 2014), studying seven 8-week SOWLE pilots, the authors used interview and observational data collected from the seven participating medical students, two pharmacy students, and site leaders to construct case write-ups of each pilot and to verify and elaborate the models. In Model 1, students performed specific patient care activities that addressed a system gap. Some site leaders helped students connect the activities to larger systems problems and potential improvements. In Model 2, students participated in predetermined systems improvement (SI) projects, gaining experience in the improvement process. Site leaders had experience in SI and often had significant roles in the projects. In Model 3, students worked with key stakeholders to develop a project and conduct a small test of change. They experienced most elements of an improvement cycle. Site leaders often had experience with SI and knew how to guide and support students' learning. Each model could offer systems-oriented learning opportunities provided that key elements are in place including site leaders facile in SI concepts and able to guide students in SOWLE activities.

  19. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. Inmore » CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.« less

  20. Microinhomogeneities of glasses of the system PbO-SiO2

    NASA Astrophysics Data System (ADS)

    Golubkov, V. V.; Bogdanov, V. N.; Pakhnin, A. Ya.; Solovyev, V. A.; Zhivaeva, E. V.; Kabanov, V. O.; Yanush, O. V.; Nemilov, S. V.; Kisliuk, A.; Soltwisch, M.; Quitmann, D.

    1999-03-01

    Small angle x-ray scattering (SAXS) and Rayleigh-Mandelstam-Brillouin (RMB) light scattering as well as ultrasonic sound velocities have been studied in glasses of the system PbO-SiO2 which has an unusually wide range of glass forming ability. The results of scattering are compared with calculations based on the concept of frozen-in equilibrium thermal fluctuations as the origin of static microinhomogeneities (MIH) in glasses. MIH of compositions seem to be the main source of scattering, and the calculations are found to be in qualitative agreement with both SAXS and RMB measurements. Glasses with PbO content above 40 mol.% are more homogeneous than ideal solutions of PbO and SiO2 whereas MIH in glasses with smaller PbO content are comparable with those expected for ideal solutions of PbO and SiO2. In the latter range SAXS measurements indicate the existence of medium-range order with correlation length of 5-7 Å.

  1. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  2. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    PubMed

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.

  3. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  4. Thin hybrid pixel assembly with backside compensation layer on ROIC

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F.; Gray, C.; Pares, G.; Vignoud, L.; Kholti, B.; Vahanen, S.

    2017-01-01

    The entire ATLAS inner tracking system will be replaced for operation at the HL-LHC . This will include a significantly larger pixel detector of approximately 15 m2. For this project, it is critical to reduce the mass of the hybrid pixel modules and this requires thinning both the sensor and readout chips to about 150 micrometres each. The thinning of the silicon chips leads to low bump yield for SnAg bumps due to bad co-planarity of the two chips at the solder reflow stage creating dead zones within the pixel array. In the case of the ATLAS FEI4 pixel readout chip thinned to 100 micrometres, the chip is concave, with the front side in compression, with a bow of +100 micrometres at room temperature which varies to a bow of -175 micrometres at the SnAg solder reflow temperature, caused by the CTE mismatch between the materials in the CMOS stack and the silicon substrate. A new wafer level process to address the issue of low bump yield be controlling the chip bow has been developed. A back-side dielectric and metal stack of SiN and Al:Si has been deposited on the readout chip wafer to dynamically compensate the stress of the front side stack. In keeping with a 3D process the materials used are compatible with Through Silicon Via (TSV) technology with a TSV last approach which is under development for this chip. It is demonstrated that the amplitude of the correction can be manipulated by the deposition conditions and thickness of the SiN/Al:Si stack. The bow magnitude over the temperature range for the best sample to date is reduced by almost a factor of 4 and the sign of the bow (shape of the die) remains constant. Further development of the backside deposition conditions is on-going with the target of close to zero bow at the solder reflow temperature and a minimal bow magnitude throughout the temperature range. Assemblies produced from FEI4 readout wafers thinned to 100 micrometres with the backside compensation layer have been made for the first time and demonstrate bond yields close to 100%.

  5. A study of the Ljubljansko polje aquifer system behaviour and its simulations using multi-tools

    NASA Astrophysics Data System (ADS)

    Vrzel, J.; Ludwig, R.; Vižintin, G.; Ogrinc, N.

    2017-12-01

    Our study of comprehensive hydrological system behaviour, where understanding of the interfaces between groundwater and surface water is crucial, includes geochemical analyses for identification of groundwater sources (δ18O and δ2H) and estimation of groundwater mean residence time (3H, 3H/3He). The results of the geochemical analyses were compared with long-term data on precipitation, river discharge, hydraulic head, and groundwater pumping rate. The study is representative for the Ljubljansko polje in Slovenia, which belongs to the Sava River basin. The results show that the Sava River water and local precipitation are the main groundwater sources in this alluvial aquifer with high system sensitivity to both sources, which ranged from a day to a month. For a simulation of such a sensitive system different tools describing water cycle were coupled: simulation of the percolation of the local precipitation was done with the WaSiM-ETH, while the river and groundwater dynamics were performed with the MIKE 11 and FEFLOW, respectively. The WaSiM-ETH and MIKE 11 results were later employed as the upper boundary conditions in the FEFLOW model. The models have high spatial and daily temporal resolutions. A good agreement between geochemical data and modeling results was observed with two main highlights: (1) groundwater sources are in accordance with hydraulic heads and the Sava River water level/precipitation; (2) responsiveness of the aquifer on the high water level in the Sava River and on precipitation events is also synchronic with the mean groundwater residence time. The study shows that links between MIKE 11-FEFLOW-WaSiM-ETH tools is a great solution for a precise groundwater flow simulation, since all the tools are compatible and at the moment there is no routine approach for a precise parallel simulation of groundwater and surface water dynamics. The Project was financially supported by the the EU 7th Research Project - GLOBAQUA.

  6. Athermal metal optics made of nickel plated AlSi40

    NASA Astrophysics Data System (ADS)

    Gebhardt, Andreas; Kinast, Jan; Rohloff, Ralf-Rainer; Seifert, Walter; Beier, Matthias; Scheiding, Sebastian; Peschel, Thomas

    2017-11-01

    Metal optics is an inherent part of space instrumentation for years. Diamond turned aluminum (Al6061) mirrors are widely used for application in the mid- and near-infrared (mid-IR and NIR, respectively) spectral range. Aluminum mirrors plated with electroless nickel (NiP) expand the field of application towards multispectral operating instruments down to the ultraviolet wavelengths. Due to the significant mismatch in the coefficient of thermal expansion (CTE) between aluminum and NiP, however, this advantage occurs at the cost of bimetallic bending. Challenging requirements can be met by using bare beryllium or aluminum beryllium composites (AlBeMet) as a CTE tailored substrate material and amorphous NiP as polishable layer. For health reasons, the use of beryllium causes complications in the process chain. Thus, the beryllium approach is subjected to specific applications only. Metal optics has proven to be advantageous in respect of using conventional CNC and ultra-precision fabrication methods to realize complex and light-weighted instrument structures. Moreover, the mirror designs can be effectively optimized for a deterministic system assembly and optimization. Limitations in terms of dimensional stability over temperature and time are mainly given by the inherent material properties (figures of merit) of the substrate material in interaction with the polishing layer. To find an optimal compromise, a thermal matched aluminum-silicon alloy (silicon contents ≍ 40 wt%) plated with NiP (AlSi40/NiP ) was investigated in a joined project of the Max Planck Institute for Astronomy MPIA and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. The main tasks of the project were the minimization of the bimetallic bending, the development of reliable stabilizing and aging procedures, and the establishment of a proven fabrication method. This paper describes fundamental results regarding the optimization of the athermal material combination. Furthermore, the developed production chain for high quality freeform mirrors made of AlSi40/NiP is pointed out.

  7. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Petrie, Christian M.

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Officemore » of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high heat flux configurations have been assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. These rabbits contain a wide variety of specimens including monolith tubes, SiC fiber SiC matrix (SiC/SiC) composites, duplex specimens (inner composite, outer monolith), and specimens with a variety of metallic or ceramic coatings on the outer surface. The rabbits are targeted for insertion during HFIR cycle 475, which is scheduled for September 2017.« less

  8. Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies

    PubMed Central

    Mokhonoana, Malose P.; Coville, Neil J.

    2009-01-01

    Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt%) with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i) by delaying the addition of Fe3+(aq) to the stirred synthesis gel by 2 h, (ii) by addition of Fe3+ precursor as a freshly-precipitated aqueous slurry, (iii) by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI). Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperature-programmed reduction (TPR) studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies). The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.

  9. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, Li; Hongbin, Pu; Chunlei, Zheng; Zhiming, Chen

    2015-06-01

    β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 °C for 5 min and the optimal annealing temperature is 900 °C. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105 cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 °C for 5 min. Project supported by the National Natural Science Foundation of China (No. 51177134) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM6286).

  10. Construction and comparison of Louisiana's conventional and alternative base courses under accelerated loading

    DOT National Transportation Integrated Search

    1998-08-01

    The report describes the first testing series, Phase, of the first project, Experiment 1, with the Louisiana Transportation Research Center Accelerated Loading Facility. The background to the project is described and details of the trial pavements si...

  11. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers

    PubMed Central

    Abdul Ghafoor Raja, Maria; Katas, Haliza; Jing Wen, Thum

    2015-01-01

    Chitosan (CS) nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP), dextran sulphate (DS) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm) with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95%) and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1), in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting. PMID:26068222

  12. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator

    NASA Astrophysics Data System (ADS)

    Prakash, A. P. Gnana; Praveen, K. C.; Pushpa, N.; Cressler, John D.

    2015-05-01

    The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to 60Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.

  14. Alloying and Hardness of Eutectics with Nbss and Nb₅Si₃ in Nb-silicide Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-04-11

    In Nb-silicide based alloys, eutectics can form that contain the Nb ss and Nb₅Si₃ phases. The Nb₅Si₃ can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nb ss and Nb₅Si₃ is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔH mix , ΔS mix , VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= T m ΔS mix /|ΔH mix |). The values of these parameters were in the ranges -41.9 < ΔH mix <-25.5 kJ/mol, 4.7 < ΔS mix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔS mix , Ω, ΔS mix , and VEC were found for all of the eutectics. The correlation between ΔH mix and δ for the eutectics was the same as that of the Nb ss , with more negative ΔH mix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nb ss . Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%.

  15. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  16. Abrasive wear behavior of heat-treated ABC-silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  17. DLTS and in situ C-V analysis of trap parameters in swift 50 MeV Li3+ ion-irradiated Ni/SiO2/Si MOS capacitors

    NASA Astrophysics Data System (ADS)

    Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.

    2011-04-01

    Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.

  18. Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-06-01

    The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin

    As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less

  20. A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro’s constant

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. V.; Aref'ev, D. G.; Becker, P.; Bettin, H.; Bulanov, A. D.; Churbanov, M. F.; Filimonov, S. V.; Gavva, V. A.; Godisov, O. N.; Gusev, A. V.; Kotereva, T. V.; Nietzold, D.; Peters, M.; Potapov, A. M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.

    2017-08-01

    A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, N A, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10-8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.

  1. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  2. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  3. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1982-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.

  4. Pinhole-free growth of epitaxial CoSi.sub.2 film on Si(111)

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor); Grunthaner, Paula J. (Inventor)

    1991-01-01

    Pinhole-free epitaxial CoSi.sub.2 films (14') are fabricated on (111)-oriented silicon substrates (10) with a modified solid phase epitaxy technique which utilizes (1) room temperature stoichiometric (1:2) codeposition of Co and Si followed by (2) room temperature deposition of an amorphous silicon capping layer (16), and (3) in situ annealing at a temperature ranging from about 500.degree. to 750.degree. C.

  5. Growth of InAs NWs with controlled morphology by CVD

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Li, M.; Wang, J.; Xing, Y.; Xu, H. Q.

    2017-06-01

    We report on the growth of single crystal InAs NWs on Si/SiOx substrates by chemical vapor deposition (CVD). By adjusting growth parameters, the diameters, morphology, length and the proportion of superlattice ZB InAs NWs (NWs) can be controlled on a Si/SiOx substrate. Our work provides a low-cost route to grow and phase-engineer single crystal InAs NWs for a wide range of potential applications.

  6. Optical absorption of suspended graphene based metal plasmonic grating in the visible range

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.

    2018-05-01

    We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.

  7. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources. The C- and N-isotopic compositions of most grains are consistent with H-burning in the CNO cycle. These and s-process Kr, Xe, Ba, and Nd suggest asymptotic giant branch (AGB) or Wolf-Rayet stars as likely sources for the grains, but existing models of nucleosynthesis in these stellar sites fail to account in detail for all the observed isotopic compositions. Special problems are posed by grains with C-12/C-13 less than 10 and almost normal and heavy N-isotopic compositions. Also the Si- and Ti-isotopic compositions, with excesses in Si-29 and Si-30 relative to Si-28 and excesses in all Ti isotopes relative to Ti-48, do not precisely conform with the compositions predicted for slow neutron capture. Additional theoretical efforts are needed to achieve an understanding of the isotopic composition of the SiC grains and their stellar sources.

  8. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    NASA Astrophysics Data System (ADS)

    Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah

    2017-11-01

    In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  9. Low cost sol-gel derived SiC-SiO2 nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jannat, Azmira; Lee, Woojin; Akhtar, M. Shaheer; Li, Zhen Yu; Yang, O.-Bong

    2016-04-01

    This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol-gel derived SiC-SiO2 nanocomposite. The prepared SiC-SiO2 nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol-gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO2 phases, which noticeably confirmed the formation of SiC-SiO2 nanocomposite. The SiC-SiO2 layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC-SiO2 nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional SixNx AR coated Si solar cell. New and effective sol-gel derived SiC-SiO2 AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  10. Network visualization for outbreak response: Mapping the Ebola Virus Disease (EVD) chains of transmission in N'Zérékoré, Guinea.

    PubMed

    Valencia, C; Bah, H; Fatoumata, B; Rodier, G; Diallo, B; Koné, M; Giese, C; Conde, L; Malano, E; Mollet, T; Jansa, J; Coulombier, D; Sudre, B

    2017-03-01

    During the 2014-2015 Ebola Virus Disease (EVD) outbreak in N'Zérékoré, Forested Guinea, modes of transmission remained unexamined for a number of new cases. We used network visualization to investigate EVD transmission chains (TC) in seven sub-prefectures of N'Zérékoré in order to adapt outbreak response. Between August 2014 and February 2015, the EVD outbreak response team including the World Health Organization (WHO) and local health authorities routinely collected information among new cases regarding hospital visits, cases within a household, participation in burials, as well as dates of symptom onset, serial intervals (SI) and exposure to EVD. SI's were defined as the interval between symptom onset in an index case and symptom onset in a secondary case infected by that index case. Cases who reported hospital visits, contact with a case in the household or participating in burials were attributed to these exposures. We identified seven TC (two urban and five rural) gathering characteristics of 109 probable/confirmed cases. Overall, 61% (66 cases, SI range: 7-20 days) were household related, 32% (35 cases, SI range 8-30 days) were household or burial related and 7% (8 cases, SI range: 4-20 days) were hospital-related. In the urban chains (18 cases, SI range: 7-20 days), 12 cases were household related and 6 cases were hospital related, none where household or burial related. In the rural chains (84 cases, SI range: 7-30 days), 60% (50 cases) were household related, 1% (1 case) was hospital related and 39% (34 cases) were household or burial related. No cases reported multiple exposures. Network visualization during field response is crucial in enhancing local control strategies, refining outbreak response and aiding rapid response teams in insuring psychosocial and socio-economic recovery. Urban settings need to focus on reducing hospital EVD transmission whereas rural settings should focus on raising awareness of transmission within a household and safeguarding EVD burials. Copyright © 2016. Published by Elsevier Ltd.

  11. Weapon system simulation in flight (WaSiF)

    NASA Astrophysics Data System (ADS)

    Bartoldus, Klaus H.

    2005-05-01

    The research and technology demonstration program was co-funded by the Ministries of Defence of five European countries under the framework of the "EUropean Cooperation for the Long term in Defence" (EUCLID) MoU to include Germany, Italy, The Netherlands, Portugal and Turkey with considerable financial contribution from the industrial entities. EADS Military Aircraft Munich has led a team of seven industries and research centers, including Aermacchi of Italy, DutchSpace and NLR of The Netherlands, OGMA and INETI of Portugal and Marmara Research Center of Turkey. The purpose of the project was the design, realization and demonstration of an embedded real time simulation system allowing the combat training of operational aircrew in a virtual air defence scenario and threat environment against computer generated forces in the air and on the ground while flying on a real aircraft. The simulated scenario is focused on air-to-air beyond visual range engagements of fighter aircraft. WaSiF represents one of the first demonstrations of an advanced embedded real time training system onboard a fighter/training aircraft. The system is integrated onboard the MB339CX aircraft. The overall flight test activity covered a wide variety of test conditions for a total of 21 test flights; the operational airborne time of the WaSiF amounted to nearly 18 hours. The demonstration and evaluation were quite positive; the five-nation aircrew was very fond of their first encounter with the virtual world in the military flight training. A common view and approach towards Network Centric Warfare is but emerging. WaSiF in a future networked configuration holds lots of promise to serve the needs of Integrated Air Defence: Common training in a virtual environment.

  12. Effect of Thermal Budget on the Electrical Characterization of Atomic Layer Deposited HfSiO/TiN Gate Stack MOSCAP Structure

    PubMed Central

    Khan, Z. N.; Ahmed, S.; Ali, M.

    2016-01-01

    Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412

  13. Permafrost Thaw and Vegetation Cover Change May Alter Silicon Exports to Arctic Coastal Receiving Waters

    NASA Astrophysics Data System (ADS)

    Spencer, R.; Carey, J.; Tang, J.

    2016-12-01

    Silicon (Si) availability in Arctic coastal waters is a critical factor dictating phytoplankton species composition, as diatoms require as much Si as nitrogen (N) on a molar basis to survive. Riverine exports are the main source of Si to Arctic coastal waters annually and thus, the timing and magnitude of river Si fluxes have direct implications for marine ecology and global carbon dynamics. Although geochemical factors exert large controls on Si exports to marine waters, watershed land cover has recently been shown to alter the retention and transport of Si along the land-ocean continuum in lower latitudes, due in large part to the ability of terrestrial vegetation to store large quantities of Si in its tissue. However, it is unclear how shifts in basin land cover and climatic warming will alter Si exports in the Arctic, as increasing shrubiness and northward migration of treeline may increase Si retention on land, but permafrost thaw and elevated weathering rates may stimulate Si exports towards coastal waters. In this study we investigate how permafrost thaw and vegetation cover shifts are altering Arctic riverine Si export using the geochemical signatures of ten rivers draining a 700 km north-south gradient across the Yukon and Arctic North Slope basins in Alaska. Across the 2016 spring freshet, average dissolved Si (DSi) concentrations across sites ranged from 22 to 115 µM, with a significant negative relationship observed between average DSi concentration and latitude (r=-0.95, p<0.05). Conversely, average biogenic Si (BSi) concentrations showed no trends with latitude and were more uniform across the permafrost-vegetation cover gradient, ranging from 8 to 15 µM BSi. Si yields followed a similar pattern as concentrations across the gradient. We use data on basin lithology and land cover, instantaneous discharge, and the concentrations of inorganic nutrients (N, phosphorous), chlorophyll a, total suspended solids (TSS), and Ge (Germanium)/Si ratios, to determine the drivers of these patterns in Si behavior. In turn, our results will be used to create the first predictive framework to assess how future warming will alter fluvial Si exports to Arctic receiving waters.

  14. A Triatomic Silicon(0) Cluster Stabilized by a Cyclic Alkyl(amino) Carbene.

    PubMed

    Mondal, Kartik Chandra; Roy, Sudipta; Dittrich, Birger; Andrada, Diego M; Frenking, Gernot; Roesky, Herbert W

    2016-02-24

    Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2 (CH2)N(2,6-iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene-stabilized triatomic silicon(0) molecule. The Si-Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si-Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On the interactions of nitriles and fluoro-substituted pyridines with silicon tetrafluoride: Computations and thin film IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hora, Nicholas J.; Wahl, Benjamin M.; Soares, Camilla; Lara, Skylee A.; Lanska, John R.; Phillips, James A.

    2018-04-01

    The nature of the interactions between silicon tetrafluoride and series of nitrogen bases, including nitriles (RCN, with R > CH3), pyridine, and various fluoro-substituted pyridines, has been investigated via quantum-chemical computations, low-temperature IR spectroscopy, and bulk reactivity experiments. Using (primarily) M06 with the 6-311+G(2df,2pd) basis set, we obtained equilibrium structures, binding energies, harmonic frequencies, and N-Si potentials in the gas-phase and in bulk dielectric media for an extensive series of 1:1 molecular complexes, including: C6H5CH2CN-SiF4, CH3CH2CN-SiF4, (CH3)3CCN-SiF4, C5H5N-SiF4, 4-FC5H4N-SiF4, 3,5-C5F2H3N-SiF4, 2,6-C5F2H3N-SiF4 and 3,4,5-C5F3H2N-SiF4. In addition, for the analogous 2:1 complexes of pyridine and 3,5-difluororpyridine, we obtained equilibrium structures, binding energies, and harmonic frequencies. The N-Si distances in the 1:1 nitrile complexes are fairly long, ranging from 2.84 Å to 2.88 Å, and the binding energies range from 4.0 to 4.2 kcal/mol (16.7-17.6 kJ/mol). Also, computations predict extremely anharmonic N-Si potentials, for which the inner portions of the curve are preferentially stabilized in dielectric media, which predict an enhancement of these interactions in condensed-phases. However, we see no evidence of bulk reactivity between C6H5CH2CN, CH3CH2CN, or (CH3)3CCN and SiF4, nor any significant interaction between (CH3)3CCN and SiF4 in low temperature IR spectra of solid, (CH3)3CCN/SiF4 thin films. Conversely, the interactions in four of the five 1:1, pyridine-SiF4 complexes are generally stronger; binding energies range from 5.7 to 9.6 kcal/mol (23.8-40.2 kJ/mol), and correspondingly the N-Si distances are relatively short (2.12-2.25 Å). The exception is 2,6-C5F2H3N-SiF4, for which the binding energy is only 3.6 kcal/mol (15.1 kJ/mol), and the N-Si distance is quite long (3.12 Å). In addition, both pyridine and 3,5-difluororpyridine were found to form stable reaction products with SiF4; but no analogous product was obtained with 2,6-difluororpyridine and SiF4, nor was any significant interaction indicated in low-temperature IR spectra of 2,6-difluororpyridine/SiF4 films. By contrast, low temperature spectra of pyridine/SiF4 and 3,5-difluororpyridine/SiF4 thin films are consistent with the presence of a distinct 2:1 reaction product. Moreover, the observed frequencies agree reasonably well with those predicted for the cis, octahedral coordination isomers of the 2:1 molecular complexes, in which the N-Si bonds are compressed slightly relative to those in the predicted gas-phase structures.

  16. 15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates

    DOE PAGES

    Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin; ...

    2017-07-26

    As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less

  17. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    NASA Astrophysics Data System (ADS)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-07-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm3 up to 0.75 g/cm3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  18. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions ofmore » SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.« less

  19. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  20. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  1. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  2. Strong light absorption capability directed by structured profile of vertical Si nanowires

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2017-11-01

    Si nanowire arrays (SiNWAs) with random fractal geometry was fabricated using fast, mask-less, non-lithographic and facile approach by incorporating metal assisted electroless etching of n-type Si (111) substrates. The FESEM images demonstrate the formation of nano-porous surfaces that provide effective path for the incoming light to get trapped into the cavity of nanowires. The length of NWs increases from ∼1 to 10 μm with increase in the etching time having a diameter in the range of ∼25-82 nm. A transformation from zero to first order kinetics after a prolonged etching has been determined. The synthesized SiNWAs show high light trapping properties, including a maximum photon absorption across the entire visible and near IR range below the band gap of Si. The SiNWAs etched for 15 min exhibit extremely low specular and total reflectance of ∼0.2% and 4.5%, respectively over a broadband of wavelength. The reduction in the reflection loss is accompanied with the gradient of refractive index from air to Si substrate as well as due to the sub-wavelength structures, which manifests the light scattering effect. The COMSOL multiphysics simulation has been performed to study the high broadband light absorption capability in terms of the strong localized light field confinement by varying the length of the nanowire. Moreover, the SiNWs induces the dewetting ability at the solid/liquid interface and enhances the superhydrophobicity. Furthermore, a maximum length scale of 100-200 nm manifests a strong heterogeneity along the planar section of the surface of SiNWs. The study thus provides an insight on the light propagation into the random fractal geometries of Si nanowires. These outstanding properties should contribute to the structural optimization of various optoelectronic and photonic devices.

  3. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO2 layers

    NASA Astrophysics Data System (ADS)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Kesler, V. G.; Volodin, V. A.; Skuratov, V. A.

    2012-07-01

    Three hundred and twenty nanometer-thick SiO2 layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 1012 cm-2 and 1014 cm-2, or with 700 MeV Bi ions in the fluence range of 3 × 1012-1 × 1013 cm-2. After irradiation the yellow-orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950-1150 cm-1, Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si-O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO2. Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and ˜10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  4. A new portable generator to dynamically produce SI-traceable reference gas mixtures for VOCs and water vapour at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Ackermann, Andreas; Leuenberger, Daiana; Niederhauser, Bernhard

    2016-04-01

    In the framework of the KEY-VOCs and AtmoChem-ECV projects, we are currently developing new facilities to dynamically generate reference gas mixtures for a variety of reactive compounds, at concentrations measured in the atmosphere and in a SI-traceable way (i.e. the amount of substance fraction in mole per mole is traceable to SI-units). Here we present the realisation of such standards for water vapour in the range 1-10 μmol/mol and for volatile organic compounds (VOCs) such as limonene, alpha-pinene, MVK, MEK, in the nmol/mol range. The matrix gas can be nitrogen or synthetic air. Further development in gas purification techniques could make possible to use purified atmospheric air as carrier gas. The method is based on permeation and dynamic dilution: one permeator containing a pure substance (either water, limonene, MVK, MEK or α-pinene) is kept into a permeation chamber with a constant gas flow. The mass loss is precisely calibrated using a magnetic suspension balance. The carrier gas is purified beforehand from the compounds of interest to the required level, using commercially available purification cartridges. This primary mixture is then diluted to reach the required amount of substance fraction. All flows are piloted by mass flow controllers which makes the production process flexible and easily adaptable to generate the required concentration. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. Two setups are currently developed: one already built and fixed in our laboratory in Bern as well as a portable generator that is still under construction and that could be used anywhere in the field. The permeation chamber of the portable generator has multiple individual cells allowing the generation of mixtures up to 5 different components if needed. Moreover the presented technique can be adapted and applied to a large variety of molecules (e.g., NO2, BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for gas species and/or concentration ranges that are not stable in cylinders.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lens, E; Horst, A van der; Versteijne, E

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopicmore » movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.« less

  6. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Shcheblanov, N. S.; Povarnitsyn, M. E.; Mishchik, K. N.; Tanguy, A.

    2018-02-01

    We report an experimental and numerical study of femtosecond multipulse laser-induced densification in vitreous silica (v -SiO2 ) and its signature in Raman spectra. We compare the experimental findings to the recently developed molecular dynamics (MD) approach accounting for bond breaking due to laser irradiation, together with a dynamical matrix approach and bond polarizability model based on first-principles calculations for the estimation of Raman spectra. We observe two stages of the laser-induced densification and Raman spectrum evolution: growth during several hundreds of pulses followed by further saturation. At the medium range, the network connectivity change in v -SiO2 is expressed in reduction of the major ring fractions leading to more compacted structure. With the help of the Sen and Thorpe model, we also study the short-range order transformation and derive the interbonding Si-O-Si angle change from the Raman measurements. Experimental findings are in excellent agreement with our MD simulations and hence support a bond-breaking mechanism of laser-induced densification. Thus, our modeling explains well the laser-induced changes both in the short-range order caused by the appearance of Si coordination defects and medium-range order connected to evolution of the ring distribution. Finally, our findings disclose similarities between sheared, permanently densified, and laser-induced glass and suggest interesting future experiments in order to clarify the impact of the thermomechanical history on glasses under shear, cold and hot compression, and laser-induced densification.

  7. Method of producing high purity zirconia powder from zircon powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funahashi, T.; Uchimura, R.; Oguchi, Y.

    A method is described of producing a zirconia powder from zirconia containing SiO/sub 2/, comprising the steps of: preparing a raw material mixture comprising the zircon powder containing the SiO/sub 2/ and a powdery carbon-containing material such that the mole ratio of C, which is contained in the carbon-containing material and does not gasify at temperatures below 100/sup 0/C. in a nonoxidizing atmosphere, to SiO/sub 2/ contained in the zircon powder is in the range from 0.4 to 2.0; and subjecting the raw material mixture to a desiliconizing heat treatment in a nonoxidizing atmosphere of which the presence is notmore » higher than 0.6 atm, the desiliconizing heat treatment being a combination of a first-stage heat treatment which is performed at a temperature in the range from 1200/sup 0/ to 1550/sup 0/C. for separating silica from the zircon powder and a second-stage heat treatment which is performed at a higher temperature in the range from above 1550/sup 0/C. to 2000/sup 0/C. for completely converting silica in the mixture under heat treatment into gaseous SiO and dissipating the gaseous SiO, wherein the raw material mixture is subjected to the desiliconizing heat treatment in the form of at least one lump whose bulk density is in the range from 0.7 to 2.0.« less

  8. Thermal conductivity in nanocrystalline-SiC/C superlattices

    DOE PAGES

    Habermehl, S.; Serrano, J. R.

    2015-11-17

    We reported the formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m -1 K -1 for monolithic undoped α-SiC films to 1.6 W m -1 K -1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductancemore » model is employed to explain the dependence of the thermal conductivity on the superlatticestructure. Our results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layerphonon scattering.« less

  9. a-Si:H/SiNW shell/core for SiNW solar cell applications

    PubMed Central

    2013-01-01

    Vertically aligned silicon nanowires have been synthesized by the chemical etching of silicon wafers. The influence of a hydrogenated amorphous silicon (a-Si:H) layer (shell) on top of a silicon nanowire (SiNW) solar cell has been investigated. The optical properties of a-Si:H/SiNWs and SiNWs are examined in terms of optical reflection and absorption properties. In the presence of the a-Si:H shell, 5.2% reflection ratio in the spectral range (250 to 1,000 nm) is achieved with a superior absorption property with an average over 87% of the incident light. In addition, the characteristics of the solar cell have been significantly improved, which exhibits higher open-circuit voltage, short-circuit current, and efficiency by more than 15%, 12%, and 37%, respectively, compared with planar SiNW solar cells. Based on the current–voltage measurements and morphology results, we show that the a-Si:H shell can passivate the defects generated by wet etching processes. PMID:24195734

  10. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles.

    PubMed

    Mishra, Archana; Kumar, Jitendra; Melo, Jose Savio

    2017-01-15

    The previously developed Sphingomonas sp. based optical microplate biosensor for methyl parathion (MP) was good as it detected multiple samples but had poor stability and low sensitivity. The present study aims to overcome these limitations. Silica nanoparticles (Si NP) were thus functionalized with polyethyleneimine (PEI) and the functionalized silica nanoparticles ( f Si NP) were then integrated with Sphingomonas sp. cells. The process was optimized for hydrolysis of MP into p-nitrophenol (PNP). Integration of f Si NP with cells was confirmed by FT-IR analysis. Biohybrid of Sphingomonas sp.- f Si NP was immobilized on the wells of microplate and associated directly with the optical transducer of microplate reader. Immobilized biohybrid of Sphingomonas sp.- f Si NP was characterized using SEM. A detection range of 0.1-1ppm MP was achieved from the linear range of calibration plot. After integration with f Si NP the storage stability of biohybrid was enhanced ten times from 18 to 180 days. This study proves that after interaction of cells with f Si NP, improved the sensitivity and stability of the biosensor. Spiked samples were also analyzed and correlated using this biohybrid based biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Measurement of Young's modulus and residual stress of thin SiC layers for MEMS high temperature applications

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong

    2011-06-01

    Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.

  12. High-rate tensile properties of Si-reduced TRIP sheet steels

    NASA Astrophysics Data System (ADS)

    Choi, Ildong; Park, Yeongdo; Son, Dongmin; Kim, Sung-Joon; Moon, Manbeen

    2010-02-01

    There have been efforts to develop Si-reduced TRIP steels to improve the wettability of Zn coatings, since the conventional CMnSi-TRIP steels suffer from poor galvanizability. In addition, for the development of potential applications of Si-reduced TRIP steels in vehicle crash management, a better understanding of high strain rate properties is required. In the present study, the effects of alloying elements, such as Cu, Al, Si, and P, on the high-rate tensile properties of Si-reduced TRIP sheet steels were investigated. Tensile tests were performed with a servo-hydraulic tensile testing machine at strain rates ranging from 10-2 to 6 × 102 s-1, and the ultimate tensile strength, elongation, strain rate sensitivity, and absorbed energy were evaluated. The retained austenite volume fractions and carbon content of the specimens were measured using neutron diffraction. The UTS was increased with Cu, Al, Si, and P alloying throughout the strain rate range, and the alloying effect on UTS was considerable with Cu and P. The effects of alloying on the microstructure were not significant. All the steels tested in this study exhibited positive strain rate sensitivity, and the m value at strain rates higher than 10 s-1 was at least two times higher than that at lower strain rates.

  13. Thickness-dependent change in the valence band offset of the SiO{sub 2}/Si interface studied using synchrotron-radiation photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, S., E-mail: toyoda.satoshi.4w@kyoto-u.ac.jp; Oshima, M.

    2016-08-28

    We have studied the thickness-dependent change in the valence band offset (VBO) of the SiO{sub 2}/Si(001) interface using synchrotron-radiation photoemission spectroscopy with soft and hard X-rays. The SiO{sub 2}-film thickness (T{sub ox}) and X-ray irradiation time (t{sub irrad}) were systematically parameterized to distinguish between the “intrinsic” T{sub ox} effects in the VBOs and the “extrinsic” differential charging phenomena in SiO{sub 2} films on Si substrates. The results revealed that at a spontaneous time (t{sub irrad} ≈ 5 s) that suppresses the differential charging phenomena as much as possible, the experimental VBO abruptly increases as a function of T{sub ox} and graduallymore » saturates to the traditional VBO value range determined by the internal photoemission and photoconduction measurements. This effect is not attributed to the differential charging phenomena, but rather it is attributed to the “intrinsic” T{sub ox}-dependent change in the VBO. The two possible physical behaviors include electronic polarization and image charge. We have derived the electronic polarization contribution from experimental data by carefully describing the effects of the long-range image charges based on the classical dielectric-screening model.« less

  14. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  15. Chemical compatibility of some ceramic matrix composite structures with fusion reactor helium coolant at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, F.J.; Ghoniem, N.M.

    The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several potential fiber coatings are studied. Helium coolant is assumed to contain O{sub 2} and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicated that the upper useful temperature limit for SiC/SiC composites, frommore » the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO{sub 2} condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reactor conditions. Further development of chemically stable interface materials is required.« less

  16. GIPAW (gauge including projected augmented wave) and local dynamics in 13C and 29Si solid state NMR: the study case of silsesquioxanes (RSiO1.5)8.

    PubMed

    Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian

    2009-08-28

    Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.

  17. Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

    PubMed

    Chen, Fang; Li, Ning; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2015-07-28

    For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

  18. Iron silicides at pressures of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Zhang, Feiwu; Oganov, Artem R.

    2010-01-01

    The Earth's core is expected to contain around 10 wt % light elements (S, Si, O, possibly C, H, etc.) alloyed with Fe and Ni. Very little is known about these alloys at pressures and temperatures of the core. Here, using the evolutionary crystal structure prediction methodology, we investigate Fe-Si compounds at pressures of up to 400 GPa, i.e. covering the pressure range of the Earth's core. Evolutionary simulations correctly find that at atmospheric pressure the known non-trivial structure with P213 symmetry is stable, while at pressures above 20 GPa the CsCl-type structure is stable. We show that among the possible Fe silicides (Fe3Si, Fe2Si, Fe5Si3, FeSi, FeSi2 and FeSi3) only FeSi with CsCl-type structure is thermodynamically stable at core pressures, while the other silicides are unstable to decomposition into Fe + FeSi or FeSi + Si. This is consistent with previous works and suggests that Si impurities contribute to stabilization of the body-centered cubic phase of Fe in the inner core.

  19. Development and Evaluation of Die Materials for Use in the Growth of Silicon Ribbons by the Inverted Ribbon Growth Process. Task 2: LSSA Project

    NASA Technical Reports Server (NTRS)

    Duffy, M. T.; Berkman, S.; Moss, H. I.; Cullen, G. W.

    1978-01-01

    Several ribbon growth experiments were performed from V-shaped dies coated with CVD Si3N4. The most significant result was the ability to perform five consecutive growth runs from the same die without mechanical degradation of the die through temperature cycling. The die was made from vitreous carbon coated with CVD Si3N4. Silicon oxynitride, Si2N2O, was examined with respect to thermal stability in contact with molten silicon. The results of X-ray analysis indicate that this material is converted to both alpha - and beta-Si3N4 in the presence of molten silicon. Experiments on the stability of CVD SiOxNy shoe that this material can be maintained in contact with molten silicon (sessile drop test) for greater than 30 h at 1450 C without total decompositon. These layers are converted mainly to beta-Si3N4.

  20. Sustainable intensification: a multifaceted, systemic approach to international development.

    PubMed

    Himmelstein, Jennifer; Ares, Adrian; van Houweling, Emily

    2016-12-01

    Sustainable intensification (SI) is a term increasingly used to describe a type of approach applied to international agricultural projects. Despite its widespread use, there is still little understanding or knowledge of the various facets of this composite paradigm. A review of the literature has led to the formalization of three principles that convey the current characterization of SI, comprising a whole system, participatory, agroecological approach. Specific examples of potential bottlenecks to the SI approach are cited, in addition to various technologies and techniques that can be applied to overcome these obstacles. Models of similar, succcessful approaches to agricultural development are examined, along with higher level processes. Additionally, this review explores the desired end points of SI and argues for the inclusion of gender and nutrition throughout the process. To properly apply the SI approach, its various aspects need to be understood and adapted to different cultural and geographic situations. New modeling systems and examples of the effective execution of SI strategies can assist with the successful application of the SI paradigm within complex developing communities. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. The DOE Next-Generation Drivetrain for Wind Turbine Applications: Gearbox, Generator, and Advanced Si/SiC Hybrid Inverter System: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, William; Keller, Jonathan

    This paper reports on the design and testing results from the U.S. Department of Energy Next-Generation Wind Turbine Drivetrain Project. The drivetrain design reduces the cost of energy by increasing energy capture through drivetrain efficiency improvements; by reducing operation and maintenance costs through reducing gearbox failures; and by lowering capital costs through weight reduction and a series of mechanical and electronic innovations. The paper provides an overview of the drivetrain gearbox and generator and provides a deeper look into the power converter system. The power converter has a number of innovations including the use of hybrid silicon (Si)/silicon carbide (SiC)more » isolated baseplate switching modules. Switching energies are compared between SiC and Si PIN diodes. The efficiency improvement by use of the SiC diode in a three-level converter is also described. Finally, a brief discussion covering utility interconnect requirements for turbines is provided with a particular focus on utility events that lead to high transient torque loads on drivetrain mechanical elements.« less

  2. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    NASA Technical Reports Server (NTRS)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  3. Spectroscopic evidence of photogenerated carrier separation by built-in electric field in Sb-doped n-BaSi2/B-doped p-BaSi2 homojunction diodes

    NASA Astrophysics Data System (ADS)

    Kodama, Komomo; Takabe, Ryota; Deng, Tianguo; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    The operation of a BaSi2 homojunction solar cell is first demonstrated. In n+-BaSi2 (20 nm)/p-BaSi2 (500 nm)/p+-BaSi2 (50 nm) homojunction diodes on p+-Si(111) (resistivity ρ < 0.01 Ω cm), the internal quantum efficiency (IQE) under AM1.5 illumination becomes pronounced at wavelengths λ < 800 nm and exceeded 30% at λ = 500 nm. In contrast, the IQE values are small at λ < 600 nm in n+-BaSi2 (300 nm)/p-Si (ρ > 0.1 Ω cm) heterojunction diodes, but are high in the range between 600 and 1200 nm. The difference in spectral response demonstrates the photogenerated carrier separation by the built-in electric field in the homojunction diode.

  4. The range of options for handling plane angle and solid angle within a system of units

    NASA Astrophysics Data System (ADS)

    Quincey, Paul

    2016-04-01

    The radian and steradian are unusual units within the SI, originally belonging to their own category of ‘supplementary units’, with this status being changed to dimensionless ‘derived units’ in 1995. Recent papers have suggested that angles could be handled in two different ways within the SI, both differing from the present system. The purpose of this paper is to provide a framework for putting such suggestions into context, outlining the range of options that is available, together with the advantages and disadvantages of these options. Although less rigorously logical than some alternatives, the present SI approach is generally supported, but with some changes to the SI brochure to make the position clearer, in particular with regard to the designation of the radian and steradian as derived units.

  5. Precipitation of silicon from splat-cooled Al-Si alloys

    NASA Technical Reports Server (NTRS)

    Matyja, H.; Russell, K. C.; Grant, N. J.; Giessen, B. C.

    1975-01-01

    Splat cooled Al-Si solid solutions with 1 to 11 at.% Si were prepared and their precipitation kinetics were studied by transmission electron microscopy. The time required for appearance of particles visible at a magnification of 35,000 times was determined at temperatures between 248 K and 573 K. The resulting Arrhenius plots yielded activation energies ranging from 55 to 40 plus or minus 2kJ/mol over the composition range. Precipitate densities were higher and denuded zones of 100 to 150 nm were narrower than in comparable solid quenched samples. The activation energies are explained in terms of excess point defect concentrations.

  6. NBS: Materials measurements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.

  7. Crystal and electronic structures, luminescence properties of Eu 2+-doped Si 6-zAl zO zN 8-z and M ySi 6-zAl z-yO z+yN 8-z-y ( M=2Li, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.

    2008-12-01

    The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.

  8. Near zero reflection by nanostructured anti-reflection coating design for Si substrates

    NASA Astrophysics Data System (ADS)

    Al-Fandi, Mohamed; Makableh, Yahia F.; Khasawneh, Mohammad; Rabady, Rabi

    2018-05-01

    The nanostructure design of near zero reflection coating for Si substrates by using ZnO Nanoneedles (ZnONN) is performed and optimized for the visible spectral range. The design investigates the ZnONN tip to body ratio effect on the anti-reflection coating properties. Different tip to body ratios are used on Si substrates. Around zero reflection is achieved by the Nanoneedles structure design presented in this work, leading to minimal reflection losses from the Si surface. The current design evolves a solution to optical losses and surface contamination effects associated with Si solar cells.

  9. Proceedings of the ARPA/AFML Review of Progress in Quantitative Nondestructive Evaluation

    DTIC Science & Technology

    1978-05-01

    seeded with Fe, Si , SIC, low density SI3N4, C and pores in sizes ranging from 125 to 1000 ^m (0.005 to 0.040 Inches) as shown in the margins. Figure...are some blank areas where seeded defects are supposed to be, partic- ularly for the low density SI3N4 and the smallest size of SI and SIC, there 1s...shear wave Inspections of a seeded billet of NC-132, hot pressed silicon nitride. In this case the seeded defects are WC, Fe, BN, SIC, Si and C

  10. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1983-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel A. Riza

    The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less

  12. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  13. Interactions of atomic hydrogen with amorphous SiO2

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  14. Analytical electron tomography mapping of the SiCporeoxidation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Ersen, Ovidiu; Hirlimann, Charles; Roiban, Lucian; Deneuve, Adrien; Houllé, Matthieu; Janowska, Izabela; Nguyen, Patrick; Pham, Charlotte; Pham-Huu, Cuong

    2010-12-01

    Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the poreoxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channelpores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale.Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the poreoxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channelpores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale. Electronic supplementary information (ESI) available: SI-1-SI-4. See DOI: 10.1039/c0nr00449a

  15. Polycation-Functionalized Nanoporous Silicon Particles for Gene Silencing on Breast Cancer Cells

    PubMed Central

    Zhang, Mingzhen; Xu, Rong; Xia, Xiaojun; Yang, Yong; Gu, Jianhua; Qin, Guoting; Liu, Xuewu; Ferrari, Mauro; Shen, Haifa

    2013-01-01

    Nanoporous silicon particles (pSi), with a pore size in the range of 20~60 nm, were modified with polyethyleimine (PEI) to yield pSi-PEI particles, which were subsequently complexed with siRNA. Thus, pSi-PEI/siRNA particles were fabricated, with the PEI/siRNA nanocomplexes mainly anchored inside the nanopore of the pSi particles. These hybrid particles were used as carriers to deliver siRNA to human breast cancer cells. Due to the gradual degradation of the pSi matrix under physiological conditions, the PEI/siRNA nanocomplexes were released from the pore interior in a sustained manner. Physicochemical characterization revealed that the released PEI/siRNA nanocomplexes exhibited well-defined spherical shape and narrow particle size distribution between 15 and 30 nm. Gene knockdown against the ataxia telangiectasia mutated (ATM) cancer gene showed dramatic gene silencing efficacy. Moreover, comprehensive biocompatibility studies were performed for the pSi-PEI/siRNA particles both in vitro and in vivo and demonstrated that the pSi-PEI particles exhibited significantly enhanced biocompatibility. As a consequence, PEI-modified porous silicon particles may have substantial potential as safe and effective siRNA delivery systems. PMID:24103653

  16. Demonstration of movement in the sacroiliac joint using ultrasound

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Brooks, William J.; Lund, Pamela J.

    1995-05-01

    The goal of this study was to demonstrate quantitatively, using ultrasound (US) recording techniques, the extent of motion of the sacroiliac joint achieved using manual medicine techniques. Initial judgements of perceived (i.e., felt) SI mobility during manual examination were made on 22 subjects. Baseline no movement ultrasound images (static) were obtained of the left and right SI joints at two levels-- posterior-superior-iliac-spine and inferior (PSIS, INF)--and two projections (AP and LAT). Manual medicine spring testing of the SI joint was then performed while ultrasound recordings (on video) were made. The differences between baseline separation of the SI joint and displacement distance during spring testing were measured by six radiologists who typically read US images. Significant movement of at least one SI joint was demonstrated in 91% of the subjects using ultrasound recordings. The extent of movement appeared to corroborate the experience of manual medicine practitioners.

  17. Effect of AZO deposition on antireflective property of Si subwavelength grating structures

    NASA Astrophysics Data System (ADS)

    Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.

    2011-12-01

    We investigate the effect of the aluminum-doped zinc oxide (AZO) deposition on the fabricated Si SWG structure on its antireflection characteristics for solar cell applications. The Si SWGs with the two-dimensional periodic nanostructure are fabricated by using holographic lithography and subsequent ICP etching process in SiCl4 plasma. For the antireflection analysis of AZO thin-film on the Si SWG structure, the optical reflectivity is measured experimentally. The maxima reflectance and its oscillation of the structure are significantly decreased on average than those of AZO thin-film on Si substrate over a wide wavelength range of 300-1100 nm, indicating average reflectance less than 4.5% with the maxima of <10%.

  18. Studies of the Si/SiO2 interface using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.

    1985-01-01

    Synchrotron radiation photoemission spectroscopy (SRPS) in the 1-4 KeV photon energy range is a useful tool for interface characterization. Results are presented of a series of studies of the near-interface region of Si/SiO2 which confirm that a bond strain gradient exists in the oxide as a result of lattice mismatch. These experiments include measurement of photoemission lineshape changes as a function of photon energy, corresponding changes in the electron escape depth near the interface, and surface extended X-ray absorption fine structure (SEXAFS) measurements directly indicating the shortening of the Si-Si second nearest neighbor distance in the near-interface region of the oxide.

  19. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  20. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  1. Biologically Inspired Radiation Reflector

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M. (Inventor); Lawson, John W. (Inventor); Squire, Thomas H. (Inventor); Gusman, Michael (Inventor)

    2018-01-01

    A thermal protection system (TPS) comprising a mixture of silicon carbide and SiOx that has been converted from Si that is present in a collection of diatom frustules and at least one diatom has quasi-periodic pore-to-pore separation distance d(p-p) in a selected range. Where a heat shield comprising the converted SiC/SiOx frustules receives radiation, associated with atmospheric (re)entry, a portion of this radiation is reflected so that radiation loading of the heat shield is reduced.

  2. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    NASA Astrophysics Data System (ADS)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  3. Coherent Phonon Transport Measurement and Controlled Acoustic Excitations Using Tunable Acoustic Phonon Source in GHz-sub THz Range with Variable Bandwidth.

    PubMed

    Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi

    2018-05-04

    We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.

  4. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  5. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium. A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.

  6. Project Work Assignment | Sustainable Stormwater Funding Project

    EPA Pesticide Factsheets

    2010-11-30

    ... J'l.wroprl 8OOljJf!'l fOI 8..... n """ Nwo I.1n DCN N. e_ e_ prog~;"':x~~ment ObI~~Cl~·· unt I ICents) SI:~~~O:t COSI~~od. Max6 Mo•• Ma:t6 ,,",7 1 ...

  7. Integrated Incident Management System (IIMS) web client application development, deployment and evaluation Staten Island (SI) demonstration project : final report.

    DOT National Transportation Integrated Search

    2015-09-27

    This evaluation report provides background on the development and findings. The aim of the UTRC project was to develop and : deploy Portable IIMS based on Smartphone web applications. Previously, traditional IIMS was deployed in the field vehicles : ...

  8. Forecasting the impacts of shale gas developments on public health and transportation systems on both sides of the Mexico-U.S. border.

    DOT National Transportation Integrated Search

    2015-08-01

    The activities completed for this project includes the literature research on the Eagle Ford formation, the review : of public-health and transportation related variables to shale gas developments, and the definition of the project : collaborative si...

  9. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  10. Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing

    2016-12-01

    It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).

  11. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  12. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  13. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE PAGES

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; ...

    2016-03-08

    Molybdenum disilicide (MoSi 2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O 2 containing atmospheres due to the formation of a passive SiO 2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi 2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi 2 displays more mass gain in water vapormore » than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO 2(OH) 2 and Si(OH) 4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm 2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  14. Oxidation resistance, thermal conductivity, and spectral emittance of fully dense zirconium diboride with silicon carbide and tantalum diboride additives

    NASA Astrophysics Data System (ADS)

    Van Laningham, Gregg Thomas

    Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high melting temperatures. As such, this compound could be useful in the construction of thermal protection systems for aerospace applications. This work addresses a primary shortcoming of this material, namely its propensity to destructively oxidize at high temperatures, as well as secondary issues concerning its heat transport properties. To characterize and improve oxidation properties, thermogravimetric studies were performed using a specially constructed experimental setup. ZrB 2-SiC two-phase ceramic composites were isothermally oxidized for ~90 min in flowing air in the range 1500-1900°C. Specimens with 30 mol% SiC formed distinctive reaction product layers which were highly protective; 28 mol% SiC - 6 mol% TaB2 performed similarly. At higher temperatures, specimens containing lower amounts of SiC were shown to be non-protective, whereas specimens containing greater amounts of SiC produced unstable oxide layers due to gas evolution. Oxide coating thicknesses calculated from weight loss data were consistent with those measured from SEM micrographs. In order to characterize one aspect of the materials' heat transport properties, the thermal diffusivities of ZrB2-SiC composites were measured using the laser flash technique. These were converted to thermal conductivities using temperature dependent specific heat and density data; thermal conductivity decreased with increasing temperature over the range 25-2000°C. The composition with the highest SiC content showed the highest thermal conductivity at room temperature, but the lowest at temperatures in excess of ~400°C, because of the greater temperature sensitivity of the thermal conductivity of the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent finite difference calculations were good predictors of multi-phase thermal conductvities for the compositions examined. The thermal conductivities of pure ZrB2 as a function of temperature were back-calculated from the experimental results for the multi-phase materials, and literature thermal conductivities of the other two phases. This established a relatively constant thermal conductivity of 88-104 W·K over the evaluated temperature range. Further heat transport characterization was performed using pre-oxidized, directly resistively heated ZrB2-30 mol% SiC ribbon specimens under the observation of a spectral radiometer. The ribbons were heated and held at specific temperatures over the range 1100-1330°C in flowing Ar, and normal spectral emittance values were recorded over the 1-6 μm range with a resolution of 10 nm. The normal spectral emittance was shown to decrease with loss of the borosilicate layer over the course of the data collection time periods. This change was measured and compensated for to produce traces showing the emittance of the oxidized composition rising from ~0.7 to ~0.9 over the range of wavelengths measured (1-6 μm).

  15. Structural and energetic properties of acetonitrile-Group IV (A & B) halide complexes.

    PubMed

    Helminiak, Heather M; Knauf, Robin R; Danforth, Samuel J; Phillips, James A

    2014-06-19

    We have conducted an extensive computational study of the structural and energetic properties of select acetonitrile-Group IV (A & B) tetrahalide complexes, both CH3CN-MX4 and (CH3CN)2-MX4 (M = Si, Ge, Ti; X = F, Cl). We have also examined the reactivity of CH3CN with SiF4, SiCl4, GeCl4, and TiCl4, and measured low-temperature IR spectra of thin films containing CH3CN with SiF4, GeCl4, or TiCl4. The six 1:1 complexes fall into two general structural classes. CH3CN-TiCl4, CH3CN-TiF4, and CH3CN-GeF4, exhibit relatively short M-N bonds (~2.3 Å), an intermediate degree of distortion in the MX4 subunit, and binding energies ranging from 11.0 to 13.0 kcal/mol. Conversely, CH3CN-GeCl4, CH3CN-SiF4, and CH3CN-SiCl4, are weakly bonded systems, with long M-N distances (>3.0 Å), little distortion in the MX4 subunit, and binding energies ranging from 3.0 to 4.4 kcal/mol. The structural features of analogous 2:1 systems resemble those of their 1:1 counterparts, whereas the binding energies (relative to three isolated fragments) are roughly twice as large. Calculated M-N potential curves in the gas phase and bulk, dielectric media are reported for all 1:1 complexes, and for two systems, CH3CN-GeF4 and CH3CN-SiF4, these data predict significant condensed-phase structural changes. The effect on the CH3CN-SiF4 potential is extreme; the curve becomes quite flat over a broad range in dielectric media, and at higher ε values, the global minimum shifts inward by about 1.0 Å. In bulk reactivity experiments, no reaction was observed between CH3CN and SiF4, SiCl4, or GeCl4, whereas CH3CN and TiCl4 were found to react immediately upon contact. Also, thin-film IR spectra indicate a strong interaction between CH3CN and TiCl4, yet only weak interactions between CH3CN and GeCl4 or SiF4 in the solid state.

  16. A comparative study of three-terminal Hanle signals in CoFe/SiO{sub 2}/n{sup +}-Si and Cu/SiO{sub 2}/n{sup +}-Si tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong-Hyeon; Cho, B. K., E-mail: chobk@gist.ac.kr; Grünberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology

    We performed three-terminal (3T) Hanle measurement for two types of sample series, CoFe/SiO{sub 2}/n{sup +}-Si and Cu/SiO{sub 2}/n{sup +}-Si, with various tunnel resistances. Clear Hanle signal and anomalous scaling between spin resistance-area product and tunnel resistance-area product were observed in CoFe/SiO{sub 2}/n{sup +}-Si devices. In order to explore the origin of the Hanle signal and the impurity-assisted tunneling effect on the Hanle signal in our devices, Hanle measurement in Cu/SiO{sub 2}/n{sup +}-Si devices was performed as well. However, no detectable Hanle signal was observed in Cu/SiO{sub 2}/n{sup +}-Si, even though a lot of samples with various tunnel resistances were studiedmore » in wide temperature and bias voltage ranges. Through a comparative study, it is found that the impurity-assisted tunneling magnetoresistance mechanism would not play a dominant role in the 3T Hanle signal in CoFe/SiO{sub 2}/n{sup +}-Si tunnel junctions, where the SiO{sub 2} was formed by plasma oxidation to minimize impurities.« less

  17. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    PubMed

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-04

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity. Copyright © 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. New Approaches to Waterproofing of Space Shuttle Insulating Materials

    NASA Technical Reports Server (NTRS)

    Blum, Yigal D.; Johnson, Sylvia M.; Chen, Paul

    1997-01-01

    Future reusable space vehicles will be in service much more frequently than current space shuttles. Therefore, rapid reconditioning of spacecraft will be required. Currently, the waterproofing of space shuttles after each re-entry takes 72 hours and requires substantial labor. In addition, the currently used waterproofing reagent, DiMethylEthoxySilane (DMES), is considered toxic, and ethanol fumes are released during its hydrolytic activation. Consequently, a long time period, which is not acceptable for future operations, is needed to ensure that 0 the excess volatile compounds are removed before further maintenance of the space vehicle can be performed. The objective of this project was to assist NASA Ames in finding improved waterproofing systems by identifying suitable waterproofing agents that can be applied by vapor phase deposition and will be less toxic, bond more rapidly to the insulation material surface, and potentially have higher thermal stability than the DMES system. Several approaches to achieve faster waterproofing with less toxicity were assessed using the following alternatives: Reactive volatile compounds that are rapidly deposited by chemical bonding at the surface and leave no toxic volatiles. Reactive reagents that are the least toxic. Nonvolatile reagents that are very reactive and bond strongly to the insulating material surface. Three specific types of potential reagents were chosen for evaluation in this project: 1. Volatile reagents with Si-Cl functional groups for vapor deposition 2. Volatile reagents with Si-H functional groups for vapor deposition 3. Nonvolatile oligomeric or polymeric reactive siloxanes that are assumed to have higher thermal stability and/or strong bonding to the insulating material. The chemistry involved in the project was targeted at the generation of intermediates having reactive Si-OH bonds for the formation of either volatile species or polymeric species that bond rapidly to the surface and also cure rapidly. We focused on two chemical reactions@-hydrolysis of Si-Cl bonds and catalytic dehydrocoupling of Si-H bonds.

  19. SiO maser emission as a density tracer of circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Stroh, Michael; Pihlstrom, Ylva; Sjouwerman, Lorant

    2018-06-01

    The circumstellar envelopes (CSEs) of evolved stars offer a method to construct a sample of point-masses along the full Galactic plane, which can be used to test models of the gravitational potential. In the CSEs of red giants, SiO maser emission is frequently observed at 43 and 86 GHz, providing line-of-sight velocities. The Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to explore the complex structure of the inner Galaxy and Galactic Bulge, by observing 43 GHz SiO at the Very Large Array and 86 GHz SiO at the Atacama Large Millimeter/submillimeter Array, with an expected final sample of about 20,000 line-of-sight velocities and positions. We observed the 43 GHz and 86 GHz transitions near-simultaneously in a subsample of the sources using the Australia Telescope Compact Array and found that on average the 43 GHz v=1 line is 1.3 times stronger than the 86 GHz v=1 line. The presence of a detectable 43 GHz v=3 line alters the statistics, consistent with the SiO masers displaying 43 GHz v=3 emission arising in a denser regime in the circumstellar shell compared to those without. Comparing our results with radiative models implies that the 43 GHz v=3 line is a tracer of density variations caused by stellar pulsations. We will discuss these results in the context of the BAaDE project.

  20. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo

    2016-08-01

    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  1. Temperature-dependent analysis of conduction mechanism of leakage current in thermally grown oxide on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Sometani, Mitsuru; Okamoto, Dai; Harada, Shinsuke; Ishimori, Hitoshi; Takasu, Shinji; Hatakeyama, Tetsuo; Takei, Manabu; Yonezawa, Yoshiyuki; Fukuda, Kenji; Okumura, Hajime

    2015-01-01

    The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO2/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO2/4H-SiC interface. On the basis of Arrhenius plots of the PF current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO2 films on the Si-face of 4H-SiC.

  2. Wet oxidation of GeSi strained layers by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.

    1990-07-01

    A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.

  3. Temperature-dependent analysis of conduction mechanism of leakage current in thermally grown oxide on 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sometani, Mitsuru; Takei, Manabu; Fuji Electric Co. Ltd., 1 Fuji-machi, Hino, 191-8502 Tokyo

    The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO{sub 2}/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the true barrier height for the SiO{sub 2}/4H-SiC interface. On the basis of Arrhenius plots of the PFmore » current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO{sub 2} films on the Si-face of 4H-SiC.« less

  4. Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ohishi, Yuji; Ichikawa, Satoshi; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-05-01

    We here report on the influence of CoSi2 precipitates on the thermoelectric properties of heavily doped p-type Si. A simple self-assembly process using a melt-spinning technique followed by spark plasma sintering is introduced to prepare bulk Si/CoSi2 composites with a nominal composition of (Si0.99B0.01)95Co5. Scanning and transmission electron microscopy observations present clear evidence of a sub-micrometer CoSi2 phase with a size ranging from 50 to 500 nm. These sub-micrometer precipitates resulted in a retention of the high electrical performance of heavily doped Si, while simultaneously reducing thermal conductivity by over 20% compared to a coarse CoSi2 phase (1-10 μm) in a comparative sample prepared by arc melting and spark plasma sintering. As a result, a figure of merit ZT value of 0.21 at 1073 K was achieved in the sub-micrometer Si/CoSi2, an increase of 16% compared with the ZT value for homogeneous p-type Si with a similar carrier concentration. This suggests that the self-assembled sub-micrometer inclusions effectively enhanced the thermoelectric performance of Si-based thermoelectric materials.

  5. VizieR Online Data Catalog: Relativistic MR-MP energy levels for Si (Santana+, 2018)

    NASA Astrophysics Data System (ADS)

    Santana, J. A.; Lopez-Dauphin, N. A.; Beiersdorfer, P.

    2018-03-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi- Reference Moller-Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20eV in SiV to 0.04eV in SiXII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements. (1 data file).

  6. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  7. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Flow Stress and Processing Map of a PM 8009Al/SiC Particle Reinforced Composite During Hot Compression

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui

    2017-10-01

    Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.

  9. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    PubMed

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  10. Estimation of thermodynamic parameters for Au- and Mg-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gaur, Jitendra; Mishra, R. K.

    2017-10-01

    The study of temperature dependent thermodynamic parameters; Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled liquid and the corresponding equilibrium solid phases has been proved to be extremely advantageous in the study of the thermodynamic behaviour of Metallic glass (MG) forming melts. In last two decades, Au- and Mg-based alloys were found to form glass phases. In present study, the three thermodynamic parameters viz., ΔG, ΔS and ΔH are calculated theoretically in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for both Au- and Mg-based five samples of MGs; Au77Ge13.6Si9.4, Au53.2Pb27.5Sb19.3, Au81.4Si18.6, Mg85.5Cu14.5 and Mg81.6Ga18.4 on the basis of Taylor's series expansion. A relative study is also made between the present result and the result obtained experimentally as well as on the basis of expressions projected by the earlier researchers. An attempt is also been made to narrate the reduced glass transition temperature with glass forming ability for all five MGs.

  11. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  12. Influence of Germanium source on dopingless tunnel-FET for improved analog/RF performance

    NASA Astrophysics Data System (ADS)

    Cecil, Kanchan; Singh, Jawar

    2017-01-01

    Dopingless (DL) and junctionless devices have attracted attention due to their simplified fabrication process and low thermal budget requirements. Therefore, in this work, we investigated the influence of low band gap Germanium (Ge) instead of Silicon (Si) as a "Source region" material in dopingless (DL) tunnel field-effect transistor (DLTFET). We observed that the Ge source DLTFET delivers much better performance in comparison to Si DLTFET under various analog/RF figure of merits (FOMs), such as transconductance (gm), transconductance generation factor (TGF) (gm /Id), output conductance (gd), output resistance (RO), intrinsic gain (gmRO), intrinsic gate delay (τ) and RF FOMs, like unity gain frequency (fT), gain bandwidth product (GBW) along with various gate capacitances. These parameters were extracted using 2D TCAD device simulations through small signal ac analysis. Higher ION /IOFF ratio (1014) of Ge source DLTFET can reduce the dynamic as well as static power in digital circuits, while higher transconductance generation factor (gm /Id) ∼ 2287 V-1 can lower the bias power of an amplifier. Similarly, enhanced RF FOMs i.e unity gain frequency (fT) and gain bandwidth product (GBW) in Gigahertz range projects the proposed device preference for RF circuits.

  13. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  14. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  15. Photovoltaic Enhancement with Ferroelectric HfO2Embedded in the Structure of Solar Cells

    NASA Astrophysics Data System (ADS)

    Eskandari, Rahmatollah; Malkinski, Leszek

    Enhancing total efficiency of the solar cells is focused on the improving one or all of the three main stages of the photovoltaic effect: absorption of the light, generation of the carriers and finally separation of the carriers. Ferroelectric photovoltaic designs target the last stage with large electric forces from polarized ferroelectric films that can be larger than band gap of the material and the built-in electric fields in semiconductor bipolar junctions. In this project we have fabricated very thin ferroelectric HfO2 films ( 10nm) doped with silicon using RF sputtering method. Doped HfO2 films were capped between two TiN layers ( 20nm) and annealed at temperatures of 800ºC and 1000ºC and Si content was varied between 6-10 mol. % using different size of mounted Si chip on hafnium target. Piezoforce microscopy (PFM) method proved clear ferroelectric properties in samples with 6 mol. % of Si that were annealed at 800ºC. Ferroelectric samples were poled in opposite directions and embedded in the structure of a cell and an enhancement in photovoltaic properties were observed on the poled samples vs unpoled ones with KPFM and I-V measurements. The current work is funded by the NSF EPSCoR LA-SiGMA project under award #EPS-1003897.

  16. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    PubMed Central

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-01-01

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536

  17. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    PubMed

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  18. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    PubMed

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  19. Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.; hide

    2009-01-01

    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.

  20. Antireflective surface with a step in the taper: Numerical optimization and large-area fabrication

    NASA Astrophysics Data System (ADS)

    Shinotsuka, Kei; Hongo, Koki; Dai, Kotaro; Hirama, Satoru; Hatta, Yoshihisa

    2017-02-01

    In this study, we developed a practical method to improve the optical performance of subwavelength antireflective two-dimensional (2D) gratings. A numerical simulation of both convex and concave paraboloids suggested that surface reflectivity drastically decreases when a step is introduced in the taper. The optimum height and depth of a step provided average reflectances of 0.098% for convex protrusions and 0.040% for concave protrusions in the visible range. Furthermore, a stepped paraboloid was experimentally fabricated by dry etching of a Si substrate with SiO2 particle monolayer mask. A cyclo-olefin polymer (COP) reverse replica (concave) imprinted by the Si mold exhibited a measured reflectance of 0.077% on average in the visible range. It was also demonstrated that the antireflective structure was fabricated on the whole surface of a 6 in. Si wafer, which is a sufficient size for industrial utilization.

  1. Facile Synthesis of γ-In2 Se3 Nanoflowers toward High Performance Self-Powered Broadband γ-In2 Se3 /Si Heterojunction Photodiode.

    PubMed

    Chen, Shuo; Liu, Xuemei; Qiao, Xvsheng; Wan, Xia; Shehzad, Khurram; Zhang, Xianghua; Xu, Yang; Fan, Xianping

    2017-05-01

    An effective colloidal process involving the hot-injection method is developed to synthesize uniform nanoflowers consisting of 2D γ-In 2 Se 3 nanosheets. By exploiting the narrow direct bandgap and high absorption coefficient in the visible light range of In 2 Se 3 , a high-quality γ-In 2 Se 3 /Si heterojunction photodiode is fabricated. This photodiode shows a high photoresponse under light illumination, short response/recovery times, and long-term durability. In addition, the γ-In 2 Se 3 /Si heterojunction photodiode is self-powered and displays a broadband spectral response ranging from UV to IR with a high responsivity and detectivity. These excellent performances make the γ-In 2 Se 3 /Si heterojunction very interesting as highly efficient photodetectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficiency Improvement Using Molybdenum Disulphide Interlayers in Single-Wall Carbon Nanotube/Silicon Solar Cells.

    PubMed

    Alzahly, Shaykha; Yu, LePing; Shearer, Cameron J; Gibson, Christopher T; Shapter, Joseph G

    2018-04-21

    Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.

  3. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  4. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  5. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  6. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  7. Observing terrestrial water storage and land-atmosphere dynamics from space: Implications for forecasting and climate projections

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Humphrey, V.; Nicolai-Shaw, N.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Michel, D.; Orth, R.; Zscheischler, J.

    2016-12-01

    In recent years, several new satellite products have been derived which allow an unprecendented assessment of terrestrial water storage and land-atmosphere dynamics. This presentation will review some of these new developments, with a focus on drought dynamics, plant-water interactions, and soil moisture-atmosphere feedbacks. Results derived based on the Gravity Recovery and Climate Experiment (GRACE, Humphrey et al. 2016) and the European Space Agency Climate Change Initiative (ESA CCI) Soil Moisture dataset (Nicolai-Shaw et al. 2015, 2016; Hirschi et al. 2014) will be highlighted, as well as assessments using satellite-based estimates of evapotranspiration (Mueller and Seneviratne 2014, Michel et al. 2016), vegetation activity (Zscheischler et al. 2015), and combined soil moisture and precipitation analyses (Guillod et al. 2015). These findings provide new insights on the development of prediction capabilities for droughts, precipitation events, and heat waves, and the reduction of uncertainties in climate model projections. References: Guillod, B.P., B. Orlowsky, D.G. Miralles, A.J. Teuling, and S.I. Seneviratne, 2015. Nature Communications, 6:6443, DOI: 10.1038/ncomms7443 Hirschi, M., B. Mueller, W. Dorigo, and S.I. Seneviratne, 2014. Remote Sensing of Environment, 154, 246-252. Humphrey, V., L. Gudmundsson, and S.I. Seneviratne, 2016. Surv. Geophysics, 37, 357-395, DOI 10.1007/s10712-016-9367-1. Michel, D., et al. 2016. Hydrol. Earth Syst. Sci. 20, 803-822, doi:10.5194/hess-20-803-2016. Mueller, M., and S.I. Seneviratne, 2014. Geophys. Res. Lett., 41, 1-7, doi:10.1002/2013GL058055. Nicolai-Shaw, N., L. Gudmundsson, M. Hirschi, and S.I. Seneviratne, 2016. Geophys. Res. Lett., in review. Nicolai-Shaw, N., M. Hirschi, H. Mittelbach, and S.I. Seneviratne, 2015. Journal of Geophysical Research, 120, doi:10.1002/2015JD023305. Zscheischler, J., R. Orth, and S.I. Seneviratne, 2015. Geophys. Res. Lett., 42, 9816-9824, doi:10.1002/2015GL066563.

  8. Fabrication and electrical characterization of Al/diazo compound containing polyoxy chain/p-Si device structure

    NASA Astrophysics Data System (ADS)

    Birel, Ozgul; Kavasoglu, Nese; Kavasoglu, A. Sertap; Dincalp, Haluk; Metin, Bengul

    2013-03-01

    Diazo-compounds are important class of chemical compounds in terms of optical and electronic properties which make them potentially attractive for device applications. Diazo compound containing polyoxy chain has been deposited on p-Si. Current-voltage characteristics of Al/diazo compound containing polyoxy chain/p-Si structure present rectifying behaviour. The Schottky barrier height (SBH), diode factor (n), reverse saturation current (Io), interface state density (Nss) of Al/diazo compound containing polyoxy chain/p-Si structure have been calculated from experimental forward bias current-voltage data measured in the temperature range 100-320 K and capacitance-voltage data measured at room temperature and 1 MHz. The calculated values of SBH have ranged from 0.041 and 0.151 eV for the high and low temperature regions. Diode factor values fluctuate between the values 14 and 18 with temperature. Such a high diode factors stem from disordered interface layer in a junction structure as stated by Brötzmann et al. [M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106 (2009) 063704]. The calculated values of saturation current have ranged from 3×10-11 A to 2.79×10-7 A and interface state density have ranged from 5×1011 eV-1 cm-2 and 4×1013 eV-1 cm-2 as temperature increases. Results show that Al/diazo compound containing polyoxy chain/p-Si structure is a valuable candidate for device applications in terms of low reverse saturation current and low interface state density.

  9. Photoluminescence of ZnS-SiO2:Ce Thin Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Mizuno, Masao

    2011-12-01

    Photoluminescent emissions of zinc sulfide-silica-cerium thin films deposited by magnetron sputtering were observed. The films consisted of ZnS nanocrystals embedded in amorphous SiO2 matrices. ZnS-SiO2:Ce films exhibited photoluminescence even without postannealing. Their emission spectra showed broad patterns in the visible range; the emitted colors depended on film composition.

  10. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima

    2017-04-01

    In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.

  11. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE PAGES

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-15

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  12. SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection

    NASA Technical Reports Server (NTRS)

    Yan, Feng

    2006-01-01

    A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.

  13. Effects of SiC on Properties of Cu-SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Efe, G. Celebi; Altinsoy, I.; Ipek, M.; Zeytin, S.; Bindal, C.

    2011-12-01

    This paper was focused on the effects of particle size and distribution on some properties of the SiC particle reinforced Cu composites. Copper powder produced by cementation method was reinforced with SiC particles having 1 and 30 μm particle size and sintered at 700 °C. SEM studies showed that SiC particles dispersed in copper matrix homogenously. The presence of Cu and SiC components in composites were verified by XRD analysis technique. The relative densities of Cu-SiC composites determined by Archimedes' principle are ranged from 96.2% to 90.9% for SiC with 1 μm particle size, 97.0 to 95.0 for SiC with 30 μm particle size. Measured hardness of sintered compacts varied from 130 to 155 HVN for SiC having 1 μm particle size, 188 to 229 HVN for SiC having 1 μm particle size. Maximum electrical conductivity of test materials was obtained as 80.0% IACS (International annealed copper standard) for SiC with 1 μm particle size and 83.0% IACS for SiC with 30 μm particle size.

  14. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  15. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si V to 0.04 eV in Si XII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.

  16. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  17. New silicon architectures by gold-assisted chemical etching.

    PubMed

    Mikhael, Bechelany; Elise, Berodier; Xavier, Maeder; Sebastian, Schmitt; Johann, Michler; Laetitia, Philippe

    2011-10-01

    Silicon nanowires (SiNWs) were produced by nanosphere lithography and metal assisted chemical etching. The combination of these methods allows the morphology and organization control of Si NWs on a large area. From the investigation of major parameters affecting the etching such as doping type, doping concentration of the substrate, we demonstrate the formation of new Si architectures consisting of organized Si NW arrays formed on a micro/mesoporous silicon layer with different thickness. These investigations will allow us to better understand the mechanism of Si etching to enable a wide range of applications such as molecular sensing, and for thermoelectric and photovoltaic devices. © 2011 American Chemical Society

  18. Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects

    PubMed Central

    Kruspe, Sven; Giangrande, Paloma H.

    2017-01-01

    Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted. PMID:28792479

  19. Pest Oxidation Regime in the Hi-Nicalon(Trademark)/BN/SiC Composite

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1998-01-01

    SiC-SiC composites are prone to pest degradation at intermediate temperatures where the formation of a protective scale of silica by direct oxidation of SiC is too slow to offer effective protection from attack by ambient gases. The attack results in the removal of the BN interphase and its replacement by a borosilicate liquid (which dissolves and weakens the fiber) and finally by SiO2, (which embrittles the composite by bonding fiber to fiber or to matrix). This paper reports a study aimed at mapping out the temperature range of such pest degradation and the severity of its effect.

  20. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO₂ multilayer structures pumped at Ti:sapphire wavelength.

    PubMed

    Stepanov, Andrei G; Rogov, Andrii; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-09-08

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO₂multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO₂layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  1. Characterization of SiO2/SiC interface states and channel mobility from MOSFET characteristics including variable-range hopping at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hironori; Hirata, Kazuto

    2018-04-01

    The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.

  2. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measuredmore » from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.« less

  3. The improved mechanical properties of β-CaSiO3 bioceramics with Si3N4 addition.

    PubMed

    Pan, Ying; Zuo, Kaihui; Yao, Dongxu; Yin, Jinwei; Xin, Yunchuan; Xia, Yongfeng; Liang, Hanqin; Zeng, Yuping

    2015-03-01

    The motivation of this study is to investigate the effect of Si3N4 addition on the sinterability of β-CaSiO3 ceramics. β-CaSiO3 ceramics with different content of Si3N4 were prepared at the sintering temperature ranging from 1000°C to 1150°C. The results showed that Si3N4 can be successfully used as sintering additive by being oxidized to form SiO2. The β-CaSiO3 ceramics with 3wt% Si3N4 sintered at 1100°C revealed flexural strength, hardness and fracture toughness of 157.2MPa, 4.4GPa and 2.3MPam(1/2) respectively, which was much higher than that of pure β-CaSiO3 ceramics (41.1MPa, 1.0GPa, 1.1MPam(1/2)). XRD analysis and SEM observation indicated that the main phase maintained to be β-phase after sintering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Physical and Electrical Properties of SiO2 Layer Synthesized by Eco-Friendly Method

    NASA Astrophysics Data System (ADS)

    Jong-Woong Kim,; Young-Seok Kim,; Sung-Jei Hong,; Tae-Hwan Hong,; Jeong-In Han,

    2010-05-01

    SiO2 thin film has a wide range of applications, including insulation layers in microelectronic devices, such as semiconductors and flat panel displays, due to its advantageous characteristics. Herein, we developed a new eco-friendly method for manufacturing SiO2 nanoparticles and, thereby, SiO2 paste to be used in the digital printing process for the fabrication of SiO2 film. By excluding harmful Cl- and NO3- elements from the SiO2 nanoparticle synthetic process, we were able to lower the heat treatment temperature for the SiO2 precursor from 600 to 300 °C and the diameter of the final SiO2 nanoparticles to about 14 nm. The synthesized SiO2 nanoparticles were dispersed in an organic solvent with additives to make a SiO2 paste for feasibility testing. The SiO2 paste was printed onto a glass substrate to test the feasibility of using it for digital printing. The insulation resistance of the printed film was high enough for it to be used as an insulation layer for passivation.

  5. Compound formation and superconductivity in Au-Si: X-ray absorption measurements on ion-beam-mixed Au-Si films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Y.; Jisrawi, N.; Liang, G.

    Multilayered Au-Si thin films have been deposited with the net compositions ''Au/sub 1-//sub x/Si/sub x/,'' x = 0.29, 0.5, and 0.8. After ion-beam mixing these films exhibited superconductivity in the 0.3--1.2 K range despite the nonsuperconducting character of both Au and Si. Near-edge x-ray absorption spectroscopy (XAS) measurements on the Au L/sub 3/ edge in these films indicate that metastable Au-Si compound formation occurs in these ion-mixed materials. Specifically, the XAS measurements indicate changes in Au 5d-orbital occupancy and changes in the local Au structural environment which are both consistent with local compound formation.

  6. SiN{sub x} layers on nanostructured Si solar cells: Effective for optical absorption and carrier collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yunae; Kim, Eunah; Gwon, Minji

    2015-10-12

    We compared nanopatterned Si solar cells with and without SiN{sub x} layers. The SiN{sub x} layer coating significantly improved the internal quantum efficiency of the nanopatterned cells at long wavelengths as well as short wavelengths, whereas the surface passivation helped carrier collection of flat cells mainly at short wavelengths. The surface nanostructured array enhanced the optical absorption and also concentrated incoming light near the surface in broad wavelength range. Resulting high density of the photo-excited carriers near the surface could lead to significant recombination loss and the SiN{sub x} layer played a crucial role in the improved carrier collection ofmore » the nanostructured solar cells.« less

  7. Genetic variation for pseudo-self-compatibility in self-incompatible populations of Leavenworthia alabamica (Brassicaceae).

    PubMed

    Baldwin, Sarah J; Schoen, Daniel J

    2017-01-01

    Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.

    PubMed

    Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-03

    Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ±   1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).

  9. Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji

    2017-10-01

    We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.

  10. A room temperature process for the fabrication of amorphous indium gallium zinc oxide thin-film transistors with co-sputtered Zr x Si1- x O2 Gate dielectric and improved electrical and hysteresis performance

    NASA Astrophysics Data System (ADS)

    Hung, Chien-Hsiung; Wang, Shui-Jinn; Liu, Pang-Yi; Wu, Chien-Hung; Wu, Nai-Sheng; Yan, Hao-Ping; Lin, Tseng-Hsing

    2017-04-01

    The use of co-sputtered zirconium silicon oxide (Zr x Si1- x O2) gate dielectrics to improve the gate controllability of amorphous indium gallium zinc oxide (α-IGZO) thin-film transistors (TFTs) through a room-temperature fabrication process is proposed and demonstrated. With the sputtering power of the SiO2 target in the range of 0-150 W and with that of the ZrO2 target kept at 100 W, a dielectric constant ranging from approximately 28.1 to 7.8 is obtained. The poly-structure formation immunity of the Zr x Si1- x O2 dielectrics, reduction of the interface trap density suppression, and gate leakage current are examined. Our experimental results reveal that the Zr0.85Si0.15O2 gate dielectric can lead to significantly improved TFT subthreshold swing performance (103 mV/dec) and field effect mobility (33.76 cm2 V-1 s-1).

  11. Properties of Cathodoluminescence for Cryogenic Applications of SiO2-based Space Observatory Optics and Coatings

    NASA Technical Reports Server (NTRS)

    Evans, Amberly; Dennison, J.R.; Wilson, Gregory; Dekany, Justin; Bowers Charles W.; Meloy, Robert; Heaney, James B.

    2013-01-01

    Disordered thin film SiO2SiOx coatings undergoing electron-beam bombardment exhibit cathodoluminescence, which can produce deleterious stray background light in cryogenic space-based astronomical observatories exposed to high-energy electron fluxes from space plasmas. As future observatory missions push the envelope into more extreme environments and more complex and sensitive detection, a fundamental understanding of the dependencies of this cathodoluminescence becomes critical to meet performance objectives of these advanced space-based observatories. Measurements of absolute radiance and emission spectra as functions of incident electron energy, flux, and power typical of space environments are presented for thin (60-200 nm) SiO2SiOx optical coatings on reflective metal substrates over a range of sample temperatures (40-400 K) and emission wavelengths (260-5000 nm). Luminescent intensity and peak wavelengths of four distinct bands were observed in UVVISNIR emission spectra, ranging from 300 nm to 1000 nm. A simple model is proposed that describes the dependence of cathodoluminescence on irradiation time, incident flux and energy, sample thickness, and temperature.

  12. Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from {CH3SiCl3}/{H2} gas precursor

    NASA Astrophysics Data System (ADS)

    Loumagne, F.; Langlais, F.; Naslain, R.

    1995-10-01

    The kinetics of SiC-based ceramics deposition from CH 3SiCl 3{( MTS) }/{H2} gas precursor has been investigated over a range of reduced pressure and low temperature, where kinetics are controlled by chemical reactions. Overall kinetic laws have been determined from the measurement of the apparent activation energy and the influence of MTS, H 2, CH 4 and HCl. The kinetics of SiC deposition highly depends on both the dilution ratio α = {P H2}/{P MTS} and the total pressure. For 3 ≤ α ≤ 10 and T = 825°C, the reaction order with respect to MTS equals 2. At T = 925°C, it becomes nil in the low pressure range and 1 for P ≥ 10 kPa, whereas at 825 and 925°C, PH 2 has no influence on the growth rate. The apparent reaction orders are explained on the basis of a Langmuir-Hinshelwood model. The limiting step is evidenced as being HCl elimination by both SiCl and CH bonds breaking.

  13. The evolution from long-range magnetic order to spin-glass behaviour in PrAu2(Si1- xGex)2

    NASA Astrophysics Data System (ADS)

    Krimmel, A.; Hemberger, J.; Kegler, C.; Nicklas, M.; Engelmayer, A.; Knebel, G.; Fritsch, V.; Reehuis, M.; Brando, M.; Loidl, A.

    1999-09-01

    We have studied the magnetic behaviour of PrAu2(Si1-xGex)2 by means of magnetic susceptibility, resistivity, and heat capacity measurements, and x-ray and neutron powder diffraction. All compounds are isostructural and crystallize in the well known ThCr2Si2-type structure. PrAu2Si2 shows the characteristic features of a canonical spin glass with a freezing temperature of TF = 3 K. Completely unexpectedly, on introducing/increasing the atomic disorder by alloying with Ge, the spin-glass transition is suppressed as is first evident from a slight decrease of the freezing temperature TF up to x = 0.10. Long-range magnetic order sets in for xicons/Journals/Common/ge" ALT="ge" ALIGN="TOP"/>0.12. Within the range 0.15icons/Journals/Common/le" ALT="le" ALIGN="TOP"/> xicons/Journals/Common/le" ALT="le" ALIGN="TOP"/>1, all compounds show the same simple AF-I-type antiferromagnetic structure with a monotonic increase of both the Néel temperature and the ordered magnetic moment for increasing Ge concentration. The magnetic phase diagram of PrAu2(Si1-xGex)2 is explained by the presence of weak disorder at a constant level at the Au sites. Clear indications of crystal-field effects have been observed.

  14. Anti-Reflection Characteristics of Si Nanowires for Enhanced Photoluminescence from CdTe/CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yu; Shan, Dan; Xu, Ling

    2018-05-01

    Not Available Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province, Qing Lan Project of Yangzhou Polytechnic Institute, the Natural Science Foundation of Yangzhou City under Grant No YZ2016123, and the National Natural Science Foundation of China under Grant No 61376004.

  15. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  16. Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.

    2018-01-01

    We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.

  17. In vitro bioactivity of novel tricalcium silicate ceramics.

    PubMed

    Zhao, Wenyuan; Chang, Jiang; Wang, Junying; Zhai, Wanyin; Wang, Zheng

    2007-05-01

    In this study, bone-like apatite-formation ability of tricalcium silicate (Ca(3)SiO(5)) ceramics in simulated body fluid (SBF) was evaluated and the in vitro degradability was investigated by soaking in Ringer's solution. The effect of ionic products from Ca(3)SiO(5) dissolution on osteobalsts proliferation was investigated. The result indicated that hydroxyapatite (HA) was formed on the surface of the Ca(3)SiO(5) ceramics after soaking in SBF for 1 day, and Ca(3)SiO(5) ceramics could degraded in Ringer's solution. The Si ions from Ca(3)SiO(5) dissolution at certain concentration range significantly stimulated osteoblasts proliferation. Our results show that Ca(3)SiO(5) ceramics possess bone-like apatite-formation ability and degradability, and can release soluble ionic products to stimulate cell proliferation.

  18. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    PubMed

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  19. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  20. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  1. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  2. Hot isostatic pressing of silicon nitride Sisub3n4 containing zircon, or zirconia and silica

    NASA Technical Reports Server (NTRS)

    Somiya, S.; Yoshimura, M.; Suzuki, T.; Nishimura, H.

    1980-01-01

    A hydrothermal synthesis apparatus with a 10 KB cylinder was used to obtain a sintered body of silicon nitride. The sintering auxiliary agents used were zircon (ZrSiO4) and a mixture of zirconia (ZrO2) and silica (SiO2). Experiments were conducted with the amounts of ZrSi04 or ArO2 and SiO2 varying over a wide range and the results compared to discover the quantity of additive which produced sintering in silicon nitride by the hot pressing method.

  3. Pressure-stabilized binary compounds of magnesium and silicon

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan

    2018-02-01

    The family of binary compounds composed of magnesium and silicon is rather rich. In addition to the well-known magnesium silicide Mg2Si , other compounds, including MgSi2, Mg4Si7 , Mg5Si6 , MgSi, and Mg9Si5 , have also been identified and/or proposed in precipitated Al-Mg-Si solid solutions. Nevertheless, computational studies show that only Mg2Si is thermodynamically stable at ambient conditions while certain nonzero hydrostatic pressure can stabilize Mg9Si5 so that it can coexist with Mg2Si . We conduct a comprehensive search for viable binary compounds of MgxSi1 -x (1 /3 ≤x ≤2 /3 ) , discovering numerous low-energy structures for all the compounds. On one hand, we find that MgSi2, MgSi, and Mg9Si5 are likely pressure-stabilized materials, while, on the other hand, supporting previous studies, we raise doubt on the existence of Mg5Si6 , and claim that the existence of Mg4Si7 remains an open question. Therefore, we recommend that (hydrostatic and/or nonhydrostatic) pressure should be explicitly considered when discussing the stability of these solids (and maybe other solids as well) by computations. We also find that MgSi2 can potentially exhibit superconducting behaviors within a wide range of pressure with the critical temperature of up to 7 K.

  4. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  5. The Stellar Imager (SI) project: a deep space UV/Optical Interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2009-04-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/

  6. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  7. Experimental study and thermodynamic modeling of the phase relation in the Fe-S-Si system with implications for the distribution of S and Si in a partially solidified core

    NASA Astrophysics Data System (ADS)

    Tao, R.; Fei, Y.

    2017-12-01

    Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.

  8. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Bociaga, Dorota; Sobczyk-Guzenda, Anna; Szymanski, Witold; Jedrzejczak, Anna; Jastrzebska, Aleksandra; Olejnik, Anna; Jastrzebski, Krzysztof

    2017-09-01

    In this study silicon doped diamond-like carbon (Si-DLC) coatings were synthesized on two substrates: silicon and AISI 316LVM stainless steel using a multi-target DC-RF magnetron sputtering method. The Si content in the films ranged between 4 and 16 at.%, and was controlled by the electrical power applied in RF regime to Si cathode target. The character of the chemical bonds was revealed by FTIR analysis. With the addition of silicon the hydroxyl absorption (band in the range of 3200-3600 cm-1) increased what suggests more hydrophilic character of the coating. There were also observed significant changes in bonding of Si atoms. For low content of dopant, Si-O-Si bond system is predominant, while for the highest content of silicon there is an evidence of the shift to Si-C bonds in close proximity to methyl groups. The Raman spectroscopy revealed that the G peak position is shifted to a lower wavenumber and the ID/IG ratio decreased with increasing Si content, which indicates an increase in the C-sp3 content. Regardless of the coatings' composition, the improvement of hardness in comparison to pure substrate material (AISI 316 LVM) was observed. Although the reduction of the level of hardness from the level of 10.8 GPa for pure DLC to about 9.4 GPa for the silicon doped coatings was observed, the concomitant improvement of films adhesion with higher amount of Si was revealed. Although incorporation of the dopant to DLC coatings increases the number of E. coli cells which adhered to the examined surfaces, the microbial colonisation remains on the level of substrate material. The presented results prove the potential of Si-DLC coatings in biomedical applications from the point of view of their mechanical properties.

  9. Refractive index and compressibility of LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuryaeva, R.G., E-mail: rufina@igm.nsc.ru; Dmitrieva, N.V.; Surkov, N.V.

    2016-02-15

    Highlights: • Refractive index and the compressibility of LiAlSi{sub 3}O{sub 8} glass are obtained. • Among Li(Na,K)AlSi{sub 3}O{sub 8} glasses LiAlSi{sub 3}O{sub 8} glass has the lowest compressibility. • Degree of depolymerization (NBO/T = 0.31) for LiAlSi{sub 3}O{sub 8} glass was calculated. • NBO/T = 0.31 indicates a high content of NBOs atoms and Al in LiAlSi{sub 3}O{sub 8} glass. • Proposed reaction corresponds to the condition of the existence of ∼9% Al. - Abstract: The refractive index and the relative changes in the density for LiAlSi{sub 3}O{sub 8} glass in the pressure range up to 6.0 GPa were obtainedmore » using a polarization-interference microscope and an apparatus with diamond anvils. The results were compared with the previous data for the NaAlSi{sub 3}O{sub 8} and KAlSi{sub 3}O{sub 8} glasses. The compressibility of glasses increases in a series of alkali metal cations Li{sup +}, Na{sup +}, K{sup +}. From the previously found dependence of the compressibility (at P = 4.0 GPa) on the degree of depolymerization the value of NBO/T = 0.31 for LiAlSi{sub 3}O{sub 8} glass was calculated. A high degree of depolymerization of the LiAlSi{sub 3}O{sub 8} glass indicates not only a high content of NBOs atoms in the structural network, but also the presence of highly coordinated aluminum (according to the literature data ∼9%). The proposed schematic reaction for the formation of different structural groups corresponds to the condition of the existence of 9% highly coordinated aluminum.« less

  10. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are reported relative to TMS. The 1H MAS NMR spectra show broad peaks covering a chemical shift range of 1 to 17 ppm, with peak maxima near 4 and 15 ppm for more Si-rich compositions and near 12 ppm for less Si-rich compositions. The 1H-29Si-1H and 23Na-1H cross-polarization (CP) MAS NMR spectra for all the hydrous Na silicate glasses suggest negligible NaOH species, which, if present, should show enhanced relative intensity with 23Na-1H CP and the opposite with 1H-29Si-1H CP. All the observed 1H NMR intensities can be attributed to SiOH species of a range of hydrogen-bonding distances, plus a small amount of molecular H2O for higher water-content samples that contribute to intensities around 6 ppm. In conclusion, our combined 1H MAS NMR and double-resonance (1H-29Si-1H and 23Na-1H CP) MAS NMR study on Na silicate glasses of a range of Na/Si ratios has confirmed that water dissolves predominantly as SiOH and molecular H2O species in Na silicate melts (glasses), consistent with the trend predicted from studies on the Ca-Mg silicate system [1,2]. References:[1] Xue, X. Y.; Kanzaki, M. J. Am. Ceram. Soc. 2009, 92, 2803-2830. [2] Xue, X. Y.; Kanzaki, M. Geochim. Cosmochim. Acta 2004, 68, 5027-5057.

  11. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  12. Research on ZnO/Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Li; Chen, Xinliang; Liu, Yiming; Zhao, Ying; Zhang, Xiaodan

    2017-06-01

    We put forward an n-ZnO/p-Si heterojunction solar cell model based on AFORS-HET simulations and provide experimental support in this article. ZnO:B (B-doped ZnO) thin films deposited by metal-organic chemical vapor deposition (MOCVD) are planned to act as electrical emitter layer on p-type c-Si substrate for photovoltaic applications. We investigate the effects of thickness, buffer layer, ZnO:B affinity and work function of electrodes on performances of solar cells through computer simulations using AFORS-HET software package. The energy conversion efficiency of the ZnO:B(n)/ZnO/c-Si(p) solar cell can achieve 17.16% ({V}{oc}: 675.8 mV, {J}{sc}: 30.24 mA/cm2, FF: 83.96%) via simulation. On a basis of optimized conditions in simulation, we carry out some experiments, which testify that the ZnO buffer layer of 20 nm contributes to improving performances of solar cells. The influences of growth temperature, thickness and diborane (B2H6) flow rates are also discussed. We achieve an appropriate condition for the fabrication of the solar cells using the MOCVD technique. The obtained conversion efficiency reaches 2.82% ({V}{oc}: 294.4 mV, {J}{sc}: 26.108 mA/cm2, FF: 36.66%). Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341).

  13. Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns

    NASA Astrophysics Data System (ADS)

    Naczas, Sebastian

    Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before (Group-A) or after (Group-B) post-H-implantation annealing. As evidenced by transmission electron microscopy, Group-A samples exhibited an array of large-sized nanocavities in hexagon-like shape, whereas a narrow band of sphere-shaped nanocavities of small size was present below the surface in Group-B samples. These Si samples with pre-existing nanocavities were further implanted with Ag ions in the surface region and post-Ag-implantation annealing was conducted in the temperature range between 600 and 900 °C. Measurements based on RBS revealed much different behaviors for Ag redistribution and defect accumulation in these two sets of samples. Compared to the case for Group-B Si, Group-A Si exhibited a lower concentration of residual defects and a slower kinetics in Ag diffusion as well. The properties of nanocavities, e.g., their depth distribution, size, and even shape, are believed to be responsible for the observed disparities between the samples with and without surface oxides, including an interesting contrast of surface vs. bulk diffusion phenomena for implanted Ag atoms. Based on this thesis work, we believe that this approach is promising for achieving monolithically integrated room-temperature light emitting devices based on Er-doped Si, if the properties (e.g., density/size/type of nanoparticles) of these novel Si nanostructures could be further optimized in future studies.

  14. Milestone report on MD potential development for uranium silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason Dean

    2016-03-01

    This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U 3Si 2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U 3Si 2 phase, some other U-Si systems such as U 3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets ofmore » parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U 3Si 2 phase and lattice constants for the high temperature U 3Si (h-U 3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U 3Si 2, on the formation enthalpy for the low temperature U 3Si (m-U 3Si) and h-U 3Si phases, and on the lattice constants of m-U 3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.« less

  15. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.

  16. An Extensive X-ray Computed Tomography Evaluation of a Fully Penetrated Encapsulated SiC MMC Ballistic Panel

    DTIC Science & Technology

    2009-04-01

    An Extensive X-ray Computed Tomography Evaluation of a Fully Penetrated Encapsulated SiC MMC Ballistic Panel by William H. Green and Robert H...Panel William H. Green and Robert H. Carter Weapons and Materials Research Directorate, ARL...PROGRAM ELEMENT NUMBER 2182040 6. AUTHOR(S) William H. Green and Robert H. Carter 5d. PROJECT NUMBER AH80 5e. TASK NUMBER 5f. WORK UNIT

  17. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  18. B2O3/SiO2 substitution effect on structure and properties of Na2O-CaO-SrO-P2O5-SiO2 bioactive glasses from molecular dynamics simulations.

    PubMed

    Ren, Mengguo; Lu, Xiaonan; Deng, Lu; Kuo, Po-Hsuen; Du, Jincheng

    2018-05-23

    The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials. Both short-range (such as bond length and bond angle) and medium-range (such as polyhedral connection and ring size distribution) structures were determined as a function of glass composition. The simulation results were used to explain the experimental results for glass properties such as glass transition temperature and bioactivity. The fraction of bridging oxygen increased linearly with increasing B2O3 content, resulting in an increase in overall glass network connectivity. Ion diffusion behavior was found to be sensitive to changes in glass composition and the trend of the change with the level of substitution is also temperature dependent. The differential scanning calorimetry (DSC) results show a decrease in glass transition temperature (Tg) with increasing B2O3 content. This is explained by the increase in ion diffusion coefficient and decrease in ion diffusion energy barrier in glass melts, as suggested by high-temperature range (above Tg) ion diffusion calculations as B2O3/SiO2 substitution increases. In the low-temperature range (below Tg), the Ea for modifier ions increased with B2O3/SiO2 substitution, which can be explained by the increase in glass network connectivity. Vibrational density of states (VDOS) were calculated and show spectral feature changes as a result of the substitution. The change in bioactivity with B2O3/SiO2 substitution is discussed with the change in pH value and release of boric acid into the solution.

  19. Final Report: Hot Carrier Collection in Thin Film Silicon with Tailored Nanocrystalline/Amorphous Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Reuben T.

    This project developed, characterized, and perfected a new type of highly tunable nanocrystalline silicon (nc-Si:H) incorporating quantum confined silicon nanoparticles (SiNPs). A dual zone deposition process and system were developed and demonstrated. The depositions of SiNPs, the amorphous phase, and co-deposited material were characterized and optimized. Material design and interpretation of results were guided by new theoretical tools that examined both the electronic structure and carrier dynamics of this hybrid material. Heterojunction and p-i-n solar cells were demonstrated and characterized. Photo-thin-film-transistors allowed mobility to be studied as a function SiNP density in the films. Rapid (hot) transfer of carriers frommore » the amorphous matrix to the quantum confined SiNPs was observed and connected to reduced photo-degradation. The results carry quantum confined Si dots from a novelty to materials that can be harnessed for PV and optoelectronic applications. The growth process is broadly extendable with alternative amorphous matrices, novel layered structures, and alternative NPs easily accessible. The hot carrier effects hold the potential for third generation photovoltaics.« less

  20. [Habitat suitability index model and minimum habitat area estimation of young Procypris rabaudi (Tchang): a simulation experiment in laboratory].

    PubMed

    Feng, Xian-Bin; Zhu, Yong-Jiu; Li, Xi; He, Yong-Feng; Zhao, Jian-Hua; Yang, De-Guo

    2013-01-01

    Under the conditions of simulated micro-habitat in laboratory, and by using experimental ecological methods, this paper evaluated the suitability index (HSI) of young Procypris rabaudi for habitat factors (substrate, light intensity and water depth). The habitat suitability models of the young P. rabaudi were established, and the minimum habitat area of the young P. rabaudi was estimated. The young P. rabaudi preferred the habitats with the gravel diameter from 10 to 15 cm, light intensity from 0.2 to 1.8 lx, and water depth from 0 to 15 cm (distance from the bottom of the tank). The three suitability index models of the substrate, light intensity and water depth for the young P. rabaudi were SI(s) = 1.7338e(-0.997x)(SI(S) is the suitability index of substrate, and x is the gravel diameter; R2 = 0.89, P < 0.01), SI(L) = 3.0121e(-1.339x)(SI(L) is the suitability index of light intensity, and x is the light intensity; R2 = 0.93, P < 0.01), and SI(W) = 2.4055e(-1.245x)(SI(W) is the suitability index of water depth, and x is the water depth; R2 = 0.97, P < 0.01), respectively. Arithmetic mean model HSI = (SI(S)+SI(L)+SI(W))/3 was most available for the estimation of the habitat suitability of young P. rabaudi. A total of seven groups of young P. rabaudi which established and maintained a relatively stable habitat area range were found. This habitat area ranged from 628 to 2015 cm2, with an average of 1114 cm2.

  1. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.

    PubMed

    Halim, Martin; Liu, Guicheng; Ardhi, Ryanda Enggar Anugrah; Hudaya, Chairul; Wijaya, Ongky; Lee, Sang-Hyup; Kim, A-Young; Lee, Joong Kee

    2017-06-21

    Lithium-ion capacitors (LICs) and lithium-ion batteries (LIBs) are important energy storage devices. As a material with good mechanical, thermal, and chemical properties, low-carbon silicon oxycarbide (LC-SiOC), a kind of silicone oil-derived SiOC, is of interest as an anode material, and we have examined the electrochemical behavior of LC-SiOC in LIB and LIC devices. We found that the lithium storage mechanism in LC-SiOC, prepared by pyrolysis of phenyl-rich silicon oil, depends on an oxygen-driven rather than a carbon-driven mechanism within our experimental scope. An investigation of the electrochemical performance of LC-SiOC in half- and full-cell LIBs revealed that LC-SiOC might not be suitable for full-cell LIBs because it has a lower capacity (238 mAh g -1 ) than that of graphite (290 mAh g -1 ) in a cutoff voltage range of 0-1 V versus Li/Li + , as well as a substantial irreversible capacity. Surprisingly, LC-SiOC acts as a pseudocapacitive material when it is tested in a half-cell configuration within a narrow cutoff voltage range of 0-1 V versus Li/Li + . Further investigation of a "hybrid" supercapacitor, also known as an LIC, in which LC-SiOC is coupled with an activated carbon electrode, demonstrated that a power density of 156 000 W kg -1 could be achieved while maintaining an energy density of 25 Wh kg -1 . In addition, the resulting capacitor had an excellent cycle life, holding ∼90% of its energy density even after 75 000 cycles. Thus, LC-SiOC is a promising active material for LICs in applications such as heavy-duty electric vehicles.

  2. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu

    2016-01-01

    We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range.We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c5nr07901b

  3. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    NASA Astrophysics Data System (ADS)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  4. Annealing behavior of the EB-centers and M-center in low-energy electron irradiated n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Beyer, F. C.; Hemmingsson, C.; Pedersen, H.; Henry, A.; Janzén, E.; Isoya, J.; Morishita, N.; Ohshima, T.

    2011-05-01

    After low-energy electron irradiation of epitaxial n-type 4H-SiC with a dose of 5×1016 cm-2, the bistable M-center, previously reported in high-energy proton implanted 4H-SiC, is detected in the deep level transient spectroscopy (DLTS) spectrum. The annealing behavior of the M-center is confirmed, and an enhanced recombination process is suggested. The annihilation process is coincidental with the evolvement of the bistable EB-centers in the low temperature range of the DLTS spectrum. The annealing energy of the M-center is similar to the generation energy of the EB-centers, thus partial transformation of the M-center to the EB-centers is suggested. The EB-centers completely disappeared after annealing temperatures higher than 700 ∘C without the formation of new defects in the observed DLTS scanning range. The threshold energy for moving Si atom in SiC is higher than the applied irradiation energy, and the annihilation temperatures are relatively low, therefore the M-center, EH1 and EH3, as well as the EB-centers are attributed to defects related to the C atom in SiC, most probably to carbon interstitials and their complexes.

  5. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    DOE PAGES

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; ...

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for themore » other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10 –7 [dpa –1 MPa –1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.« less

  6. Chemical characteristics of Northeast Asian fly ash particles: Implications for their long-range transportation

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Momose, Azusa; Okudaira, Takamoto; Murakami-Kitase, Akiko; Yamazaki, Hideo; Yoshikawa, Shusaku

    2014-10-01

    The chemical compositions of fly ash particles emitted in Northeast Asia were studied to better understand the long-range transportation of atmospheric pollutants. We examined the compositions of spheroidal carbonaceous particles (SCPs), a type of fly ash from several to ˜20 μm in diameter found in surface sediments in or near the main industrial cities of Japan, China, South Korea, and Taiwan. SCPs from different countries were found to vary; SCPs from Japan and South Korea were characterized by low Ti/Si and high S/Si ratios, whereas SCPs in China exhibited high Ti/Si and low S/Si ratios and particles from Taiwan showed high Ti/Si and S/Si ratios. We also examined the SCPs found in remote islands in the Sea of Japan, at least 100 km from any industrial city. On the basis of their chemical compositions, these SCPs were classified as Japan and Korea, China, and Taiwan types using discriminant analysis. The results indicated that 30-50% of the particles found in these islands were assigned to the China type, suggesting that most of these SCPs were probably transported from Chinese industrial regions to these islands. It implies that even large particulate pollutants of ˜10 μm, such as SCPs, could be transported long distances of ˜1000 km.

  7. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    PubMed

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  8. Sub-barrier fusion of Si+Si systems

    NASA Astrophysics Data System (ADS)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Bourgin, D.; Čolović, P.; Corradi, L.; Courtin, S.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Urbani, M.; Szilner, S.; Zhang, G. L.

    2017-11-01

    The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC) calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3- excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  9. Binary Alkali-Metal Silicon Clathrates by Spark Plasma Sintering: Preparation and Characterization

    PubMed Central

    Veremchuk, Igor; Beekman, Matt; Antonyshyn, Iryna; Schnelle, Walter; Baitinger, Michael; Nolas, George S.; Grin, Yuri

    2016-01-01

    The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4–700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques. PMID:28773710

  10. Transmission electron microscopy characterization of the erbium silicide formation process using a Pt/Er stack on a silicon-on-insulator substrate.

    PubMed

    Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E

    2006-10-01

    Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.

  11. Casimir forces from conductive silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  12. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    NASA Astrophysics Data System (ADS)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann-Hinshelwood model and Rice, Ramsperger, Kassel and Marcus (RRKM) theory) were also carried out and obtained data fitted the Arrhenius equations.

  13. Silica fractionation and reactivity in soils

    NASA Astrophysics Data System (ADS)

    Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick

    2014-05-01

    The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and 550°C burnings. The first results showed differences in silica fractions between treatments and between soil types. This project is a close collaboration with University of Dresden. -Fertilization. Humans use fertilizers to increase crops growth and to avoid plagues affecting soil biogeochemistry. We set up a greenhouse experiment where olivine (a relatively easily weatherable silicate mineral) fertilization is applied to two crops (barley and wheat), at two rain application regimes (daily rain and weekly heavy rain) and with different fertilizer grain sizes. The aim of this project is to investigate how olivine application affects Si fractionation and reactivity in the soil profile. Barão, L., Clymans, W., Vandevenne, F., Meire, P., Conley, D.J. and Struyf, E. Pedogenic and biogenic amorphous Si distribution along a temperate land use gradient. Submitted, European Journal of Soil Science, 2013. Koning, E., Epping, E., and Van Raaphorst, W.: Determining bio- genic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions, Aquat. Geochem., 8, 37-67, 2002. Vandevenne, F.I., Struyf, E., Clymans, W. & Meire, P. 2012. Agricultural silica harvest: have humans created a new and important loop in the global silica cycle? Frontiers in Ecology and the Environment 10: 243-248.

  14. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA

    NASA Astrophysics Data System (ADS)

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-01

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0 × 10- 12-2.5 × 10- 11 mol/L. The detection limit was 1.7 × 10- 12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  15. Measurement of interface strength by a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Argon, A. S.; Parks, D. M.; Cornie, J. A.

    A LASER spallation experiment has been developed to measure the strength of planar interfaces between a substrate and a thin coating (in the thickness range of 0.3-3 μm). In this technique a laser pulse of a high enough energy and a pre-determined duration is converted into a pressure pulse of a critical amplitude and width that is sent through the substrate toward the free surface with the coating. The reflected tensile wave from the free surface of the coating pries-off the coating. The critical stress amplitude that accomplishes the removal of the coating is determined from a computer simulation of the process. The simulation itself is verified by means of a piezo-electric crystal probe that is capable of mapping out the profile of the stress pulse generated by the laser pulse. Interface strength values ranging from 3.7 to 10.5 GPa were determined for the Si/SiC system. For the interfaces between pyrolytic graphite and SiC coatings an average strength of 7.2 GPA was measured, while the corresponding interface strength between a Pitch-55 type ribbon with a fiber-like morphology and SiC coatings was found to be 0.23 GPa. Intrinsic strengths of SiC coatings and Si crystal were also determined using this technique. These were, on the average, 8.6 GPa for Si crystals and 11.9 GPa for a SiC coating. Furthermore, the potential of the laser technique to determine the interface toughness was also demonstrated, provided well-characterizable flaws can be planted on the interface.

  16. Evaluation of the Mg doping approach for Si mass fractionation correction on Nu Instruments MC-ICP Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Hsieh, Yu-Te; Belshaw, Nick

    2015-04-01

    Silicon (Si) stable isotopes have been used in a broad range of geochemical and cosmochemical applications. A precise and accurate determination of Si isotopes is desirable to distinguish their small natural variations (< 0.2‰) in many of these studies. In the past decade, the advent of the MC-ICP-MS has spurred a remarkable improvement in the precision and accuracy of Si isotopic analysis. The instrumental mass fractionation correction is one crucial aspect of the analysis of Si isotopes. Two options are currently available: the sample-standard bracketing approach and the Mg doping approach. However, there has been a debate over the validity of the Mg doping approach. Some studies (Cardinal et al., 2003; Engström et al., 2006) favoured it compared to the sample-standard bracketing approach, whereas some other studies (e.g. De La Rocha, 2002) considered it unsuitable. This study investigates the Mg doping approach on both the Nu Plasma II and the Nu Plasma 1700. Experiments were performed in both the wet plasma and the dry plasma modes, using a number of different combinations of cones. A range of different Mg to Si ratios as well as different matrices have been used in the experiments. A sample-standard bracketing approach has also been adopted for the Si mass fractionation correction to compare with the Mg doping approach. Through assessing the mass fractionation behaviours of both Si and Mg under different instrument settings, this study aims to identity the factors which may affect the Mg doping approach and answer some key questions to the debate.

  17. Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity - The Gaza case study

    NASA Astrophysics Data System (ADS)

    Gampe, David; Ludwig, Ralf

    2013-04-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating seven test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. One of those seven sites is the Gaza Strip, located in the Eastern Mediterranean and part of the Palestinian Autonomous Area, covers an area of 365km² with a length of 35km and 6 to 12km in width. Elevation ranges from sea level up to 104m in the East of the test site. Mean annual precipitation varies from 235mm in the South to 420mm in the North of the area. The inter annual variability of rainfall and the rapid population growth in an highly agricultural used area represent the major challenges in this area. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) is setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. WaSiM was driven with meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. For the parameterization of the vegetation the Leaf Area Index (LAI) is a crucial component. However, the LAI is difficult to access at field scale, hence a simple remote sensing approach, using the Normalized Difference Vegetation Index (NDVI) and MODIS LAI information, was applied for the parameterization in WaSiM. As no permanent streams, hence no discharge measurements, exist in the Gaza Strip, the actual evapotranspiration (ETact) outputs of the model were used for model validation. Landsat TM images were applied to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season.

  18. Tailorable infrared sensing device with strain layer superlattice structure

    DOEpatents

    Cheng, Li-Jen

    1987-12-08

    An infrared photodetector is formed of a heavily doped p-type Ge.sub.x Si.sub.1-x /Si superlattice in which x is pre-established during manufacture in the range 0 to 100 percent. A custom tailored photodetector that can differentiate among close wavelengths in the range of 2.7 to 50 microns is fabricated by appropriate selection of the alloy constituency value, x, to establish a specific wavelength at which photodetection cut-off will occur.

  19. Comparison of thermal compatibility between atomized and comminuted U{sub 3}Si dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Woo-Seog; Park, Jong-Man; Kim, Chang-Kyu

    1997-08-01

    Thermal compatibility of atomized U{sub 3}Si dispersion fuels were evaluated up to 2600 hours in the temperature range from 250 to 500{degrees}C, and compared with that of comminuted U{sub 3}Si. Atomized U{sub 3}Si showed better performance in terms of volume expansion of fuel meats. The reaction zone of U{sub 3}Si and Al occurred along the grain boundaries and deformation bands in U{sub 3}Si particles. Pores around fuel particles appeared at high temperature or after long-term annealing tests to remain diffusion paths over the trench of the pores. The constraint effects of cladding on fuel rod suppressed the fuel meat, andmore » reduced the volume expansion.« less

  20. Fracture toughness of fiber-reinforced glass ceramic and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Stull, Kevin R.; Parvizi-Majidi, A.

    1991-01-01

    A fracture mechanics investigation of 2D woven Nicalon SiC/SiC and Nicalon SiC/LAS has been undertaken. An energy approach has been adopted to characterize and quantify the fracture properties of these materials. Chevron-notched bend specimens were tested in an edgewise configuration in which the crack propagated perpendicular to the ply direction. R-curves were obtained from repeated loading and unloading of specimens using several methods of data reduction. Values correconding to the plateau regions of the R-curves were taken as steady-state crack-growth resistance. These ranged from 37 to 63 kJ/sq m for 2D-SiC/LAS and 2.6 to 2.8 kJ/sq m for 2D-SiC/SiC composites.

  1. Measured Attenuation of Coplanar Waveguide on 6H, p-type SiC and High Purity Semi-Insulating 4H SiC through 800 K

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.

    2004-01-01

    Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.

  2. Electronic transport properties of nano-scale Si films: an ab initio study

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong

    2010-03-01

    Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.

  3. Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics

    NASA Astrophysics Data System (ADS)

    Najafizadeh, Laleh; Bellini, Marco; Prakash, A. P. Gnana; Espinel, Gustavo A.; Cressler, John D.; Marshall, Paul W.; Marshall, Cheryl J.

    2006-12-01

    A comprehensive investigation of the effects of proton irradiation on the performance of SiGe BiCMOS precision voltage references intended for extreme environment operational conditions is presented. The voltage reference circuits were designed in two distinct SiGe BiCMOS technology platforms (first generation (50 GHz) and third generation (200 GHz)) in order to investigate the effect of technology scaling. The circuits were irradiated at both room temperature and at 77 K. Measurement results from the experiments indicate that the proton-induced changes in the SiGe bandgap references are minor, even down to cryogenic temperatures, clearly good news for the potential application of SiGe mixed-signal circuits in emerging extreme environments

  4. Investigation of the hydrochlorination of SiCL4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    Reaction kinetic measurements on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal were made at a wide range of experimental variables. The effect of pressure on the reaction rate was studied at 25 psig, 100 psig, 150 psig and 200 psig, respectively. Results of these experiments show a large pressure effect on the hydrochlorination reaction. As expected, higher pressures produce a higher equilibrium SiHC13 conversion, since the hydrochlorination reaction results in a net volume contraction as product SiHC1 is formed. However, the reaction rate, namely, the rate at which the hydrochlorination reaction reaches its equilibrium SiHC13 conversion, was found to be much faster at low pressures.

  5. IR and SiO Maser Observations of Miras

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.; Mennesson, B.; Diamond, P. J.; Perrin, G.; Coudé du Foresto, V.; Chagnon, G.; van Langevelde, H. J.; Ridgway, S.; Waters, R.; Vlemmings, W.; Morel, S.; Traub, W.; Carleton, N.; Lacasse, M.

    2005-12-01

    Preliminary results of a coordinated program of near IR and SiO maser interferometric observations of Mira variables are reported. The 2.2 and 3.6 micron results are from the FLUOR/TISIS beam combiners on the IOTA interferometer and the SiO maser observations from the VLBA. The ratio of the SiO ring diameter to the apparent diameter at 2.2 microns for stars in our sample cluster around 2, whereas the 3.6 micron diameters range from slightly larger than the 2.2 micron diameter to approximately the SiO ring diameter. This may be due to differences in the opacity of the molecular envelope at 3.6 microns.

  6. Tuning the conductivity along atomic chains by selective chemisorption

    NASA Astrophysics Data System (ADS)

    Edler, F.; Miccoli, I.; Stöckmann, J. P.; Pfnür, H.; Braun, C.; Neufeld, S.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2017-03-01

    Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, Valerio; Chiodi, Giacomo; Iacoangeli, Francesco

    The necessity to use Photo Multipliers (PM) as light detector limited in the past the use of crystals in radiation handled device preferring the Geiger approach. The Silicon Photomultipliers (SiPMs) are very small and cheap, solid photon detectors with good dynamic range and single photon detection capability, they are usable to supersede cumbersome and difficult to use Photo Multipliers (PM). A SiPM can be coupled with a scintillator crystal to build efficient, small and solid radiation detector. A cost effective and easily replicable Hardware software module for SiPM detector readout is made using the ArduSiPM solution. The ArduSiPM is anmore » easily battery operable handled device using an Arduino DUE (an open Software/Hardware board) as processor board and a piggy-back custom designed board (ArduSiPM Shield), the Shield contains all the blocks features to monitor, set and acquire the SiPM using internet network. (authors)« less

  8. ZrO2 film interfaces with Si and SiO2

    NASA Astrophysics Data System (ADS)

    Lopez, C. M.; Suvorova, N. A.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2005-08-01

    The interface formed by the thermal oxidation of sputter-deposited Zr metal onto Si(100)- and SiO2-coated Si(100) wafers was studied in situ and in real time using spectroscopic ellipsometry (SE) in the 1.5-4.5 photon energy range and mass spectrometry of recoiled ions (MSRI). SE yielded optical properties for the film and interface and MSRI yielded film and interface composition. An optical model was developed and verified using transmission electron microscopy. Interfacial reaction of the ZrO2 was observed for both substrates, with more interaction for Si substrates. Equivalent oxide thicknesses and interface trap levels were determined on capacitors with lower trap levels found on samples with a thicker SiO2 underlayer. In addition to the optical properties for the intermixed interface layer, the optical properties for Zr metal and unreacted ZrO2 are also reported.

  9. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    NASA Astrophysics Data System (ADS)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  10. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  11. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  12. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.

    PubMed

    Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N

    2015-06-10

    Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

  13. Optical reflectivity study of silicon ion implanted poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Stefanov, Ivan L.; Florian, Bojana I.; Blaskova, Gergana D.; Ivanov, Victor G.; Faulques, Eric

    2009-11-01

    The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si +) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si + implantation on the reflectivity of two PMMA materials is examined in the dose range from 10 14 to 10 17 ions/cm 2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si + implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.

  14. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy.

    PubMed

    Carter, Richard M; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R; Daniel Esser, M J; Lamb, Robert A; Hand, Duncan P

    2017-06-01

    We report systematic analysis and comparison of ps-laser microwelding of industry relevant Al6082 parts to SiO 2 and BK7. Parameter mapping of pulse energy and focal depth on the weld strength is presented. The welding process was found to be strongly dependent on the focal plane but has a large tolerance to variation in pulse energy. Accelerated lifetime tests by thermal cycling from -50° to +90°C are presented. Welds in Al6082-BK7 parts survive over the full temperature range where the ratio of thermal expansion coefficients is 3.4:1. Welds in Al6082-SiO 2 parts (ratio 47.1:1) survive only a limited temperature range.

  15. Structural diversity and electronic properties in potassium silicides

    NASA Astrophysics Data System (ADS)

    Hao, Chun-Mei; Li, Yunguo; Huang, Hong-Mei; Li, Yan-Ling

    2018-05-01

    Stable potassium silicides in the complete compositional landscape were systematically explored up to 30 GPa using the variable-composition evolutionary structure prediction method. The results show that K4Si, K3Si, K5Si2, K2Si, K3Si2, KSi, KSi2, KSi3, and K8Si46 have their stability fields in the phase diagram. The spatial dimensional diversity of polymerized silicon atoms (0D "isolated" anion, dimer, Si4 group, 1D zigzag chain, 2D layer, and 3D network) under the potassium sublattice was uncovered as silicon content increases. Especially, the 2D layered silicon presents interestingly a variety of shapes, such as the "4 + 6" ring, "4 + 8"ring, and 8-membered ring. K-Si bonding exhibits a mixed covalency and ionicity, while Si-Si bonding is always of covalent character. Semiconductivity or metallicity mainly depends on the form of sublattices and K:Si ratio, which allows us to find more semiconductors in the Si-rich side when closed-shell K cations are encompassed by polymerized Si. The semiconducting silicides present strong absorption in the infrared and visible light range. These findings open up the avenue for experimental synthesis of alkali metal-IVA compounds and potential applications as battery electrode materials or photoelectric materials.

  16. Magnetic properties and magnetocaloric effects of RNiSi2 (R= Gd, Dy, Ho, Er, Tm) compounds

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Zheng, X. Q.; Zhang, Y.; Zhao, X.; Xiong, J. F.; Zuo, S. L.; Liu, D.; Zhao, T. Y.; Hu, F. X.; Shen, B. G.

    2018-05-01

    Orthorhombic CeNiSi2-type polycrystalline RNiSi2 (R=Gd, Dy, Ho, Er, Tm) compounds were synthesized and the magnetic and magnetocaloric properties were investigated in detail. The transition temperatures of RNiSi2 compounds are all in a very low temperature range (<30 K). As temperature increases, all of the compounds undergo an AFM to PM transition (GdNiSi2 at 18 K, DyNiSi2 at 25 K, HoNiSi2 at 10.5 K, ErNiSi2 at 3 K and TmNiSi2 at 3.5 K, respectively). ErNiSi2 compound shows the largest (ΔSM) m a x (maximal magnetic entropy change) among these compounds. The value of (ΔSM) m a x is 27.9 J/kgK under a field change of 0-5 T, which indicates that ErNiSi2 compound is very competitive for practical applications in low-temperature magnetic refrigeration in the future. DyNiSi2 compound shows large inverse MCE (almost equals to the normal MCE) below the TN which results from metamagenitic transition under magnetic field. Considering of the normal and inverse MCE, DyNiSi2 compound also has potential applications in low-temperature multistage refrigeration.

  17. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  18. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-04-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  19. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Khomenkova, L.; Slaoui, A.

    2018-07-01

    Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1-3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5-2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

  20. Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis

    NASA Technical Reports Server (NTRS)

    Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III

    1979-01-01

    The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.

Top